Science.gov

Sample records for aerosol hygroscopic properties

  1. Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties

    SciTech Connect

    Herich, Hanna; Kammermann, Lukas; Friedman, Beth; Gross, Deborah S.; Weingartner, E.; Lohmann, U.; Spichtinger, Peter; Gysel, Martin; Baltensperger, Urs; Cziczo, Daniel J.

    2009-07-10

    Sub-arctic aerosols were sampled during July 2007 at the Abisko Scientific Research Station Stordalen site in northern Sweden with an instrument setup consisting of a custom-built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) connected in series to a single particle mass spectrometer. Aerosol chemical composition in the form of bipolar single particle mass spectra was determined as a function of hygroscopic growth both in situ and in real time. The HTDMA was deployed at a relative humidity of 82% and particles with a dry mobility diameter of 260 nm were selected. Aerosols from two distinct airmasses were analyzed during the sampling period. Sea salt aerosols were found to be the dominant particle group with the highest hygroscopicity. High intensities of sodium and related peaks in the mass spectra were identified as exclusive markers for large hygroscopic growth. Particles from biomass combustion were found to be the least hygroscopic aerosol category. Species normally considered soluble (e.g., sulfates and nitrates) were found in particles ranging from high to low hygroscopicity. Furthermore, the signal intensities of the peaks related to these species did not correlate with hygroscopicity.

  2. [Hygroscopic Properties of Aerosol Particles in North Suburb of Nanjing in Spring].

    PubMed

    Xu, Bin; Zhang, Ze-feng; Li, Yan-weil; Qin, Xin; Miao, Qing; Shen, Yan

    2015-06-01

    The hygroscopic properties of submicron aerosol particles have significant effects on spectral distribution, CCN activation, climate forcing, human health and so on. A Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) was utilized to analyze the hygroscopic properties of aerosol particles in the northern suburb of Nanjing during 16 April to 21 May, 2014. At relative humidity (RH) of 90%, for particles with dry diameters 30-230 nm, the probability distribution of GF (GF-PDF) shows a distinct bimodal pattern, with a dominant more-hygroscopic group and a smaller less-hygroscopic group. A contrast analysis between day and night suggests that, aerosol particles during day time have a stronger hygroscopicity and a higher number fraction of more-hygroscopic group than that at night overall. Aerosol particles during night have a higher degree of externally mixed state. Backward trajectory analysis using HYSPLIT mode reveals that, the sampling site is mainly affected by three air masses. For aitken nuclei, northwest continental air masses experience a longer aging process and have a stronger hygroscopicity. For condensation nuclei, east air masses have a stronger hygroscopicity and have a higher number fraction of more-hygroscopic group. Aerosol particles in local air masses have a high number fraction of more-hygroscopic group in the whole diameter range.

  3. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  4. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A.; Ahern, A.; Williams, L. R.; Ehn, M.; Mikkila, J.; Canagaratna, M.; Brune, W. H.; Onasch, T. B.; Jayne, J.; Petdjd, T. T.; Kulmala, M. T.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between degree of oxidation and hygroscopic properties of secondary organic aerosol (SOA) particles. The hygroscopic growth factor (HGF), the CCN activity (κCCN) and the degree of aerosol oxidation (represented by the atomic O:C ratio) were measured for α-pinene, 1,3,5-trimethylbenzene (TMB), m-xylene and α pinene/m-xylene mixture SOA generated via OH radical oxidation in an aerosol flow reactor. Our results show that both HGF and κCCN increase with O:C. The TMB and m-xylene SOA were, respectively, the least and most hygroscopic of the system studied. An average HGF of 1.25 and a κCCN of 0.2 were measured at O:C of 0.65, in agreement with results reported for ambient data. The HGF based κ(κHGF) under predicted the κCCN values of 20 to 50% for all but the TMB SOA. Within the limitations of instrumental capabilities, we define the extent to which the hygroscopic properties of SOA particles can be predicted from their oxidation level and provide parameterizations suitable for interpreting ambient data.

  5. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A. T.; Ahern, A. T.; Williams, L. R.; Ehn, M.; Mikkilä, J.; Canagaratna, M. R.; Brune, W. H.; Onasch, T. B.; Jayne, J. T.; Petäjä, T.; Kulmala, M.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between oxidation level and hygroscopic properties of secondary organic aerosol (SOA) particles generated via OH radical oxidation in an aerosol flow reactor. The hygroscopic growth factor at 90% RH (HGF90%), the CCN activity ($\\kappa$ORG,CCN) and the level of oxidation (atomic O:C ratio) of the SOA particles were measured. Both HGF90% and $\\kappa$ORG,CCN increased with O:C; the HGF90% varied linearly with O:C, while $\\kappa$ORG,CCN mostly followed a nonlinear trend. An average HGF90% of 1.25 and $\\kappa$ORG,CCN of 0.19 were measured for O:C of 0.65, in agreement with results reported for ambient data. The $\\kappa$ORG values estimated from the HGF90% ($\\kappa$ORG,HGF) were 20 to 50% lower than paired $\\kappa$ORG,CCN values for all SOA particles except 1,3,5-trimethylbenzene (TMB), the least hygroscopic of the SOA systems. Within the limitations of instrumental capabilities, we show that differences in hygroscopic behavior among the investigated SOA systems may correspond to differences in elemental composition.

  6. Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Maßling, A.; Wiedensohler, A.; Busch, B.; Neusüß, C.; Quinn, P.; Bates, T.; Covert, D.

    2003-09-01

    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (National Oceanic and Atmospheric Administration) Research Vessel Ronald H. Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. Simultaneously, a seven-stage cascade impactor of which 3 stages were in the sub-mm size range was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-mm size range, 1 in the sup-mm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The occurrence of different air masses was classified into special time periods signifying the origin of the observed aerosol. All time periods showed a group of particles with high hygroscopic growth. The measured average hygroscopic growth factors defined by the ratio of dry and wet particle

  7. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  8. Hygroscopic Properties of Atmospheric Aerosol Measured with an HTDMA in an Urban Background Site in Madrid

    NASA Astrophysics Data System (ADS)

    Alonso-Blanco, E.; Gómez-Moreno, F. J.; Becerril, M.; Coz, E.; Artíñano, B.

    2015-12-01

    The observation of high aerosol hygroscopic growth in Madrid is mainly limited to specific atmospheric conditions, such as local stagnation episodes, which take place in winter time. One of these episodes was identified in December 2014 and the hygroscopic growth factor (GF) measurements obtained in such episode were analysed in order to know the influence of the meteorological conditions on aerosol hygroscopic properties. The prevailing high atmospheric stability triggered an increase of the particle total concentration during the study period, with several peaks that exceeded 4.0 104 particles cm-3, as well as an increase in the inorganic fraction of the aerosol, the NO3- concentration, which in this case corresponded to 25% of the total PM1 non-refractory composition. The aerosol hygroscopic growth distribution was bimodal during the episode, with an average GF around 1.2 for the five dry particle sizes measured and an average GF spread ≥ 0.15. In addition, it is important to note that when a reduction in the concentrations of NO3- is observed, it coincides with a decrease of the GF and its spread. These data suggest, on the one hand, a high degree of external mixing state of the aerosol during the episode and, on the other hand, a notable association between the GF and the inorganic fraction of the aerosol.

  9. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Bas Henzing, J. S.; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs

    2016-06-01

    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at ˜ 100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to ˜ 700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34 ± 0.12 and 0.19 ± 0.07 for 500 nm particles, at ˜ 100 and ˜ 700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18 ± 0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from

  10. Hygroscopic Properties of Aircraft Engine Exhaust Aerosol Produced From Traditional and Alternative Fuels

    NASA Astrophysics Data System (ADS)

    Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Crumeyrolle, S.; Chen, G.; Anderson, B. E.

    2012-12-01

    Aircraft emissions of greenhouse gases and aerosols constitute an important component of anthropogenic climate forcing, of which aerosol-cloud interactions remain poorly understood. It is currently thought that the ability of these aerosols to alter upper tropospheric cirrus cloud properties may produce radiative forcings many times larger than the impact of linear contrails alone and which may partially offset the impact of greenhouse gas emissions from aviation (Burkhardt and Karcher, Nature, 2011). Consequently, it is important to characterize the ability of these engine-emitted aerosol to act as cloud condensation nuclei (CCN) and ice nuclei (IN) to form clouds. While a number of studies in the literature have examined aerosol-cloud interactions for laboratory-generated soot or from aircraft engines burning traditional fuels, limited attention has been given to how switching to alternative jet fuels impacts the ability of engine-emitted aerosols to form clouds. The key to understanding these changes is the aerosol hygroscopicity. To address this need, the second NASA Alternative Aviation Fuel Experiment (AAFEX-II) was conducted in 2011 to examine the aerosol emissions from the NASA DC-8 under a variety of different engine power and fuel type conditions. Five fuel types were considered including traditional JP-8 fuel, synthetic Fischer-Tropsh (FT) fuel , sulfur-doped FT fuel (FTS) , hydrotreated renewable jet (HRJ) fuel, and a 50:50 blend of JP-8 with HRJ. Emissions were sampled from the DC-8 on the airport jetway at a distance of 145 meters downwind of the engine by a comprehensive suite of aerosol instrumentation that provided information on the aerosol concentration, size distribution, soot mass, and CCN activity. Concurrent measurements of carbon dioxide were used to account for plume dilution so that characteristic emissions indices could be determined. It is found that both engine power and fuel type significantly influence the hygroscopic properties of

  11. Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Maßling, A.; Wiedensohler, A.; Busch, B.; Neusüß, C.; Quinn, P.; Bates, T.; Covert, D.

    2003-01-01

    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (Northern Organization Atlantic Administration) Research Vessel Ronald H Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. The HTDMA data provide insight into the mixing state of the aerosol in terms of its hygroscopic behavior. Simultaneously, a seven-stage cascade impactor (3 in the sub-µm size range) was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-µm size range, 1 in the sup-µm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The air mass back-trajectory analysis revealed marine air masses as well as air masses with continental influence from Africa, India, or Arabia. The occurrence of different air masses was classified into special

  12. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    NASA Astrophysics Data System (ADS)

    Flores, J. Michel; Bar-Or, R. Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Koren, I.; Rudich, Y.

    2012-06-01

    One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. We found a weak linear dependence or no dependence of fRH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption

  13. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Gysel, M.; Rubach, F.; Mentel, T. F.; Goger, B.; Poulain, L.; Schlag, P.; Miettinen, P.; Pajunoja, A.; Virtanen, A.; Bialek, J.; Klein Baltink, H.; Henzing, J. S.; Größ, J.; Gobbi, G. P.; Wiedensohler, A.; Kiendler-Scharr, A.; O'Dowd, C.; Decesari, S.; Facchini, M. C.; Weingartner, E.; Baltensperger, U.

    2015-03-01

    Airborne measurements of the aerosol hygroscopic and optical properties as well as chemical composition were performed in the Netherlands and northern Italy on board of a Zeppelin NT airship during the PEGASOS field campaigns in 2012. The vertical changes in aerosol properties during the development of the mixing layer were studied. Hygroscopic growth factors (GF) at 95% relative humidity were determined using the white-light humidified optical particles spectrometer (WHOPS) for dry diameters of 300 and 500 nm particles. These measurements were supplemented by an aerosol mass spectrometer (AMS) and an aethalometer providing information on the aerosol chemical composition. Several vertical profiles between 100 and 700 m a.g. were flown just after sunrise close to the San Pietro Capofiume ground station in the Po Valley, Italy. During the early morning hours the lowest layer (newly developing mixing layer) contained a high nitrate fraction (20%) which was coupled with enhanced hygroscopic growth. In the layer above (residual layer) small nitrate fractions of ~ 2% were measured as well as low GFs. After full mixing of the layers, typically around noon and with increased temperature, the nitrate fraction decreased to 2% at all altitudes and led to similar hygroscopicity values as found in the residual layer. These distinct vertical and temporal changes underline the importance of airborne campaigns to study aerosol properties during the development of the mixed layer. The aerosol was externally mixed with 22 and 67% of the 500 nm particles in the range GF < 1.1 and GF > 1.5, respectively. Contributors to the non-hygroscopic mode in the observed size range are most likely mineral dust and biological material. Mean hygroscopicity parameters (κ) were 0.34, 0.19 and 0.18 for particles in the newly forming mixing layer, residual layer and fully mixed layer, respectively. These results agree well with those from chemical analysis which found values of κ = 0.27, 0.21 and 0

  14. Vacuum FTIR observation on hygroscopic properties and phase transition of malonic acid aerosols

    NASA Astrophysics Data System (ADS)

    Shao, Xu; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-02-01

    A novel approach based on a combination of a pulse relative humidity (RH) controlling system and a rapid scan vacuum FTIR spectrometer was utilized to investigate the hygroscopic property and phase transition of malonic acid (MA) aerosols. By using this approach, both water vapor amount around the aerosols and water content within aerosols with sub-second time resolution were obtained. Based on the features of FTIR absorbing bands, it can be known that the evolution of hydrogen-bonding structures of malonic acid aerosols took place from (H2O)n-MA to MA-MA accompanying with phase transition in the dehumidifying process. And in present paper, the stepwise efflorescence of MA aerosols and nucleation rates at different RHs are first reported. Our observation has shown that the efflorescence of MA started at ∼17% RH and the nucleation rates increased with decreasing RH.

  15. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing

    PubMed Central

    Zhang, Renyi; Khalizov, Alexei F.; Pagels, Joakim; Zhang, Dan; Xue, Huaxin; McMurry, Peter H.

    2008-01-01

    The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably altering their properties. Soot particles exposed to subsaturated sulfuric acid vapor exhibit a marked change in morphology, characterized by a decreased mobility-based diameter but an increased fractal dimension and effective density. These particles experience large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity) and act efficiently as cloud-condensation nuclei. Coating with sulfuric acid and subsequent hygroscopic growth enhance the optical properties of soot aerosols, increasing scattering by ≈10-fold and absorption by nearly 2-fold at 80% relative humidity relative to fresh particles. In addition, condensation of sulfuric acid is shown to occur at a similar rate on ambient aerosols of various types of a given mobility size, regardless of their chemical compositions and microphysical structures. Representing an important mechanism of atmospheric aging, internal mixing of soot with sulfuric acid has profound implications on visibility, human health, and direct and indirect climate forcing. PMID:18645179

  16. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing.

    PubMed

    Zhang, Renyi; Khalizov, Alexei F; Pagels, Joakim; Zhang, Dan; Xue, Huaxin; McMurry, Peter H

    2008-07-29

    The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably altering their properties. Soot particles exposed to subsaturated sulfuric acid vapor exhibit a marked change in morphology, characterized by a decreased mobility-based diameter but an increased fractal dimension and effective density. These particles experience large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity) and act efficiently as cloud-condensation nuclei. Coating with sulfuric acid and subsequent hygroscopic growth enhance the optical properties of soot aerosols, increasing scattering by approximately 10-fold and absorption by nearly 2-fold at 80% relative humidity relative to fresh particles. In addition, condensation of sulfuric acid is shown to occur at a similar rate on ambient aerosols of various types of a given mobility size, regardless of their chemical compositions and microphysical structures. Representing an important mechanism of atmospheric aging, internal mixing of soot with sulfuric acid has profound implications on visibility, human health, and direct and indirect climate forcing.

  17. Role of the volatile fraction of submicron marine aerosol on its hygroscopic properties

    NASA Astrophysics Data System (ADS)

    Sellegri, Karine; Villani, Paolo; Picard, David; Dupuy, Regis; O'Dowd, Colin; Laj, Paolo

    2008-11-01

    The hygroscopic growth factor (HGF) of 85 nm and 20 nm marine aerosol particles was measured during January 2006 for a three-week period within the frame of the EU FP6 project MAP (Marine Aerosol Production) winter campaign at the coastal site of Mace Head, using the TDMA technique. The results are compared to aerosol particles produced in a simulation tank by bubbling air through sea water sampled near the station, and through synthetic sea water (inorganic salts). This simulation is assimilated to primary production. Aitken and mode particles (20 nm) and accumulation mode particles (85 nm) both show HGF of 1.92 and 2.01 for particles generated through bubbling in natural and artificial sea water respectively. In the Aitken mode, the marine particles sampled in the atmosphere shows a monomodal HGF slightly lower than the one measured for sea salt particles artificially produced by bubble bursting in natural sea water (HGF = 1.83). This is also the case for the more hygroscopic mode of accumulation mode particles. In addition, the HGF of 85 nm particles observed in the atmosphere during clean marine sectors exhibits half of its population with a 1.4 HGF. An external mixture of the accumulation mode marine particles indicates a secondary source of this size of particles, a partial processing during transport, or an inhomogeneity of the sea water composition. A gentle 90 °C thermo-desorption results in a significant decrease of the number fraction of moderately hygroscopic (HGF = 1.4) particles in the accumulation mode to the benefit of the seasalt mode, pointing to the presence of semi-volatile compounds with pronounced hydrophobic properties. The thermo-desorption has no effect on the HGF of bubble generated aerosols, neither for synthetic or natural sea water, nor on the atmospheric Aitken mode, indicating that these hydrophobic compounds are secondarily integrated in the particulate phase. No difference between night and day samples is observed on the natural

  18. Effect of aging on morphology, hygroscopicity, and optical properties of soot aerosol

    NASA Astrophysics Data System (ADS)

    Khalizov, A. F.; Xue, H.; Pagels, J.; McMurry, P. H.; Zhang, R.

    2009-12-01

    Soot from incomplete combustion represents one of the major forms of particulate matter pollution, profoundly impacting human health, air quality, and climate. The direct and indirect radiative effects of soot aerosol depend on particle composition and morphology, which may vary significantly when aerosol is subjected to atmospheric aging. We will present an overview of a comprehensive set of experimental measurements performed in our laboratory at Texas A&M to study the effect of internal mixing with atmospheric species on morphology, hygroscopicity, and optical properties of combustion soot. In our experiments, size-classified soot aerosol was exposed to 0.1 - 1000 ppb (part per billion) mixing ratios of sulfuric acid and dicarboxylic organic acids and resulting changes particle morphology and mixing state under dry and humid conditions were characterized through mass-mobility measurements by aerosol particle mass analyzer (APM) and tandem differential mobility analyzer (TDMA). Light absorption and scattering cross-sections for well-characterized fresh and coated soot aerosol were derived using a cavity ring-down spectrometer and an integrating nephelometer in order to assess the effect of atmospheric processing on the radiative properties of atmospheric soot. Internally mixed soot shows significant changes in particle morphology, increasing with the mass fraction of the coating material and relative humidity. Restructuring was the strongest for aggregates coated by sulfuric and glutaric acids whereas succinic acid coating did not result in observable morphology change. Sulfuric acid - coated particles experienced large hygroscopic growth at sub-saturated conditions and activated to cloud droplets at atmospherically relevant supersaturations. Furthermore, coating and subsequent hygroscopic growth considerably altered the optical properties of soot aerosol, increasing light scattering and absorption cross-sections. We found that irreversible restructuring of soot

  19. Influence of collecting substrates on the characterization of hygroscopic properties of inorganic aerosol particles.

    PubMed

    Eom, Hyo-Jin; Gupta, Dhrubajyoti; Li, Xue; Jung, Hae-Jin; Kim, Hyekyeong; Ro, Chul-Un

    2014-03-04

    The influence of six collecting substrates with different physical properties on the hygroscopicity measurement of inorganic aerosol particle surrogates and the potential applications of these substrates were examined experimentally. Laboratory-generated single salt particles, such as NaCl, KCl, and (NH4)2SO4, 1-5 μm in size, were deposited on transmission electron microscopy grids (TEM grids), parafilm-M, Al foil, Ag foil, silicon wafer, and cover glass. The particle hygroscopic properties were examined by optical microscopy. Contact angle measurements showed that parafilm-M is hydrophobic, and cover glass, silicon wafer, Al foil, and Ag foil substrates are hydrophilic. The observed deliquescence relative humidity (DRH) values for NaCl, KCl, and (NH4)2SO4 on the TEM grids and parafilm-M substrates agreed well with the literature values, whereas the DRHs obtained on the hydrophilic substrates were consistently ∼1-2% lower, compared to those on the hydrophobic substrates. The water layer adsorbed on the salt crystals prior to deliquescence increases the Gibb's free energy of the salt crystal-substrate system compared to the free energy of the salt droplet-substrate system, which in turn reduces the DRHs. The hydrophilic nature of the substrate does not affect the measured efflorescence RH (ERH) values. However, the Cl(-) or SO4(2-) ions in aqueous salt droplets seem to have reacted with Ag foil to form AgCl or Ag2SO4, respectively, which in turn acts as seeds for the heterogeneous nucleation of the original salts, leading to higher ERHs. The TEM grids were found to be most suitable for the hygroscopic measurements of individual inorganic aerosol particles by optical microscopy and when multiple analytical techniques, such as scanning electron microscopy-energy dispersive X-ray spectroscopy, TEM-EDX, and/or Raman microspectrometry, are applied to the same individual particles.

  20. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg ·ρinorg-1 +forg ·ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  1. The Effects of Mineral Dust on the Hygroscopic and Optical Properties of Inorganic Salt Aerosols

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Greenslade, M. E.

    2011-12-01

    Mineral dust particles are a significant fraction of the total aerosol mass, thus they play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. Assessing this impact is complicated by the variability of optical properties resulting from water uptake and changes in chemical composition due to atmospheric mixing. Internal mixtures of montmorillonite, a clay component of mineral dust, with sodium chloride and ammonium sulfate were studied optically using cavity ring down spectroscopy. The effects of the addition of the clay to the optically observed deliquescence relative humidity (DRH) and water uptake of these salts was considered by investigating a series of different salt mass fractions. In most cases, montmorillonite alters the hygroscopic properties and causes the DRH to occur at a lower relative humidity. For ammonium sulfate, optical properties can be approximated by volume weighted mixing rules with some minor deviations around the DRH. For sodium chloride, this approximation is only accurate below the DRH with enhanced water uptake at higher relative humidities. Our results show that salt particles may transition from solid to liquid at a lower relative humidity than is expected based on the salt alone, as observed with changes in optical properties. Further, they contradict current measurements in the literature that suggest little change in the hygroscopic behavior of salts when insoluble mineral dust components are added and should continue to be investigated. Accurate, direct measurements of the effect of the addition of clays to the optical properties of common aerosol species will allow for improvements in the prediction of the aerosol direct effect.

  2. An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tan, Haobo; Yin, Yan; Gu, Xuesong; Li, Fei; Chan, P. W.; Xu, Hanbing; Deng, Xuejiao; Wan, Qilin

    2013-10-01

    Hygroscopic growth can significantly affect size distribution and activation of aerosol particles, as well as their effects on human health, atmospheric visibility, and climate. In this study, an H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer) was utilized to measure hygroscopic growth factor and mixing state of aerosol particles at the CAWNET station in Panyu, Guangzhou, China. A statistical analysis of the results show that, at relative humidity (RH) of 90%, for less-hygroscopic particles of 40-200 nm in diameter, the growth factor (gLH) was around 1.13, while the number fraction (NFLH) varied between 0.41 ± 0.136 and 0.26 ± 0.078; for more-hygroscopic particles, the growth factor (gMH) varied between 1.46 and 1.55 with the average equivalent ammonium sulfate ratio (ɛAS) ranging from 0.63 to 0.68. The differences in ɛAS among particle of different sizes reveal that more-hygroscopic inorganic salts, such as ammonium sulfate and ammonium nitrate, are of more effective condensation growth for Aitken mode particles. A combined analysis of the probability density function of growth factor (Gf-PDF) and simultaneous meteorological data shows that during clean periods with air masses moving from the north, the particles are more likely to have homogeneous chemical composition, while during polluted or pollution accumulation periods, variations in mean number weighted growth factor (gmean) and NFMH become more pronounced, indicating that locally-emitted aerosol particles tend to be in an externally mixed state and contain a certain proportion of less-hygroscopic particles. This study can help improve our understanding of aerosol hygroscopicity and its impact on the atmospheric visibility and environment.

  3. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    in the mid-IR range (800 to 7000 cm(-1)) also showed no significant changes in either the real or the imaginary parts of the refractive indices for brown carbon aerosol particles when compared to ammonium sulfate. Therefore, changes in the optical properties of ammonium sulfate in the mid-IR spectral range due to reaction with methylglyoxal appear to be insignificant. In addition to these measurements, we have characterized additional physicochemical properties of the brown carbon aerosol particles including hygroscopic growth using a tandem-differential mobility analyzer. Compared to ammonium sulfate, brown carbon aerosol particles are found to have lower deliquescence relative humidity (DRH), efflorescence relative humidity (ERH), and hygroscopic growth at the same relative humidities. Overall, our study provides new details of the optical and physicochemical properties of a class of secondary organic aerosol which may have important implications for atmospheric chemistry and climate.

  4. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  5. Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011

    NASA Astrophysics Data System (ADS)

    Ryshkevich, T. I.; Mironov, G. N.; Mironova, S. Yu.; Vlasenko, S. S.; Chi, X.; Andreae, M. O.; Mikhailov, E. F.

    2015-09-01

    The results of measurements of hygroscopic properties and chemical analysis of atmospheric aerosol samples collected from June 10 to 20 and December 15 to 25, 2011, at the ZOTTO background stations (60.8° N, 89.35° E) in Central Siberia are presented. The sorption properties of aerosols are studied with the help of a differential analyzer of absorbed water mass in the relative humidity range of 5 to 99%. It has been found that the hygroscopic growth factor of aerosol particles collected during the winter campaign is on average 45% higher than that of the aerosol collected in the summer campaign, which leads to a 40% decrease in the critical supersaturation threshold of cloud activation of particles. The measurement data are analyzed and parameterized using a new approach that takes into account the concentration effects in the particle—water vapor system at low humidities. Based on the chemical analysis, the content of water-soluble substances in the winter sample is 2.5 times higher than in the summer sample. Here, the amount of sulfates and nitrates increases 20 and 88 times, respectively. A trajectory analysis of air mass motion shows that the increased content of inorganic ions in aerosols for the winter sample is caused by long-range transport of pollutants from industrial areas of Siberia. This difference in the chemical composition is the main source of the observed difference in hygroscopic and condensation properties of the aerosol particles.

  6. Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign

    NASA Astrophysics Data System (ADS)

    Kim, Najin; Park, Minsu; Yum, Seong Soo; Park, Jong Sung; Song, In Ho; Shin, Hye Jung; Ahn, Joon Young; Kwak, Kyung-Hwan; Kim, Hwajin; Bae, Gwi-Nam; Lee, Gangwoong

    2017-03-01

    Aerosol physical properties, chemical compositions, hygroscopicity and cloud condensation nuclei (CCN) activities were measured in Seoul, the highly populated capital city of Korea, during the Megacity Air Pollution Studies (MAPS-Seoul) campaign, in May-June 2015. The average aerosol concentration for particle diameters >10 nm was 11787 ± 7421 cm-3 with dominant peaks at morning rush hours and in the afternoon due to frequent new particle formation (NPF) events. The average CCN concentration was 4075 ± 1812 cm-3 at 0.6% supersaturation, with little diurnal variation. The average hygroscopicity parameter (κ) value determined using a humidified tandem differential mobility analyzer (HTDMA) ranged 0.17-0.27 for a range of particle diameters (30-150 nm). The κ values derived using the aerosol mass spectrometer (AMS) data with three different methods were 0.32-0.34, significantly higher than those from HTDMA due to the uncertainties in the hygroscopicity values of different chemical compositions, especially organics and black carbon. Factors affecting the aerosol hygroscopicity seemed to be traffic and chemical processes during the NPF events. The CCN concentration predicted based on HTDMA κ data showed very good agreement with the measured one. Because of the overestimation of κ, CCN closure with the predicted CCN concentration based on AMS κ data over-predicted CCN concentration although the linear correlation between measured and predicted CCN concentration was still very good.

  7. Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Nenes, Athanasios; Marinou, Eleni; Solomos, Stavros; Rosenberg, Phil; Trembath, Jamie; Nott, Graeme J.; Allan, James; Le Breton, Michael; Bacak, Asan; Coe, Hugh; Percival, Carl; Mihalopoulos, Nikolaos

    2017-01-01

    We present the In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) that combines airborne in situ and lidar remote sensing data to retrieve vertical profiles of ambient aerosol optical, microphysical and hygroscopic properties, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. Here we apply the algorithm on data collected from the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft during the ACEMED campaign in the Eastern Mediterranean. Vertical profiles of aerosol microphysical properties have been derived successfully for an aged smoke plume near the city of Thessaloniki with aerosol optical depth of ˜ 0.4 at 532 nm, single scattering albedos of ˜ 0.9-0.95 at 550 nm and typical lidar ratios for smoke of ˜ 60-80 sr at 532 nm. IRRA retrieves highly hydrated particles above land, with 55 and 80 % water volume content for ambient relative humidity of 80 and 90 %, respectively. The proposed methodology is highly advantageous for aerosol characterization in humid conditions and can find valuable applications in aerosol-cloud interaction schemes. Moreover, it can be used for the validation of active space-borne sensors, as is demonstrated here for the case of CALIPSO.

  8. Hygroscopic and chemical properties of aerosols collected near a copper smelter: implications for public and environmental health.

    PubMed

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J; Sáez, A Eduardo; Betterton, Eric A

    2012-09-04

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g., arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18-0.55 μm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10-0.32 μm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles.

  9. Hygroscopic and Chemical Properties of Aerosols collected near a Copper Smelter: Implications for Public and Environmental Health

    PubMed Central

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J.; Sáez, A. Eduardo; Betterton, Eric A.

    2012-01-01

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples collected near an active copper smelter were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g. arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18–0.55 µm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10–0.32 µm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles. PMID:22852879

  10. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  11. Hygroscopic properties of humic-like organics isolated from atmospheric fine aerosol

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Galambos, I.; Kiss, G.; Baltensperger, U.

    2003-04-01

    Organic species are a major fraction of the fine aerosol mode and it has been suggested that water-soluble organic carbon (WSOC) compounds may play an important role in cloud formation. Fine aerosol samples (diameter D < 1.5 μm) from the continental rural site K-puszta, Hungary, were characterized using a solid phase extraction method. The total water-soluble content (WSC) was composed of 49 % inorganics, 14 % highly water-soluble organics, and 37 % of less soluble organics. The latter, called isolated organic matter (ISOM), is assumed to be mainly composed of humic-like substances. Hygroscopic growth factors (HGF) of nebulised WSC and ISOM extracts, as well as reference substances NRFA and NRHA (fulvic and humic acids), were measured with an H-TDMA. Under increasing RH dry ISOM particles (D{_o} = 100 nm) dissolved in the range RH = 30 - 60 %, followed by continuous growth above this deliquescence transition, resulting in HGFs of D/D{_o} 1.14 at 90 % RH. Particles from WSC extracts exhibited HGFs of D/D{_o} 1.61 at 90 % RH. This is close to the HGF of pure ammonium sulfate (D/D{_o} = 1.69 at 90 % RH), indicating that ISOM contributes significantly to water uptake of mixed WSC particles. Although ISOM is distinctly less hygroscopic than pure inorganic salt particles, its role in the hygroscopic behavior of atmospheric particles is important because of the large abundance and relatively low deliquescence RH. HGFs of NRFA and NRHA were 1.15 and 1.07 at 90 % RH, and deliquescence was at 80 and 90 % RH, respectively. Their hygroscopic behavior was qualitatively similar to ISOM samples, but quantitative differences might be a result of larger average molecular size of the reference substances.

  12. Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation.

    PubMed

    Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong

    2010-12-09

    Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.

  13. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  14. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  15. Calculation of aerosol optical properties under different assumptions on mixing state, refractive index, density and hygroscopicity: uncertainties and importance of representation of aerosol mixing state

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele

    2015-04-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. We used the FlexAOD post-processing tool to calculate the optical properties (aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (g)) from chemistry-transport model aerosol profiles, using a wide range of assumptions on aerosol chemical and physical properties. We calculated that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. We then tested simple parameterizations of the aerosol mixing state, expressed as a function of the aerosol aging, and verified that they may be helpful in reducing the uncertainty when comparing simulations with AERONET retrievals.

  16. In-Situ Measurements of Aerosol Optical and Hygroscopic Properties at the Look Rock Site during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Guzman, J. M.; Russell, L. M.; Budisulistiorini, S.; Li, X.; Surratt, J. D.; Hicks, W.; Bairai, S. T.; Cappa, C. D.

    2013-12-01

    One of the main goals of the Southern Oxidant and Aerosol Study (SOAS) is to characterize the climate-relevant properties of aerosols over the southeastern United States at the interface of biogenic and anthropogenic emissions. As part of the SOAS campaign, the UCD cavity ringdown/photoacoustic spectrometer was deployed to make in-situ measurements of aerosol light extinction, absorption and sub-saturated hygroscopicity at the Look Rock site (LRK) in the Great Smoky Mountains National Park, TN from June 1 to July 15, 2013. The site is influenced by substantial biogenic emissions with varying impacts from anthropogenic pollutants, allowing for direct examination of the optical and hygroscopic properties of anthropogenic-influenced biogenic secondary organic aerosols (SOA). During the experiment period, the average dry aerosol extinction (Bext), absorption (Babs) coefficients and single scattering albedo (SSA) at 532 nm were 30.3 × 16.5 Mm-1, 1.12 × 0.78 Mm-1 and 0.96 × 0.06. The Babs at 532 nm was well correlated (r2 = 0.79) with the refractory black carbon (rBC) number concentration determined by a single particle soot spectrometer (SP2). The absorption by black carbon (BC), brown carbon (BrC) and the absorption enhancement due to the 'lensing' effect were quantified by comparing the Babs of ambient and thermo-denuded aerosols at 405 nm and 532 nm. The optical sub-saturated hygroscopic growth factor was derived from extinction and particle size distribution measurements at dry and elevated relative humidity. In addition, to explore the extent to which ammonia mediated chemistry leads to BrC formation, as suggested in recent laboratory studies(1,2), we performed an NH3 perturbation experiment in-situ for 1 week during the study, in which ambient aerosols were exposed to approximately 100 ppb NH3 with a residence time of ~ 3hr. The broader implications of these observational data at LRK will be discussed in the context of the concurrent gas and aerosol chemical

  17. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-02-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.

  18. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    PubMed Central

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-01-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles. PMID:28240258

  19. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles.

    PubMed

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-02-27

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.

  20. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Yao; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-07-01

    The hygroscopic and volatility properties of secondary organic aerosol (SOA) produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in a laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase photooxidation of terpenes, usually found almost hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weight compounds), which evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon the droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  1. The hygroscopicity of indoor aerosol particles

    SciTech Connect

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH{sub 4}){sub 2}SO{sub 4}, and (NH{sub 4})HS0{sub 4} particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components.

  2. Hygroscopicity and optical properties of alkylaminium sulfates.

    PubMed

    Hu, Dawei; Li, Chunlin; Chen, Hui; Chen, Jianmin; Ye, Xingnan; Li, Ling; Yang, Xin; Wang, Xinming; Mellouki, Abdelwahid; Hu, Zhongyang

    2014-01-01

    The hygroscopicity and optical properties of alkylaminium sulfates (AASs) were investigated using a hygroscopicity tandem differential mobility analyzer coupled to a cavity ring-down spectrometer and a nephelometer. AAS particles do not exhibit a deliquescence phenomenon and show a monotonic increase in diameter as the relative humidity (RH) ascends. Hygroscopic growth factors (GFs) for 40, 100 and 150 nm alkylaminium sulfate particles do not show an apparent Kelvin effect when RH is less than 45%, whereas GFs of the salt aerosols increase with initial particle size when RH is higher than 45%. Calculation using the Zdanovskii-Stokes-Robinson mixing rule suggests that hygroscopic growth of triethylaminium sulfate-ammonium sulfate mixtures is non-deliquescent, occurring at very low RH, implying that the displacement of ammonia by amine will significantly enhance the hygroscopicity of (NH4)2SO4 aerosols. In addition, light extinction of AAS particles is a combined effect of both scattering and absorption under dry conditions, but is dominated by scattering under wet conditions.

  3. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    PubMed

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate.

  4. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    DOE PAGES

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; ...

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water solublemore » fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the

  5. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-08-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws

  6. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ∼34% in the accumulation vs. ∼47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ∼70%, while efflorescence occurred at different humidities, i.e., at ∼35% RH for submicron particles vs. ∼50% RH for supermicron particles. This ∼15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ∼0.15 for

  7. Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Bougiatioti, A.; Nenes, A.; Anderson, B. E.; Beyersdorf, A. J.; Brock, C. A.; Gordon, T. D.; Lack, D.; Law, D. C.; Liao, J.; Middlebrook, A. M.; Richardson, M.; Thornhill, K. L., II; Winstead, E.; Wagner, N. L.; Welti, A.; Ziemba, L. D.

    2014-12-01

    The evolutions of vertical distributions of aerosol chemical, microphysical, hygroscopic, and optical properties present fundamental challenges to the understanding of ground-level air quality and radiative transfer, and few datasets exist to date for evaluation of atmospheric models. Data collected from recent NASA and NOAA field campaigns in the California Central Valley (DISCOVER-AQ), southeast United States (SENEX, SEAC4RS) and Texas (DISCOVER-AQ) allow for a unique opportunity to constrain vertical profiles of climate-relevant aerosol properties. This work presents in-situ aircraft measurements of cloud condensation nuclei (CCN) concentration and derivations of aerosol hygroscopicity, water uptake, and light scattering. Aerosol hygroscopicity is derived from CCN and aerosol measurements. Inorganic water uptake is calculated from aerosol composition using ISORROPIA, a chemical thermodynamic model, while organic water uptake is calculated from organic hygroscopicity. Aerosol scattering closure is performed between scattering from water uptake calculations and in-situ scattering measurements.

  8. Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign

    NASA Astrophysics Data System (ADS)

    Ye, Xingnan; Tang, Chen; Yin, Zi; Chen, Jianmin; Ma, Zhen; Kong, Lingdong; Yang, Xin; Gao, Wei; Geng, Fuhai

    2013-01-01

    The hygroscopic properties of submicrometer urban aerosol particles were studied during the 2009 Mirage-Shanghai Campaign. The urban aerosols were composed of more-hygroscopic and nearly-hydrophobic particles, together with a trace of less-hygroscopic particles. The mean hygroscopicity parameter κ of the more-hygroscopic mode varied in the range of 0.27-0.39 depending on particle size. The relative abundance of the more-hygroscopic particles at any size was ca. 70%, slightly increasing with particle size. The number fraction of the nearly-hydrophobic particles fluctuated between 0.1 and 0.4 daily, in accordance with traffic emissions and atmospheric diffusion. The results from relative humidity dependence on hygroscopic growth and chemical analysis of fine particles indicated that particulate nitrate formation through the homogenous gas-phase reaction was suppressed under ammonia-deficient atmosphere in summer whereas the equilibrium was broken by more available NH3 during adverse meteorological conditions.

  9. Hygroscopicity of Black-Carbon-Containing Aerosol in Wildfire Plumes

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Markovic, M. Z.; Fahey, D. W.; Yokelson, R. J.; Jimenez, J. L.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.; Diskin, G. S.; Huey, L. G.; Gao, R. S.

    2015-12-01

    Water uptake by black carbon (BC) containing aerosol has been quantified in wildfire plumes of varying age (from 1 to ~40 hr old) sampled in North America during the NASA SEAC4RS mission of 2013. Measurements were made in flight using parallel single-particle soot photometers (SP2) that simultaneously detected the BC component of the ambient aerosol ensemble under contrasting humidity conditions. The hygroscopicity parameter, κ, of material internally mixed with BC derived from this data set is consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. We explore the temporal evolution of κ during aging of the Yosemite Rim Fire plume to constrain the rate of conversion of BC-containing aerosol from hydrophobic to hydrophilic modes in these emissions. We also investigate the relationship between κ values for BC-containing particles and the oxidation state and hygroscopicity of the bulk aerosol. These observations have implications for BC transport and removal in biomass burning plumes and provide important constraints on model treatment of BC optical and microphysical properties from wildfire sources in ambient conditions.

  10. Hygroscopic and chemical characterisation of Po Valley aerosol

    NASA Astrophysics Data System (ADS)

    Bialek, J.; Dall Osto, M.; Vaattovaara, P.; Decesari, S.; Ovadnevaite, J.; Laaksonen, A.; O'Dowd, C.

    2014-02-01

    Continental summer-time aerosol in the Italian Po Valley was characterised in terms of hygroscopic properties and the influence of chemical composition therein. Additionally, the ethanol affinity of particles was analysed. The campaign-average minima in hygroscopic growth factors (HGFs, at 90% relative humidity) occurred just before and during sunrise from 03:00 to 06:00 LT (all data are reported in the local time), but, more generally, the hygroscopicity during the whole night is very low, particularly in the smaller particle sizes. The average HGFs recorded during the low HGF period were in a range from 1.18 (for the smallest, 35nm particles) to 1.38 (for the largest, 165 nm particles). During the day, the HGF gradually increased to achieve maximum values in the early afternoon hours 12:00-15:00, reaching 1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting case scenarios were encountered during the measurement period: Case 1 was associated with westerly air flow moving at a moderate pace and Case 2 was associated with more stagnant, slower moving air from the north-easterly sector. Case 1 exhibited weak diurnal temporal patterns, with no distinct maximum or minimum in HGF or chemical composition, and was associated with moderate non-refractory aerosol mass concentrations (for 50% size cut at 1 μ) of the order of 4.5 μg m-3. For Case 1, organics contributed typically 50% of the mass. Case 2 was characterised by >9.5 μg m-3 total non-refractory mass (<1 μ) in the early morning hours (04:00), decreasing to ~3 μg m-3 by late morning (10:00) and exhibited strong diurnal changes in chemical composition, particularly in nitrate mass but also in total organic mass concentrations. Specifically, the concentrations of nitrate peaked at night-time, along with the concentrations of hydrocarbon-like organic aerosol (HOA) and of semi-volatile oxygenated organic aerosol (SV-OOA). In general, organic growth factors (OGFs) followed a trend which was

  11. Water Uptake and Hygroscopic Growth of Organosulfate Aerosol.

    PubMed

    Estillore, Armando D; Hettiyadura, Anusha P S; Qin, Zhen; Leckrone, Erin; Wombacher, Becky; Humphry, Tim; Stone, Elizabeth A; Grassian, Vicki H

    2016-04-19

    Organosulfates (OS) are important components of secondary organic aerosol (SOA) that have been identified in numerous field studies. This class of compounds within SOA can potentially affect aerosol physicochemical properties such as hygroscopicity because of their polar and hydrophilic nature as well as their low volatility. Currently, there is a dearth of information on how aerosol particles that contain OS interact with water vapor in the atmosphere. Herein we report a laboratory investigation on the hygroscopic properties of a structurally diverse set of OS salts at varying relative humidity (RH) using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). The OS studied include the potassium salts of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-butenediol sulfate and the sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and propyl sulfate. In addition, mixtures of OS and sodium chloride were also studied. The results showed gradual deliquescence of these aerosol particles characterized by continuous uptake and evaporation of water in both hydration and dehydration processes for the OS, while the mixture showed prompt deliquescence and effloresce transitions, albeit at a lower relative humidity relative to pure sodium chloride. Hygroscopic growth of these OS at 85% RH were also fit to parameterized functional forms. This new information provided here has important implications about the atmospheric lifetime, light scattering properties, and the role of OS in cloud formation. Moreover, results of these studies can ultimately serve as a basis for the development and evaluation of thermodynamic models for these compounds in order to consider their impact on the atmosphere.

  12. Absorbing aerosols at high relative humidity: closure between hygroscopic growth and optical properties

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Bar-Or, R. Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Rudich, Y.

    2012-01-01

    The extinction coefficient and growth factor of humidified aerosols, at 80% and 90% RH, and at 532 nm and 355 nm wavelengths were measured for size-selected particles for ammonium sulfate, IHSS Pahokee peat (a lightly absorbing humic-like substance proxy), nigrosine (a black dye to model highly absorbing substances), and a mixture of AS and nigrosine. The ratio of the humidified extinction coefficients to the dry (fRHext(%RH, Dry)) was explored. The measured fRHext(%RH, Dry) was compared to theoretical calculations based on Mie theory, using the measured growth factors and assuming homogeneous mixing. The expected complex refractive indices (RIs) using the volume weighted mixing rule were compared to the RIs derived from the extinction measurements. Moreover, the differences between assuming a core-shell structure or a homogeneous mixing of the substances is examined. The laboratory results were used as a basis to model the change in the total extinction, the single scattering albedo (ω), and the asymmetry parameter (g) in the twilight zone of clouds at 355 nm and 532 nm. We found slightly linear to no dependency of fRH(%RH, Dry) with size for absorbing substances in contrast to the decreasing exponential behavior with size for purely scattering substances. However, no discernable difference could be made between the two wavelengths used. Less than 5% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. Moreover, for substances with growth factor less than 1.15 there was, in average, less than 5% difference between the extinction efficiencies calculated using a core-shell model and assuming homogeneous mixing for size parameters less than 2.5. For x>2.5 the differences were greater causing and overestimation of the extinction efficiency (Qext) values if homogenous mixing was assume instead of a core-shell structure. The

  13. Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado

    NASA Astrophysics Data System (ADS)

    Levin, E. J. T.; Prenni, A. J.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Winkler, P. M.; Kreidenweis, S. M.; DeMott, P. J.; Jimenez, J. L.; Smith, J. N.

    2014-03-01

    Aerosol hygroscopicity describes the ability of a particle to take up water and form a cloud droplet. Modeling studies have shown sensitivity of precipitation-producing cloud systems to the availability of aerosol particles capable of serving as cloud condensation nuclei (CCN), and hygroscopicity is a key parameter controlling the number of available CCN. Continental aerosol is typically assumed to have a representative hygroscopicity parameter, κ, of 0.3; however, in remote locations this value can be lower due to relatively large mass fractions of organic components. To further our understanding of aerosol properties in remote areas, we measured size-resolved aerosol chemical composition and hygroscopicity in a forested, mountainous site in Colorado during the six-week BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Rocky Mountain Biogenic Aerosol Study) campaign. This campaign followed a year-long measurement period at this site, and results from the intensive campaign shed light on the previously reported seasonal cycle in aerosol hygroscopicity. New particle formation events were observed routinely at this site and nucleation mode composition measurements indicated that the newly formed particles were predominantly organic. These events likely contribute to the dominance of organic species at smaller sizes, where aerosol organic mass fractions were between 70 and 90%. Corresponding aerosol hygroscopicity was observed to be in the range κ = 0.15-0.22, with hygroscopicity increasing with particle size. Aerosol chemical composition measured by an aerosol mass spectrometer and calculated from hygroscopicity measurements agreed very well during the intensive study, with an assumed value of κorg = 0.13 resulting in the best agreement.

  14. Hygroscopic and chemical characterisation of Po Valley aerosol

    NASA Astrophysics Data System (ADS)

    Bialek, J.; Dall'Osto, M.; Vaattovaara, P.; Ovadnevaite, J.; Decesari, S.; Laaksonen, A.; O'Dowd, C.

    2013-02-01

    Continental summer-time aerosol in the Italian Po Valley was characterized in terms of hygroscopic properties and the influence of chemical composition therein. The campaign-average minima in hygroscopic growth factors (HGFs) occurred just before and during sunrise from 03:00-06:00, but more generally, the whole night shows very low hygroscopicity, particularly in the smaller particle sizes. The average HGFs increased from 1.18 for the smallest sized particles (35 nm) to 1.38 for the largest sizes (165 nm) for the lowest HGF period while during the day, the HGF gradually increased to achieve maximum values in the early afternoon hours from 12:00-15:00, reaching 1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting case scenarios were encountered during the measurement period: Case 1 was associated with westerly air flow moving at a moderate pace and Case 2 was associated with more stagnant, slower moving air from the north-easterly sector. Case 1 exhibited low diurnal temporal patterns and was associated with moderate non-refractory aerosol mass concentrations (for 50% size cut at 1 μm) of the order of 4.5 μg m-3. For Case 1, organics contributed typically to 50% of the mass. Case 2 was characterized by > 9.5 μg m-3 total mass (< 1 μm) in the early morning hours (04:00), decreasing to ∼ 3 μg m-3 by late morning (10:00) and exhibited strong diurnal changes in chemical composition, particularly in nitrate mass but also in total organic mass concentrations. Organic growth factors (OGFs) exhibited a minimum around 15:00, 1-2 h after the peak in HGF. Particles sized 165 nm exhibited moderate diurnal variability in HGF, ranging from 80% at night to 95% of "more hygroscopic" growth factors (i.e. GF = 1.35-1.9) around noon. The diurnal changes in HGF progressively became enhanced with decreasing particle size, decreasing from 95% "more hygroscopic" growth factor fraction at noon to 10% fraction at midnight, while the "less hygroscopic" growth

  15. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and

  16. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  17. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, B.; Tong, S. R.; Liu, Q. F.; Li, K.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2015-08-01

    Water soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, water uptake behavior of internally mixed WSOC aerosols remains limited characterization. Here, the hygroscopic properties of single component such as levoglucosan, oxalic acid, malonic acid, succinic acid and phthalic acid and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid and phthalic acid have strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppress its crystallization completely. The interactions between oxalic acid and levoglucosan are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with UNIFAC method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH due to positive chemical interactions between solutes. Organic mixture has more complex effect on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan accounts for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake under high RH conditions and thus affect the cloud condensation nuclei (CCN) activity, optical properties and chemical reactivity of atmospheric particles.

  18. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Tong, Shengrui; Liu, Qifan; Li, Kun; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2016-03-01

    Water-soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, knowledge on the water uptake behavior of internally mixed WSOC aerosols remains limited. Here, the hygroscopic properties of single components such as levoglucosan, oxalic acid, malonic acid, succinic acid, phthalic acid, and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid, and phthalic acid have a strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppressing its crystallization completely during the drying process. The phase behaviors of oxalic acid/levoglucosan mixed particles are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with the Universal Quasi-Chemical Functional Group Activity Coefficient (UNIFAC) method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a crystalline solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH compared to the model predictions based on reasonable oxalic acid phase assumption. Organic mixture has more complex effects on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan account for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing the phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake

  19. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    SciTech Connect

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode.

    The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments.

    The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was

  20. Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Hong, J.; Kim, J.; Nieminen, T.; Duplissy, J.; Ehn, M.; Äijälä, M.; Hao, L. Q.; Nie, W.; Sarnela, N.; Prisle, N. L.; Kulmala, M.; Virtanen, A.; Petäjä, T.; Kerminen, V.-M.

    2015-10-01

    Measurements of the hygroscopicity of 15-145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a high-resolution aerosol mass spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGForg), fitted using the inverse Zdanovskii-Stokes-Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics concentration (ELVOC) and the HGF of particles of any size.

  1. Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J. F.

    2015-03-01

    Secondary organic aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber. The SOA formation and aging were studied by following their optical, hygroscopic and chemical properties. The optical properties were investigated by determining the particle complex refractive index (CRI). The hygroscopicity was quantified by measuring the effect of relative humidity (RH) on the particle size (size growth factor, GF) and on the scattering coefficient (scattering growth factor, f(RH)). The oxygen to carbon atomic ratios (O : C) of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition during their formation and aging in CESAM. The real CRI at 525 nm wavelength decreased from 1.43-1.60 (±0.02) to 1.32-1.38 (±0.02) during the SOA formation. The decrease in the real CRI correlated to the O : C decrease from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF remained roughly constant over the reaction time, with values of 1.02-1.07 (±0.02) at 90% (±4.2%) RH. Simultaneous measurements of O : C of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but contained less oxidised species at the surface which may limit water absorption. In addition, an apparent change in both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 14 h of reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.

  2. Real-Time Investigation of Chemical Compositions and Hygroscopic Properties of Aerosols Generated from NaCl and Malonic Acid Mixture Solutions Using in Situ Raman Microspectrometry.

    PubMed

    Li, Xue; Gupta, Dhrubajyoti; Lee, Jisoo; Park, Geonhee; Ro, Chul-Un

    2017-01-03

    Recently, ambient sea spray aerosols (SSAs) have been reported to undergo reactions with dicarboxylic acids (DCAs). Several studies have examined the hygroscopic behavior and chemical reactivity of aerosols generated from NaCl-DCA mixture solutions, but the results have varied, especially for the NaCl-malonic acid (NaCl-MA) mixture system. In this work, in situ Raman microspectrometry (RMS) was used to simultaneously monitor the change in chemical composition, size, and phase as a function of the relative humidity, for individual aerosols generated from NaCl-MA solutions, during two hygroscopic measurement cycles, which were performed first through the dehydration process, followed by a humidification process, in each cycle. In situ RMS analysis for the aerosols showed that the chemical reaction between NaCl and MA occurred rapidly in the time scale of 1 h and considerably in the aqueous phase, mostly during the first dehydration process, and the chemical reaction occurs more rapidly when MA is more enriched in the aerosols. For example, the reaction between NaCl and MA for aerosols generated from solutions of NaCl:MA = 2:1 and 1:2 occurred by 81% and 100% at RH = 42% and 45%, respectively, during the first dehydration process. The aerosols generated from the solution of NaCl:MA = 2:1 revealed single efflorescence and deliquescence transitions repeatedly during two hygroscopic cycles. The aerosols from NaCl:MA = 1:1 and 1:2 solutions showed just an efflorescence transition during the first dehydration process and no efflorescence and deliquescence transition during the hygroscopic cycles, respectively. The observed different hygroscopic behavior was due to the different contents of NaCl, MA, and monosodium malonate in the aerosols, which were monitored real-time by in situ RMS.

  3. Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Hong, J.; Kim, J.; Nieminen, T.; Duplissy, J.; Ehn, M.; Äijälä, M.; Hao, L.; Nie, W.; Sarnela, N.; Prisle, N. L.; Kulmala, M.; Virtanen, A.; Petäjä, T.; Kerminen, V.-M.

    2015-06-01

    Measurements of the hygroscopicity of 15-145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-AeroSOIs-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a High-Resolution Aerosol Mass Spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGForg), fitted using the inverse Zdanovskii-Stokes-Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more there was sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics (ELVOCs) concentration and the HGF of particles of any size.

  4. Optical and Hygroscopic Studies of Aerosols In Simulated Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Hasenkopf, Christa A.

    2011-08-01

    Basic characteristics of the early Earth climate, the only known environment in the Universe in which life has been known to emerge and thrive, remain a mystery. In particular, little is understood about the Earth's atmosphere 2.8 billion years ago. From climate models and laboratory studies, it is postulated that an organic haze, much like that found on Saturn's largest moon Titan, covered the early Earth. This haze, generated from photolysis of carbon dioxide (CO2) and methane (CH4), may have had profound climatic consequences. Climate models of the early Earth that include this haze have had to rely upon optical properties of a Titan laboratory analog. Titan haze, though thought to be similar, is formed from a different combination of precursor gases and by different energy sources than early Earth haze. This thesis examines the direct and indirect radiative effects of aerosol on early Earth climate by studying the optical and hygroscopic properties of a laboratory analog. A Titan analog is studied for comparison and to better understand spacecraft-retrieved haze chemical and optical properties from Titan. The properties of the laboratory analogs, generated in a flowing reactor cell with a continuum ultraviolet (UV) light source, were primarily measured using cavity ringdown aerosol extinction spectroscopy and UV-visible (UV-Vis) transmission spectroscopy. We find that the optical properties of our early Earth analog are significantly different than those of the Titan analog from Khare et al. (1984). In both the UV and visible, when modeled as fractals, particles with the optical properties of the early Earth analog have approximately 30% larger extinction efficiencies than particles with Khare et al. (1984) values. This result implies our early Earth haze analog would provide a more efficient UV shield and have a stronger antigreenhouse effect than the Khare et al. (1984) Titan analog. Our Titan analog has significantly smaller imaginary refractive index values

  5. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Väisänen, Olli; Ruuskanen, Antti; Ylisirniö, Arttu; Miettinen, Pasi; Portin, Harri; Hao, Liqing; Leskinen, Ari; Komppula, Mika; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Virtanen, Annele

    2016-08-01

    The relationship between aerosol hygroscopicity and cloud droplet activation was studied at the Puijo measurement station in Kuopio, Finland, during the autumn 2014. The hygroscopic growth of 80, 120 and 150 nm particles was measured at 90 % relative humidity with a hygroscopic tandem differential mobility analyzer. Typically, the growth factor (GF) distributions appeared bimodal with clearly distinguishable peaks around 1.0-1.1 and 1.4-1.6. However, the relative contribution of the two modes appeared highly variable reflecting the probable presence of fresh anthropogenic particle emissions. The hygroscopicity-dependent activation properties were estimated in a case study comprising four separate cloud events with varying characteristics. At 120 and 150 nm, the activation efficiencies within the low- and high-GF modes varied between 0-34 and 57-83 %, respectively, indicating that the less hygroscopic particles remained mostly non-activated, whereas the more hygroscopic mode was predominantly scavenged into cloud droplets. By modifying the measured GF distributions, it was estimated how the cloud droplet concentrations would change if all the particles belonged to the more hygroscopic group. According to κ-Köhler simulations, the cloud droplet concentrations increased up to 70 % when the possible feedback effects on effective peak supersaturation (between 0.16 and 0.29 %) were assumed negligible. This is an indirect but clear illustration of the sensitivity of cloud formation to aerosol chemical composition.

  6. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Y.; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-03-01

    The hygroscopic and volatility properties of SOA produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase phtooxidation of terpenes, usually found nearly hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weigh compounds), evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  7. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  8. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  9. Initial size distributions and hygroscopicity of indoor combustion aerosol particles

    SciTech Connect

    Li, W.; Hopke, P.K.

    1993-10-01

    Cigarette smoke, incense smoke, natural gas flames, propane fuel flames, and candle flames are contributors of indoor aerosol particles. To provide a quantitative basis for the modeling of inhaled aerosol deposition pattern, the hygroscopic growth of particles from these five sources as well as the source size distributions were measured. Because the experiments were performed on the bases of particles of single size, it provided not only the averaged particle`s hygroscopic growth of each source, but also the detailed size change for particles of different sizes within the whole size spectrum. The source particle size distribution measurements found that cigarette smoke and incense smoke contained particles in the size range of 100-700 nm, while the natural gas, propane, and candle flames generated particles between 10 and 100 nm. The hygroscopic growth experiments showed that these combustion aerosol particles could grow 10% to 120%, depending on the particle sizes and origins. 18 refs., 15 figs., 3 tabs.

  10. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  11. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    PubMed

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  12. Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia

    NASA Astrophysics Data System (ADS)

    Sánchez Gácita, Madeleine; Longo, Karla M.; Freire, Julliana L. M.; Freitas, Saulo R.; Martin, Scot T.

    2017-02-01

    Smoke aerosols prevail throughout Amazonia because of widespread biomass burning during the dry season, and external mixing, low variability in the particle size distribution and low particle hygroscopicity are typical. There can be profound effects on cloud properties. This study uses an adiabatic cloud model to simulate the activation of smoke particles as cloud condensation nuclei (CCN) for three hypothetical case studies, chosen as to resemble biomass burning aerosol observations in Amazonia. The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. For a population with κp = 0.04, an overestimation of the cloud droplet number concentration Nd for the three selected case studies between 22.4 ± 1.4 and 54.3 ± 3.7 % was obtained when assuming a hygroscopicity parameter κp = 0.20. Assuming internal mixing of the aerosol population led to overestimations of up to 20 % of Nd when a group of particles with medium hygroscopicity was present in the externally mixed population cases. However, the overestimations were below 10 % for external mixtures between very low and low-hygroscopicity particles, as seems to be the case for Amazon smoke particles. Kinetic limitations were significant for medium- and high-hygroscopicity particles, and much lower for very low and low-hygroscopicity particles. When particles were assumed to be at equilibrium and to respond instantly to changes in the air parcel supersaturation, the overestimation of the droplet concentration was up to ˜ 100 % in internally mixed populations, and up to ˜ 250 % in externally mixed ones, being larger for the higher values of hygroscopicity. In addition, a perceptible delay between the times when maximum supersaturation and maximum aerosol activated fraction are reached was noticed and, for aerosol populations with effective hygroscopicity κpeff higher than a certain threshold value, the delay in

  13. Relating hygroscopicity and composition of organic aerosol particulate matter

    SciTech Connect

    Duplissy, J.; DeCarlo, P. F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, T.; Gysel, M.; Aiken, A. C.; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, D. R.; Collins, D. R.; Tomlinson, J.; Baltensperger, U.

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg = 2.2 × f44 - 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. Finally, the use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.

  14. Hygroscopicity of Early Earth and Titan Laboratory Aerosol Analogs

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.; Beaver, M. R.; Freedman, M. A.; Toon, O. B.; Tolbert, M. A.

    2009-12-01

    We have explored the ability of organic hazes, known to exist in the atmosphere of Titan and postulated to have existed in the Archean Earth atmosphere, to act as cloud condensation nuclei (CCN). These laboratory aerosol analogs are generated via UV-photolysis of early Earth and Titan analog gas mixtures and are designed to mimic the present day atmospheric conditions on Titan and the early Earth atmosphere before the rise of oxygen. Water uptake is observed to occur on the early Earth and Titan aerosol analogs at relative humidities of 80% - 90% via optical growth measurements using cavity ring-down aerosol extinction spectroscopy. We find the optical growth of these aerosols is similar to known slightly-soluble organic acids, such as phthalic and pyromellitic acids. On average, the optical growth of the early Earth analog is slightly larger than the Titan analog. In order to translate our measurements obtained in a subsaturated regime into the CCN ability of these particles, we rely on the hygroscopicity parameter κ, developed by Petters & Kreidenweis (2007). We retrieve κ = 0.17±0.03 and 0.06±0.01 for the early Earth and Titan analogs, respectively. This early Earth analog hygroscopicity value indicates that the aerosol could activate at reasonable water vapor supersaturations. We use previous aerosol mass spectrometry results to correlate the chemical structure of the two types of analog with their hygroscopicity. The hygroscopicity of the early Earth aerosol analog, coupled with the apparent lack of other good CCN during the Archean, helps explain the role of the organic haze in the indirect effect of clouds on the early Earth and indicates that it may have had a significant impact on the hydrological cycle.

  15. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  16. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  17. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance.

    PubMed

    Lee, Alex K Y; Ling, T Y; Chan, Chak K

    2008-01-01

    Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.

  18. Control over hygroscopic growth of saline aqueous aerosol using Pluronic polymer additives.

    PubMed

    Haddrell, Allen E; Hargreaves, Graham; Davies, James F; Reid, Jonathan P

    2013-02-25

    The hygroscopic properties of an aerosol originating from a nebulizer solution can affect the extent of peripheral deposition within the respiratory tract, which in turn affects drug efficacy of drugs delivered to the lungs. Thus, the ability to tailor the degree and rate of hygroscopic growth of an aerosol produced by a nebulizer through modification of the formulation would serve to improve drug efficacy through targeted lung deposition. In this study, the kinetic and thermodynamic hygroscopic properties of sodium chloride aerosol mixed with commercially available Pluronic polymers, specifically F77 and F127, are reported using three complementary single aerosol analysis techniques, specifically aerosol optical tweezers, a double ring electrodynamic balance and a concentric cylinder electrodynamic balance. The F77 polymer is shown to have a predictable effect on the hygroscopic properties of the aerosol: the ability of the droplet to uptake water from the air depends on the solute weight percent of sodium chloride present in a linear dose dependant manner. Unlike the smaller F77, a non-linear relationship was observed for the larger molecular weight F127 polymer, with significant suppression of hygroscopic growth (>50% by mass) for solution aerosol containing even only 1 wt% of the polymer and 99 wt% sodium chloride. The suppression of growth is shown to be consistent with the formation of mixed phase aerosol particles containing hydrophilic inorganic rich domains and hydrophobic polymer rich domains that sequester some of the inorganic component, with the two phases responding to changes in relative humidity independently. This independence of coupling with the gas phase is apparent in both the equilibrium state and the kinetics of water evaporation/condensation. By starting with a saline nebulizer solution with a concentration of F127 ∼10(-2)mM, a 12% reduction in the radius of all aerosol produced at a relative humidity (RH) of 84% is possible. The

  19. Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations

    NASA Astrophysics Data System (ADS)

    Santarpia, Joshua L.; Gasparini, Roberto; Li, Runjun; Collins, Don R.

    2005-02-01

    During August and September of 2002, a relative humidity (RH) scanning tandem differential mobility analyzer system was used to measure the deliquescence/crystallization properties of ambient aerosol populations in southeast Texas. During August, sampling was conducted at a rural site on the Texas A&M campus in College Station, and in September, sampling was conducted at an urban site near the Houston ship channel. Measurements from both sites indicate that there are cyclical changes in the composition of the soluble fraction of the aerosol, which are not strongly linked to the local aerosol source. The observations show that as temperature increases and RH decreases, the hysteresis loop describing the RH dependence of aerosol hygroscopic growth collapses. On the basis of results from other studies that have shown the dominant ions present in aerosols in this region to be ammonium and sulfate, it is proposed that this collapse is due to a decrease in the ammonium to sulfate ratio in the aerosol particles, which coincides with increasing temperature and decreasing RH. This cyclical change in aerosol acidity may influence secondary organic aerosol production and may exaggerate the impact of the aerosol on human health. The compositional changes also result in a daily cycle in crystallization RH that is in phase with that of the ambient RH, which reduces the probability that hygroscopic particles will crystallize in the afternoon when the ambient RH is a minimum.

  20. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2014-12-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx / HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at ten mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9(± 0.5)%. On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions, i.e., the eutonic component dissolved at MDRH and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed two-stage efflorescence transitions: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles XNaCl ≤ 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH, because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously

  1. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2015-03-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx/HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at 10 mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9 (±0.5)% On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions; i.e., the eutonic component dissolved at MDRH, and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed a two stage efflorescence transition: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence, with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles (XNaCl ≤ 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously

  2. Hygroscopic Properties of Oxidation Products of Terpenes

    NASA Astrophysics Data System (ADS)

    Lodhi, N. A.; Mozurkewich, M.

    2009-05-01

    To understand the hygroscopic growth factor (HGF) of secondary organic aerosol (SOA) formed by the oxidation of terpenes, a series of seeded and nucleation experiments were conducted at the York University smog chamber facility. Oxidation of terpenes by OH was carried out in a dry chamber (RH˜5%). In nucleation experiments particles formed were pure organic and their hygroscopic growth factor was measured as function of relative humidity by using a tandem differential mobility analyzer (HTDMA). Humidograms of these particles don't show any deliquescence or efflorescence. Humidograms of pure organic particles formed by the oxidation products of β-pinene show slight but smooth take up of water while particles formed by α-pinene and δ3-carene exhibit very little or no water uptake. Experimental results were fitted with an empirical equation and the hygroscopicity parameter for the particles formed by β-pinene was found to be 0.019±0.009. To examine the interaction of organic and inorganic phases, monodisperse ammonium sulfate seed particles injected into the smog chamber were allowed to undergo condensational growth due to partitioning of terpenes oxidation products from the gas phase. Humidograms of seeded particles show both smooth hygroscopic growth and deliquescence. These experimental results were fitted with a numerical model that accounts for water uptake by both phases and for the gradual dissolution of ammonium sulfate. The results show that volume additivity is a reasonable approximation for this system and that HTDMA results can be inverted to obtain the organic hygroscopicity parameter and the relative amounts of organic and inorganic material

  3. Reconciling Organic Aerosol Volatility, Hygroscopicity, and Oxidation State During the Colorado DISCOVER-AQ Deployment

    NASA Astrophysics Data System (ADS)

    Hite, J. R.; Moore, R.; Martin, R.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.; Nenes, A.

    2014-12-01

    The organic fraction of submicron aerosol can profoundly impact radiative forcing on climate directly, through enhancement of extinction, or indirectly through modulation of cloud formation. Semi-volatile constituents of organic ambient aerosol are of particular interest as their partitioning between the vapor and aerosol phases is not well constrained by current atmospheric models and appears to play an important role in the formation of cloud condensation nuclei (CCN) as suggested by recent research. An experimental setup consisting of a DMT CCN counter and SMPS downstream of a custom-built thermodenuder assembly was deployed during the summer 2014 DISCOVER-AQ field campaign to retrieve simultaneous, size-resolved volatility and hygroscopicity - through the use of scanning mobility CCN analysis (SMCA). Housed in the NASA Langley mobile laboratory, a suite of complimentary measurements were made available onboard including submicron aerosol composition and oxidation state provided by an HR-ToF-AMS, and aerosol optical properties provided by a range of other instruments including an SP2. Air masses sampled from locations across the Central Colorado region include influences from regional aerosol nucleation/growth events, long-range transport of Canadian biomass burning aerosols, cattle feedlot emissions and influences of the Denver urban plume - amidst a backdrop of widespread oil and gas exploration. The analysis focuses on the reconciliation of the retrieved aerosol volatility distributions and corresponding hygroscopicity and oxidation state observations, including the use of AMS factor analysis.

  4. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2009-12-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  5. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2010-05-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  6. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  7. Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea.

    PubMed

    Yan, Yu; Fu, Pingqing; Jing, Bo; Peng, Chao; Boreddy, S K R; Yang, Fan; Wei, Lianfang; Sun, Yele; Wang, Zifa; Ge, Maofa

    2017-02-01

    In this study, we investigated hygroscopic properties of water-soluble matter (WSM) in marine aerosols over the East China Sea, which were collected during a Natural Science Foundation of China (NSFC) sharing cruise in 2014. Hygroscopic growth factors (g) of WSM were measured by a hygroscopicity tandem differential mobility analyzer (H-TDMA) with an initial dry particle mobility diameter of 100nm. The observed g at 90% relative humidity (RH), g(90%)WSM, defined as the ratio of the particle diameter at 90% RH to that at RH<5% (initial dry diameter), ranged from 1.67 to 2.41 (mean±std: 1.99±0.23). The g values were lower than that of seawater (2.1) but comparable with those reported for marine aerosols (1.79-2.08). The H-TDMA retrieved hygroscopicity parameter of WSM, κWSM, ranged from 0.46 to 1.56 (0.88±0.35). The observed g(90%)WSM during the daytime ranged from 1.67 to 2.40 (1.95±0.21) versus 1.71 to 2.41 (2.03±0.26) during the nighttime. κWSM was 0.81±0.32 in the daytime and 0.95±0.40 in the nighttime. The day/night differences of g(90%)WSM and κWSM indicated that nighttime marine aerosols were more hygroscopic than those in daytime, which was likely related to enhanced heterogeneous reaction of ammonium nitrate in nighttime and the higher Cl(-)/Na(+) molar ratios obtained (0.80) in nighttime than those (0.47) in daytime. Inorganic ions accounted for 72-99% of WSM with SO4(2-) being the dominant species, contributing to 47% of the total inorganic ion mass. The declined g(90%) comparing with sea water was likely due to the transport of anthropogenic aerosols, chemical aging of dust particles, the contribution of biomass burning products, and the aerosol hygroscopic growth inhibition of organics.

  8. Hygroscopic properties of magnetic recording tape

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1976-01-01

    Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.

  9. Photochemical aging of secondary organic aerosols: effects on hygroscopic growth and CCN activation

    NASA Astrophysics Data System (ADS)

    Buchholz, A.; Mentel, Th. F.; Tillmann, R.; Schlosser, E.; Mildenberger, K.; Clauss, T.; Henning, S.; Kiselev, A.; Stratmann, F.

    2009-04-01

    Plant emitted volatile organic carbons (VOCs) are a major precursor of secondary organic aerosols (SOA), an important constituent of atmospheric aerosols. The precursors are oxidized via ozonolysis, photooxidation, or by NO3 and form aerosol particles. Due to further oxidation of the organic matter the composition of the SOA may age with time. This will also change the hygroscopic growth (HG) and cloud condensation nuclei (CCN) activation of the particles. In this study we generated and aged SOA in the SAPHIR chamber at the Research Centre Juelich under near atmospheric conditions: natural sunlight, low precursor and O3 concentrations, and long reaction times. As precursor we used a mixture of 5 monoterpenes (MT) or 5 MT with 2 sesquiterpenes which had been identified as major constituents of plant emissions in previous experiments. Concentrations ranged between 4 and 100 ppb MT and the total reaction time was 36h. HG was measured at RH=10-97% by a Hygroscopic Tandem Differential Analyser (HTDMA, FZ Juelich) and at RH=97-99% by the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, IfT Leipzig). The agreement between HTDMA and LACIS-mobile data was generally good. CCN properties were measured with a continuous flow CCN Counter from DMT. SOA particles generated on a sunny day were more hygroscopic and had a lower activation diameter (Dcrit) than SOA formed under cloudy conditions. With aging it became more hygroscopic and Dcrit decreased. Sunlight enhanced this effect. But the change in HG and Dcrit due to aging was less than the difference between SOA generated under different conditions (i.e. sunny or cloudy). We did not observe a dependence of the HG on the precursor concentration.

  10. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology

  11. Sensitivity of depositions to the size and hygroscopicity of Cs-bearing aerosols released from the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Adachi, Kouji; Sekiyama, Tsuyoshi; Zaizen, Yuji; Igarashi, Yasuhito

    2014-05-01

    We recently revealed that the microphysical properties of aerosols carrying the radioactive Cs released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) at an early stage (March 14-15, 2011) of the accident could be very different from what we assumed previously: super-micron and non-hygroscopic at the early stage, whereas sub-micron and hygroscopic afterwards (at least later than March 20-22). In the study, two sensitivity simulations with the two different aerosol microphysical properties were conducted using a regional scale meteorology- chemical transport model (NHM-Chem). The impact of the difference was quite significant. 17% (0.001%) of the radioactive Cs fell onto the ground by dry (wet) deposition processes, and the rest was deposited into the ocean or was transported out of the model domain, which is central and northern part of the main land of Japan, under the assumption that Cs-bearing aerosols are non-hygroscopic and super-micron. On the other hand, 5.7% (11.3%) fell onto the ground by dry (wet) deposition, for the cases under the assumption that the Cs-bearing aerosols are hygroscopic and sub-micron. For the accurate simulation of the deposition of radionuclides, knowledge of the aerosol microphysical properties is essential as well as the accuracy of the simulated wind fields and precipitation patterns.

  12. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance

    NASA Astrophysics Data System (ADS)

    Liu, Qifan; Jing, Bo; Peng, Chao; Tong, Shengrui; Wang, Weigang; Ge, Maofa

    2016-01-01

    The hygroscopic properties of two water-soluble organic compounds (WSOCs) relevant to urban haze pollution (phthalic acid and levoglucosan) and their internally mixtures with inorganic salts (ammonium sulfate and ammonium nitrate) are investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA) system. The multi-component particles uptake water gradually in the range 5-90% relative humidity (RH). The experimental results are compared with the thermodynamic model predictions. For most mixtures, Extended Aerosol Inorganic Model (E-AIM) predictions agree well with the measured growth factors. The hygroscopic growth of mixed particles can be well described by the Zdanovskii-Stokes-Robinson (ZSR) relation as long as the mixed particles are completely liquid. ZSR calculations underestimate the water uptake of mixed particles at moderate RH due to the partial dissolution of ammonium sulfate in the organic and ammonium nitrate solution in this RH region. The phase of ammonium nitrate in the initial dry particles changes dramatically with the composition of mixtures. The presence of organics in the mixed particles can inhibit the crystallization of ammonium nitrate during the drying process and results in water uptake at low RH (RH < 60%). These results demonstrate that certain representative WSOCs can substantially influence the hygroscopicity of inorganic salts and overall water uptake of particles.

  13. Phase state is a limiting factor in hygroscopic growth of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Virtanen, Annele

    2014-05-01

    Secondary organic aerosol (SOA) particles formed from oxidation products of volatile organic compounds (VOC) form a significant fraction of the total atmospheric particulate matter affecting climate both directly and indirectly. The dependence of hygroscopicity on particle composition is often represented with the single parameter κ, commonly used in global models to describe the hygroscopic properties of atmospheric aerosol particles. The physical phase state of SOA particles affects the partitioning of organic vapors and also may affect the uptake of water vapor and particle activation into cloud droplets. Thus, hygroscopic behaviour of SOA particles is affected by composition (i.e. oxidation state and molecular size) but also by phase of particles. In this study the following three distinct studies were performed: (1) particle bounced fraction (BF) measurements, which are qualitatively related to particle phase, as a function of relative humidity using an Aerosol Bounce Instrument (ABI). We assume that the particles with BF > 0 are solid or semisolid, and that particles with BF = 0 behave mechanically as liquids (2) water uptake measured in the sub-saturated region using hygroscopicity tandem differential mobility analyzer (HTDMA) by measuring the ratio of wet to dry particle diameter following exposure to water vapor at a controlled RH (3) cloud droplet formation in the supersaturated region using a cloud condensation nuclei counter (CCNc). Particle composition and oxidation state was measured with a compact time of flight aerosol mass spectrometer (c-ToF-AMS). In this study we show that at sub-saturation conditions water uptake by SOA particles is restricted due to the kinetic limitations. Diffusion and solubility limitations inhibit water uptake until the humidity is high enough for dissolution to occur. Our studies show that this 'threshold' humidity is dependent on particle composition, oxidation state, and average molecular size. Our laboratory results

  14. Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Tao, J. C.; Bian, Y. X.; Ma, N.

    2016-12-01

    In this paper, relative humidity (RH) profiles and their impacts on the vertical variations of aerosol optical properties and the direct aerosol radiative effect (DARE) have been investigated based on surface measurements from the Haze in China campaign and sounding data from the North China Plain. Among the profiles obtained from July to September in 2008, about half have RHs greater than 80% within the mixed layer. The vertical variations in the aerosol optical properties at ambient RH, including the extinction coefficient (σext), single scattering albedo (SSA) and asymmetry factor (g), are remarkably different from the variations in the dry aerosols and are highly dependent on the RH profiles. Increases of the aerosol optical depth and column-averaged SSA and g due to aerosol water uptake can reach up to 64%, 0.052 and 0.079, respectively. The fractional contribution to the instantaneous DARE at the top of the atmosphere due to aerosol hygroscopic growth reaches 60% in high RH profiles. DARE estimates can be significantly biased if the RH dependence of SSA or g is not considered. We suggest that if their vertical profiles or column-averaged values are absent, then the ambient values of SSA and g at the surface should be used rather than the values of SSA and g obtained from dry aerosols when estimating DAREs.

  15. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  16. Airborne measurements of hygroscopicity and mixing state of aerosols in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Weingartner, Ernest; Gysel, Martin; Rubach, Florian; Mentel, Thomas; Baltensperger, Urs

    2014-05-01

    Aerosols interact directly with the incident solar radiation by scattering or absorbing the light. The optical properties of an aerosol particle can strongly be altered at enhanced relative humidity (RH). Depending on the particle's chemical composition, it can experience hygroscopic growth, leading to a change in size and index of refraction compared to the dry particle (Zieger et al., 2011). Besides, aerosols can exist in different mixing states which are usually divided into internal and external mixtures. If all particles of a certain size have the same chemical composition, they are described as internally mixed, whereas if particles of equal size have different chemical composition, they are defined as externally mixed. Depending on the mixture the hygroscopic behavior will change: internally mixed aerosols will grow uniformly with increasing RH, while the different substances in external mixtures will experience different growing behaviors leading to a mode-splitting or broadened size distribution. Laboratory studies are commonly performed at dry conditions but it is known that temperature and RH as well as chemical composition are changing with altitude (Morgan et al., 2010). This further leads to the conclusion that the in-situ measurements of optical properties at different heights are crucial for climate forcing calculations. Within the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) the white- light humidified optical particle spectrometer (WHOPS) was developed and installed on the Zeppelin to investigate changes of light scattering with regard to water uptake and altitude. This instrument firstly selects a dry monodisperse aerosol by its electrical mobility and then exposes it to a well-defined RH (typically 95%). Alternately, the dry and humidified particles are measured in a white-light optical particle spectrometer (WELAS). In this way it is possible to infer the effective index of refraction of the dry particles, their hygroscopic

  17. Aerosol hygroscopic growth parameterization based on a solute specific coefficient

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Xu, L.; Penner, J. E.; Lelieveld, J.

    2011-09-01

    Water is a main component of atmospheric aerosols and its amount depends on the particle chemical composition. We introduce a new parameterization for the aerosol hygroscopic growth factor (HGF), based on an empirical relation between water activity (aw) and solute molality (μs) through a single solute specific coefficient νi. Three main advantages are: (1) wide applicability, (2) simplicity and (3) analytical nature. (1) Our approach considers the Kelvin effect and covers ideal solutions at large relative humidity (RH), including CCN activation, as well as concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). (2) A single νi coefficient suffices to parameterize the HGF for a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. (3) In contrast to previous methods, our analytical aw parameterization depends not only on a linear correction factor for the solute molality, instead νi also appears in the exponent in form x · ax. According to our findings, νi can be assumed constant for the entire aw range (0-1). Thus, the νi based method is computationally efficient. In this work we focus on single solute solutions, where νi is pre-determined with the bisection method from our analytical equations using RHD measurements and the saturation molality μssat. The computed aerosol HGF and supersaturation (Köhler-theory) compare well with the results of the thermodynamic reference model E-AIM for the key compounds NaCl and (NH4)2SO4 relevant for CCN modeling and calibration studies. The equations introduced here provide the basis of our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in a companion paper.

  18. On the Physicochemical Processes Controlling Organic Aerosol Hygroscopicity

    NASA Astrophysics Data System (ADS)

    Petters, Sarah Suda

    Aerosol particles in the atmosphere can influence air quality and climate through their interaction with water. Aerosols are an important factor in cloud formation because they serve as cloud condensation nuclei (CCN). Organic compounds contribute a large fraction of the atmospheric aerosol mass but their ability to serve as CCN is less certain relative to inorganic compounds. Limitations of the measurement techniques and theoretical gaps in understanding have prevented agreement between predicted and measured CCN. One way to quantify a compound's CCN activity is by the hygroscopicity parameter, kappa. This dissertation presents research towards constraining the variability of organic aerosol kappa at the process level using three approaches: developing a measurement technique; measuring the dependence of kappa on molecular functional groups; and measuring the effect of surface active molecules on kappa for mixtures. Chapter 2 presents a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) instrument to measure aerosol water uptake at high relative humidity (RH). Measurements up to 99% RH were achieved by improving the precision of aerosol sizing, actively controlling temperature, and calibrating RH between measurements. Osmotic coefficients were obtained within +/-20% for organic aerosols sized between 30 and 200 nanometers. These results may improve water uptake models by providing accurate data at high RH. Chapter 3 presents a study of the sensitivity of kappa to changes in molecular functional group composition for pure compounds. Molecules were synthesized via gas and liquidphase reactions varying the type and location of functional groups, purified by High Performance Liquid Chromatography (HPLC), and routed for CCN measurement. The hydroxyl (-OH) and carbon chain length (-CH2-) changed kappa most, where hydroxyl groups increase kappa and longer carbon chains decrease kappa. This suggests that hydroxyl groups and molecular size dominate the

  19. Numerical Model to Characterize the Size Increase of Combination Drug and Hygroscopic Excipient Nanoparticle Aerosols.

    PubMed

    Longest, P Worth; Hindle, Michael

    2011-01-01

    Enhanced excipient growth is a newly proposed respiratory delivery strategy in which submicrometer or nanometer particles composed of a drug and hygroscopic excipient are delivered to the airways in order to minimize extrathoracic depositional losses and maximize lung retention. The objective of this study was to develop a validated mathematical model of aerosol size increase for hygroscopic excipients and combination excipient-drug particles and to apply this model to characterize growth under typical respiratory conditions. Compared with in vitro experiments, the droplet growth model accurately predicted the size increase of single component and combination drug and excipient particles. For typical respiratory drug delivery conditions, the model showed that droplet size increase could be effectively correlated with the product of a newly defined hygroscopic parameter and initial volume fractions of the drug and excipient in the particle. A series of growth correlations was then developed that successively included the effects of initial drug and excipient mass loadings, initial aerosol size, and aerosol number concentration. Considering EEG delivery, large diameter growth ratios (2.1-4.6) were observed for a range of hygroscopic excipients combined with both hygroscopic and non-hygroscopic drugs. These diameter growth ratios were achieved at excipient mass loadings of 50% and below and at realistic aerosol number concentrations. The developed correlations were then used for specifying the appropriate initial mass loadings of engineered insulin nanoparticles in order to achieve a predetermined size increase while maximizing drug payload and minimizing the amount of hygroscopic excipient.

  20. Aerosol hygroscopicity and CCN activity during the AC3Exp campaign: Implications for CCN parameterization

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Yanan; Li, Zhanqing

    2015-04-01

    Atmospheric aerosol particles acting as CCN are pivotal elements of the hydrological cycle and climate change. In this study, we measured and characterized NCCN in relatively clean and polluted air during the AC3Exp campaign conducted at Xianghe, China during summer 2013. The aim was to examine CCN activation properties under high aerosol loading conditions in a polluted region and to assess the impacts of particle size and chemical composition on the CCN AR which acts as a proxy of the total number of aerosol particles in the atmosphere. A gradual increase in size-resolved AR with particle diameter suggests that aerosol particles have different hygroscopicities. For particles in the accumulation mode, values of κapa range from 0.31-0.38 under background conditions, which is about 20% higher than that derived under polluted conditions. For particles in the nucleation or Aitken mode, κ range from 0.20-0.34 under both background and polluted conditions. Larger particles were on average more hygroscopic than smaller particles. However, the case is more complex for particles originating from heavy pollution due to the diversity in particle composition and mixing state. The low R2 for the NPO CCN closure test suggests a 30%-40% uncertainty in total NCCN estimation. Using bulk chemical composition data from ACSM measurements, the relationship between bulk AR and the physical and chemical properties of atmospheric aerosols is investigated. Based on a case study, it has been concluded that one cannot use a parameterized formula using only total NCN to estimate total NCCN. Our results showed a possibility of using bulk κchem and f44 in combination with bulk NCN > 100 nm to parameterize CCN number concentrations.

  1. The optical properties of hygroscopic soot aggregates with water coating

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan

    2014-05-01

    Anthropogenic aerosols, such as soot, have modified the Earth's radiation balance by scattering and absorbing solar and long-wave radiative transmission, which have largely influenced the global climate change since the industrial era. Based on transmission electron microscope images (TEM), soot particles are shown as the complex, fractal-like aggregate structures. In humid atmospheric environments, these soot aggregates tend to acquire a water coating, which introduces further complexity to the problem of determining the optical properties of the aggregates. The hygroscopic growth of soot aggregates is important for the aging of these absorbing aerosols, which can significantly influence the optical properties of these kinds of soot particles. In this paper, according to the specific volume fractions of soot core in the water coated soot particle, the monomers of fractal soot aggregates are modeled as semi-external mixtures (physical contact) with constant radius of soot core and variable size of water coating. The single scattering properties of these hygroscopic soot particles, such as scattering matrices, the cross sections of extinction, absorption and scattering, single scattering albedo (SSA), and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The morphological effects are compared with different monomer numbers and fractal dimensions of the soot aggregates, as well as different size of water coating for these concentric spherical monomers. The results have shown that SSA, cross sections of extinction and absorption are increased for soot aggregates with thicker weakly absorbing coating on the monomers. It is found that the SSA of aged soot aggregates with hygroscopic grown are remarkably (~50% for volume fraction of soot aggregates is 0.5, at 0.670μm) larger than fresh soot particles without the consideration of water coating, due to the size of water coating and the morphological features, such as the

  2. Cloud Condensation Nuclei Activity, Droplet Growth Kinetics and Hygroscopicity of Biogenic and Anthropogenic Secondary Organic Aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Buchholz, Angela; Kortner, Birthe; Schlag, Patrick; Rubach, Florian; Hendrik, Fucks; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wahner, Andreas; Hallquist, Mattias; Flores, Michel; Rudich, Yinon; Glasius, Marianne; Kourtchev, Ivan; Kalberer, Markus; Mentel, Thomas

    2015-04-01

    Recent field data and model analysis show that secondary organic aerosol (SOA) formation is enhanced under anthropogenic influences (de Gouw et al. 2005, Spracklen et al. 2011). The interaction of biogenic VOCs (BVOCs) with anthropogenic emissions such as anthropogenic VOCs (AVOCs) could change the particle formation yields and the aerosol properties, as was recently demonstrated (Emanuelsson et al., 2013; Flores et al., 2014). However, the effect of the interaction of BVOCs with AVOCs on cloud condensation nuclei (CCN) activity and hygroscopicity of SOA remains elusive. Characterizing such changes is necessary in order to assess the indirect radiative forcing of biogenic aerosols that form under anthropogenic influence. In this study, we investigated the influence of AVOCs on CCN activation and hygroscopic growth of BSOA. SOA was formed from photooxidation of monoterpenes and aromatics as representatives of BVOCs and AVOCs, respectively. The hygroscopicity and CCN activation of BSOA were studied and compared with that of anthropogenic SOA (ASOA) and the mixture of ASOA and BSOA (ABSOA). We found that ASOA had a significantly higher hygroscopicity than BSOA at similar OH dose, which is attributed to a higher oxidation level of ASOA. While the ASOA fraction had an enhancing effect on the hygroscopicity of ABSOA compared to BSOA, the hygroscopicity of ABSOA cannot be explained by a linear combination of the pure ASOA and BSOA systems, indicating potentially additional non-linear effects such as oligomerization. However, in contrast to hygroscopicity, ASOA showed similar CCN activity as BSOA, in spite of its higher oxidation level. The ASOA fraction did not enhance the CCN activity of ABSOA. The discrepancy between hygroscopicity and CCN activity is discussed. In addition, BSOA, ABSOA and ASOA formed similar droplet size with ammonium sulfate in CCN at a given supersaturation, indicating none of these aerosols had a delay in the water uptake in the supersaturated

  3. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  4. Hygroscopicity of dicarbonyl-amine secondary organic aerosol products investigated with HTDMA

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; de Haan, D. O.

    2010-12-01

    Recent studies have shown the importance of amine-dicarbonyl chemistry as a secondary organic aerosol (SOA) formation pathway, producing imines, imidazoles, and N-containing oligomers. Preliminary work in our group has suggested that some of these products may be surface active. Therefore, the presence of these products may result in important changes to submicron particle hygroscopicity that affect aerosol scattering and cloud condensation nuclei (CCN) activity, especially in regions with significant amine-containing particles. To investigate their hygroscopicity, we have designed a hygroscopicity tandem differential mobility analyzer (HTDMA) system around a 300 L Teflon chamber that allows for longer humidification times needed for some organic aerosol components that are only slightly hygroscopic. This modification provides a range of residence times from 2.5 minutes up to 1 hour, unlike previously published systems that vary from 2-30 seconds. Using the modified hygroscopicity tandem differential mobility analyzer (HTDMA), we have measured the hygroscopic growth factor (HGF) of SOA formed from reactions of glyoxal (and methylglyoxal) with methylamine, ammonium sulfate, and several amino acids. Changes to inorganic aerosol HGF in response to the presence of SOA products are also investigated.

  5. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    PubMed

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.

  6. A study of phase transformations in hygroscopic aerosols by Raman spectroscopy

    SciTech Connect

    Tang, I.N.; Fung, K.H.

    1995-12-31

    Atmospheric aerosol particles are composed mostly of hygroscopic inorganic salts. These aerosols play an important role in many atmospheric processes which affect local air quality, visibility degradation, and the global climate as well. Indeed, hygroscopic aerosols as metastable supersaturated solution droplets are routinely observed in laboratories. Here, we report first spectroscopic evidence that new metastable solid states form from hygroscopic aerosol particles. Levitated single particles undergo hydration and crystallization in calibrated humidity environment. Laser Raman and Mie scattering techniques are used to probe the chemical and physical state of the microparticle before and after phase transformation. The formation of these states is not predicted from bulk-phase thermodynamics. In some cases, the resulting metastable state is entirely unknown heretofore. We also present new solid/solution and solid/solid phase transitions which occur exclusively in microparticles.

  7. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  8. The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient

    NASA Astrophysics Data System (ADS)

    Tao, Jiangchuan; Zhao, Chunsheng

    2016-04-01

    Hygroscopic growth of aerosol particles can significantly affect their single-scattering albedo (ω), and consequently alters the aerosol effect on tropospheric photochemistry. In this study, the impact of aerosol hygroscopic growth on ω and its application to the NO2 photolysis rate coefficient (JNO2) are investigated for a typical aerosol particle population in the North China Plain (NCP). The variations of aerosol optical properties with relative humidity (RH) are calculated using a Mie theory aerosol optical model, on the basis of field measurements of number-size distribution and hygroscopic growth factor (at RH values above 90 %) from the 2009 HaChi (Haze in China) project. Results demonstrate that ambient ω has pronouncedly different diurnal patterns from ω measured at dry state, and is highly sensitive to the ambient RHs. Ambient ω in the NCP can be described by a dry state ω value of 0.863, increasing with the RH following a characteristic RH dependence curve. A Monte Carlo simulation shows that the uncertainty ofω from the propagation of uncertainties in the input parameters decreases from 0.03 (at dry state) to 0.015 (RHs > 90 %). The impact of hygroscopic growth on ω is further applied in the calculation of the radiative transfer process. Hygroscopic growth of the studied aerosol particle population generally inhibits the photolysis of NO2 at the ground level, whereas accelerates it above the moist planetary boundary layer. Compared with dry state, the calculated JNO2 at RH of 98 % at the height of 1 km increases by 30.4 %, because of the enhancement of ultraviolet radiation by the humidified scattering-dominant aerosol particles. The increase of JNO2 due to the aerosol hygroscopic growth above the upper boundary layer may affect the tropospheric photochemical processes and this needs to be taken into account in the atmospheric chemical models.

  9. Influence of particle phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2014-12-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids, to phase-separated particles, to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40-90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids, (2) forcing a single phase, but accounting for non-ideal interactions through activity coefficient calculations, and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation between the inorganic and organic components is assumed at all RH values, with water-uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  10. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2015-05-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle-phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids to phase-separated particles to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40 to 90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids; (2) forcing a single phase but accounting for non-ideal interactions through activity coefficient calculations; and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation of the inorganic and organic components is assumed at all RH values, with water uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  11. Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P. P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Hong, J.; Komppula, M.; Krejci, R.; Laborde, M.; Lampilahti, J.; de Leeuw, G.; Pfüller, A.; Rosati, B.; Tesche, M.; Tunved, P.; Väänänen, R.; Petäjä, T.

    2015-07-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH <30-40 %). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiälä, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground level by a humidified nephelometer is found to be generally lower (e.g. 1.63±0.22 at RH = 85 % and λ = 525 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiälä to which f(RH) is clearly anti-correlated (R2≈0.8). A simplified parametrization of f(RH) based on the measured chemical mass fraction can therefore be derived for this aerosol type. A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground-based in situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to columnar measurements of a co-located AERONET sun photometer. The water

  12. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  13. Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign

    NASA Astrophysics Data System (ADS)

    Lv, Min; Liu, Dong; Li, Zhanqing; Mao, Jietai; Sun, Yele; Wang, Zhenzhu; Wang, Yingjian; Xie, Chenbo

    2017-02-01

    Lidar, radiosonde, and ground-based in situ nephelometer measurements made during an intensive field campaign carried out from July to September 2014 at the Xinzhou meteorological station were used to determine the aerosol hygroscopic growth effect in a cloud-capped, well-mixed boundary layer. Aerosol hygroscopic properties at 355 and 532 nm were examined for two cases with distinct aerosol layers. Lidar-derived maximum enhancement factors in terms of aerosol backscatter coefficient derived using a relative humidity (RH) reference value of 85% were 1.19 at 532 nm and 1.10 at 355 nm for Case I and 2.32 at 532 nm and 1.94 at 355 nm for Case II. To derive the aerosol particle hygroscopic growth factor at specific RH values, the Kasten and Hänel models were used. A comparison of the goodness of fit for the two models showed that the Kasten model performed better. The hygroscopic growth curve for RH>90% was much steeper than that for RH in the range of 85-90%. The slopes of the lidar-derived enhancement factor curve (measured from 85% to 95% RH) and the nephelometer-derived enhancement factor curve (measured from 40% to 62% RH) in Case I show similar trends, which lends confidence to using lidar measurements for studying aerosol particle hygroscopic growth. Data from a ground aerosol chemical speciation monitor showed that the larger values of aerosol hygroscopic enhancement factor in Case II corresponded to greater mass concentrations of sulfate and nitrate in the atmosphere.

  14. Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P. P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Hong, J.; Komppula, M.; Krejci, R.; Laborde, M.; Lampilahti, J.; de Leeuw, G.; Pfüller, A.; Rosati, B.; Tesche, M.; Tunved, P.; Väänänen, R.; Petäjä, T.

    2015-02-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in-situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH <30-40%). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiälä, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground by a humidified nephelometer is found to be significantly lower (1.53±0.24 at RH = 85% and λ=450 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiälä to which f(RH) is clearly anti-correlated (R2≈0.8). A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground based in-situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to direct measurements of a co-located AERONET Sun photometer. The water uptake is found to be of minor importance for the column averaged properties due to the low particle hygroscopicity and the low RH during the

  15. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  16. Updating CMAQ secondary organic aerosol properties relevant for aerosol water interactions

    EPA Science Inventory

    Properties of secondary organic aerosol (SOA) compounds in CMAQ are updated with state-of-the-science estimates from structure activity relationships to provide consistency among volatility, molecular weight, degree of oxygenation, and solubility/hygroscopicity. These updated pro...

  17. Dynamics of aerosol size during inhalation: hygroscopic growth of commercial nebulizer formulations.

    PubMed

    Haddrell, Allen E; Davies, James F; Miles, Rachael E H; Reid, Jonathan P; Dailey, Lea Ann; Murnane, Darragh

    2014-03-10

    The size of aerosol particles prior to, and during, inhalation influences the site of deposition within the lung. As such, a detailed understanding of the hygroscopic growth of an aerosol during inhalation is necessary to accurately model the deposited dose. In the first part of this study, it is demonstrated that the aerosol produced by a nebulizer, depending on the airflows rates, may experience a (predictable) wide range of relative humidity prior to inhalation and undergo dramatic changes in both size and solute concentration. A series of sensitive single aerosol analysis techniques are then used to make measurements of the relative humidity dependent thermodynamic equilibrium properties of aerosol generated from four common nebulizer formulations. Measurements are also reported of the kinetics of mass transport during the evaporation or condensation of water from the aerosol. Combined, these measurements allow accurate prediction of the temporal response of the aerosol size prior to and during inhalation. Specifically, we compare aerosol composed of pure saline (150 mM sodium chloride solution in ultrapure water) with two commercially available nebulizer products containing relatively low compound doses: Breath®, consisting of a simple salbutamol sulfate solution (5 mg/2.5 mL; 1.7 mM) in saline, and Flixotide® Nebules, consisting of a more complex stabilized fluticasone propionate suspension (0.25 mg/mL; 0.5 mM in saline. A mimic of the commercial product Tobi© (60 mg/mL tobramycin and 2.25 mg/mL NaCl, pH 5.5-6.5) is also studied, which was prepared in house. In all cases, the presence of the pharmaceutical was shown to have a profound effect on the magnitude, and in some cases the rate, of the mass flux of water to and from the aerosol as compared to saline. These findings provide physical chemical evidence supporting observations from human inhalation studies, and suggest that using the growth dynamics of a pure saline aerosol in a lung inhalation model

  18. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic-ammonium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-05-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid and humic acid, and their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH above ∼70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydrobenxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology effects), which are not

  19. Hygroscopic aerosol deposition in the human upper respiratory tract under various thermo-humidity conditions.

    PubMed

    Xi, Jinxiang; Kim, Jongwon; Si, Xiuhua A; Zhou, Yue

    2013-01-01

    The deposition of hygroscopic aerosols is highly complex in nature, which results from a cumulative effect of dynamic particle growth and the real-time size-specific deposition mechanisms. The objective of this study is to evaluate hygroscopic effects on the particle growth, transport, and deposition of nasally inhaled aerosols across a range of 0.2-2.5 μm in an adult image-based nose-throat model. Temperature and relative humidity fields were simulated using the LRN k-ω turbulence model and species transport model under a spectrum of thermo-humidity conditions. Particle growth and transport were simulated using a well validated Lagrangian tracking model coupled with a user-defined hygroscopic growth module. Results of this study indicate that the saturation level and initial particle size are the two major factors that determine the particle growth rate (d/d0), while the effect of inhalation flow rate is found to be not significant. An empirical correlation of condensation growth of nasally inhaled hygroscopic aerosols in adults has been developed based on a variety of thermo-humidity inhalation conditions. Significant elevated nasal depositions of hygroscopic aerosols could be induced by condensation growth for both sub-micrometer and small micrometer particulates. In particular, the deposition of initially 2.5 μm hygroscopic aerosols was observed to be 5-8 times that of inert particles under warm to hot saturated conditions. Results of this study have important implications in exposure assessment in hot humid environments, where much higher risks may be expected compared to normal conditions.

  20. In-situ determination of atmospheric aerosol composition as a function of hygroscopic growth

    SciTech Connect

    Herich, Hanna; Kammermann, Lukas; Gysel, Martin; Weingartner, E.; Baltensperger, Urs; Lohmann, U.; Cziczo, Daniel J.

    2008-08-30

    An in-situ measurement setup to determine the chemical composition of aerosols as a function of hygroscopicity is presented. This has been done by connecting a custom-built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) and an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS), commercially available from TSI (Model 3800). Single particle bipolar mass spectra from aerosols leaving the HTDMA could thus be obtained as a function of the hygroscopic growth factor. For these studies the HTDMA was set at a relative humidity of 82% and particles with a dry diameter of 260 nm were selected. The setup was first laboratory tested after which field experiments were performed. Two datasets were obtained during wintertime 2007 in Switzerland: the first in the urban Zurich environment and the other at the remote high alpine research station Jungfraujoch (JFJ). In Zurich several thousand mass spectra were obtained in less than two days of sampling due to a high aerosol loading. At the JFJ, due to low particle concentrations in free tropospheric airmasses, a longer sampling period was required. Both in Zurich and at the JFJ two different growth factor modes were observed. Results from these two locations show that most aerosol particles were a mixture of several compounds. A large contribution of organics and combustion species was found in the less hygroscopic growth mode for both locations. Non-combustion refractory material (e.g. metals, mineral dust, and fly ash) was also highly enhanced in the non-hygroscopic particles. Sulfate, normally considered highly soluble, was found to be a constituent in almost all particles independent of their hygroscopic growth factor.

  1. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-03-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  2. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1).

  3. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Merkulov, V.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2011-11-01

    In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm, which can be deconvoluted into a dilute intrinsic hygroscopicity parameter (κm,∞) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For sodium chloride, the κm-interaction model (KIM) captures the observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1-99%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. By application of KIM to the measurement data we can distinguish three different regimes of hygroscopicity in the investigated aerosol samples: (I) A quasi-eutonic regime at low relative humidity (~60% RH) where the solutes co-exist in an aqueous and non-aqueous phase; (II) a gradually deliquescent regime at intermediate humidity (~60%-90% RH) where different solutes undergo gradual dissolution in the aqueous phase; and (III) a dilute regime at high humidity (≳90% RH) where the solutes are fully dissolved approaching their dilute intrinsic hygroscopicity. The characteristic features of the three hygroscopicity regimes are similar for both samples, while the RH threshold values vary as expected for samples of different chemical composition. In each regime, the

  4. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    PubMed

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  5. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  6. Characterizing the Hygroscopicity of Nascent Sea Spray Aerosol from Synthetic Blooms

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Cappa, C. D.; Sultana, C. M.; Lee, C.; Wang, X.; Helgestad, T.; Moore, K.; Prather, K. A.; Cornwell, G.; Novak, G.; Bertram, T. H.

    2015-12-01

    Marine sea spray aerosol (SSA) particles make up a significant portion of natural aerosols and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. Scattering of solar radiation by aerosols affects Earth's radiative budget and the degree of scattering is size-dependent. Thus, aerosols scatter more light at elevated relative humidities when they grow larger via water uptake. This growth depends critically on chemical composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Subsaturated hygroscopic growth factors at 85% relative humidity (GF(85%)) of SSA particles were quantified during two mesocosm experiments in enclosed marine aerosol reference tanks (MARTs). The two experiments were conducted with filtered seawater collected at separate times from the Scripps Institute of Oceanography Pier in La Jolla, CA. Phytoplankton blooms in each tank were induced via the addition of nutrients and photosynthetically active radiation. The "indoor" MART was illuminated with fluorescent light and the other "outdoor" MART was illuminated with sunlight. The peak chlorophyll-a concentrations were 59 micrograms/L and 341 micrograms /L for the indoor and outdoor MARTs, respectively. GF(85%) values for SSA particles were quantified using a humidified cavity ringdown spectrometer and particle size distributions. Particle composition was monitored with a single particle aerosol mass spectrometer (ATOFMS) and an Aerodyne aerosol mass spectrometer (AMS). Relationships between the observed particle GFs and the particle composition markers will be discussed.

  7. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-09-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  8. The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric relevant particles.

    PubMed

    Ma, Qingxin; Liu, Yongchun; He, Hong

    2010-04-01

    The hygroscopic behavior of atmospheric aerosols has a significant effect on the global climate change. In this study, a physisorption analyzer was used to measure the water adsorption capacity of Al(2)O(3), NaCl, NH(4)NO(3), and (NH(4))(2)SO(4) particles at 273.6 K. Qualitative and quantitative information about water adsorption on these particles was obtained with changing the temperature and/or relative humidity (RH). Uptake of water on Al(2)O(3) showed a type-II BET adsorption isotherm with the monolayer formed at approximately 18% relative humidity (RH). The hygroscopic properties of NaCl, (NH(4))(2)SO(4), and NH(4)NO(3), including the deliquescence relative humidities (DRH), the temperature dependence of the DRH for NH(4)NO(3), and the growth factors of NaCl and (NH(4))(2)SO(4) were determined. All these results were in good agreement with the results obtained by other methods and/or theoretical prediction with a deviation less than 2%. For NaCl, the water adsorption amount increase rate exhibits three stages (<30% RH, approximately 30%-65% RH, and >65% RH) in the predeliquescence process and monolayer thin film water was formed at about 30% RH. It demonstrated that this instrument was practicable for studying the hygroscopic behavior of both soluble and insoluble but wettable atmospheric nonviolate aerosol particles.

  9. From hygroscopic aerosols to cloud droplets: The HygrA-CD campaign in the Athens basin - An overview.

    PubMed

    Papayannis, A; Argyrouli, A; Bougiatioti, A; Remoundaki, E; Vratolis, S; Nenes, A; Solomos, S; Komppula, M; Giannakaki, E; Kalogiros, J; Banks, R; Eleftheriadis, K; Mantas, E; Diapouli, E; Tzanis, C G; Kazadzis, S; Binietoglou, I; Labzovskii, L; Vande Hey, J; Zerefos, C S

    2017-01-01

    The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), organized in the Greater Athens Area (GAA), Greece from 15 May to 22 June 2014, aimed to study the physico-chemical properties of aerosols and their impact on the formation of clouds in the convective Planetary Boundary Layer (PBL). We found that under continental (W-NW-N) and Etesian (NE) synoptic wind flow and with a deep moist PBL (~2-2.5km height), mixed hygroscopic (anthropogenic, biomass burning and marine) particles arrive over the GAA, and contribute to the formation of convective non-precipitating PBL clouds (of ~16-20μm mean diameter) with vertical extent up to 500m. Under these conditions, high updraft velocities (1-2ms(-1)) and cloud condensation nuclei (CCN) concentrations (~2000cm(-3) at 1% supersaturation), generated clouds with an estimated cloud droplet number of ~600cm(-3). Under Saharan wind flow conditions (S-SW) a shallow PBL (<1-1.2km height) develops, leading to much higher CCN concentrations (~3500-5000cm(-3) at 1% supersaturation) near the ground; updraft velocities, however, were significantly lower, with an estimated maximum cloud droplet number of ~200cm(-3) and without observed significant PBL cloud formation. The largest contribution to cloud droplet number variance is attributed to the updraft velocity variability, followed by variances in aerosol number concentration.

  10. Ab initio study of the hygroscopic properties of borate crystals

    NASA Astrophysics Data System (ADS)

    Lin, Zheshuai; Xu, L. F.; Li, R. K.; Wang, Zhizhong; Chen, Chuangtian; Lee, Ming-Hsien; Wang, E. G.; Wang, Ding-Sheng

    2004-12-01

    The hygroscopic properties of the borate crystals LiB3O5 , CsB3O5 , and CsLiB6O10 are studied by density-functional theory. It is found that the absorption energy and the diffusion mechanism of water molecules differ significantly for the three crystals. The deliquescent properties of borate crystals are determined mainly by the stress induced by water absorption. Our calculations are in good agreement with experimental observations.

  11. Deriving aerosol hygroscopic mixing state from size-resolved CCN activity and HR-ToF-AMS measurements

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, S. N.; Chakraborty, Abhishek

    2016-10-01

    The ability of a particle to uptake water and form a cloud droplet depends on its hygroscopicity. To understand its impact on cloud properties and ultimately radiative forcing, knowledge of chemically-resolved mixing state information or the one based on hygroscopic growth is crucial. Typically, global models assume either pure internal or external mixing state which might not be true for all conditions and sampling locations. To investigate into this, the current study employed an indirect approach to infer the probable mixing state. The hygroscopic parameters derived from κ-Kohler theory using size-resolved CCN measurements (κCCN) and bulk/size-resolved aerosol mass spectrometer (AMS) measurements (κAMS) were compared. The accumulation mode particles were found to be more hygroscopic (κCCN = 0.24) than Aitken mode (κCCN = 0.13), perhaps due to increased ratio of inorganic to organic mass fraction. The activation diameter calculated from size-resolved CCN activity measurements at 5 different supersaturation (SS) levels varied in the range of 115 nm-42 nm with κCCN = 0.13-0.23 (avg = 0.18 ± 0.10 (±1σ)). Further, κAMS>κCCN was observed possibly due to the fact that organic and inorganic mass present in the Aitken mode was not correctly represented by bulk chemical composition and size-resolved fractional contribution of oxidized OA was not accurately accounted. Better correlation of organic fraction (forg) and κCCN at lower SS explained this behaviour. The decrease in κCCN with the time of the day was more pronounced at lower SS because of the relative mass reduction of soluble inorganic species by ∼17%. Despite the large differences between κ measured from two approaches, less over-prediction (up to 18%) between measured and predicted CCN concentration suggested lower impact of chemical composition and mixing state at higher SS. However, at lower SS, presences of externally mixed CCN-inactive aerosols lead to CCN over-prediction reflecting the

  12. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  13. Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles

    NASA Astrophysics Data System (ADS)

    Meyer, N. K.; Duplissy, J.; Gysel, M.; Metzger, A.; Dommen, J.; Weingartner, E.; Alfarra, M. R.; Prevot, A. S. H.; Fletcher, C.; Good, N.; McFiggans, G.; Jonsson, Â. M.; Hallquist, M.; Baltensperger, U.; Ristovski, Z. D.

    2009-01-01

    The volatile and hygroscopic properties of ammonium sulphate seeded and unseeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility - hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived

  14. Hygroscopic growth of water-soluble matter extracted from remote marine aerosols over the western North Pacific: Influence of pollutants transported from East Asia.

    PubMed

    Boreddy, S K R; Kawamura, K

    2016-07-01

    We examined the hygroscopic properties of water-soluble matter (WSM) nebulized from water extracts of total suspended particles (TSP) collected at Chichijima Island in the western North Pacific during January to September 2003. The hygroscopic growth factor g(RH) of the aerosol particles was measured using a hygroscopic tandem differential mobility analyzer (HTDMA) with an initial dry particle diameter of 100nm and relative humidity (RH) of 5-95%. The measured growth factor at 90% RH, g(90%), ranged from 1.51 to 2.14 (mean: 1.76±0.15), significantly lower than that of sea salts (2.1), probably owing to the heterogeneous reactions associated with chloride depletion in sea-salt particles and water-soluble organic matter (WSOM). The g(90%) maximized in summer and minimized in spring. The decrease in spring was most likely explained by the formation of less hygroscopic salts or particles via organometallic reactions during the long-range transport of Asian dust. Cl(-) and Na(+) dominate the mass fractions of WSM, followed by nss-SO4(2-) and WSOM. Based on regression analysis, we confirmed that g(90%) at Chichijima Island largely increased due to the dominant sea spray; however, atmospheric processes associated with chloride depletion in sea salts and WSOM often suppressed g(90%). Furthermore, we explored the deviation (average: 18%) between the measured and predicted g(90%) by comparing measured and model growth factors. The present study demonstrates that long-range atmospheric transport of anthropogenic pollutants (SO2, NOx, organics, etc.) and the interactions with sea-salt particles often suppress the hygroscopic growth of marine aerosols over the western North Pacific, affecting the remote background conditions. The present study also suggests that the HCl liberation leads to the formation of less hygroscopic aerosols over the western North Pacific during long-range transport.

  15. Characterization of the Changes in Hygroscopicity of Ambient Organic Aerosol due to Oxidation by Gas Phase OH

    NASA Astrophysics Data System (ADS)

    Wong, J. P.; McWhinney, R. D.; Slowik, J. G.; Abbatt, J.

    2011-12-01

    Despite the ubiquitous nature of organic aerosols and their importance in climate forcing, the influence of chemical processes on their ability to act as cloud condensation nuclei (CCN) in the atmosphere remains uncertain. Changes to the hygroscopicity of ambient organic aerosol due to OH oxidation were explored at a remote forested (Whistler, British Columbia) and an urban (Toronto, Ontario) site. Organic aerosol was exposed to controlled levels of OH radicals in a portable flow tube reactor, the Toronto Photo-Oxidation Tube (TPOT). An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition due to OH-initiated oxidation. The CCN activity of size-selected particles was measured with a DMT Cloud Condensation Nuclei Counter (CCNc) to determine the hygroscopicity parameter, κ. Preliminary results suggest that gas phase OH oxidation increases the degree of oxygenation of organic aerosol, leading to increases in hygroscopicity. These results yield insights into the mechanism by which oxidation affects the hygroscopicity of ambient aerosol of various sources, and to constrain the main aging process that leads to the observation of increasing hygroscopicity with increasing oxidation of organic aerosol.

  16. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  17. CCN Activity, Hygroscopicity, and Droplet Activation Kinetics of Secondary Organic Aerosol Resulting from the 2010 Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lathem, T. L.; Cerully, K.; Bahreini, R.; Brock, C. A.; Langridge, J. M.; Middlebrook, A. M.; Nenes, A.; Calnex Science Team

    2010-12-01

    We present an analysis of the hygroscopicity and droplet activation kinetics of cloud condensation nuclei (CCN) sampled onboard the National Oceanic and Atmospheric Administration WP-3D aircraft downwind of the Deepwater Horizon oil spill site on June 8th and 10th, 2010. This set of measurements provides a unique case study for assessing in-situ the impact of fresh, hydrocarbonlike aerosols, which are expected to be formed via gas-to-particle conversion of the semi-volatile vapors released from oil evaporation. Similar hydrocarbon-rich aerosols constitute an important local emissions source in urban areas, but often coexist as an external/partially-internal mixture with more-oxidized, aged organic and sulfate aerosol. The DWH site provides the means to study the hygroscopic properties of these less-oxidized organic aerosols above a cleaner environmental background typical of marine environments in order to better discern their contribution to CCN activity and droplet growth. Measurements were performed with a Droplet Measurement Technologies Streamwise, Thermal-Gradient CCN counter, operating both as a counter (s=0.3%) and as a spectrometer (s=0.2-0.6%) using the newly-developed Scanning Flow CCN Analysis (SFCA) technique [1]. The instrument measures both the number concentration of particles able to nucleate droplets and also their resulting droplet sizes. The measured size information combined with a comprehensive computational fluid dynamics instrument model enables us to determine the rate of water uptake onto the particles and parameterize it in terms of an effective mass transfer coefficient [2], a key parameter needed to predict the number of activated droplets in ambient clouds. Non-refractory aerosol chemical composition was measured with an Aerodyne compact time-of-flight aerosol mass spectrometer. It was observed that the aerosols sampled downwind of the site on both days were composed predominantly of organics with a low degree of oxidation and low

  18. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  19. Long-term observations of cloud condensation nuclei in the Amazon rain forest - Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; Klimach, Thomas; Hrabe de Angelis, Isabella; Araújo, Alessandro; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditz, Reiner; Gunthe, Sachin S.; Kesselmeier, Jürgen; Könemann, Tobias; Lavrič, Jošt V.; Martin, Scot T.; Mikhailov, Eugene; Moran-Zuloaga, Daniel; Rose, Diana; Saturno, Jorge; Su, Hang; Thalman, Ryan; Walter, David; Wang, Jian; Wolff, Stefan; Barbosa, Henrique M. J.; Artaxo, Paulo; Andreae, Meinrat O.; Pöschl, Ulrich

    2016-12-01

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014-February 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.

  20. Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    NASA Astrophysics Data System (ADS)

    Lance, S.; Raatikainen, T.; Onasch, T. B.; Worsnop, D. R.; Yu, X.-Y.; Alexander, M. L.; Stolzenburg, M. R.; McMurry, P. H.; Smith, J. N.; Nenes, A.

    2013-05-01

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. κ-Köhler theory is used to evaluate the characteristic hygroscopicity parameter, κ*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions (forg) are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which predictions of the hygroscopicity parameter are compared against κ*. Strong diurnal changes in aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased κ* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN at 0.51% ± 0.06% supersaturation can surpass by more than a factor of two the corresponding concentrations of 100 nm particles. We also find that at 06:00-08:00 LT throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally mixed fraction for 40 nm particles and 30% externally mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as "internally mixed". Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning "rush hour" and the entire campaign. We show that κ* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for κ* versus particle size, which can be attributed to unresolved mixing state and the presence of refractory material not measured

  1. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  2. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH < 90%, under supersaturated conditions (with respect to RH), an increase in CCN activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric

  3. Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Freney, Evelyn J.; Buseck, Peter R.

    2011-07-01

    Hygroscopic aerosol particles change the magnitude of light scattering through condensation and evaporation of water vapor. We collected aerosol particles from two megacities and observed the particle shapes at various values of relative humidity (RH) using an environmental cell within a transmission electron microscope. Many Mexico City samples had sulfate particles that were embedded within weakly hygroscopic organic aerosol, whereas the Los Angeles samples mainly consisted of externally mixed sulfate particles. For the Mexico City samples, when the RH was increased in the microscope, only the sulfate parts deliquesced, but the entire particle did not become spherical, i.e., particles containing deliquescent phases do not necessarily become spherical upon deliquescence. This result conflicts with the assumption used in many models, i.e., that deliquesced particles become spherical. Using a discrete-dipole approximation to calculate light scattering of simulated particles that resemble the observed ones, we show that, for particles >1.0 μm, the spherical-shape assumption used in Mie theory underestimates the light scattering by ˜50%, with the exact value depending on the sizes and relative volumes of the constituent phases.

  4. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  5. Variations in hygroscopic growth of sub- and super-micron sea spray aerosols during a phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Jayarathne, T. S.; Stone, E. A.; Laskina, O.; Grassian, V. H.; Lee, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Novak, G.; Bertram, T. H.; Prather, K. A.; Cappa, C. D.

    2014-12-01

    Marine sea spray aerosols (SSA) make up an important portion of natural aerosols (prior to anthropogenic influence) and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. One way aerosols impact climate is by scattering solar radiation, and how much light is scattered depends upon the size of aerosols. Aerosols grow larger via water uptake and thus scatter more light at elevated relative humidities. This growth depends on composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Aerosol hygroscopicity of SSA sampled during an in-lab phytoplankton bloom were measured during the CAICE-IMPACTS 2014 study. SSA were generated via breaking waves in an enclosed 33 m wave channel filled with natural seawater. Aerosol hygroscopicity was characterized by measuring light extinction at 532 nm of dry aerosols and of aerosols humidified to 85% relative humidity using a Cavity Ringdown Spectrometer. These optical growth factors (humidified extinction/dry extinction) were converted to physical growth factors using Mie Theory calculations and aerosol size distributions measured with a scanning electrical mobility spectrometer (SEMS) and an aerodynamic particle sizer (APS). Growth factors for super- and sub-micron SSA were quantified separately through the use of a PM2.5 cyclone or PM1 impactor. The observed SSA growth factors will be linked to SSA and source water chemical composition determined by both offline and online analysis of samples. The SSA bulk growth factors will also be compared with concurrent measurements of the efficiency with which SSA act as cloud condensation nuclei. Observed SSA growth factors will also be compared to offline hygroscopic growth measurements.

  6. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  7. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w

  8. Hygroscopic Behavior of Ambient Aerosols at an Anthropogenically Perturbed Continental U.S.A. Site, Bondville, Illinois.

    NASA Astrophysics Data System (ADS)

    Kus, P.; Rood, M. J.; Ogren, J.; Quinn, P.; Covert, D. S.

    2002-12-01

    The dependence of ambient aerosols' light scattering coefficient on controlled relative humidity (RH) conditions was measured for ambient aerosol at the Bondville Aerosol Research Site (BEARS), located in east-central Illinois, USA. The measurements were made with a controlled RH nephelometry system between 1995 and 2000. The fact that an aerosol's hygroscopic growth is one of the most important parameters in estimating an aerosol's ability to cause radiative forcing makes it important to characterize that property at relevant locations on a regional scale. Total and hemispheric back scattering coefficients were measured by two nephelometers operating in series as a function of wavelength of light (450, 550, and 700 nm), controlled RH, and upper particle diameter (Dp) of 1 and 10 μm. In addition, gravimetric and inorganic ion composition of the sub-micrometer diameter particles were determined using filter samples. Particle size distributions were measured by a combined system of Differential Mobility Analyzer (DMA) and Aerodynamic Particle Sizer (APS) during a 20-day intensive field campaign. Hygroscopic growth factor (f(RH=82%)) is expressed as the ratio of the scattering coefficient at 82% RH to the scattering at a reference RH (RH<40%). The measured f(RH) values exhibited both deliquescent and monotonic types of growth and were fitted to two different nonlinear equations depending on the type of observed growth. The value of f(RH=82%) at 550 nm was 1.84 +/- 0.43 for sub-micrometer and almost the same with 1.83 +/- 0.42 for super-micrometer aerosols. Higher f(RH) values were associated with the periods where the scattering was dominated by sub-micrometer diameter particles. Deliquescent type of growth was observed 20% of the time. The f(RH) values were higher for aerosol exhibiting deliquescent growth by 8%, which is statistically significant. Available air mass trajectories revealed that the highest f(RH) values were observed when the air mass reaching the

  9. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-03-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

  10. The Effect of Temperature on Hygroscopic Growth of Organic Aerosols Over The 273-303K Range as Derived From Bulk Solution Experiments

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Tabazadeh, A.; Golden, D. M.; Jacobson, M. Z.

    2009-12-01

    Studies have shown that organic matter often constitutes up to 50% by mass of tropospheric aerosols. It is also known that these organics may considerably alter the water uptake properties of aerosol particles. Water uptake of a particle is typically quantified by the hygroscopic growth factor, defined as the ratio of the diameter of a spherical particle when it is exposed to humid conditions to that under dry conditions. In this study, we have assembled an apparatus to measure water activity over aqueous solutions as a function of temperature and solute concentration. We report the experimental precision of our vapor pressure apparatus, obtained by replicating several experiments. Using this apparatus, we studied aqueous solutions of organic compounds representing the categories found in atmospheric aerosols such as simple sugars, diacids, humic materials, and some of their mixtures with inorganic salts. From these measurements, we directly computed the hygroscopic growth factor (HGF) using a formulation that expresses HGF as a function of water activity. Our approach is based on the fact that water activity limits the growth of a particle that can be attributed to water uptake. While most studies report the hygroscopic growth factor of atmospheric aerosols at room temperature (20 - 30°C), we explored the temperature effect on hygroscopic growth of organic aerosols within the 0 - 30°C temperature range. Within experimental error, we found no temperature dependence of the HGF in the 0 - 30°C range, for solutes d-glucose, levoglucosan, succinic acid, phthalic acid, humic acid and Suwanne River fulvic acid. For example, the water activity of an aqueous solution of d-glucose corresponding to a HGF of 1.72 varied by only 1% from 0 to 30°C, well below the experimental error. We report hygroscopic growth curves as a function of temperature and relative humidity for these six organic solutes and some of their mixtures with inorganic salts. Finally, we compare our HGF

  11. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration.

  12. At-Sea Evaluation of the Obscuration Characteristics of a Hygroscopic Aerosol Smoke Produced by the CY85A Pyrotechnic

    DTIC Science & Technology

    1983-12-01

    and IiWIU* by block nmber) Salty Dog Obscuration .2Hygroscopic aerosol Extinction ISmoke Pyrotechnically Generated ’For the past six years, Calapan, in...Extinction Characteristics for Salty Dog , NWC 29 and NWC 78 Pyrotechnics,", Calspan Report No. 6663-M-l, 40 pp, Calspan Corporation, Buffalo, NY 14225. 4

  13. Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child.

    PubMed

    Kim, Jong Won; Xi, Jinxiang; Si, Xiuhua A

    2013-01-01

    Hygroscopic growth within the human respiratory tract can be significant, which may notably alter the behavior and fate of the inhaled aerosols. The objective of this study is to evaluate the hygroscopic effects upon the transport and deposition of nasally inhaled fine-regime aerosols in children. A physiologically realistic nasal-laryngeal airway model was developed based on magnetic resonance imaging of a 5-year-old boy. Temperature and relative humidity field were simulated using the low Reynolds number k - ε turbulence model and chemical specie transport model under a spectrum of four thermo-humidity conditions. Particle growth and transport were simulated using a well validated Lagrangian tracking model coupled with a user-defined hygroscopic growth module. The subsequent aerosol depositions for the four inhalation scenarios were evaluated on a multiscale basis such as total, subregional, and cellular-level depositions. Results of this study show that a supersaturated humid environment is possible in the nasal turbinate region and can lead to significant condensation growth (d / d(0)  > 10) of nasally inhaled aerosols. Depositions in the nasal airway can also be greatly enhanced by condensation growth with appropriate inhalation temperature and humidity. For subsaturated and mild inhalation conditions, the hygroscopic effects were found to be nonsignificant for total depositions, while exerting a large impact upon localized depositions.

  14. A Method for Determining Hygroscopic Growth Factor for Organic Aerosols From Vapor Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Tabazadeh, A.; Golden, D. M.; Jacobson, M. Z.

    2008-12-01

    Currently, the tandem differential mobility analyzer (TDMA) is one of the most commonly used instruments to study the hygroscopic behavior of aerosols. The hygroscopic growth factor (HGF), defined as the ratio of the diameter of a spherical particle when it is exposed to humid conditions to that at dry conditions, is typically used to quantify particle water uptake. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aW) in the aqueous phase. Our approach is based on the fact that water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aW of aqueous solutions as a function of solution concentration and temperature. For the pertinent solutions, we report coefficients resulting from a least square fitting of the water activity data as a function of molality for temperatures from 0 to 30°C. We compared the results obtained using our measured water activities in the HGF formulation with previous studies published, where TDMA is used to directly measure the HGF, for solutes commonly found in atmospheric aerosols. Our results indicate agreement with TDMA studies for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidity (RH). However, we find a difference for organic particles that show no deliquescence behavior at low RH. For example, one TDMA study measured a HGF of 1.18 for 100 nm phthalic acid particles at 90% RH (aW= 0.9) and 30°C. Our data showed that even an aqueous solution saturated in phthalic acid did not lower the vapor pressure of pure water at 30°C. We propose that the adsorption of a negligible mass of water by a porous particle can lead to an apparent growth in particle size by changing the particle morphology.

  15. Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai

    2015-05-01

    A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.

  16. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-11-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1) shielding of inner monomers after particle consolidation or collapse with water uptake; (2) the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH) to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  17. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-07-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  18. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; Pöschl, U.

    2003-09-01

    decomposition products NH3 and HNO3. The efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. Besides these surface and kinetic effects, proteins and comparable organic macromolecules may also influence the thermodynamic properties of the aqueous bulk solution (solubilities, vapor pressures, and chemical equilibria, e.g. for the decomposition and evaporation of NH4NO3. The observed effects should be taken into account in the analysis of data from laboratory experiments and field measurements and in the modelling of aerosol processes involving water vapor and particles with complex composition. They can strongly influence experimental results, and depending on ambient conditions they may also play a significant role in the atmosphere (deliquescence, efflorescence, and CCN activation of particles). In fact, irregular hygroscopic growth curves similar to the ones observed in this study have recently been reported from H-TDMA experiments with water-soluble organics extracted from real air particulate matter and with humic-like substances. The Köhler theory calculations performed with different models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A simple parameterisation of the osmotic coefficient has been derived from an osmotic pressure virial equation and appears to be well-suited for proteins and comparable

  19. Hygroscopicity and CCN activity of atmospheric aerosol particles and their relation to organics: Characteristics of urban aerosols in Nagoya, Japan

    NASA Astrophysics Data System (ADS)

    Kawana, Kaori; Nakayama, Tomoki; Mochida, Michihiro

    2016-04-01

    The size-resolved distributions of hygroscopic growth factor g and the ratios of cloud condensation nuclei (CCN) to condensation nuclei of atmospheric aerosols were investigated in Nagoya, Japan. The average of the distributions of g at 85% relative humidity was bimodal. The size-resolved mean κ derived from g showed an increasing trend with diameter: 0.17-0.33 at 24-359 nm. The κ values calculated from CCN activation curves were 37% higher than those derived from g. Only 9% of the 37% difference is explained by the difference in the κ of inorganics under subsaturated and supersaturated conditions, suggesting a contribution of organics to the remaining 28% difference. The size-averaged κ of organics (κorg) was calculated as 0.14 and 0.19 by two different methods. The number fractions of CCN predicted from the hygroscopicity data over the range of 24-359 nm are loosely consistent with those observed if the size- and time-averaged g is applied to all particles (differences: -30% to +10%). This consistency improves if size- and time-resolved g and g distribution are used (differences: -19% to -3%). Whereas the number fractions of CCN predicted from the composition data are greatly underestimated if organics are assumed to be insoluble (differences: -64% to -45%), they are more consistent if κorg of 0.14 or 0.19 is applied (differences: -10% to +14%). The results demonstrate the importance of the dependence of the g of particles on time and particle size and the hygroscopicity of organics for CCN number concentrations in the urban atmosphere.

  20. The single scattering properties of hygroscopic soot aggregates with water coated monomers

    NASA Astrophysics Data System (ADS)

    YU, W.; Tianhai, C.; Hao, C.; Lijuan, Z.

    2013-12-01

    Anthropogenic aerosols, such as soot, have modified the Earth's radiation balance by scattering and absorbing solar and long-wave radiative transmission, which have largely influenced the global climate change since the industrial era. Based on transmission electron microscope images (TEM), soot particles are shown as the complex, fractal-like aggregate structures. In humid atmospheric environments, these soot aggregates tend to acquire a water coating, which introduces further complexity to the problem of determining the optical properties of the aggregates. The hygroscopic growth of soot aggregates is important for the aging of these absorbing aerosols, which can significantly influence the optical properties of these kinds of soot particles. In this paper, according to the specific volume fractions of soot core in the water coated soot particle, the monomers of fractal soot aggregates are modeled as semi-external mixtures (physical contact) with constant radius of soot core and variable size of water coating. The single scattering properties of these hygroscopic soot particles, such as phase function, the cross sections of extinction, absorption and scatting, single scattering albedo (SSA), and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The morphological effects are compared with different monomer numbers and fractal dimension of the soot aggregates, as well as different size of water coating for these spherical monomers. The results have shown that the extinction and absorption cross sections are decreased for the soot aggregates with more thick water coating on monomers, but the single scattering albedo is increased for the larger water coating. It is found that the SSA of aged soot aggregates with hygroscopic grown are remarkably (~50% for volume fraction of soot aggregates is 0.5) larger than fresh soot particles without the consideration of water coating, due to the size of water coating and the

  1. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, Natasha; Zuend, Andreas; Schilling, Katherine; Berkemeier, Thomas; Shiraiwa, Manabu; Flagan, Richard C.; Seinfeld, John H.

    2016-10-01

    Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol-1 and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid-liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG-AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000-AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also

  2. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  3. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources

    NASA Astrophysics Data System (ADS)

    Titos, G.; Cazorla, A.; Zieger, P.; Andrews, E.; Lyamani, H.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2016-09-01

    Knowledge of the scattering enhancement factor, f(RH), is important for an accurate description of direct aerosol radiative forcing. This factor is defined as the ratio between the scattering coefficient at enhanced relative humidity, RH, to a reference (dry) scattering coefficient. Here, we review the different experimental designs used to measure the scattering coefficient at dry and humidified conditions as well as the procedures followed to analyze the measurements. Several empirical parameterizations for the relationship between f(RH) and RH have been proposed in the literature. These parameterizations have been reviewed and tested using experimental data representative of different hygroscopic growth behavior and a new parameterization is presented. The potential sources of error in f(RH) are discussed. A Monte Carlo method is used to investigate the overall measurement uncertainty, which is found to be around 20-40% for moderately hygroscopic aerosols. The main factors contributing to this uncertainty are the uncertainty in RH measurement, the dry reference state and the nephelometer uncertainty. A literature survey of nephelometry-based f(RH) measurements is presented as a function of aerosol type. In general, the highest f(RH) values were measured in clean marine environments, with pollution having a major influence on f(RH). Dust aerosol tended to have the lowest reported hygroscopicity of any of the aerosol types studied. Major open questions and suggestions for future research priorities are outlined.

  4. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  5. Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-08-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead, they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR (Fourier transform infrared) spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance and, therefore, particles prepared in this study should mimic atmospheric mixed-phase aerosol particles. Some results of this study tend to be in agreement with previous microscopy experiments, but others, such as phase separation properties of 1,2,6-hexanetriol, do not agree with previous work. Because the particles studied in this experiment are of a smaller size than those used in microscopy studies, the discrepancies found could be a size-related effect.

  6. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    NASA Astrophysics Data System (ADS)

    Forestieri, Sara D.; Cornwell, Gavin C.; Helgestad, Taylor M.; Moore, Kathryn A.; Lee, Christopher; Novak, Gordon A.; Sultana, Camille M.; Wang, Xiaofei; Bertram, Timothy H.; Prather, Kimberly A.; Cappa, Christopher D.

    2016-07-01

    The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative

  7. Hygroscopic and phase transition properties of alkyl aminium sulfates at low relative humidities.

    PubMed

    Chu, Yangxi; Sauerwein, Meike; Chan, Chak K

    2015-08-14

    Alkyl aminium sulfates (AASs) can affect the physicochemical properties of atmospheric aerosols such as hygroscopicity. Previous laboratory experiments have shown that the water content in AAS bulk solutions is higher than in aqueous ammonium sulfate solution in the range of 60-95% relative humidity (RH). Furthermore, amine was found to evaporate from the solution during the preparation of AASs from the parent amine and sulfuric acid solutions. Here we report the hygroscopicities of deposited particles of four AASs at different aminium-to-sulfate molar ratios (A/Ss) in the range of <3-90% RH using air-flow cells coupled with in situ micro-Raman spectroscopy. Normalized integrated areas of O-H stretching peaks in the Raman spectra were converted to water-to-solute molar ratios (WSRs) at various RH values. Evaporation of amine was also observed in most cases and the exact A/Ss of sample particles or solutions were determined by ion chromatography. Mono-methylaminium sulfate (MMAS) and mono-ethylaminium sulfate (MEAS) particles were stable at A/S = 2.0, but di-methylaminium sulfate (DMAS) and tri-methylaminium sulfate (TMAS) suffered from DMA and TMA evaporation and eventually equilibrated to the A/S of 1.5 and 1.0, respectively. At these stable compositions MMAS and MEAS exhibited phase transitions in the super-saturation region, while DMAS and TMAS showed a continuous and reversible water uptake. Besides, an approach to estimate the hygroscopicities of DMAS and TMAS particles at an initial A/S larger than that of the stable compositions was presented. In the range of 60-95% RH, the WSRs of all the studied AAS particles were consistent with a previous study based on experimental values and the extended Zdanovskii-Stokes-Robinson equation. In general, all the studied AASs were more hygroscopic than their corresponding ammonium counterparts within the studied RH range and evaporation of amine needs to be corrected in studying unstable AAS particles.

  8. Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles

    NASA Astrophysics Data System (ADS)

    Meyer, N. K.; Duplissy, J.; Gysel, M.; Metzger, A.; Dommen, J.; Weingartner, E.; Alfarra, M. R.; Fletcher, C.; Good, N.; McFiggans, G.; Jonsson, Ã. M.; Hallquist, M.; Baltensperger, U.; Ristovski, Z. D.

    2008-05-01

    The volatile and hygroscopic properties of ammonium sulphate seeded and un-seeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility - hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived

  9. Assessment of CCN based on size-resolved hygroscopicity data: Results from urban aerosol measurements in Nagoya, Japan

    NASA Astrophysics Data System (ADS)

    Kawana, K.; Nakayama, T.; Mochida, M.

    2012-12-01

    To assess the number concentrations and the proportion of cloud condensation nuclei (CCN) and the CCN activation diameter (dact) of urban aerosols based on size-resolved hygroscopicity, the atmospheric observation was performed for 10 days at an urban site of Nagoya, Japan in September 2009. The hygroscopic growth factor (HGF) distributions of aerosol particles at 85% RH were measured using a hygroscopicity tandem differential mobility analyzer (HTDMA) system, which consists of two differential mobility analyzers (DMAs) and a condensation particle counter (CPC). The proportion of CCN in the aerosol particles exiting the first DMA of the HTDMA was measured using a CCN counter and a CPC. The number concentrations of CCN (NCCN), the ratio of NCCN to the number concentrations of condensation nuclei (NCN), and dact were predicted from the observed HTDMA data based on k-köhler theory, and they were compared with measured values. Here, measured NCCN is that obtained from the number-size distribution of aerosol particles and the size-resolved NCCN/NCN. The measured dact was obtained from a curve fit to a CCN efficiency spectrum. The dact was predicted using different two methods. Whereas one of the methods to predict dact is based on the mean hygroscopic growth factor (gmean) at each diameter, the other accounts for activation of aerosol particles at each HGF bin. The NCCN and NCCN/NCN were predicted using the latter method only. The predicted NCCN and the predicted NCCN/NCN were, respectively, on average 19% and 15% lower than the measured values. The predicted dact were on average 8% higher than the measured values by both of the methods.

  10. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    PubMed

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  11. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    SciTech Connect

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  12. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  13. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  14. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-04

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  15. Aerosol mixingstate, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    SciTech Connect

    Lance, Sara; Raatikainen, T.; Onasch, Timothy B.; Worsnop, Douglas R.; Yu, Xiao-Ying; Alexander, M. L.; Stolzenberg, Mark; McMurry, Peter; Smith, James N.; Nenes, Athanasios

    2013-05-15

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. K¨ohler theory is used to evaluate the characteristic water uptake coefficient, k*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions, (forg), are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which kAMS is inferred and compared against k*. Strong diurnal profiles of aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased k* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN can surpass by more than a factor of two the concentrations of 100 nm particles acting as CCN, at supersaturations of 0.51% +/- 0.06%. We also find that at 0600-0800 in the morning throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally-mixed fraction for 40 nm particles and 30% externally-mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as “internally-mixed”. Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning “rush hour”, and the entire campaign. We show that k* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for k* versus particle size, which can be attributed to unresolved mixing-state and the presence of refractory material not measured by the

  16. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.

    2015-06-01

    Even though organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments spanning from the subtropics to the high Arctic, their hygroscopic properties have not been investigated prior to this study. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesized and used for simultaneous measurements with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry size for all chemical compositions investigated, indicating size dependency and/or surface effects. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical activation diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w/w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water-value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ obtained from the

  17. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.

    2015-12-01

    Organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments; however their hygroscopic properties remain uncharacterised. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesised and used for simultaneous measurements with a hygroscopicity tandem differential mobility analyser (H-TDMA) and a cloud condensation nuclei counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry diameter for all chemical compositions investigated, indicating that κH-TDMA depends on particle diameter and/or surface effects; however, it is not clear if this trend is statistically significant. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical particle diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w / w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ

  18. Aerosol Number-size Distributions and Hygroscopic Growth in the Marine Boundary Layer during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Covert, D. S.; Coffman, D. J.; Bates, T. S.

    2001-12-01

    As part of the Aerosol Chemistry Experiment-Asia (ACE-Asia), measurements of the physical and hygroscopic properties of aerosol particles were made on the NOAA Research Vessel Ron Brown in the experiment's study area around southern Japan, the Sea of Japan and the Yellow Sea from 30 March through 19 April, 2001 (Day of Year 90 through 109). The number-size distribution from 3 nm to 10 um diameter was measured with a combination of differential mobility analyzers and aerodynamic particle sizers. The system was operated at 55% relative humidity (RH) for consistency with optical measurements and size dependent chemical sampling on the ship. A separate system consisting of three differential mobility analyzers and humidity conditioners measured the change in hydration of the accumulation mode particles from an initial condition of 55% RH to humidities of 20% and 90% RH. The result is a distribution of hygroscopic growth factors at the end RH relative to the initial humidity. The size distributions varied widely depending on the location of the ship, the source of the air mass and the local meteorological conditions. The dominant features included ultrafine particles (less than 20 nm), soil dust particulate mass (greater than 2 um) and Aitken, accumulation mode number and mass (40 to 600 nm). The results are limited to case studies rather than any statistical or time-space average due to the limited data base and the few sources and air mass types encountered in the 21 day period. The results have been analyzed and categorized according to specific air mass trajectories and chemical analysis and are considered representative of those air masses at the marine boundary layer level. Soil dust dominated distributions were observed on days 101 through 103 with volume concentrations of 50 to 100 um3/cm3 and a volume mean diameter of 3 um. High concentrations of ultrafine particles were observed on the later two of these days from early morning through mid-afternoon in spite

  19. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  20. A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Su, H.; Cheng, Y.; Ma, N.; Wang, Z.; Wang, X.; Pöhlker, M.; Nillius, B.; Wiedensohler, A.; Pöschl, U.

    2015-09-01

    The activation and hygroscopicity of cloud condensation nuclei (CCN) are key to understand aerosol-cloud interactions and their climate impact. It can be measured by scanning the particle size and supersaturation in CCN measurements. The scanning of supersaturation is often time-consuming and limits the temporal resolution and performance of CCN measurements. Here we present a new approach, termed broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned reducing the time interval between different supersaturation scans. The practical applicability of the BS2 approach is demonstrated with nano-CCN measurements of laboratory-generated aerosol particles. Model simulations show that the BS2 approach is also applicable for measuring CCN activation of ambient mixed particles. Due to its fast response and technical simplicity, the BS2 approach may be well suited for long-term measurements. Since hygroscopicity is closely related to the fraction of organics/inorganics in aerosol particles, a BS2-CCN counter can also serve as a complementary sensor for fast detection/estimation of aerosol chemical compositions.

  1. A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Su, Hang; Cheng, Yafang; Ma, Nan; Wang, Zhibin; Wang, Xiaoxiang; Pöhlker, Mira L.; Nillius, Björn; Wiedensohler, Alfred; Pöschl, Ulrich

    2016-10-01

    The activation and hygroscopicity of cloud condensation nuclei (CCN) are key to the understanding of aerosol-cloud interactions and their impact on climate. They can be measured by scanning the particle size and supersaturation in CCN measurements. The scanning of supersaturation is often time-consuming and limits the temporal resolution and performance of CCN measurements. Here we present a new approach, termed the broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned, reducing the time interval between different supersaturation scans. The practical applicability of the BS2 approach is demonstrated with nano-CCN measurements of laboratory-generated aerosol particles. Model simulations show that the BS2 approach may also be applicable for measuring CCN activation of ambient mixed particles. Due to its fast response and technical simplicity, the BS2 approach may be well suited for aircraft and long-term measurements. Since hygroscopicity is closely related to the fraction of organics/inorganics in aerosol particles, a BS2-CCN counter can also serve as a complementary sensor for fast detection/estimation of aerosol chemical compositions.

  2. Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities.

    PubMed

    Chan, Man Nin; Kreidenweis, Sonia M; Chan, Chak K

    2008-05-15

    The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.

  3. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  4. Cloud condensation nuclei in polluted air and biomass burning smoke: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    NASA Astrophysics Data System (ADS)

    Rose, D.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2009-04-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate, but their abundance, properties and sources are highly variable and not well known. We have measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign on 1-30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20-300 nm) were recorded at water vapor supersaturations (S) in the range of 0.07% to 1.27%. Depending on S, the dry CCN activation diameters were in the range of 30-200 nm, corresponding to effective hygroscopicity parameters kappa in the range of 0.1-0.5. The hygroscopicity of particles in the accumulation size range was generally higher than that of particles in the nucleation and Aitken size range. The campaign average value of kappa for all aerosol particles across the investigated size range was 0.3, which equals the average value of kappa for other continental locations. During a strong local biomass burning event, the activation diameters increased by ~10% and the average value of kappa dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, which indicates substantial proportions of externally mixed CCN-inactive particles with much lower hygroscopicity - most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (N_CCN,S) ranged from 1100 cm-3 at S=0.07% to 16 000 cm-3 at S=1.27%, representing ~7% to ~85% of the total aerosol particle number concentration. Based on the measurement data, we have tested different model approaches (power laws and kappa-Köhler model) for the approximation/prediction of N_CCN,S as a function of water vapor supersaturation, aerosol particle number

  5. Aerosol Hygroscopicity Measured in Pristine and Polluted Conditions During the First Year of the GoAmazon 2014/15 Experiment

    NASA Astrophysics Data System (ADS)

    Barbosa, H. M.; Krüger, M. L.; Thalman, R.; Wang, J.; Pauliquevis, T.; Brito, J.; Poeschl, U.; Andreae, M. O.; Martin, S. T.; Artaxo, P.

    2015-12-01

    The effects of aerosol particles on cloud microphysical properties, cloud cover, precipitation, and regional climate are an important aspect of the climate system. The Amazon region is particularly susceptible to changes in number-diameter distributions of the atmospheric particle population because of the low background concentrations and high water vapor levels, indicating a regime of cloud properties that is highly sensitive to aerosol microphysics. This natural regime, different from most other continental areas worldwide, is expected to be perturbed by the interaction of the Manaus urban plume with the natural the natural environment. Studying the effects of this interaction on the cloud and aerosol life cycle is the main objective of the Green Ocean Amazon (GoAmazon) campaign taking place around Manaus-Brazil from January 2014 to December 2015. In this paper we compare the particle hygroscopicity calculated from measurements of size-resolved cloud condensation nuclei performed at three ground sites during the first year of the GoAmazon 2014/15 experiment. Site T3 is about 70 km downwind from Manaus experiencing urban polluted and background conditions; site T2 is just across the Rio Negro from Manaus and CCN measurements were performed there only from 15 August 2014 to 30 Jan 2015; and T0, at the Amazon Tall Tower Observatory (ATTO), is a pristine site about 200 km upwind from Manaus. Our results indicate a lower hygroscopicity under polluted conditions (mean kappa values around 0.14 to 0.16) than under clean conditions (mean kappa around 0.2 to 0.3). At the clean site, it was possible to identify peaks of large sea salt particles with organic coating, while small particles seems to be purely organic. The activation fraction and hygroscopicity will be compared and discussed as a function of particle size. The mean kappa at ATTO is 0.17+-0.05 (mean of June and September) when there is no impact from long range transport from Africa or fresh soot emissions

  6. Aerosol Activity and Hygroscopicity Combined with Lidar Data in the Urban Atmosphere of Athens, Greece in the Frame of the HYGRA_CD Campaign

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Papayannis, Alexandros; Vratolis, Stergios; Argyrouli, Athina; Mihalopoulos, Nikolaos; Tsagkaraki, Maria; Nenes, Athanasios; Eleftheriadis, Konstantinos

    2016-06-01

    Measurements of cloud condensation nuclei (CCN) concentrations between 0.2-1.0% supersaturation and aerosol size distribution were performed at an urban background site of Athens during HygrA-CD. The site is affected by local and long-range transported emissions as portrayed by the external mixing of the particles, as the larger ones appear to be more hygroscopic and more CCN-active than smaller ones. Activation fractions at all supersaturations exhibit a diurnal variability with minimum values around noon, which are considerably lower than unity. This reinforces the conclusion that the aerosol is mostly externally mixed between "fresher", less hygroscopic components with more aged, CCN active constituents.

  7. Hygroscopic Measurements of Aerosol Particles in the San Joaquin Valley California during the DRAGON and Discover AQ Campaign 2013

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2013-12-01

    In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f

  8. Investigations of Physicochemical Properties of Size-Resolved, Subsaturated, Atmospheric Aerosol Particles: Instrument Development, Field Measurements, and Data Analysis

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor

    Aerosol particle properties and their impact on air quality, clouds, and the hydrologic cycle remain a critically important factor for the understanding of our atmosphere. Particle hygroscopic growth leads to impacts on direct and indirect radiative forcing properties, the likelihood for particles to act as cloud condensation nuclei, and aerosol-cloud interactions. Current instruments measuring hygroscopic growth have a number of limitations, lacking either the ability to measure size-resolved particles or process samples at a fast enough resolution to be suitable for airborne deployment. Advanced in-situ airborne particle retrieval and measurements of aerosol hygroscopic growth and scattering properties are analyzed and discussed. To improve the analysis of cloud nuclei particles, an updated counterflow virtual impact inlet was characterized and deployed during the 2011 E-PEACE field campaign. Theoretical and laboratory based cut size diameters were determined and validated against data collected from an airborne platform. In pursuit of higher quality aerosol particle hygroscopicity measurements, a newer instrument, the differential aerosol sizing and hygroscopicity probe (DASH-SP) has been developed in the recent past and only flown on a handful of campaigns. It has been proven to provide quality, rapid, size-resolved hygroscopic growth factor data, but was further improved into a smaller form factor making it easier for deployment on airborne platforms. It was flown during the 2013 SEAC4RS field campaign and the data was analyzed to composite air mass based hygroscopicity and refractive index (real portion only) statistics. Additionally, a comparison of bulk and size-resolved hygroscopic growth measurements was conducted. Significant findings include a potential particle size bias on bulk scattering measurements as well as a narrow range of ambient real portion of refractive index values. An investigation into the first reported ambient hygroscopicity

  9. Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Baltensperger, U.; Giebl, H.; Hitzenberger, R.; Petzold, A.; Wilson, C. W.

    2003-06-01

    Hygroscopic properties of combustion particles were measured online with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) during PartEmis jet engine combustor experiments. The combustor was operated at old and modern cruise conditions with fuel sulfur contents (FSC) of 50, 410 and 1270 μg g-1, and hygroscopic growth factors (HGF) of particles with different dry diameters were investigated at relative humidities RH <= 95%. HGFs increased strongly with increasing FSC (HGF[95% RH, 50 nm, modern cruise] = 1.01 and 1.16 for low and high FSC, respectively), and decreased with increasing particle size at fixed FSC, whereas no significant difference was detected between old and modern cruise. HGFs agreed well with a two-parameter theoretical model which provided an estimate of the sulfuric acid content of dry particles, indicating a nearly linear dependence on FSC.

  10. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    PubMed

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  11. Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.

    PubMed

    Mihara, Toshiyuki; Mochida, Michihiro

    2011-11-01

    To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM.

  12. A case study of Asian dust storm particles: chemical composition, reactivity to SO2 and hygroscopic properties.

    PubMed

    Ma, Qingxin; Liu, Yongchun; Liu, Chang; Ma, Jinzhu; He, Hong

    2012-01-01

    Mineral dust comprises a great fraction of the global aerosol loading, but remains the largest uncertainty in predictions of the future climate due to its complexity in composition and physico-chemical properties. In this work, a case study characterizing Asian dust storm particles was conducted by multiple analysis methods, including SEM-EDS, XPS, FT-IR, BET, TPD/mass and Knudsen cell/mass. The morphology, elemental fraction, source distribution, true uptake coefficient for SO2, and hygroscopic behavior were studied. The major components of Asian dust storm particles are aluminosilicate, SiO2 and CaCO3, with organic compounds and inorganic nitrate coated on the surface. It has a low reactivity towards SO2 with a true uptake coefficient, 5.767 x 10(-6), which limits the conversion of SO2 to sulfate during dust storm periods. The low reactivity also means that the heterogeneous reactions of SO2 in both dry and humid air conditions have little effect on the hygroscopic behavior of the dust particles.

  13. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Jiyoung

    In situ measurements at Gosan, South Korea, and onboard C-130 aircraft during ACE-Asia were analyzed to investigate the influence of relative humidity (RH) on aerosol optical properties and radiative forcing. The temporal variation of aerosol chemical composition at the Gosan super-site was highly dependent on the air mass transport pathways and source region. RH in the springtime over East Asia were distributed with very high spatial and temporal variation. The RH profile onboard C-130 aircraft measurements exhibits a mixed layer height of about 2 km. Aerosol scattering coefficient ( σsp) under ambient RH was greatly enhanced as compared with that at dry RH (RH<40%). From the aerosol optical and radiative transfer modeling studies, we found that the extinction and scattering coefficients are greatly enhanced with RH. Single scattering albedo with RH is also sensitively changed in the longer wavelength. Asymmetry parameter ( g) is gradually increased with RH although g decreases with wavelength at a given RH. Aerosol optical depth (AOD) at 550 nm and RH of 50% increased to factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90, and 95%, respectively. Diurnal-averaged aerosol radiative forcings for surface, TOA, and atmosphere were increased with RH because AOD was increased with RH due to hygroscopic growth of aerosol particles. This result implies that the hygroscopic growth due to water-soluble or hydrophilic particles in the lower troposphere may significantly modify the magnitude of aerosol radiative forcing both at the surface and TOA. However, the diurnal-averaged radiative forcing efficiencies at the surface, TOA, and atmosphere were decreased with increasing RH. The decrease of the forcing efficiency with RH results from the fact that increasing rate of aerosol optical depth with RH is greater than the increasing rate of aerosol radiative forcing with RH.

  14. CCN spectra, hygroscopicity, and droplet activation kinetics of secondary organic aerosol resulting from the 2010 Deepwater Horizon oil spill.

    PubMed

    Moore, Richard H; Raatikainen, Tomi; Langridge, Justin M; Bahreini, Roya; Brock, Charles A; Holloway, John S; Lack, Daniel A; Middlebrook, Ann M; Perring, Anne E; Schwarz, Joshua P; Spackman, J Ryan; Nenes, Athanasios

    2012-03-20

    Secondary organic aerosol (SOA) resulting from the oxidation of organic species emitted by the Deepwater Horizon oil spill were sampled during two survey flights conducted by a National Oceanic and Atmospheric Administration WP-3D aircraft in June 2010. A new technique for fast measurements of cloud condensation nuclei (CCN) supersaturation spectra called Scanning Flow CCN Analysis was deployed for the first time on an airborne platform. Retrieved CCN spectra show that most particles act as CCN above (0.3 ± 0.05)% supersaturation, which increased to (0.4 ± 0.1)% supersaturation for the most organic-rich aerosol sampled. The aerosol hygroscopicity parameter, κ, was inferred from both measurements of CCN activity and from humidified-particle light extinction, and varied from 0.05 to 0.10 within the emissions plumes. However, κ values were lower than expected from chemical composition measurements, indicating a degree of external mixing or size-dependent chemistry, which was reconciled assuming bimodal, size-dependent composition. The CCN droplet effective water uptake coefficient, γ(cond), was inferred from the data using a comprehensive instrument model, and no significant delay in droplet activation kinetics from the presence of organics was observed, despite a large fraction of hydrocarbon-like SOA present in the aerosol.

  15. Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways.

    PubMed

    Boreddy, S K R; Kawamura, Kimitaka; Bikkina, Srinivas; Sarin, M M

    2016-02-15

    Hygroscopic properties of water-soluble matter (WSM) extracted from fine-mode aerosols (PM2.5) in the marine atmospheric boundary layer of the Bay of Bengal (BoB) have been investigated during a cruise from 27th December 2008 to 30th January 2009. Hygroscopic growth factors were measured on particles generated from the WSM using an H-TDMA system with an initial dry size of 100 nm in the range of 5-95% relative humidity (RH). The measured hygroscopic growth of WSM at 90% RH, g(90%)WSM, were ranged from 1.11 to 1.74 (mean: 1.43 ± 0.19) over the northern BoB and 1.12 to 1.38 (mean: 1.25 ± 0.09) over the southern BoB. A key finding is that distinct hygroscopic growth factors are associated with the air masses from the Indo-Gangetic plains (IGP), which are clearly distinguishable from those associated with air masses from Southeast Asia (SEA). We found higher (lower) g(90%)WSM over the northern (southern) BoB, which were associated with an IGP (SEA) air masses, probably due the formation of high hygroscopic salts such as (NH4)2SO4. On the other hand, biomass burning influenced SEA air masses confer the low hygroscopic salts such as K2SO4, MgSO4, and organic salts over the southern BoB. Interestingly, mass fractions of water-soluble organic matter (WSOM) showed negative and positive correlations with g(90%)WSM over the northern and southern BoB, respectively, suggesting that the mixing state of organic and inorganic fractions could play a major role on the g(90%)WSM over the BoB. Further, WSOM/SO4(2-) mass ratios suggest that SO4(2-) dominates the g(90%)WSM over the northern BoB whereas WSOM fractions were important over the southern BoB. The present study also suggests that aging process could significantly alter the hygroscopic growth of aerosol particles over the BoB, especially over the southern BoB.

  16. Raman lidar observations of particle hygroscopicity during COPS

    NASA Astrophysics Data System (ADS)

    Stelitano, D.; Di Girolamo, P.; Summa, D.

    2012-04-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and

  17. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  18. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  19. A case study of single hygroscopicity parameter and its link to the functional groups and phase transition for urban aerosols in Taipei City

    NASA Astrophysics Data System (ADS)

    Hung, Hui-Ming; Hsu, Chia-Hung; Lin, Wei-Ting; Chen, Yu-Quan

    2016-05-01

    The hygroscopicity, functional groups and phase transitions of urban aerosol particles in Taipei City were studied using a cloud condensation nuclei counter (CCNc) with a scanning mobility particle sizer (SMPS) and an attenuated total reflectance with infrared (ATR-IR) detection technique. With the assumption of larger particles being activated first, the derived single hygroscopicity parameter (κ) exhibited an increasing trend with particle size, i.e., from 0.022 ± 0.01 at 87 ± 10 nm to 0.13 ± 0.03 at 240 ± 20 nm. The collected size-selected particles were characterized using ATR-IR for the functional groups of alkyl, carbonyl, ammonium, sulfate and nitrate, which showed various size dependence patterns, linked to different formation mechanisms. The hygroscopic response based on the ratio (xW_solute) for sample film of absorption by the enhanced water-stretching peak to that by the selected solute showed a better consistency with pure ammonium sulfate for sub-micron size particles. Based on the derived ammonium sulfate volume fraction from IR analysis, the κ received from CCNc measurements was concluded mainly contributed by ammonium sulfate for sub-micrometer particles. The increasing trend of sodium nitrate absorbance at aerosol diameter ≥1 μm was due to a reaction of nitric acid with sea salt particles. The micrometer sized particles were apparent not only in a significantly higher xW_solute than pure sodium nitrate but also had a deliquescence RH of 69 ± 1%, similar to that of sodium nitrate-sodium chloride mixtures. Overall, the organic species in this study exhibited a low hygroscopicity with less than 0.036 of contribution for the overall κ, and the major hygroscopic material of urban aerosols consisted primarily of ammonium sulfate in the sub-micrometer particles and sodium nitrate with sea salt in the coarse particles.

  20. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    NASA Astrophysics Data System (ADS)

    Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2008-09-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate, but their abundance, properties and sources are highly variable and not well known. We have measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign on 1 30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20 300 nm) were recorded at water vapor supersaturations (S) in the range of 0.07% to 1.27%. Depending on S, the dry CCN activation diameters were in the range of 30 200 nm, corresponding to effective hygroscopicity parameters κ in the range of 0.1 0.5. The hygroscopicity of particles in the accumulation size range was generally higher than that of particles in the nucleation and Aitken size range. The campaign average value of κ for all aerosol particles across the investigated size range was 0.3, which equals the average value of κ for other continental locations. During a strong local biomass burning event, the activation diameters increased by ~10% and the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, which indicates substantial proportions of externally mixed CCN-inactive particles with much lower hygroscopicity most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (NCCN,S) ranged from 1100 cm-3 at S=0.07% to 16 000 cm-3 at S=1.27%, representing ~7% to ~85% of the total aerosol particle number concentration. Based on the measurement data, we have tested different model approaches (power laws and κ-Köhler model) for the approximation/prediction of NCCN,S as a function of water vapor supersaturation, aerosol particle number concentration, size

  1. Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN)

    NASA Astrophysics Data System (ADS)

    Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S. S.; Wernli, H.; Andreae, M. O.; Pöschl, U.

    2009-09-01

    We have investigated the formation of cloud droplets under pyro-convective conditions using a cloud parcel model with detailed spectral microphysics and with the κ-Köhler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution (accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (NCD) for a wide range of updraft velocities (w=0.25-20 m s-1) and aerosol particle number concentrations (NCN=200-105 cm-3) at the cloud base. Depending on the ratio between updraft velocity and particle number concentration (w/NCN), we found three distinctly different regimes of CCN activation and cloud droplet formation: (1) An aerosol-limited regime that is characterized by high w/NCN ratios (>≈10-3 m s-1 cm3), high maximum values of water vapour supersaturation (Smax>≈0.5%), and high activated fractions of aerosol particles (NCN/NCN>≈90%). In this regime NCD is directly proportional to NCN and practically independent of w. (2) An updraft-limited regime that is characterized by low w/NCN ratios (<≈10-4 m s-1 cm3), low maximum values of water vapour supersaturation (Smax<≈0.2%), and low activated fractions of aerosol particles (NCD/NCN<≈20%). In this regime NCD is directly proportional to w and practically independent of NCN. (3) An aerosol- and updraft-sensitive regime (transitional regime), which is characterized by parameter values in between the two other regimes and covers most of the conditions relevant for pyro-convection. In this regime NCD depends non-linearly on both NCN and w. In sensitivity studies we have tested the influence of aerosol particle size distribution and hygroscopicity on NCD. Within the range of effective hygroscopicity parameters that is characteristic for continental atmospheric aerosols (κ≈0.05-0.6), we found that NCD depends rather weakly on the actual value of κ

  2. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  3. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; Pöschl, U.

    2004-02-01

    The interaction of aerosol particles composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations (100-300nm particle size range, 298K, 960hPa). BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter.

    Pure BSA particles exhibited deliquescence and efflorescence transitions at sim35% relative humidity (RH) and a hygroscopic diameter increase by up to sim10% at 95% RH in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation.

    Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the

  4. Characterization of particle hygroscopicity by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato

    2013-05-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.

  5. Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Long-range transport pollution, postharvest biomass burning, and Asian dust

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kim, Young J.

    2011-01-01

    Aerosol physicochemical and hygroscopic properties were measured from 12 October to 21 November 2005 at a downwind area of the Asian continental outflow (Gwangju, Korea) to characterize severe haze episodes. Using optically measured elemental carbon (EC) at 660 nm (Opt.EC) and 880 nm (BC) wavelengths and Mie theory, it was estimated that the higher BC/Opt.EC ratio during the cloudy day of the long-range transport (LTP) period was mainly due to EC particle growth from in-cloud processing with secondary aerosols such as sulfate and organic aerosols. Single scattering albedo (SSA) of biomass burning (BB) aerosol increased sharply from 0.89 to 0.94 under a relative humidity >70%, suggesting that organic aerosols emitted from rice straw burning contained high amounts of hydrophilic compounds. The contribution of aerosol water content to the total light extinction coefficient (bext) was determined as 51.4% and 68.4% during the BB and BB + LTP periods, respectively, indicating that the haze episodes were highly enhanced by an increase in aerosol water content. The Asian dust event was characterized by the highest SSA (0.92 ± 0.02), the lowest mass scattering efficiency of fine particles (2.5 ± 1.0 m2 g-1), and the lowest hygroscopic nature (humidity-dependent light scattering enhancement factor, f(80%), which is defined by the ratio of light scattering coefficient at 80% relative humidity to that at dry condition, = ˜1.37). Based on the Ångström exponent (α) values observed at the source region of the Asian continent and the downwind area of South Korea during the BB + LTP period, it was found that the α value of urban aerosols decreased ˜11% for 1-2 days of the transport, probably due to the increase in particle size through water uptake. Increasing rates of surface PM10 mass concentrations at western coastal areas of the South Korean peninsula were in the range 2.4-14.4 μgm-3 h-1 at the beginning of the BB + LTP period (24 October 2005, 0700-2300 LT). Based on

  6. Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor; Crosbie, Ewan; Ortega, Amber; Shiraiwa, Manabu; Zuend, Andreas; Beyersdorf, Andreas; Ziemba, Luke; Anderson, Bruce; Thornhill, Lee; Perring, Anne E.; Schwarz, Joshua P.; Campazano-Jost, Pedro; Day, Douglas A.; Jimenez, Jose L.; Hair, Johnathan W.; Mikoviny, Tomas; Wisthaler, Armin; Sorooshian, Armin

    2016-04-01

    In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52-1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.

  7. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  8. Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid.

    PubMed

    Sullivan, Ryan C; Moore, Meagan J K; Petters, Markus D; Kreidenweis, Sonia M; Roberts, Greg C; Prather, Kimberly A

    2009-09-28

    Atmospheric heterogeneous reactions can potentially change the hygroscopicity of atmospheric aerosols as they undergo chemical aging processes in the atmosphere. A particle's hygroscopicity influences its cloud condensation nuclei (CCN) properties with potential impacts on cloud formation and climate. In this study, size-selected calcite mineral particles were reacted with controlled amounts of nitric acid vapour over a wide range of relative humidities in an aerosol flow tube to study the conversion of insoluble and thus apparently non-hygroscopic calcium carbonate into soluble and hygroscopic calcium nitrate. The rate of hygroscopic change particles undergo during a heterogeneous reaction is derived from experimental measurements for the first time. The chemistry of the reacted particles was determined using an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS) while the particles' hygroscopicity was determined through measuring CCN activation curves fit to a single parameter of hygroscopicity, kappa. The reaction is rapid, corresponding to atmospheric timescales of hours. At low to moderate HNO3 exposures, the increase in the hygroscopicity of the particles is a linear function of the HNO3(g) exposure. The experimentally observed conversion rate was used to constrain a simple but accurate kinetic model. This model predicts that calcite particles will be rapidly converted into hygroscopic particles (kappa>0.1) within 4 h for low HNO3 mixing ratios (10 pptv) and in less than 3 min for 1000 pptv HNO3. This suggests that the hygroscopic conversion of the calcite component of atmospheric mineral dust aerosol will be controlled by the availability of nitric acid and similar reactants, and not by the atmospheric residence time.

  9. Internal Structure, Hygroscopic and Reactive Properties of Mixed Sodium Methanesulfonate-Sodium Chloride Particles

    SciTech Connect

    Liu, Ying; Minofar, Babak; Desyaterik, Yury; Dames, E. E.; Zhu, Zihua; Cain, Jeremy P.; Hopkins, Rebecca J.; Gilles, Marry K.; Wang, Hai; Jungwirth, Pavel; Laskin, Alexander

    2011-01-01

    Internal structures, hygroscopic properties and heterogeneous reactivity of mixed CH3SO3Na/NaCl particles were investigated using a combination of computer modeling and experimental approaches. Surfactant properties of CH3SO3 ions and their surface accumulation in wet, deliquesced particles were assessed using molecular dynamics (MD) simulations and surface tension measurements. Internal structures of dry CH3SO3Na/NaCl particles were investigated using scanning electron microscopy (SEM) assisted with X-ray microanalysis mapping, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The combination of these techniques shows that dry CH3SO3Na/NaCl particles are composed of a NaCl core surrounded by a CH3SO3Na shell. Hygroscopic growth, deliquescence and efflorescence phase transitions of mixed CH3SO3Na/NaCl particles were determined and compared to those of pure NaCl particles. These results indicate that particles undergo a two step deliquescence transition: first at ~69% relative humidity (RH) the CH3SO3Na shell takes up water, and then at ~75% RH the NaCl core deliquesces. Reactive uptake coefficients for the particle HNO3 heterogeneous reaction were determined at different CH3SO3Na/NaCl mixing ratios and RH. The net reaction probability decreased notably with increasing CH3SO3Na and at lower RH.

  10. Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles.

    PubMed

    Liu, Y; Minofar, B; Desyaterik, Y; Dames, E; Zhu, Z; Cain, J P; Hopkins, R J; Gilles, M K; Wang, H; Jungwirth, P; Laskin, A

    2011-07-07

    Internal structures, hygroscopic properties and heterogeneous reactivity of mixed CH(3)SO(3)Na/NaCl particles were investigated using a combination of computer modeling and experimental approaches. Surfactant properties of CH(3)SO(3)(-) ions and their surface accumulation in wet, deliquesced particles were assessed using molecular dynamics (MD) simulations and surface tension measurements. Internal structures of dry CH(3)SO(3)Na/NaCl particles were investigated using scanning electron microscopy (SEM) assisted with X-ray microanalysis mapping, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The combination of these techniques shows that dry CH(3)SO(3)Na/NaCl particles are composed of a NaCl core surrounded by a CH(3)SO(3)Na shell. Hygroscopic growth, deliquescence and efflorescence phase transitions of mixed CH(3)SO(3)Na/NaCl particles were determined and compared to those of pure NaCl particles. These results indicate that particles undergo a two step deliquescence transition: first at ∼69% relative humidity (RH) the CH(3)SO(3)Na shell takes up water, and then at ∼75% RH the NaCl core deliquesces. Reactive uptake coefficients for the particle-HNO(3) heterogeneous reaction were determined at different CH(3)SO(3)Na/NaCl mixing ratios and RH. The net reaction probability decreased notably with increasing CH(3)SO(3)Na and at lower RH.

  11. Modeling aerosol water uptake in the arctic based on the κ-Kohler theory

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Ekman, A.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Tunved, P.; Riipinen, I.

    2013-05-01

    Water uptake or hygroscopicity is one of the most fundamental properties of atmospheric aerosols. Aerosol particles containing soluble materials can grow in size by absorbing water in ambient atmosphere. This property is measured by a parameter known as growth factor (GF), which is defined as the ratio of the wet diameter to the dry diameter. Hygroscopicity controls the size of an aerosol particle and therefore its optical properties in the atmosphere. Hygroscopic growth depends on the dry size of the particle, its chemical composition and the relative humidity in the ambient air (Fitzgerald, 1975; Pilinis et al., 1995). One of the typical problems in aerosol studies is the lack of measurements of aerosol size distributions and optical properties in ambient conditions. The gap between dry measurements and the real humid atmosphere is filled in this study by utilizing a hygroscopic model which calculates the hygroscopic growth of aerosol particles at Mt Zeppelin station, Ny Ålesund, Svalbard during 2008.

  12. Hygroscopic growth and CCN activity of HULIS from different environments

    NASA Astrophysics Data System (ADS)

    Kristensen, Thomas B.; Wex, Heike; Nekat, Bettina; Nøjgaard, Jacob K.; van Pinxteren, Dominik; Lowenthal, Douglas H.; Mazzoleni, Lynn R.; Dieckmann, Katrin; Bender Koch, Christian; Mentel, Thomas F.; Herrmann, Hartmut; Gannet Hallar, A.; Stratmann, Frank; Bilde, Merete

    2012-11-01

    Humic-like substances (HULIS) constitute a significant fraction of aerosol particles in different environments. Studies of the role of HULIS in hygroscopic growth and cloud condensation nuclei (CCN) activity of aerosol particles are scarce, and results differ significantly. In this work the hygroscopic growth and CCN activity of water extracts (WE) and HULIS extracted from particulate matter (PM) collected at a polluted urban site (Copenhagen, Denmark), a rural site (Melpitz, Germany) and the remote site Storm Peak Laboratory (Colorado, USA) were investigated. Measurements of inorganic ions, elemental carbon, organic carbon and water soluble organic carbon (WSOC) within the PM confirmed that the sources of aerosol particles most likely differed for the three samples. The hygroscopic properties of the filtered WE were characterized by hygroscopicity parameters for subsaturated conditions (κGF) of 0.25, 0.41 and 0.22, and for supersaturated conditions κCCN were 0.23, 0.29 and 0.22 respectively for the urban, rural and remote WE samples. The measured hygroscopic growth and CCN activity were almost identical for the three HULIS samples and could be well represented by κGF = 0.07 and κCCN = 0.08-0.10 respectively. Small amounts of inorganic ions were present in the HULIS samples so the actual values for pure HULIS are expected to be slightly lower (κGF* = 0.04-0.06 and κCCN* = 0.07-0.08). The HULIS samples are thus less hygroscopic compared to most previous studies. To aid direct comparison of hygroscopic properties of HULIS from different studies, we recommend that the fraction of inorganic species in the HULIS samples always is measured and reported.

  13. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  14. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  15. Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data

    NASA Astrophysics Data System (ADS)

    Fors, E. O.; Rissler, J.; Massling, A.; Svenningsson, B.; Andreae, M. O.; Dusek, U.; Frank, G. P.; Hoffer, A.; Bilde, M.; Kiss, G.; Janitsek, S.; Henning, S.; Facchini, M. C.; Decesari, S.; Swietlicki, E.

    2010-06-01

    HUmic-LIke Substances (HULIS) have been identified as major contributors to the organic carbon in atmospheric aerosol. The term "HULIS" is used to describe the organic material found in aerosol particles that resembles the humic organic material in rivers and sea water and in soils. In this study, two sets of filter samples from atmospheric aerosols were collected at different sites. One set of samples was collected at the K-puszta rural site in Hungary, about 80 km SE of Budapest, and a second was collected at a site in Rondônia, Amazonia, Brazil, during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) biomass burning season experiment. HULIS were extracted from the samples and their hygroscopic properties were studied using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) at relative humidity (RH) <100%, and a cloud condensation nucleus counter (CCNC) at RH >100%. The H-TDMA measurements were carried out at a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS samples showed diameter growth factors between 1.04 and 1.07, reaching values of 1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples were analysed using two types of thermal static cloud condensation nucleus counters. Two different parameterization models were applied to investigate the potential effect of HULIS surface activity, both yielding similar results. For the K-puszta winter HULIS sample, the surface tension at the point of activation was estimated to be lowered by between 34% (47.7 mN/m) and 31% (50.3 mN/m) for dry sizes between 50 and 120 nm in comparison to pure water. A moderate lowering was also observed for the entire water soluble aerosol sample, including both organic and inorganic compounds, where the surface tension was decreased by between 2% (71.2 mN/m) and 13% (63.3 mN/m).

  16. Aerosol Hygroscopicity in the Marine Atmosphere: a Closure Study Using High- Resolution, Size-Resolved AMS and Multiple-RH DASH-SP Data

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Sorooshian, A.; Murphy, S.; Flagan, R. C.; Seinfeld, J. H.

    2008-12-01

    We have conducted the first closure study to couple high-resolution aerosol mass spectrometer (AMS) composition data with size-resolved, multiple-RH, high-time-resolution hygroscopic growth factor (GF) measurements from the differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). These data were collected off the coast of Central California during seven of the 16 flights carried out during the MASE-II field campaign in July 2007. Two of the seven flights were conducted in airmasses that originated over the continental United States. These flights exhibited elevated organic volume fractions (VForganic =~0.46 ± 0.22, as opposed to 0.24 ± 0.18 for all other flights), corresponding to significantly suppressed GFs at high RH (1.61 ± 0.14 at 92%RH, as compared with 1.91 ± 0.07 for all other flights), more moderate GF suppression at intermediate RH (1.53 ± 0.10 at 85%, compared with 1.58 ± 0.08 for all other flights, and no measurable GF suppression at low RH (1.31 ± 0.06 at 74%, compared with 1.31 ± 0.07 for all other flights). Organic loadings were slightly elevated in above-cloud aerosols, as compared with below-cloud aerosols, and corresponded to a similar trend of significantly suppressed GF at high RH, but more moderate impacts at lower values of RH. A hygroscopic closure based on a volume-weighted mixing rule provided excellent agreement with DASH-SP measurements (R2 = 0.79). Minimization of root mean square error between observations and predictions indicated mission-averaged organic GFs of 1.20, 1.43, and 1.46 at 74, 85, and 92% RH, respectively. These values agree with previously reported values for water-soluble organics such as dicarboxylic and multifunctional acids, and correspond to a highly oxidized, presumably water-soluble, organic fraction (O:C = 0.92 ± 0.33). Finally, a backward stepwise linear regression revealed that, other than RH, the most important predictor for GF is VForganic, indicating that a simple emperical model

  17. Aerosol hygroscopicity in the marine atmosphere: a closure study using high-resolution, size-resolved AMS and multiple-RH DASH-SP data

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Sorooshian, A.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H.

    2008-09-01

    We have conducted the first closure study to couple high-resolution aerosol mass spectrometer (AMS) composition data with size-resolved, multiple-RH, high-time-resolution hygroscopic growth factor (GF) measurements from the differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). These data were collected off the coast of Central California during seven of the 16 flights carried out during the MASE-II field campaign in July 2007. Two of the seven flights were conducted in airmasses that originated over the continental United States. These flights exhibited elevated organic volume fractions (VForganic=0.46±0.22, as opposed to 0.24±0.18 for all other flights), corresponding to significantly suppressed GFs at high RH (1.61±0.14 at 92% RH, as compared with 1.91±0.07 for all other flights), more moderate GF suppression at intermediate RH (1.53±0.10 at 85%, compared with 1.58±0.08 for all other flights, and no measurable GF suppression at low RH (1.31±0.06 at 74%, compared with 1.31±0.07 for all other flights). Organic loadings were slightly elevated in above-cloud aerosols, as compared with below-cloud aerosols, and corresponded to a similar trend of significantly suppressed GF at high RH, but more moderate impacts at lower values of RH. A hygroscopic closure based on a volume-weighted mixing rule provided excellent agreement with DASH-SP measurements (R2=0.79). Minimization of root mean square error between observations and predictions indicated mission-averaged organic GFs of 1.20, 1.43, and 1.46 at 74, 85, and 92% RH, respectively. These values agree with previously reported values for water-soluble organics such as dicarboxylic and multifunctional acids, and correspond to a highly oxidized, presumably water-soluble, organic fraction (O:C=0.92±0.33). Finally, a backward stepwise linear regression revealed that, other than RH, the most important predictor for GF is VForganic, indicating that a simple emperical model relating GF, RH, and

  18. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective

    NASA Astrophysics Data System (ADS)

    Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; Honzak, L.; Jiménez-Guerrero, P.; Knote, C.; Langer, M.; Makar, P. A.; Pirovano, G.; Pérez, J. L.; San José, R.; Syrakov, D.; Tuccella, P.; Werhahn, J.; Wolke, R.; Žabkar, R.; Zhang, J.; Galmarini, S.

    2015-08-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model intercomparison, we used the bulk mass profiles of aerosol chemical species sampled over the locations of AERONET stations across Europe and North America to calculate the aerosol optical properties under a range of common assumptions for all models. Several simulations with parameters perturbed within a range of observed values are carried out for July 2010 and compared in order to infer the assumptions that have the largest impact on the calculated aerosol optical properties. We calculate that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. The uncertainty introduced by the choice of mixing state choice on the calculation of the asymmetry parameter is the order of 10%. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. It is thus recommended to focus further research on a more accurate representation of the aerosol mixing state in models, in order to have a less uncertain simulation of the related optical properties.

  19. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Schmid, B.; Livingston, J. M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net short-wave flux at the tropopause by combining satellite-derived aerosol optical depth (AOD) maps with model aerosol properties determined via closure analyses in TARFOX and ACE 2. We exclude African dust, primarily by restricting latitudes to 25-60 N. The analyses use in situ aerosol composition measurements and air- and ship-borne sun-photometer measurements of AOD spectra. The aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. Its midvisible single-scattering albedo is 0.9. which is in the range obtained from in situ measurements of scattering and absorption in both TARFOX and ACE 2. Combining satellite-derived AOD maps with the aerosol model yields maps of 24-hour average net radiative flux changes. For simultaneous AVHRR, radiance measurements exceeded the sunphotometer AODs by about 0.04. However. shipboard sunphotometer and AVHRR AODs agreed Within 0.02 for data acquired during satellite overflights on two other days. We discuss attempts to demonstrate column closure within the MBL by comparing shipboard sunphotometer AODs and values calculated from simultaneous shipboard in-situ aerosol size distribution measurements. These comparisons were mostly unsuccessful, but they illustrate the difficulties inherent in this type of closure analysis. Specifically, AODs derived from near-surface in-situ size distribution measurements are extremely sensitive to the assumed hygroscopic growth model that itself requires an assumption of particle composition as a function of height and size, to the radiosonde-measured relative humidity, and to the vertical profile of particle number. We investigate further the effects of hygroscopic particle growth within the MBL by using shipboard lidar aerosol backscatter profiles together with the sunphotometer AOD.

  20. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  1. Satellite Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Robles Gonzalez, C.; Kusmierczyk-Michulec, J.; Decae, R.

    SATELLITE RETRIEVAL of AEROSOL PROPERTIES G. de Leeuw, C. Robles Gonzalez, J. Kusmierczyk-Michulec and R. Decae TNO Physics and Electronics Laboratory, The Hague, The Netherlands; deleeuw@fel.tno.nl Methods to retrieve aerosol properties over land and over sea were explored. The dual view offered by the ATSR-2 aboard ERS-2 was used by Veefkind et al., 1998. The retrieved AOD (aerosol optical depth) values compare favourably with collocated sun photometer measurements, with an accuracy of 0.06 +/- 0.05 in AOD. An algorithm developed for GOME on ERS-2 takes advantage of the low surface reflection in the UV (Veefkind et al., 2000). AOD values retrieved from ATSR-2 and GOME data over western Europe are consistent. The results were used to produce a map of mean AOD values over Europe for one month (Robles-Gonzalez et al., 2000). The ATSR-2 is al- gorithm is now extended with other aerosol types with the aim to apply it over the In- dian Ocean. A new algorithm is being developed for the Ozone Monitoring Instrument (OMI) to be launched in 2003 on the NASA EOS-AURA satellite. It is expected that, based on the different scattering and absorption properties of various aerosol types, five major aerosol classes can be distinguished. The experience with the retrieval of aerosol properties by using several wavelength bands is used to develop an algorithm for Sciamachy to retrieve aerosol properties both over land and over the ocean which takes advantage of the wavelengths from the UV to the IR. The variation of the AOD with wavelength is described by the Angstrom parameter. The AOD and the Angstrom parameter together yield information on the aerosol size distribution, integrated over the column. Analysis of sunphotometer data indicates a relation between the Angstrom parameter and the mass ratio of certain aerosols (black carbon, organic carbon and sea salt) to the total particulate matter. This relation has been further explored and was applied to satellite data over land to

  2. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise.

    PubMed

    Löndahl, Jakob; Massling, Andreas; Pagels, Joakim; Swietlicki, Erik; Vaclavik, Elvira; Loft, Steffen

    2007-02-01

    Airborne ultrafine particles (diameter <100 nm) are ubiquitous in the environment and have been associated with adverse health effects. The respiratory-tract deposition of these particles is fundamentally influenced by their hygroscopicity: their ability to grow by condensation of water in the humid respiratory system. Ambient particles are typically hygroscopic, to varying degrees. This article investigates the influence of hygroscopicity, exercise level, gender, and intersubject variability on size-dependent deposition of fine and ultrafine particles during spontaneous breathing. Using a novel and well-characterized setup, respiratory-tract deposition in the range 12-320 nm has been measured for 29 healthy adults (20 men, 9 women). Each subject completed four sessions: rest and light exercise on an ergometer bicycle while inhaling both hydrophobic (diethylhexylsebacate) and hygroscopic (NaCl) particles. The deposited fraction (DF) based on dry diameters was two to four times higher for the hydrophobic ultrafine particles than for the hygroscopic. The DF of hygroscopic ultrafine particles could be estimated by calculating their equilibrium size at 99.5% relative humidity. The differences in average DF due to exercise level and gender were essentially less than 0.03. However, the minute ventilation increased fourfold during exercise and was 18-46% higher for the men than for the women. Consequently the deposited dose of particles was fourfold higher during exercise and considerably increased for the male subjects. Some individuals consistently had a high DF in all four sessions. As an example, the results show that an average person exposed to 100-nm hydrophobic particles during exercise will receive a 16 times higher dose than a relaxed person exposed to an equal amount of hygroscopic (NaCl) particles.

  3. A case study of dust aerosol radiative properties over Lanzhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cao, X.; Bao, J.; Zhou, B.; Huang, J.; Shi, J.; Bi, J.

    2010-02-01

    The vertical distribution of dust aerosol and its radiative properties are analysed using the data measured by the micropulse lidar, profiling microwave radiometer, sunphotometer, particulate monitor, and nephelometer at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) during a dust storm from 27 March to 29 March 2007. The analysis shows that the dust aerosol mainly exists below 2 km in height, and the dust aerosol extinction coefficient decreases with height. The temporal evolution of aerosol optical depth (AOD) during the dust storm is characterized by a sub-maximum at 22:00 (Beijing Time) on 27 March and a maximum at 12:00 on 28 March. The AOD derived by lidar is compared with that obtained by sunphotometer, and shows a good consistency. The PM10 concentration and aerosol scattering coefficient share identical variation trends, and their maximums both appear at 22:00 on 27 March. The aerosol extinction coefficient and relative humidity have the same trends and their maximums appear at identical heights, showing a correlation between extinction coefficient and relative humidity known as aerosol hygroscopicity. Nevertheless, the correlation between aerosol extinction coefficient and temperature cannot be obviously seen. The aerosol extinction coefficient, scattering coefficient, and PM10 concentration present good linear correlations. The correlation coefficients of the aerosol scattering coefficient and PM10 concentration, of aerosol extinction coefficient and PM10 concentration, and of aerosol extinction and scattering coefficient are respectively 0.98, 0.94, and 0.96.

  4. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp

  5. Hygroscopic growth of atmospheric and model humic-like substances

    NASA Astrophysics Data System (ADS)

    Dinar, E.; Taraniuk, I.; Graber, E. R.; Anttila, T.; Mentel, T. F.; Rudich, Y.

    2007-03-01

    The hygroscopic growth (HG) of humic-like substances (HULIS) extracted from smoke and pollution aerosol particles and of Suwannee River fulvic acid (SRFA, bulk and fractions of different molecular weight) was measured by humidity tandem differential mobility analyzer (H-TDMA). By characterizing physical and chemical parameters such as molecular weight, elemental composition, and surface tension, we test the effect of these parameters on particle interactions with water vapor. For molecular weight-fractionated SRFA fractions, the growth factor at 90% relative humidity was generally inversely proportional to the molecular weight. HULIS extracts from ambient particles are more hygroscopic than all the SRFA fractions and exhibit different hygroscopic properties depending on their origin and residence time in the atmosphere. The results point out some dissimilarities between SRFA and aerosol-derived HULIS. The cloud condensation nuclei (CCN) behavior of the studied materials was predicted on the basis of hygroscopic growth using a recently introduced approach of Kreidenweis et al. (2005) and compared to CCN activity measurements on the same samples (Dinar et al., 2006). It is found that the computational approach (Kreidenweis et al., 2005) works reasonably well for SRFA fractions but is limited in use for the HULIS extracts from aerosol particles. The difficulties arise from uncertainties associated with HG measurements at high relative humidity, which leads to large errors in the predicted CCN activity.

  6. Relationship between column aerosol optical properties and surface aerosol gravimetric concentrations during the Distributed Regional Aerosol Gridded Observation Network - Northeast ASIA 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Seo, S.; Choi, M.; Kim, W. V.; Holben, B. N.; Lee, S.; Kim, J.

    2012-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. This study aims to identify the important parameters that affecting the relationship between those variables during the DRAGON - northeast Asia 2012 campaign. Column aerosol optical properties from ten Cimel sun photometers at DRAGON sites in Seoul, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOCI (Geostationary Ocean Color Imager) and particulate matter (PM10) sampling from 40 NIER (National Institute of Environmental Research of South Korea) measurement sites in Seoul during the period of 1st March - 31th May 2012 were employed in this study. The key parameters in relationship between aerosol optical depth (AOD) and PM are reported to be aerosol vertical profile and hygroscopicity of the aerosols. The meteorological conditions including relative humidity, surface temperature, and wind speed that could affect those parameters were investigated.

  7. Enhanced water vapor in Asian dust layer: Entrainment processes and implication for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Sang-Woo; Kim, Jiyoung; Sohn, Byung-Ju; Jefferson, Anne; Choi, Suk-Jin; Cha, Dong-Hyun; Lee, Dong-Kyou; Anderson, Theodore L.; Doherty, Sarah J.; Weber, Rodney J.

    The entrainment process of water vapor into the dust layer during Asian dust events and the effect of water vapor associated with the Asian dust layer (ADL) on aerosol hygroscopic properties are investigated. The entrainment processes of water vapor into the ADL is examined by using a PSU/NCAR MM5 together with the backward trajectory model, radiosonde data, and remotely sensed aerosol vertical distribution data. Two dust events in the spring of 1998 and 2001 are examined in detail. The results reveal that the water vapor mixing ratio (WVMR) derived by the MM5 fits in well with the WVMR observed by radiosonde, and is well coincident with the aerosol extinction coefficient ( σep) measured by the micro-pulse lidar. The temporal evolution of the vertical distributions of WVMR and σep exhibited similar features. On the basis of a well simulation of the enhanced water vapor within the dust layer by the MM5, we trace the dust storms to examine the entrainment mechanism. The enhancement of WVMR within the ADL was initiated over the mountainous areas. The relatively moist air mass in the well-developed mixing layer over the mountainous areas is advected upward from the boundary layer by an ascending motion. However, a large portion of the water vapor within the ADL is enhanced over the edge of a highland and the plains in China. This is well supported by the simulated WVMR and the wind vectors. Aircraft-based in situ measurements of the chemical and optical properties of aerosol enable a quantitative estimation of the effect of the enhanced WVMR on the aerosol hygroscopic properties. The submicron aerosol accompanied by the dust storm caused an increase of aerosol scattering through water uptakes during the transport. This increase could be explained by the chemical fact that water-soluble submicron pollution aerosols are enriched in the ADL.

  8. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  9. An alternative method estimating hygroscopic growth factor of aerosol light scattering coefficient: a case study in an urban area of Guangzhou, South China

    NASA Astrophysics Data System (ADS)

    Lin, Z. J.; Zhang, Z. S.; Zhang, L.; Tao, J.; Zhang, R. J.; Cao, J. J.; Zhang, Y. H.

    2014-01-01

    A method was developed to estimate hygroscopic growth factor (f(RH)) of aerosol light scattering coefficient (bsp), making use of the measured size- and chemically-resolved aerosol samples. Regarding this method, chemical composition of the measured aerosol samples were first reconstructed using the equilibrium model ISOPPORIA II. The model reconstructed chemical composition varies with a varying relative humidity (RH) input, which was then employed to calculate bsp and f(RH) of bsp using Mie Model. Further, the RH dependence of f(RH) of bsp (denoted as f(RH) derived from model calculation was empirically fitted with a two-parameter formula. One of the two parameters was set to be a constant for practical applications. For validation, the developed formula of fsp(RH) was applied to correct the long-term records of measured bsp from the values under comparative dry conditions to the ones under ambient RH conditions. Compared with the original bsp data, the f(RH)-corrected bsp had a higher linear correlation with and a smaller discrepancy from the bsp data derived directly from visibility and absorption measurements. The method described in this paper provides an alternative approach to estimate fsp(RH) and has many potential applications.

  10. Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Gharaylou, M.

    2017-03-01

    Through modifying the number concentration and size of cloud droplets, aerosols have intricate impacts on radiative and microphysical properties of clouds, which together influence precipitation processes. Aerosol-cloud interactions for a mid-latitude convective cloud system are investigated using a two-moment aerosol-aware bulk microphysical scheme implemented into the Weather Research and Forecasting (WRF) model. Three sensitivity experiments with initial identical dynamic and thermodynamic conditions, but different cloud-nucleating aerosol concentrations were conducted. Increased aerosol number concentration has resulted in more numerous cloud droplets of overall smaller sizes, through which the optical properties of clouds have been changed. While the shortwave cloud forcing is significantly increased in more polluted experiments, changes in the aerosol number concentration have negligible impacts on the longwave cloud forcing. For the first time, it is found that polluted clouds have higher cloud base heights, the feature that is caused by more surface cooling due to a higher shortwave cloud forcing, as well as a drier boundary layer in the polluted experiment compared to the clean. The polluted experiment was also associated with a higher liquid water content (LWC), caused by an increase in the number of condensation of water vapor due to higher concentration of hygroscopic aerosols acting as condensation nuclei. The domain-averaged accumulated precipitation is little changed under both polluted and clean atmosphere. Nevertheless, changes in the rate of precipitation are identified, such that under polluted atmosphere light rain is reduced, while both moderate and heavy rain are intensified, confirming the fact that if an ample influx of water vapor exists, an increment of hygroscopic aerosols can increase the amount of precipitation.

  11. The Hygroscopic Properties of Volcanic Ash and Implications for the Evolution of Volcanic Plumes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Kumar, P.; Dufek, J.; Sokolik, I. N.; Nenes, A.

    2010-12-01

    Volcanic eruptions are long known to have profound impacts on the Earth System and society, which result from the atmospheric emissions and transport of volcanic ash. The microphysical evolution of volcanic plumes is key to understanding their atmospheric lifetime. Volcanic ash is composed primarily of silicate glass and crystal and is injected into an environment initially rich in volcanically derived gases, including water vapor. Limited observational data exists on the physical interactions between the water vapor and ash particles; yet it is thought that these interactions can strongly impact the coagulation efficiency and microphysical evolution of volcanic ash. In this study, we investigate the hygroscopic properties of fine volcanic ash (less than 125 micro-meter diameter) from a variety of sources, including the eruptions of Mount St. Helens in 1980, Tungurahua in 2006, Chaiten in 2008, Redoubt in 2009, and Eyjafjallajökull in 2010. These recent eruptions were selected to encompass a range of composition, crystallinity, and eruptive style. The hygroscopicity of the ash particles is quantified by their ability to nucleate cloud droplets under controlled levels of water vapor supersaturation. The dependence of critical supersaturation vs. dry particle diameter is used to i) explore the origin of particle hygroscopicity (being from the presence of deliquescent soluble material or adsorption onto insoluble surfaces), and, ii) determine the level of humidity required to coat volcanic ash with water, a requirement for large coagulation efficiencies. Our results show that fresh volcanic ash tends to follow adsorption activation theory and supports the suggestion that ash particles are sufficiently hygroscopic to be coated with a monolayer of water under subsaturated conditions. The range of interactions varies strongly, and follows what is expected from their composition. These experiments provide new insights on ash-water interactions, which can be used to

  12. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  13. A case study of dust aerosol radiative properties over Lanzhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cao, X.; Bao, J.; Zhou, B.; Huang, J.; Shi, J.; Bi, J.

    2010-05-01

    The vertical distribution of dust aerosol and its radiative properties are analysed using the data measured by the micropulse lidar, profiling microwave radiometer, sunphotometer, particulate monitor, and nephelometer at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) during a dust storm from 27 March to 29 March 2007. The analysis shows that the dust aerosol mainly exists below 2 km in height, and the dust aerosol extinction coefficient decreases with height. The temporal evolution of aerosol optical depth (AOD) during the dust storm is characterized by a sub-maximum at 22:00 (Beijing Time), 27 March and a maximum at 12:00, 28 March. The AOD respectively derived by lidar and sunphotometer shows a good consistency. The PM10 concentration and aerosol scattering coefficient share similar variation trends, and their maximums both appear at 22:00, 27 March. The aerosol extinction coefficient and relative humidity have the similar trends and their maximums almost appear at the same heights, which presents a correlation between extinction coefficient and relative humidity known as aerosol hygroscopicity. The relative humidity is related with temperature, and then the temperature will affect the aerosol extinction properties by modifying the relative humidity condition. The aerosol extinction coefficient, scattering coefficient, and PM10 concentration present good linear correlations. The correlation coefficients of the aerosol scattering coefficients of 450, 520, and 700 nm and PM10 concentration, of aerosol extinction coefficient retrieved by lidar at 532 nm and PM10 concentration, and of aerosol extinction and scattering coefficient are respectively 0.98, 0.94, and 0.96.

  14. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0

  15. Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. I. Hygroscopic growth.

    PubMed

    Pope, Francis D; Dennis-Smither, Ben J; Griffiths, Paul T; Clegg, Simon L; Cox, R Anthony

    2010-04-29

    We describe a newly constructed electrodynamic balance with which to measure the relative mass of single aerosol particles at varying relative humidity. Measurements of changing mass with respect to the relative humidity allow mass (m) growth factors (m(aqueous)/m(dry)) and diameter (d) growth factors (d(aqueous)/d(dry)) of the aerosol to be determined. Four aerosol types were investigated: malonic acid, glutaric acid, mixtures of malonic acid and sodium chloride, and mixtures of glutaric acid and sodium chloride. The mass growth factors of the malonic acid and glutaric acid aqueous phase aerosols, at 85% relative humidity, were 2.11 +/- 0.08 and 1.73 +/- 0.19, respectively. The mass growth factors of the mixed organic/inorganic aerosols are dependent upon the molar fraction of the individual components. Results are compared with previous laboratory determinations and theoretical predictions.

  16. Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry.

    PubMed

    Kumar, Manoj; Shakher, Chandra

    2016-02-10

    In this paper, an application of digital holography for the measurement of surface deformations and the strain field to understand the shrinkage behavior of wood during convective drying is presented. Moisture absorption and desorption induce the dimensional changes and deformations in wood that leads to failure of certain components made of wood. The knowledge of the dimensional changes in wood, deformations, strain distribution and their causes are important for the best utilization of wood. For the study, lensless Fourier transform digital holographic interferometry is used to measure moisture- induced deformation, strain distribution, and the coefficient of hygroscopic shrinkage in different samples of wood. The technique is highly sensitive and enables the observation of deformation and strain distribution during the variations of moisture content in the wood. The wet wood sample was exposed to convective drying, which leads to changes in the moisture content and the associated deformations. The deformation/strain in each step of drying process is used to evaluate the coefficient of hygroscopic shrinkage in different wood samples. The experiments were repeated for differently treated woods. The experimental results show that the strain and coefficient of hygroscopic shrinkage can be minimized if the wood is dried in the presence of the proper moisture content.

  17. Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations.

    PubMed

    Youn, Jong-Sang; Csavina, Janae; Rine, Kyle P; Shingler, Taylor; Taylor, Mark Patrick; Sáez, A Eduardo; Betterton, Eric A; Sorooshian, Armin

    2016-11-01

    This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056-18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32 and 0.56 μm and a smaller mode in the coarse range (>3 μm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Submicrometer particles were generally more hygroscopic than supermicrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 μm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites.

  18. Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations

    PubMed Central

    Youn, Jong-sang; Csavina, Janae; Rine, Kyle P.; Shingler, Taylor; Taylor, Mark Patrick; Sáez, A. Eduardo; Betterton, Eric A.; Sorooshian, Armin

    2016-01-01

    This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056 – 18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32-0.56 μm and a smaller mode in the coarse range (> 3 μm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Sub-micrometer particles were generally more hygroscopic than super-micrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 μm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites. PMID:27700056

  19. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  20. Aerosol optical and microphysical properties from POLDER-PARASOL multi-angle photo-polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, O.; Litvinov, P.; Butz, A.

    2010-12-01

    The large uncertainty on the aerosol effects on clouds and climate is reflected in considerable discrepancies between different model simulations of the radiative forcing caused by these effects. Also, there exist even larger differences between values for radiative forcing calculated by models and those estimated from satellites (and model calculations constrained by satellite measurements). Relationships between aerosols and clouds derived from satellite measurements are subject to a number of important limitations. First of all, with current satellite aerosol products it is hard to determine which fraction of the aerosols is anthropogenic and which fraction is natural. Often the rather crude assumption is used that the fine mode contribution is fully anthropogenic. Furthermore, most aerosol types are strongly hygroscopic, which means that in an environment with high relative humidity (in the surrounding of clouds) the particle size increases considerably leading, in turn, to an increase in optical thickness. This effect may be misinterpreted as an apparent relation between aerosol concentration and cloud cover. Also, meteorology effects can be misinterpreted as apparent aerosol-cloud relationships. Accurate information on aerosol size and refractive index (related to chemical composition of aerosols and absorption) is needed to distinguish between natural and anthropogenic aerosols and to distinguish between aerosol effects on cloud formation and apparent relationships due to humidity and meteorology effects. Multi-angle photopolarimetric measurements have the potential to provide the necessary information on these aerosol properties. The POLDER instrument onboard the PARASOL micro-satellite is the only instrument currently in space that performs multi-angle photopolarimetric measurements. To fully exploit the information contained in these measurements a new type of retrieval algorithm is needed that retrieves detailed information on aerosol microphysical and

  1. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  2. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  3. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y.

    2016-03-01

    Seasonal variation of aerosol optical properties and dominant aerosol types at Kunming (KM), an urban site in southwest China, is characterized. Substantial influences of the hygroscopic growth and long-range transport of biomass burning (BB) aerosols on aerosol optical properties at KM are revealed. These results are derived from a detailed analysis of (a) aerosol optical properties (e.g. aerosol optical depth (AOD), columnar water vapor (CWV), single scattering albedo (SSA) and size distribution) retrieved from sunphotometer measurements during March 2012-August 2013, (b) satellite AOD and active fire products, (c) the attenuated backscatter profiles from the space-born lidar, and (d) the back-trajectories. The mean AOD440nm and extinction Angstrom exponent (EAE440 - 870) at KM are 0.42 ± 0.32 and 1.25 ± 0.35, respectively. Seasonally, high AOD440nm (0.51 ± 0.34), low EAE440 - 870 (1.06 ± 0.34) and high CWV (4.25 ± 0.97 cm) during the wet season (May - October) contrast with their counterparts 0.17 ± 0.11, 1.40 ± 0.31 and 1.91 ± 0.37 cm during the major dry season (November-February) and 0.53 ± 0.29, 1.39 ± 0.19, and 2.66 ± 0.44 cm in the late dry season (March-April). These contrasts between wet and major dry season, together with the finding that the fine mode radius increases significantly with AOD during the wet season, suggest the importance of the aerosol hygroscopic growth in regulating the seasonal variation of aerosol properties. BB and Urban/Industrial (UI) aerosols are two major aerosol types. Back trajectory analysis shows that airflows on clean days during the major dry season are often from west of KM where the AOD is low. In contrast, air masses on polluted days are from west (in late dry season) and east (in wet season) of KM where the AOD is often large. BB air mass is found mostly originated from North Burma where BB aerosols are lifted upward to 5 km and then subsequently transported to southwest China via prevailing westerly winds.

  4. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  5. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  6. Aerosol hygroscopicity in the marine atmosphere: a closure study using high-time-resolution, multiple-RH DASH-SP and size-resolved C-ToF-AMS data

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Sorooshian, A.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H.

    2009-04-01

    We have conducted the first airborne hygroscopic growth closure study to utilize data from an Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) coupled with size-resolved, multiple-RH, high-time-resolution hygroscopic growth factor (GF) measurements from the differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). These data were collected off the coast of Central California during seven of the 16 flights carried out during the MASE-II field campaign in July 2007. Two of the seven flights were conducted in airmasses characterized by continental origin. These flights exhibited elevated organic volume fractions (VForganic=0.56±0.19, as opposed to 0.39±0.20 for all other flights), corresponding to significantly suppressed GFs at high RH (1.61±0.14 at 92% RH, as compared with 1.91±0.07 for all other flights), more moderate GF suppression at intermediate RH (1.53±0.10 at 85%, compared with 1.58±0.08 for all other flights), and no measurable GF suppression at low RH (1.31±0.06 at 74%, compared with 1.31±0.07 for all other flights). Organic loadings were slightly elevated in above-cloud aerosols, as compared with below-cloud aerosols, and corresponded to a similar trend of significantly suppressed GF at high RH, but more moderate impacts at lower values of RH. A hygroscopic closure based on a volume-weighted mixing rule provided good agreement with DASH-SP measurements (R2=0.78). Minimization of root mean square error between observations and predictions indicated mission-averaged organic GFs of 1.22, 1.45, and 1.48 at 74, 85, and 92% RH, respectively. These values agree with previously reported values for water-soluble organics such as dicarboxylic and multifunctional acids, and correspond to a highly oxidized, presumably water-soluble, organic fraction (mission-averaged O:C=0.92±0.33). Finally, a backward stepwise linear regression revealed that, other than RH, the most important predictor for GF is VForganic, indicating

  7. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  8. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  9. A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei

    SciTech Connect

    Ching, Ping Pui; Zaveri, Rahul A.; Easter, Richard C.; Riemer, Nicole; Fast, Jerome D.

    2016-05-27

    Light absorption by black carbon (BC) particles emitted from fossil fuel combustion depends on the how thickly they are coated with non-refractory species such as ammonium, sulfate, nitrate, organics, and water. The cloud condensation nuclei (CCN) activation property of a particle depends on its dry size and the hygroscopicities of all the individual species mixed together. It is therefore necessary to represent both size and mixing state of aerosols to reliably predict their climate-relevant properties in atmospheric models. Here we describe and evaluate a novel sectional framework in the Model for Simulating Aerosol Interactions and Chemistry, referred to as MOSAIC-mix, that represents the mixing state by resolving aerosol dry size (Ddry), BC dry mass fraction (wBC), and hygroscopicity (κ). Using ten idealized urban plume scenarios in which different types of aerosols evolve over 24 hours under a range of atmospherically relevant environmental conditions, we examine errors in CCN concentrations and optical properties with respect to a more explicit aerosol mixing state representation. We find that only a small number of wBC and κ bins are needed to achieve significant reductions in the errors, and propose a configuration consisting of 24 Ddry bins, 2 wBC bins, and 2 κ bins that gives 24-hour average errors of about 5% or less in CCN concentrations and optical properties, 3-4 times lower than those from size-only-resolved simulations. These results show that MOSAIC-mix is suitable for use in regional and global models to examine the effects of evolving aerosol mixing states on aerosol-radiation-cloud feedbacks.

  10. Relationship between CCN activation properties and oxidation level of aerosol organics observed during recent field studies

    NASA Astrophysics Data System (ADS)

    Mei, F.; Zhang, Q.; Xu, J.; Setyan, A.; Hayes, P. L.; Ortega, A. M.; Allan, J. D.; Taylor, J.; Jimenez, J.; Wang, J.

    2011-12-01

    Organic compounds are an important component of atmospheric aerosol, and can contribute upward of ~90% of total fine aerosol mass. Atmospheric aerosols often consist of hundreds of organic species, and their hygroscopicities are not well understood. This incomplete understanding limits our ability to accurately simulate aerosol cloud condensation nuclei (CCN) spectrum and therefore the aerosol indirect effects, which remain the most uncertain components in forcing of climate change over the industrial period. In this study, the hygroscopicity of aerosol organics characterized during three recent field campaigns, CalNex-LA (Pasadena, California), CARES (Cool, CA), and Aerosol lifecycle IOP (Upton, NY), is presented. Hygroscopicity of aerosol particles, which were mixtures of both inorganic and organic species, is first determined from the size-resolved activation efficiency spectrum. Based on measured aerosol chemical composition, the hygroscopicity of organics is then derived from the particle hygroscopicity by subtracting the contribution of inorganic species, whose hygroscopicities are well understood. During the three field studies, organic aerosols were characterized within a number of representative air masses, including urban plumes and those dominated by biogenic emissions. Aerosol organics measured by HR-ToF-AMS exhibit various degrees of photochemical aging, with the atomic O:C ratio ranges from ~0.35 to ~0.65. The hygroscopicity of organics is well correlated with its O:C ratio, increasing from 0.07 at the O:C ratio of 0.35 to 0.16 at the O:C ratio of 0.65. This suggests that to the first order, a simple, semi-empirical parameterization of organic aerosol hygroscopicity based on oxidation level can be developed for global models. While the measurements show that aerosol organics can substantially influence the droplet growth kinetics by modifying particle critical supersaturation, size-classified organic particles exhibit essentially identical growth

  11. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.

    PubMed

    Braham, R R

    1959-01-16

    On the basis of presently available data, combined with present-day knowledge of the physics and chemistry of cloud particle development, it is possible to make the following generalizations about the mode of precipitation in natural clouds. 1) The all-water mechanism begins to operate as soon as a parcel of cloud air is formed and continues to operate throughout the life of the cloud. The ice-crystal mechanism, on the other hand, can begin to operate only after the top of the cloud has reached levels where ice nuclei can be effective (about -15 degrees C). Some clouds never reach this height; any precipitation from them must be through the all-water mechanism. In cold climates and at high levels in the atmosphere, the cloud bases may be very close to this critical temperature. In the tropics, approximately 25,000 feet separate the bases of low clouds from the natural ice level. 2) The number of large hygroscopic nuclei in maritime air over tropical oceans is entirely adequate to rain-out any cloud with a base below about 10,000 feet, provided the cloud duration and cloud depth is sufficient for the precipitation process to operate. Extensive trajectories over land will decrease the number of sea-salt particles, both because of sedimentation and removal in rain. Measurements show an order-of-magnitude decrease in the number of large particles as maritime air moves from the Gulf of Mexico to the vicinity of St. Louis, during the summer months. Measurements in Arizona and New Mexico show even smaller chloride concentrations, presumably because of the long overland trajectories required in reaching these areas. The maritime particles lost in overland trajectories apparently are more than replaced by particles of land origin. The latter are usually of mixed composition and are less favorable for the formation of outsized solution droplets. 3) Ice nuclei, required for the formation of ice crystals and for droplet freezing, are rather rare at temperatures higher than

  12. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  13. Remote Sensing of Aerosol Properties during CARES

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Flynn, Connor J.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Jobson, Bertram Thomas

    2011-10-01

    One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small ({approx}0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 um) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

  14. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  15. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; Halthore, Rangasayi

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  16. COMMIT in 7-SEAS/BASELInE: Operation of and Observations from a Novel, Mobile Laboratory for Measuring In-Situ Properties of Aerosols and Gases

    NASA Technical Reports Server (NTRS)

    Pantina, Peter; Tsay, Si-Chee; Hsiao, Ta-Chih; Loftus, Adrian M.; Kuo, Ferret; Ou-Yang, Chang-Feng; Sayer, Andrew M.; Wang, Shen-Hsiang; Lin, Neng-Huei; Hsu, N. Christina; Janjai, Serm; Chantara, Somporn; Nguyen, Anh X.

    2016-01-01

    Trace gases and aerosols (particularly biomass-burning aerosols) have important implications for air quality and climate studies in Southeast Asia (SEA). This paper describes the purpose, operation, and datasets collected from NASA Goddard Space Flight Center's (NASA/GSFC) Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) laboratory, a mobile platform designed to measure trace gases and optical/microphysical properties of naturally occurring and anthropogenic aerosols. More importantly, the laboratory houses a specialized humidification system to characterize hygroscopic growth/enhancement, a behavior that affects aerosol properties and cloud-aerosol interactions and is generally underrepresented in the current literature. A summary of the trace gas and optical/microphysical measurements is provided, along with additional detail and analysis of data collected from the hygroscopic system during the 2015 Seven South-East Asian Studies (7-SEAS) field campaign. The results suggest that data from the platform are reliable and will complement future studies of aerosols and air quality in SEA and other regions of interest.

  17. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    NASA Astrophysics Data System (ADS)

    Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2010-04-01

    Atmospheric aerosol particles serving as Cloud Condensation Nuclei (CCN) are key elements of the hydrological cycle and climate. We measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign from 1-30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20-290 nm) were recorded at water vapor supersaturations (S) in the range of 0.068% to 1.27%. The corresponding effective hygroscopicity parameters describing the influence of particle composition on CCN activity were in the range of κ≍0.1-0.5. The campaign average value of κ=0.3 equals the average value of κ for other continental locations. During a strong local biomass burning event, the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, indicating substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity - most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (NCCN,S) ranged from 1000 cm-3 at S=0.068% to 16 000 cm-3 at S=1.27%, which is about two orders of magnitude higher than in pristine air. Nevertheless, the ratios between CCN concentration and total aerosol particle concentration (integral CCN efficiencies) were similar to the ratios observed in pristine continental air (~6% to ~85% at S=0.068% to 1.27%). Based on the measurement data, we have tested different model approaches for the approximation/prediction of NCCN,S. Depending on S and on the model approach, the relative deviations between observed and predicted NCCN,S ranged from a few percent to several hundred percent. The largest deviations occurred at low S with a simple power law. With a Köhler model using variable κ values obtained from

  18. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Jayaraman, A.; Misra, A.

    2008-06-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmhygroscopic and coagulation growth of particles. The observed aerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  19. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  20. Aerosol Properties over the Eastern North Pacific based on Measurements from the MAGIC Field Campaign

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.; Senum, G.; Springston, S. R.; Kuang, C.

    2015-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-section Intercomparison) transect, the predominant cloud regime changes from stratocumulus near the California coast to trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in models. The goal of MAGIC was to acquire statistic of this transition and thus improve its representation in models by making repeated transects through this region and measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spirit as it ran its regular route between Los Angeles and Honolulu. AMF2 consists of three 20-foot SeaTainers and includes three radars and other instruments to measure properties of clouds and precipitation; the Aerosol Observing System (AOS), which has a suite of instruments to measure properties of aerosols; and other instruments to measure radiation, meteorological quantities, and sea surface temperature. Two technicians accompanied the AMF2, and scientists rode the ship as observers. MAGIC made nearly 20 round trips between Los Angeles and Honolulu (and thus nearly 40 excursions through the stratocumulus-to-cumulus transition) and spent 200 days at sea, collecting an unprecedented data set. Aerosol properties measured with the AOS include number concentration and size distribution, CCN activity, hygroscopic growth, and light-scattering and absorption. Additionally, more than one hundred filter samples were collected. Aerosol properties and their spatial and temporal behavior are discussed

  1. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  2. Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Lack, Daniel; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Nowak, John B.; Perring, Anne E.; Schwarz, Joshua P.; Spackman, J. Ryan; Holloway, John S.; Pollack, Ilana B.; Ryerson, Thomas B.; Roberts, James M.; Warneke, Carsten; Gouw, Joost A.; Trainer, Michael K.; Murphy, Daniel M.

    2011-11-01

    Airborne measurements of sub-micron aerosol and trace gases downwind of Los Angeles are used to investigate the influence of aging on aerosol properties relevant to climate forcing and visibility. The analysis focuses on the Los Angeles plume, which in addition to strong urban emissions is influenced by local agricultural emissions. Secondary organic aerosol formation and repartitioning of semi-volatile ammonium nitrate were identified as key factors controlling the optical behavior observed. For one case study, ammonium nitrate contributed up to 50% of total dry extinction. At 85% relative humidity, extinction in the fresh plume was enhanced by a factor of ˜1.7, and 60-80% of this was from water associated with ammonium nitrate. On this day, loss of ammonium nitrate resulted in decreasing aerosol hygroscopicity with aging. Failing to account for loss of ammonium nitrate led to overestimation of the radiative cooling exerted by the most aged aerosol by ˜35% under dry conditions. These results show that changes to aerosol behavior with aging can impact visibility and climate forcing significantly. The importance of ammonium nitrate and water also highlight the need to improve the current representation of semi-volatile aerosol species in large-scale climate models.

  3. Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Lack, Daniel; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Nowak, John B.; Perring, Anne E.; Schwarz, Joshua P.; Spackman, J. Ryan; Holloway, John S.; Pollack, Ilana B.; Ryerson, Thomas B.; Roberts, James M.; Warneke, Carsten; de Gouw, Joost A.; Trainer, Michael K.; Murphy, Daniel M.

    2012-03-01

    Airborne measurements of sub-micron aerosol and trace gases downwind of Los Angeles are used to investigate the influence of aging on aerosol properties relevant to climate forcing and visibility. The analysis focuses on the Los Angeles plume, which in addition to strong urban emissions is influenced by local agricultural emissions. Secondary organic aerosol formation and repartitioning of semi-volatile ammonium nitrate were identified as key factors controlling the optical behavior observed. For one case study, ammonium nitrate contributed up to 50% of total dry extinction. At 85% relative humidity, extinction in the fresh plume was enhanced by a factor of ˜1.7, and 60-80% of this was from water associated with ammonium nitrate. On this day, loss of ammonium nitrate resulted in decreasing aerosol hygroscopicity with aging. Failing to account for loss of ammonium nitrate led to overestimation of the radiative cooling exerted by the most aged aerosol by ˜35% under dry conditions. These results show that changes to aerosol behavior with aging can impact visibility and climate forcing significantly. The importance of ammonium nitrate and water also highlight the need to improve the current representation of semi-volatile aerosol species in large-scale climate models.

  4. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  5. Atmospheric Aging and Its Impacts on Physical Properties of Soot Aerosols: Results from the 2009 SHARP/SOOT Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Khalizov, A. F.; Zheng, J.; Reed, C. C.; Collins, D. R.; Olaguer, E. P.

    2009-12-01

    Atmospheric aerosols impact the Earth energy balance directly by scattering solar radiation back to space and indirectly by changing the albedo, frequency, and lifetime of clouds. Carbon soot (or black carbon) produced from incomplete combustion of fossil fuels and biomass burning represents a major component of primary aerosols. Because of high absorption cross-sections over a broad range of the electromagnetic spectra, black carbon contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. In areas identified as aerosol hotspots, which include many megacities, solar heating by soot-containing aerosols is roughly comparable to heating due to greenhouse gases. In addition, light absorbing soot aerosols may reduce photolysis rates at the surface level, producing a noticeable impact on photochemistry. Enhanced light absorption and scattering by soot can stabilize the atmosphere, retarding vertical transport and exacerbating accumulation of gaseous and particulate matter (PM) pollutants within the planetary boundary layer. Less surface heating and atmospheric stabilization may decrease formation of clouds, and warming in the atmosphere can evaporate existing cloud droplets by lowering relative humidity. Furthermore, soot-containing aerosols represent a major type of PM that has adverse effects on human health. When first emitted, soot particles are low-density aggregates of loosely connected primary spherules. Freshly emitted soot particles are typically hydrophobic, but may become cloud condensation nuclei (CCN) during atmospheric aging by acquiring hydrophilic coatings. Hygroscopic soot particles, being efficient CCN, can exert indirect forcing on climate. In this talk, results will be presented on measurements of soot properties during the 2009 SHARP/SOOT Campaign. Ambient aerosols and fresh soot particles injected into a captured air chamber were monitored to

  6. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  7. Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity

    NASA Astrophysics Data System (ADS)

    Carrico, Christian M.; Kus, Pinar; Rood, Mark J.; Quinn, Patricia K.; Bates, Timothy S.

    2003-12-01

    The Ron Brown cruise during ACE-Asia (March-April 2001) encountered complex aerosol that at times was dominated by marine, polluted, volcanic, and dust aerosols. Average total light scattering coefficients (σsp for Dp <10 μm, relative humidity (RH) = 19%, and λ = 550 nm) ranged from 23 (marine) to 181 Mm-1 (dust). Aerosol hygroscopicity ranged from deliquescent with hysteresis (marine frequently and polluted variably) to hygroscopic without hysteresis (volcanic) to nearly hygrophobic (dust-dominated). Average deliquescence and crystallization RH were 77 ± 2% and 42 ± 3%, respectively. The ambient aerosol was typically on the upper branch of the hysteresis loop for marine and polluted air masses and the lower branch for dust-dominated aerosols. Average f(RH = ambient), defined as σsp (RH = ambient)/σsp (RH = 19%), ranged from 1.25 (dust) to 2.88 (volcanic). Average h(RH ˜60%), defined as f(RH)upper branch/f(RH)lower branch, were 1.6, 1.3, 1, and 1.25 for marine, polluted, volcanic, and dust, demonstrating an importance of hysteresis to optical properties. Hemispheric backscatter fraction (b) at ambient RH ranged from 0.077 (marine) to 0.111 (dust), while single scattering albedo (ω) at ambient RH ranged from 0.94 (dust and polluted) to 0.99 (marine).

  8. Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia

    NASA Astrophysics Data System (ADS)

    Ma, Yongjing; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    Observation and analysis of the optical properties of atmospheric aerosols in a South Asian tropical rain forest showed that the annual mean aerosol optical depth (AOD) and aerosol Ångström exponent (α) at 500 nm were 0.47 ± 0.30 (± value represents the standard deviation) and 1.35 ± 0.32, respectively, from 2012 to 2014, similar with that of Amazon region. Aerosol optical properties in this region varied significantly between the dry and wet seasons. The mean AOD and α were 0.50 ± 0.32 and 1.41 ± 0.28, respectively, in the dry season and 0.41 ± 0.20 and 1.13 ± 0.41 in the wet season. Because of the combustion of the rich biomass in the dry season, fine modal smoke aerosols increased, which led to a higher AOD and smaller aerosol control mode than in the wet season. The average atmospheric humidity in the wet season was 85.50%, higher than the 79.67% during the dry season. In the very damp conditions of the wet season, the aerosol control mode was relatively larger, while AOD appeared to be lower because of the effect of aerosol hygroscopic growth and wet deposition. The trajectories were similar both in dry and wet, but with different effects on the aerosol concentration. The highest AOD values 0.66 ± 0.34 (in dry) and 0.45 ± 0.21 (in wet) both occurred in continental air masses, while smaller (0.38-0.48 in dry and 0.30-0.35 in wet) in oceanic air masses. The range of AOD values during the wet season was relatively narrow (0.30-0.45), but the dry season range was wider (0.38-0.66). For the Ångström exponent, the range in the wet season (0.74-1.34) was much greater than that in the dry season (1.33-1.54).

  9. Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions

    NASA Astrophysics Data System (ADS)

    Bahadur, Ranjit; Russell, Lynn M.; Jacobson, Mark Z.; Prather, Kimberly; Nenes, Athanasios; Adams, Peter; Seinfeld, John H.

    2012-05-01

    Black carbon (BC) has many effects on climate including the direct effect on atmospheric absorption, indirect and semi-direct effects on clouds, snow effects, and others. While most of these are positive (warming), the first indirect effect is negative and quantifying its magnitude in addition to other BC feedbacks is important for supporting policies that mitigate BC. We use the detailed aerosol chemistry parcel model of Russell and Seinfeld (1998), observationally constrained by initial measured aerosol concentrations from five California sites, to provide simulated cloud drop number (CDN) concentrations against which two GCM calculations - one run at the global scale and one nested from the global-to-regional scale are compared. The GCM results reflect the combined effects of their emission inventories, advection schemes, and cloud parameterizations. BC-type particles contributed between 16 and 20% of cloud droplets at all sites even in the presence of more hygroscopic particles. While this chemically detailed parcel model result is based on simplified cloud dynamics and does not consider semi-direct or cloud absorption effects, the cloud drop number concentrations are similar to the simulations of both Chen et al. (2010b) and Jacobson (2010) for the average cloud conditions in California. Reducing BC particle concentration by 50% decreased the cloud droplet concentration by between 6% and 9% resulting in the formation of fewer, larger cloud droplets that correspond to a lower cloud albedo. This trend is similar to Chen et al. (2010b) and Jacobson (2010) when BC particles were modeled as hygroscopic. This reduction in CDN in California due to the decrease in activated BC particles supports the concern raised by Chen et al. (2010a) that the cloud albedo effect of BC particles has a cooling effect that partially offsets the direct forcing reduction if other warming effects of BC on clouds are unchanged. These results suggests that for regions like the California

  10. Linking surface in-situ measurements to columnar aerosol optical properties at Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Ehn, M.; Hong, J.; Krejci, R.; Laborde, M.; de Leeuw, G.; Petäjä, T.; Pfüller, A.; Rosati, B.; Tesche, M.; Väänänen, R.

    2014-12-01

    Ambient optical properties of aerosols strongly depend on the particles' hygroscopicity and the relative humidity (RH) of the surrounding air. The key parameter to describe the influence of RH on the particle light scattering is the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Knowledge of this hygroscopicity effect is of crucial importance for climate forcing calculations and is needed for the comparison or validation of remote sensing with in-situ measurements. We will present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station in Hyytiälä, Finland, which was part of the EU-FP7 project PEGASOS (Pan-European Gas-Aerosols-climate interaction Study). Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground by a humidified nephelometer was found to be significantly lower (1.53 ± 0.24 at RH=85% and wavelength λ=450 nm) than observed at other European sites (Zieger et al., 2013). One reason is the high organic mass fraction of the boreal aerosol as measured by an aerosol chemical speciation monitor (ACSM). A closure study using Mie theory showed the consistency of the ground based in-situ measurements. Our measurements allowed to determine the ambient particle light extinction coefficient. Together with intensive aircraft measurements (lasting one month) of the particle number size distribution and ambient humidity, different columnar values were determined and compared to direct measurements and inversions of the AERONET Sun photometer (e.g., the columnar aerosol volume size distribution). The aerosol optical depth strongly correlated (R2≈0.9 for λ=440 nm to R2≈0.6 for λ=1020 nm) with the in situ derived values, but was significantly lower compared to the direct measurements of the Sun photometer (slope ≈0.5). This was explained by the loss of

  11. Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption.

    PubMed

    Gordon, H R; Du, T; Zhang, T

    1997-11-20

    Current atmospheric correction and aerosol retrieval algorithms for ocean color sensors use measurements of the top-of-the-atmosphere reflectance in the near infrared, where the contribution from the ocean is known for case 1 waters, to assess the aerosol optical properties. Such measurements are incapable of distinguishing between weakly and strongly absorbing aerosols, and the atmospheric correction and aerosol retrieval algorithms fail if the incorrect absorption properties of the aerosol are assumed. We present an algorithm that appears promising for the retrieval of in-water biophysical properties and aerosol optical properties in atmospheres containing both weakly and strongly absorbing aerosols. By using the entire spectrum available to most ocean color instruments (412-865 nm), we simultaneously recover the ocean's bio-optical properties and a set of aerosol models that best describes the aerosol optical properties. The algorithm is applied to simulated situations that are likely to occur off the U.S. East Coast in summer when the aerosols could be of the locally generated weakly absorbing Maritime type or of the pollution-generated strongly absorbing urban-type transported over the ocean by the winds. The simulations show that the algorithm behaves well in an atmosphere with either weakly or strongly absorbing aerosol. The algorithm successfully identifies absorbing aerosols and provides close values for the aerosol optical thickness. It also provides excellent retrievals of the ocean bio-optical properties. The algorithm uses a bio-optical model of case 1 waters and a set of aerosol models for its operation. The relevant parameters of both the ocean and atmosphere are systematically varied to find the best (in a rms sense) fit to the measured top-of-the-atmosphere spectral reflectance. Examples are provided that show the algorithm's performance in the presence of errors, e.g., error in the contribution from whitecaps and error in radiometric calibration.

  12. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  13. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Zheng, J.; Shang, D. J.; Du, Z. F.; Wu, Y. S.; Zeng, L. M.; Wiedensohler, A.; Hu, M.

    2016-02-01

    Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the mean hygroscopicity parameters (κs) of 50, 100, 150, 200, and 250 nm particles were respectively 0.16 ± 0.07, 0.19 ± 0.06, 0.22 ± 0.06, 0.26 ± 0.07, and 0.28 ± 0.10, showing an increasing trend with increasing particle size. Such size dependency of particle hygroscopicity was similar to that of the inorganic mass fraction in PM1. The hydrophilic mode (hygroscopic growth factor, HGF > 1.2) was more prominent in growth factor probability density distributions and its dominance of hydrophilic mode became more pronounced with increasing particle size. When PM2.5 mass concentration was greater than 50 μg m-3, the fractions of the hydrophilic mode for 150, 250, and 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high-time-resolution size-resolved chemical composition derived from aerosol mass spectrometer (AMS) measurements using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. The organic hygroscopicity parameter (κorg) showed a positive correlation with the oxygen to carbon ratio. During the new particle formation event associated with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particles with the same sizes not during new particle formation (NPF) periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example, 250 nm particles) was observed. Such transformations may modify the state of the mixture of pre-existing particles and thus modify properties such as the light absorption coefficient and cloud condensation nuclei activation.

  14. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Bezantakos, Spiros; Stavroulas, Iasonas; Kalivitis, Nikos; Kokkalis, Panagiotis; Biskos, George; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Nenes, Athanasios

    2016-06-01

    This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ˜ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10

  15. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land

    NASA Astrophysics Data System (ADS)

    Levy, Robert C.; Remer, Lorraine A.; Dubovik, Oleg

    2007-07-01

    As more information about global aerosol properties has become available from remotely sensed retrievals and in situ measurements, it is prudent to evaluate this new information, both on its own and in the context of satellite retrieval algorithms. Using the climatology of almucantur retrievals from global Aerosol Robotic Network (AERONET) Sun photometer sites, we perform cluster analysis to determine aerosol type as a function of location and season. We find that three spherical-derived types (describing fine-sized dominated aerosol) and one spheroid-derived types (describing coarse-sized dominated aerosol, presumably dust) generally describe the range of AERONET observed global aerosol properties. The fine-dominated types are separated mainly by their single scattering albedo (ω0), ranging from nonabsorbing aerosol (ω0 ˜ 0.95) in developed urban/industrial regions, to moderately absorbing aerosol (ω0 ˜ 0.90) in forest fire burning and developing industrial regions, to absorbing aerosol (ω0 ˜ 0.85) in regions of savanna/grassland burning. We identify the dominant aerosol type at each site, and extrapolate to create seasonal 1° × 1° maps of expected aerosol types. Each aerosol type is bilognormal, with dynamic (function of optical depth) size parameters (radius, standard deviation, volume distribution) and complex refractive index. Not only are these parameters interesting in their own right, they can also be applied to aerosol retrieval algorithms, such as to aerosol retrieval over land from Moderate Resolution Imaging Spectroradiometer. Independent direct-Sun AERONET observations of spectral aerosol optical depth (τ) are consistent the spectral dependence of the models, indicating that our derived aerosol models are relevant.

  16. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  17. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  18. Characterization of aerosol events based on the column integrated optical aerosol properties and polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Mandija, Florian; Markowicz, Krzysztof; Zawadzka, Olga

    2016-12-01

    Aerosol optical properties are very useful tools for analyzing their radiative effects, which are directly or indirectly related to the global radiation budget. Investigation of column-integrated aerosol optical properties is a worldwide and well-accepted method. The introduction of new methodologies, like those of operation with polarimetric measurements, represent a new challenge to interpret the measurement data and give more detailed information about the aerosol events and their characteristics. Aerosol optical properties during the period June - August 2015 in AERONET Strzyzow station in Poland were analyzed. The aerosol properties like aerosol optical depth, Ångström exponent, fine mode fraction, fine mode contribution on AOD, asymmetry parameter, single scattering angle are analyzed synergistically with the polarimetric measurements of the degree of polarization in different solar zenith and zenith viewing angles at several wavelengths. The overall results show that aerosol events in Strzyzow were characterized mostly by fine mode aerosols. Backward-trajectories suggest that the majority of air masses come from the west. The principal component of the aerosol load was urban/industrial contamination, especially from the inner part of the continent. Additionally, the maximal values of the degree of linear polarization were found to be dependent on the solar zenith and zenith viewing angles and aerosol optical properties like aerosol optical depth and Ångström exponent. These dependencies were further analyzed in a specific case with very high mean values of AOD500 (0.59) and AE440-870 (1.91). The diurnal variations of aerosol optical properties investigated during this special case, suggest that biomass burning products are the main cause of that aerosol load over the stations.

  19. Aerosol activation: parameterised versus explicit calculation for global models

    NASA Astrophysics Data System (ADS)

    Tost, H.; Pringle, K.; Metzger, S.; Lelieveld, J.

    2009-04-01

    A key process in studies of the aerosol indirect effects on clouds is the activation of particles into droplets at 100% relative humidity. To model this process in cloud, meteorological and climate models is a difficult undertaking because of the wide range of scales involved. The chemical composition of the atmospheric aerosol, originating from both air pollution and natural sources, substantially impacts the aerosol water uptake and growth due to its hygroscopicity. In this study a comparison of aerosol activation, using state-of-the-art aerosol activation parameterisations, and explicit activation due to hygroscopic growth is performed.For that purpose we apply the GMXe aerosol model - treating both dynamic and thermodynamic aerosol properties - within the EMAC (ECHAM5/MESSy Atmospheric chemistry, an atmospheric chemistry general circulation) model. This new aerosol model can explicitely calculate the water uptake of aerosols due to hygroscopicity, allowing the growth of aerosol particles into the regimes of cloud droplets in case of sufficient water vapour availability. Global model simulations using both activation schemes will be presented and compared, elucidating the advantages of each approach.

  20. Cloud droplet nucleation and its connection to aerosol properties

    SciTech Connect

    Schwartz, S.E.

    1996-04-01

    Anthropogenic aerosols influence the earth`s radiation balance and climate directly, by scattering shortwave (solar) radiation in cloud-free conditions and indirectly, by increasing concentrations of cloud droplets thereby enhancing cloud shortwave reflectivity. These effects are thought to be significant in the context of changes in the earth radiation budget over the industrial period, exerting a radiative forcing that is of comparable magnitude to that of increased concentrations of greenhouse gases over this period but opposite in sign. However the magnitudes of both the direct and indirect aerosol effects are quite uncertain. Much of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties arising from anthropogenic aerosols. This paper examines recent studies pertaining to the influence of anthropogenic aerosols on loading and properties of aerosols affecting their cloud nucleating properties and indicative of substantial anthropogenic influence on aerosol and cloud properties over the North Atlantic.

  1. Self-assembly of marine exudate particles and their impact on the CCN properties of nascent marine aerosol

    NASA Astrophysics Data System (ADS)

    Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.

    2013-12-01

    Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.

  2. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa

    2016-08-01

    Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

  3. The sources, properties, and evolution of organic aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.

    2015-12-01

    Organic aerosols (OA) account for about 1/2 of the submicron particle mass in the atmosphere leading to important impacts on climate, human health, and other issues, but their sources, properties, and evolution are poorly understood. OA is comprised of primary OA (POA, emitted in the particle phase) and secondary OA (SOA, formed by gas-to-particle conversion). Together with others in the community and contrary to the understanding at the time, we demonstrated in the mid-2000s that SOA dominates over POA at most locations. This paradigm shift has led to intense research on the sources, processing, properties, and fate of SOA. Because pre-existing and commercial instruments were very limited for the analysis of the complex mixtures of highly oxidized species comprising real OA, we developed or co-developed several experimental and data analysis techniques aimed at extracting more information out of ambient and laboratory air, and pioneered their application in field experiments. We proposed a new paradigm (Jimenez et al., Science, 2009) that is consistent with worldwide measurements and in which OA and OA precursor gases evolve continuously by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. The amount of SOA formed from urban air is remarkably consistent across the world, although the contributions of different sources remain a subject of debate. Biomass burning emissions rarely form additional OA mass after emission, although rapid chemical aging is always observed. Global model-measurement comparisons suggest the need for a large (100 Tg/yr) "anthropogenically-controlled" SOA source, thought to be dominated by anthropogenically-enhanced biogenic SOA. SOA formed from several pathways from biogenic emissions is starting to be better characterized, as are key SOA properties such as

  4. Vertical distribution of ambient aerosol extinctive properties during haze and haze-free periods based on the Micro-Pulse Lidar observation in Shanghai.

    PubMed

    Liu, Qiong; He, Qianshan; Fang, Sihua; Guang, Ying; Ma, Chengyu; Chen, Yonghang; Kang, Yanming; Pan, Hu; Zhang, Hua; Yao, Yifeng

    2017-01-01

    Ambient aerosols make a significant contribution to the environment and climate through their optical properties. In this study, the aerosol extinction coefficient and Aerosol optical depth (AOD) retrieved using the Fernald Method from the ground-based Micro-Pulse Lidar (MPL) were used to investigate the characteristics of aerosols during haze and haze-free periods in Shanghai. There were 216 haze days including 145 dry haze days, 39 damp haze days and 32days of both dry and damp haze in Shanghai from March 2009 to February 2010. During the haze periods, aerosols were concentrated mainly below 600m resulting in the most severe pollution layer in Shanghai. In contrast to the aerosol optical properties during haze-free periods, aerosol extinction coefficients and AOD were larger in the lower altitude (below 1km) during haze periods. The lowest 1km contributed 53-72% of the Aerosol optical depth (AOD) below 6km for the haze periods and <41% of that for the haze-free periods except summer. According to the analysis of influencing factors, although atmospheric convection was strong in summer which led to reduce the extinction, the highest occurrence of haze with relatively low aerosol extinction most of time was in summer, which resulted from the factors such as higher relative humidity, temperature and more solar radiation causing hygroscopic growth of particles and formation of secondary aerosols; in spring and autumn, there was less haze occurrences because the boundary layer was relatively higher, which allowed pollutants to diffuse more easily, but spring was the second most frequency season of haze due to frequent dust transport from the north; in winter high concentrations of particles and low boundary layer height were not beneficial to the diffusion of pollutants near the surface and caused haze occurrence rather high with high aerosol extinction.

  5. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ω), the ratio between the scattering (αscat) and extinction (αext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to

  6. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  7. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  8. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  9. Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Anderson, Theodore L.; Masonis, Sarah J.; Covert, David S.; Ahlquist, Norman C.; Howell, Steven G.; Clarke, Antony D.; McNaughton, Cameron S.

    2003-12-01

    Airborne measurements of aerosol light scattering (using nephelometers) and absorption (using particle/soot absorption photometers; PSAPs) in the Asian outflow region are presented. Aerosol particles were sampled through a new low turbulence inlet that proved very effective at transmitting coarse-mode particles. Noise and artifacts are characterized using in-flight measurements of particle-free air and measurements with identical instruments operated in parallel. For example, the sensitivities of PSAP noise to changing altitude, changing relative humidity (RH), and particle-loading on the internal filter are quantified. On the basis of these and previous instrument characterizations, we report averages, variations, and uncertainties of optical properties, focusing on data from approximately 300 level-leg samples obtained during 19 research flights in the spring of 2001. Several broad patterns emerge from this analysis. Two dominant components, fine-mode pollution and coarse-mode mineral dust, were observed to vary independently when separated using a cut point of 1 μm aerodynamic diameter at low RH. Fine-mode pollution was found to be moderately absorbing (single scatter albedo at low RH and 550 nm, ω = 0.88 ± 0.03; mean and 95% confidence uncertainty) and moderately hygroscopic (relative increase in scattering from 40% to 85% RH, fRH = 1.7 ± 0.2), while coarse-mode dust was found to have very low absorption (ω = 0.96 ± 0.01) and to be almost nonhygroscopic (fRH = 1.1 ± 0.1). These and other optical properties are intended to serve as constraints on optical models of the Asian aerosol for the purpose of satellite retrievals and calculations of direct radiative effects.

  10. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Bohne, A.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-08-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.

  11. Thermochemical, cloud condensation nucleation ability and optical properties of alkyl aminium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lavi, A.; Bluvshtein, N.; Segre, E.; Segev, L.; Flores, J.; Rudich, Y.

    2013-12-01

    The increased interest in the chemistry of alkylamines and their possible roles in the atmosphere increased recently due to field observations of the correlation between new particle formation and post nucleation growth events and the presence of alkylamines in their cationic form. Due to their high saturation vapor pressure it is unlikely that short chain alkylamines will contribute to particle formation or growth by condensation. Therefore, it was previously suggested that their contribution to particulate phase is the result of acid-base reactions between the basic alkylamines and atmospherically relevant acids such as sulfuric and nitric acid. In this study we present laboratory data on the thermochemical, CCN activity and optical properties of selected atmospherically relevant alkyl aminium sulfate salts: Monomethyl aminium sulfate (MMAS), dimethyaminium sulfate (DMAS), trimethylaminium sulfate, monoethylaminium sulfate (MEAS), diethylaminium sulfate (DEAS) and triethylaminium sulfate (TEAS)). We found that the vapor pressure of these aminium salts is 1-3 orders of magnitude lower than that of ammonium sulfate and as such they can contribute to new aerosols and secondary aerosols formation. We infer that these species have very high CCN activity, with hygroscopicity parameter that is lower but close to that ammonium sulfate. Finally, we present the optical properties of these alkyl aminium sulfate salts between 360 and 420 nm. These compounds are less scattering than ammonium sulfate and show minimal wavelength dependence in this range. These compounds also do not absorb light. These derived parameters can contribute to the better understanding and characterization of the role that these compounds play in atmospheric chemical reactions, gas-solid partitioning and their possible contribution to the microphysical and radiative effects of atmospheric aerosols.

  12. Determination of Marine Aerosol Properties Using a Bistatic Nephelometer

    DTIC Science & Technology

    2016-06-07

    light scattered by aerosols. The information derived from these measurements will enable accurate prediction of the aerosol optical properties and...consequently their effect on light propagation in the MABL. OBJECTIVES The objective of this work is to develop and deploy a new light scattering...instrument to remotely characterize atmospheric aerosols. The bi-static nephelometer (an instrument with separately pointed light source and detector that

  13. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  14. An investigation of aerosol optical properties: Atmospheric implications and influences

    NASA Astrophysics Data System (ADS)

    Penaloza-Murillo, Marcos A.

    An experimental, observational, and theoretical investigation of aerosol optical properties has been made in this work to study their implications and influences on the atmosphere. In the laboratory the scientific and instrumental methodology consisted of three parts, namely, aerosol generation, optical and mass concentration measurements, and computational calculations. In particular the optical properties of ammonium sulfate and caffeine aerosol were derived from measurements made with a transmissometer cell-reciprocal- integrating nephelometer (TCRIN), equipped with a laser beam at 632.8 nm, and by applying a Mie theory computer code The aerosol generators, optical equipment and calibration procedures were reviewed. The aerosol shape and size distribution were studied by means of scanning electron microscopy and the Gumprecht- Sliepcevich/Lipofsky-Green extinction-sedimentation method. In particular the spherical and cylindrical shape were considered. During this investigation, an alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer, which is based on a linearisation of the Lambert-Beer law, was found. In addition, adapting the TCRIN to electrooptical aerosol studies, the optical properties of a circular-cylindrical aerosol of caffeine were undertaken under the condition of random orientation in relation with the laser beam, and perpendicular orientation to it. A theoretical study was conducted to assess the sensitivity of aerosol to a change of shape under different polarisation modes. The aerosol optical properties, obtained previously in the laboratory, were then used to simulate the direct radiative forcing. The calculations and results were obtained by applying a one- dimensional energy-balance box model. The influence of atmospheric aerosol on the sky brightness due to a total solar eclipse was studied using the photometric and meteorological observations made during the

  15. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  16. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  17. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  18. Comparison of the aerosol optical properties and size distribution retrieved by sun photometer with in situ measurements at midlatitude

    NASA Astrophysics Data System (ADS)

    Chauvigné, Aurélien; Sellegri, Karine; Hervo, Maxime; Montoux, Nadège; Freville, Patrick; Goloub, Philippe

    2016-09-01

    Aerosols influence the Earth radiative budget through scattering and absorption of solar radiation. Several methods are used to investigate aerosol properties and thus quantify their direct and indirect impacts on climate. At the Puy de Dôme station, continuous high-altitude near-surface in situ measurements and low-altitude ground-based remote sensing atmospheric column measurements give the opportunity to compare the aerosol extinction measured with both methods over a 1-year period. To our knowledge, it is the first time that such a comparison is realised with continuous measurements of a high-altitude site during a long-term period. This comparison addresses to which extent near-surface in situ measurements are representative of the whole atmospheric column, the aerosol mixing layer (ML) or the free troposphere (FT). In particular, the impact of multi-aerosol layers events detected using lidar backscatter profiles is analysed. A good correlation between in situ aerosol extinction coefficient and aerosol optical depth (AOD) measured by the Aerosol Robotic Network (AERONET) sun photometer is observed with a correlation coefficient around 0.80, indicating that the in situ measurements station is representative of the overall atmospheric column. After filtering for multilayer cases and correcting for each layer optical contribution (ML and FT), the atmospheric structure seems to be the main factor influencing the comparison between the two measurement techniques. When the site lies in the ML, the in situ extinction represents 45 % of the sun photometer ML extinction while when the site lies within the FT, the in situ extinction is more than 2 times higher than the FT sun photometer extinction. Moreover, the assumption of a decreasing linear vertical aerosol profile in the whole atmosphere has been tested, significantly improving the instrumental agreement. Remote sensing retrievals of the aerosol particle size distributions (PSDs) from the sun photometer

  19. Does the long-range transport of African mineral dust across the Atlantic enhance their hygroscopicity?

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Caquineau, Sandrine; Desboeufs, Karine; Laurent, Benoit; Quiñones Rosado, Mariana; Vallejo, Pamela; Mayol-Bracero, Olga; Formenti, Paola

    2015-04-01

    Influence of mineral dust on radiation balance is largely dependent on their ability to interact with water. While fresh mineral dusts are highly hydrophobic, various transformation processes (coagulation, heterogeneous chemical reaction) can modify the dust physical and chemical properties during long-range transport, which, in turn, can change the dust hygroscopic properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of dust hygroscopic properties, and their temporal evolution during long-range transport. We present the first direct surface measurements of the hygroscopicity of Saharan dust after long-range transport over the Atlantic Ocean, their relationship with chemical composition, their influence on particle size and shape and implications for optical properties. Particles were collected during the DUST Aging and TransporT from Africa to the Caribbean (Dust-AttaCk) campaign at the Cape San Juan Puerto Rico station in June-July 2012. Environmental scanning electron microscopy (ESEM) was used to analyze the size, shape, chemical composition and hygroscopic properties of individual particles. At different levels of concentrations in summertime, the coarse mode of atmospheric aerosols in Puerto Rico is dominated by Saharan mineral dust. Most of aged dust particles survived atmospheric transport intact with no observed internal mixture with other species and did not show hygroscopic growth up to 94% relative humidity. This is certainly due to the fact that in summertime dust is mostly transported above the marine boundary layer. A minor portion of mineral dust (approximately 19-28% by number) were involved in atmospheric heterogeneous reactions with acidic gases (likely SO2 and HCl) and sea salt aggregation. While sulfate- and chloride-coated dust remained extremely hydrophobic, dust particles in internal mixing with NaCl underwent profound changes in their hygroscopicity, therefore in size and shape. We

  20. Some optical properties of smoke aerosol in Indonesia and tropical Australia

    NASA Astrophysics Data System (ADS)

    Gras, J. L.; Jensen, J. B.; Okada, K.; Ikegami, M.; Zaizen, Y.; Makino, Y.

    Aerosol light-scattering coefficient at 530 nm and its hygroscopic growth were determined in biomass-burning smoke in the lower atmosphere over Kalimantan and northern Australia during the 1997 dry-season fires. Both in and away from plumes, light-scattering was considerably greater in the Indonesian region and hygroscopic growth in scattering was also consistently greater. The relative increase in scattering, from 20% to 80% relative humidity, was typically 1.37 in northern Australian and 1.65 in Kalimantan. Limited aerosol light absorption data indicate relatively small absorption in the Indonesian smoke. In part these differences can be explained by different combustion phases, mixed flaming and smoldering in the Australian savanna fires compared with predominantly smoldering in Indonesia, although these and other concurrent measurements suggest that underground peat combustion may have made a significant contribution to the Indonesian smoke.

  1. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  2. Aerosol Properties under Air Quality Control Measures of APEC 2014 in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, X.; Xu, H.; Lv, Y.; Xie, Y.; Li, K.; Li, Z.; Li, D.; Ma, Y.; Mei, X.

    2015-12-01

    Because the economic and society were developing fast in the middle of last century, Los Angeles and London both were polluted by photochemical smog, which massacred thousands of people. Now, many regions are often covered by heavy haze in those large developing countries, especially in China and India. The Asia-Pacific Economic Cooperation (APEC) was held in Beijing during 5-11 November 2014. Beijing, Hebei, Tianjin, Shandong, Shanxi, Inner Mongolia reduced air pollution emissions for the APEC 2014 meeting held in Beijing. Only in Hebei province, there were 1028 factories stopped or restricted and 881 construction sites stopped. Half of the cars were prohibited driving even in the Zibo city which is 400 km far from Beijing. For scientific aims, these control measures were indeed a huge and uncommon atmospheric experiment led by the government. During the experiment, what did the "APEC Blue" mean? We analyzed aerosol properties with the data of an AERONET site in Beijing which is located 500m far from the main reception hall of APEC 2014. The Cimel solar photometers can give a series parameters of aerosol and water vapor. In this paper, we used CE318 solar photometer which is the main instrument of NASA AERONET. The CE318 of RADI belongs to the Chinese SONET (Sun-sky radiometer Observation NETwork) too. We analyzed the total, coarse and fine Aerosol Optical Depth (AOD), Fine-Mode Fraction (FMF) and Ångström exponent, Size Distribution and Real Refractive Index. In conclusion, the aerosol properties were analysed with the measurements of a sun photometer. During the APEC 2014, AOD decreased obviously with a 0.27 mean value compared with the annual mean 0.7. Around Beijing, the southern is polluted emission area including the cross part of Shandong, Shanxi, Hebei, Henan four provinces, and the northern is clean for less fine mode particles emission in the large Inner Mongolia province. In fact, during the APEC 2014, the weather condition was not good for the

  3. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water

  4. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.

    2010-09-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were

  5. Using Retrieved Aerosol Spectral Properties to Characterize Aerosol Composition and Mixing

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The spectral dependence of aerosol properties, such as aerosol absorption optical depth (AAOD) and single scattering albedo (SSA), can be used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, spectral AAOD and SSA measured in reality may differ from these extreme cases, due to the complicated composition and mixing states. In this study, we use spectral SSA and AAOD retrieved from AERONET measurements, assisted by CALIPSO aerosol type product and Mie calculations, to characterize aerosol mixtures over representative regions. Moreover, in addition to the monotonically increasing or decreasing AAOD and SSA spectra, we find the spectral dependence of these two parameters are frequently peaked (at 675 nm or 870 nm) over several places including East Asia, India, West Africa and South America. We thus suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Further analysis indicates that moderate mixing of black carbon with dust or organic carbon is mainly responsible for producing the SSA curvature. An optimization scheme was developed to match the observed AAOD and SSA spectra with Mie calculations assuming different aerosol composition and mixing states. Results suggest that while external mixing can explain most of the observed AAOD and SSA spectral dependence, internal mixing or core-shell mode is also likely under many circumstances, such as East Asia during winter and post-monsoon and winter seasons over India. This method offers the potential to quantitatively infer aerosol composition from these spectral measurements of aerosol optical properties.

  6. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  7. Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    NASA Astrophysics Data System (ADS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Blake, Donald R.; Jonsson, Haflidi H.; Lagrosas, Nofel D.; Xian, Peng; Reid, Elizabeth A.; Sessions, Walter R.; Simpas, James B.

    2017-01-01

    Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %.

  8. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  9. Aerosol physical properties and their impact on climate change processes

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  10. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  11. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    PubMed Central

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2014-01-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March–May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls. PMID:24707452

  12. Satellite remote sensing of aerosol and cloud properties over Eurasia

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on

  13. Summer-winter differences in the relationships among background southeastern U.S. aerosol optical, micro-physical, and chemical properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Relationships among aerosol optical, micro-physical, and chemical properties are useful for evaluating regional climate models, developing satellite-based aerosol retrievals, and understanding aerosol sources and processes. Since aerosol loading and optical properties vary primarily on seasonal scales in the southeastern U.S., it is important that such studies be carried out over multiple seasons but few (if any) such multi-season studies have been conducted in the region. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1080m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were also made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. Some of the major findings will be presented. Higher values of lower tropospheric aerosol light scattering coefficient at 550nm (a proxy for aerosol loading) are associated with higher single-scattering albedo (SSA) and lower hemispheric backscatter fraction (b) during both summer and winter. Absorption Angstrom exponent (AAE) is typically well under 1 during summer and near 1.3-1.4 during winter. Lowest summer AAE values coincide with large, highly-reflective particles and higher aerosol light scattering coefficient but summer AAE is only weakly anti-correlated with organic and sulfate mass concentrations. Winter AAE is consistent with a mixture of elemental carbon and light-absorbing organic carbon, possibly influenced by regional residential wood-burning during winter. The hygroscopic dependence of visible light scattering is sensitive to sulfate and organic aerosol mass fractions during both summer and winter

  14. A comparison between aerosol properties and air pollutants

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Sano, I.; Nishimori, A.; Sato, M.

    A comparison between aerosol properties and air pollutants over urban cities in Japan S. Mukai, I. Sano, A. Nishimori and M. Sato Kinki University For understanding urban aerosols, sun/sky photometry and polarimetry with PSR-1000 (Opto. Research) have been undertaken over Higashi-Osaka since 1996. Multi-spectral photometers CE-318 (Cimel Electronique) and POM-100P (Prede Co.) are set up later for an AERONET site and a SKYNET site, respectively. Radiometers provide us with the optical thickness of aerosols and Ångström exponent. Another aerosol properties, e.g., size distribution, refractive index, etc., are retrieved based on the inversion method. Higashi-Osaka, which means east side of Osaka, is an industrial city located between Osaka bay and Mt.Ikoma. Anthropogenic aerosols produced by industrial activity and oceanic aerosols flying from Osaka bay are mixed together and trapped just around our site due to reflection from Mt.Ikoma. Therefore our city is famous for heavy air pollution, and aerosols here have a complicated feature mixing with the anthropogenic compound and natural one externally and/or internally. On the other hand, suspended particles matter (SPM) concentrations at ground level are compiled for these 10 years in this city. Strictly speaking, it is difficult to relate SPM data directly to the aerosol properties, however it is possible to say that SPM data represents the mass concentration of atmospheric particles at ground level. In other word, air pollutants could have some relations to the emission and transportation of aerosols. After several aerosol parameters are derived from the measurements and compared with the SPM data, the HYSPLIT4 backward trajectory analysis is adopted to search the origin of atmospheric particles. It is found that aerosol index shows a proportional correlation with SPM concentration, and that our aerosols are contaminated not only by surroundings but also the large scale phenomena, e.g. yellow sand event from China

  15. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  16. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  17. Aerosol properties over south india during different seasons

    NASA Astrophysics Data System (ADS)

    Sivaprasad, P.; Babu, C. A.; Jayakrishnan, P. R.

    Aerosols play an important role in the radiation balance and cloud properties, thereby affect the entire climatology of the earth-atmosphere system. Besides natural sources like dust, seasalt and natural sulphates, anthropogenic activities also inject aerosols like soot and industrial sulphates. Of these sea-salt and sulphates scatter the solar radiation. Soot is an absorbing aerosol while soil dust and organic matters are partly absorbing aerosols. Wind and rainfall are major factors affecting the transportation and deposition of the aerosols. India is a country blessed with plenty of monsoon rains. Winter (December to February), summer (March to May), monsoon (June to September) and post monsoon (October to November) are the four seasons over the region. Aerosol properties vary according to the season. Natural aerosols blown from the deserts have a major role in the aerosol optical depth over India. Of this, dust from Arabian desert that is carried by the winds are most important. The aerosol optical depth of south India is entirely different from that of north India. Maximum aerosol concentration is found over Gangetic plane in most of the seasons, whereas entire south India shows less aerosol optical depth. In the present study the aerosol properties of south India is analysed in general. Particular analysis is carried out for the four regions in the east and west coasts around Chennai, Kolkotha, Mumbai and Cochin. Chennai and Kolkotha are situated in the east coast whereas Cochin and Mumbai are in the west coast. These are industrial cities in India. Chennai region does not get monsoon rainfall since it is situated in the leeward side of Western ghats. But in the post monsoon season Chennai gets good amount of rainfall. Other three regions get good amount of rainfall during monsoon season. The study uses Terra MODIS, TOMS, NCEP/NCAR and TRMM data. Aerosol properties are analysed using Terra MODIS and Nimbus TOMS data. The variations of the aerosol optical

  18. Influence of semi-volatile species on particle hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Villani, Paolo; Sellegri, Karine; Monier, Marie; Laj, Paolo

    2013-11-01

    In this study, we use a Tandem Differential Mobility Analyser (TDMA) system combining particle volatilization and humidification conditioning (VH-TDMA) to test the effect of the gentle volatilization of a small fraction of the atmospheric particles on the particle hygroscopic growth in several environments (urban to remote). We first give an overview of the Hygroscopic Growth Factors (HGF) in these various environments, showing that in most of them, aerosol particles are externally mixed. We then show that the particle hygroscopicity can either be increased or decreased after thermal conditioning of the particle at moderate temperatures (50-110 °C). The hygroscopic growth factor changes induced by volatilization indicate that some volatile compounds, although present at low concentrations, can significantly influence the hygroscopic growth of particles in a way that can most of time be theoretically explained if simplified assumptions are used. However, simplified assumptions occasionally fail over several hours to explain hygroscopic changes, kinetic/surface effects observed at remote environments are suspected to be important.

  19. Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): Implications for remote sensing applications

    NASA Astrophysics Data System (ADS)

    D'Angelo, Luca; Rovelli, Grazia; Casati, Marco; Sangiorgi, Giorgia; Perrone, Maria Grazia; Bolzacchini, Ezio; Ferrero, Luca

    2016-07-01

    Atmospheric aerosols deliquescence and crystallization relative humidity (DRH and CRH) are rarely measured compared to the worldwide number of hygroscopicity measurements; this feature comes from the lack of an efficient method able to capture the whole complexity of chemical composition of aerosols. Despite this, the knowledge of both DRH and CRH are crucial for a correct parameterization of the aerosol hygroscopic growth used in different applications, among which the remote sensing is very important. In this paper, a newly developed technique (direct current conductance method) was applied in an aerosol chamber to Milan PM2.5 samples, to identify aerosol DRH and CRH both during winter and summer. These results were compared with those independently obtained by gravimetric measurements conducted in the chamber using a microbalance. Microbalance data allowed also the determination of the mass hygroscopic growth factor on the collected PM2.5 samples. Results evidenced first a good agreement between the two methods (RMSE = 2.7% and 2.3% for DRH and CRH, respectively). Collected data evidenced the hysteresis behavior of ambient particles and variability in both DRH and CRH between the two seasons. Summer samples showed higher DRH and CRH (on average 71.4 ± 1.0% RH and 62.6 ± 1.2% RH, respectively) than the winter ones (on average 55.2 ± 0.7% RH and 46.9 ± 0.6% RH). This behavior was related to the higher content of sulfates during the summer season. Conversely, the mass hygroscopic growth factor at 90% RH was higher for winter samples (2.76 ± 0.06) with respect to the summer ones (1.91 ± 0.11). Since hysteresis behavior affects optical properties of aerosols, when RH conditions are within the loop, the hygroscopic growth factor could be assigned in a wrong way. Thus, the growth factor was calculated within the hysteresis loop for both upper and lower branches: results showed that difference in hygroscopic growth factor could reach up the 24%.

  20. Changes of hygroscopicity and morphology during ageing of diesel soot

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Jurányi, Zsófia; Martin, Maria; Chirico, Roberto; Gysel, Martin; Heringa, Maarten F.; DeCarlo, Peter F.; Sierau, Berko; Prévôt, André S. H.; Weingartner, Ernest; Baltensperger, Urs

    2011-07-01

    Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 < κH - TDMA < 0.12 and 0.09 < κCCN < 0.14) as SOA from other precursor gases investigated in previous studies.

  1. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  2. Remote Sensing of Spectral Aerosol Properties: A Classroom Experience

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Pinker, Rachel T.

    2006-01-01

    Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.

  3. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  4. Combined aerosol in-situ measurements during the SALTRACE field experiment for the investigation of Saharan mineral dust microphysical and CCN properties and their spatial-temporal evolution during trans-Atlantic long-range transport

    NASA Astrophysics Data System (ADS)

    Walser, Adrian; Dollner, Maximilian; Sauer, Daniel; Weinzierl, Bernadett

    2015-04-01

    The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was a field experiment conducted in June/July 2013, which aimed to investigate the transport and modification of Saharan mineral dust from the Sahara across the Atlantic Ocean to the Caribbean. In addition to ground-based measurements and satellite remote sensing, the DLR Falcon research aircraft was equipped with a number of aerosol in-situ instruments to gain direct information on the properties of airborne aerosol such as size distributions, microphysical, optical and cloud-condensation nuclei (CCN) properties. For the first time, several outbreaks of Saharan dust were probed with the same airborne instrumentation on both sides of the Atlantic. During transport, various processes may take place that modify the aerosol composition. Dry and wet deposition lead to a size-dependent aerosol removal. In case of wet deposition, the removal additionally depends on the particle's ability to act as CCN. Processes in the aqueous phase in subsequently re-evaporating cloud droplets can further alter microphysical and CCN properties of re-released particles. All resulting changes in the size distribution and particle properties impact the radiative feedback and CCN activity of the aged aerosol. This study aims to use combined airborne in-situ measurements to retrieve and compare vertically resolved aerosol size distributions, microphysical and CCN properties for both, short-range transported Saharan dust in the Cape Verde region and long-range transported dust in the Caribbean. We use this data to investigate the influence of long-range transport and associated processes on those properties. We will present vertical profiles of size-resolved aerosol concentrations and volatile fractions as well as CCN activated fractions and draw conclusions for aerosol mixing state, CCN activation diameters and particle hygroscopicities. We will discuss differences in vertical profiles and

  5. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  6. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  7. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  8. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  9. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  10. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    SciTech Connect

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.; Kosmopoulos, P. G.; Tripathi, S. N.; Misra, Amit; Sharma, M.; Singh, R. P.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may cause

  11. Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA

    SciTech Connect

    Mei, Fan; Hayes, Patrick L.; Ortega, Amber; Taylor, Jonathan W.; Allan, James D.; Gilman, Jessica; Kuster, William; de Gouw, Joost; Jimenez, Jose L.; Wang, Jian

    2013-04-11

    Size-resolved cloud condensation nuclei (CCN) spectra and aerosol chemical composition were characterized at an urban supersite in Pasadena, California, from 15 May to 4 June 2010, during the CalNex campaign. The derived hygroscopicityCCN) of CCN-active particles with diameter between 97 and 165 nm ranged from 0.05 to 0.4. Diurnal variation showed a slight decrease of κCCN from 8:00 to 16:00 (from 0.24 to 0.20), which is attributed to increasing organics volume fraction resulted from secondary organic aerosol (SOA) formation. The derived hygroscopicity distribution and maximum activated fraction of the size selected particles were examined as functions of photochemical age. The result indicates that condensation of secondary species (e.g., SOA and sulfate) quickly converted hydrophobic particles to hydrophilic ones, and during daytime, nearly every particle became a CCN at ~0.4% in just a few hours. Based on κCCN and aerosol chemical composition, the organic hygroscopicityorg) was derived, and ranged from 0.05 to 0.23 with an average value of 0.13, consistent with the results from earlier studies. The derived κorg generally increased with the organic oxidation level, and most of the variation in κorg could be explained by the variation of the organic O : C atomic ratio alone. The least squares fit of the data yielded κorg = (0.83 ± 0.06) × (O:C) + (-0.19 ± 0.02). Compared to previous results based on CCN measurements of laboratory generated aerosols, κorg derived from measurements during the CalNex campaign exhibited stronger increase with O : C atomic ratio and therefore substantially higher values for organics with average O : C greater than 0.5.

  12. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  13. Marine Primary Aerosol in the Mediterranean atmosphere: physical and chemical properties from a mesocosm study

    NASA Astrophysics Data System (ADS)

    D'anna, B.; Sellegri, K.; Charriere, B.; Sempere, R.; Mas, S.; George, C.; Meme, A.; R'Mili, B.; Schwier, A. N.; Rose, C.

    2013-12-01

    m. The hygroscopic properties were investigated by a CCN device. On-line chemical analysis of the sub-micrometer fraction was performed by a c-TOF-AMS. Off-line analysis of the SSA generated included TEM-EDX , LC-MS and IC, Thermo-optical analysis of EC-OC. The objective of the present study is to investigate the influence of water chemical and biological composition and biological activity on physical and chemical properties of the primary generated aerosol.

  14. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  15. Retrieval of aerosol optical properties over land using PMAp

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Lang, Ruediger; Poli, Gabriele; Holdak, Andriy

    2015-04-01

    The retrieval of aerosol optical properties is an important task for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolutions for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) is delivered as operational GOME product to our customers. The algorithms retrieve aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The next releases of PMAp will provide an extended set of aerosol and cloud properties which include AOD over land and an improved volcanic ash retrieval combining AVHRR and IASI. This presentation gives an overview on the existing product and the prototypes in development. The major focus is the discussion of the AOD retrieval over land implemented in the upcoming PMAp2 release. In addition, the results of our current validation studies (e.g. comparisons to AERONET, other satellite platforms and model data) are shown.

  16. Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Hu, Weiwei; Leong, Yu J.; Taylor, Nathan F.; Miettinen, Pasi; Palm, Brett B.; Mikkonen, Santtu; Collins, Don R.; Jimenez, Jose L.; Virtanen, Annele

    2016-09-01

    During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmospheric aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O : C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ˜ 50 % RH in the sampling inlets. While the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.

  17. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  18. Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration

    NASA Astrophysics Data System (ADS)

    Pöhlker, Christopher; Saturno, Jorge; Krüger, Mira L.; Förster, Jan-David; Weigand, Markus; Wiedemann, Kenia T.; Bechtel, Michael; Artaxo, Paulo; Andreae, Meinrat O.

    2014-05-01

    The phase and mixing state of atmospheric aerosols is a central determinant of their properties and thus their role in atmospheric cycling and climate. Particularly, the hygroscopic response of aerosol particles to relative humidity (RH) variation is a key aspect of their atmospheric life cycle and impacts. Here we applied X-ray microspectroscopy under variable RH conditions to internally mixed aerosol particles from the Amazonian rain forest collected during periods with anthropogenic pollution. Upon hydration, we observed substantial and reproducible changes in particle microstructure, which appear as mainly driven by efflorescence and recrystallization of sulfate salts. Multiple solid and liquid phases were found to coexist, especially in intermediate humidity regimes. We show that X-ray microspectroscopy under variable RH is a valuable technique to analyze the hygroscopic response of individual ambient aerosol particles. Our initial results underline that RH changes can trigger strong particle restructuring, in agreement with previous studies on artificial aerosols.

  19. Background Maritime Aerosol: Their Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The effect of human induced change in the aerosol concentration and properties, or the aerosol response to climate change (e.g. droughts producing fires or dust) should be measured relative to a "background aerosol". How to define this background aerosol, so that it is both measurable and useful? Here we use 10 stations located in the Pacific, Atlantic and Indian Oceans to answer this question. Using a data set of the spectral optical thickness measured by the Aerosol Robotic network (AERONET), extending 1-3 years, we find the background conditions for these stations. The oceanic background aerosol is the result of ocean emission and spray, and some residual long lived continental aerosol. Its source is very broadly spread and is expected to vary little in time. Pollution or dust sources are from specific locations, emitted and transported to the measuring site in specific combination of meteorological conditions. Therefore they are expected to vary with time. It follows that the background aerosol can be identified as the median for conditions with small variations. To define the background we compute the median of N consequent measurements. We use N=50 that in average cloudy conditions corresponds to 2-3 days of measurements and N=100 (4-5 days). Most high polluted or dusty conditions correspond to data sequences with high standard deviation (greater than 0.02 in optical thickness) and are excluded. From the remaining N point running medians with low standard deviations we derive again the median. This excludes those rare cases of pollution or dust that is stable during the N measurements. The results show that the background aerosol over the Pacific Ocean is characterize by optical thickness of 0.055 at 500 nm and Angstrom exponent of 0.74. Over the Atlantic Ocean the values are 0.070 and 1.1 respectively, with little influence of the assumed value of N (50 or 100). The derivation of the background uses 20,000 and 5000 medians respectively that passed the

  20. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  1. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  2. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  3. Simultaneous Measurement of Size, Composition, Hygroscopicity, and Density of Single Ambient Particles

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Han, J.; Oatis, S.

    2003-12-01

    The holly grail in aerosol climate interaction is a roadmap that takes one from emissions of aerosol and aerosol precursors through aerosol transformations, to optical and cloud effects and finally to climate impacts. A critical element on this path must be the behavior of aerosol as a function of atmospheric relative humidity, which in turn requires an understanding of the correlation between aerosol composition and hygroscopicity. For single component particles this problem is tractable and reasonably understood. But, the vast majority of particles in the real atmosphere are internal mixtures of hygroscopic salts, organic acids and or bases, long chain hydrocarbons, soot, mineral dust and the list go on. Hundreds of organic compounds with highly varying hygroscopicities can be found in single particles. It would be unrealistic to expect global climate models to include and track each of these compounds. A similar problem faces the experimental world, where measuring the size, detailed molecular composition and hygroscopicity of individual particles although, in principle possible, is impractical. Single particle mass spectroscopy can be used to classify particles as organics mixed with sulfate, for example. Or in some cases pinpoint the class of some of the organics found in the mixture. But it cannot yield a quantitative measure of relative amounts. In an attempt to address this issue we have developed the method to measure simultaneously hygroscopicity, size, and composition of individual ambient particles. However, the data from Long Island NY, where the vast majority of particles were internally mixed sulfate with organics, the correlation between composition and hygroscopicity was rather weak. This is due to the fact that single-laser single particle mass spectra cannot quantitatively measure the ratio of organics to sulfates. In contrast, we found a very clear correlation between hygroscopicity and particle density for a given class of particles. In this

  4. Cloud activation properties of organic aerosols observed at an urban site during CalNex-LA

    NASA Astrophysics Data System (ADS)

    Mei, F.; Hayes, P. L.; Ortega, A. M.; Jimenez, J.; Wang, J.

    2010-12-01

    hygroscopicity (κ, Petters and Kreidenweis, 2007, ACP) derived from the size-resolved CCN measurements ranges from 0.2 to 0.3 under the range of measured supersaturations. The derived particle κ increases with increasing particle diameter, which is consistent with observed decrease in organics volume fraction as particle size increases from 100 nm to 300 nm. Based on the particle hygroscopicity and aerosol chemical composition, the organics hygroscopicity (κOrg) was derived as 0.18±0.06, in agreement with κ of organics with the same O:C ratio reported in earlier studies (Chang et al. 2010 ACP; Duplissy et.al 2010 ACPD). Whereas organics strongly influence particle critical supersaturation, size-classified organic particles exhibit similar growth kinetics when compared to (NH4)2SO4 particles with the same critical supersaturation, suggesting aerosol organics observed during CalNex do not inhibit droplet growth through reducing the mass accommodation coefficient of water vapor.

  5. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  6. Variability of aerosol optical properties in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Cusack, M.; Alastuey, A.; Querol, X.

    2011-08-01

    Aerosol light scattering, absorption and particulate matter (PM) concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB) which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR). Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm) were 26.6±23.2 Mm-1 and 4.3±2.7 Mm-1, respectively and the mean aerosol absorption coefficient (@ 637 nm) was 2.8±2.2 Mm-1. Mean values of Single Scattering Albedo (SSA) and Ångström exponent (å) (calculated from 450 nm to 635 nm) at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC) for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g-1 and 11.8±2.2 m2 g-1, respectively, while the mean aerosol absorption cross section (MAC) was 10.4±2.0 m2 g-1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1) while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly dominated by coarser particles (å = 1.0±0.4). The sea breeze played an important role in transporting pollutants from the developed WMB coastlines towards inland rural areas

  7. Viscosity and electric properties of water aerosols

    NASA Astrophysics Data System (ADS)

    Shavlov, A. V.; Sokolov, I. V.; Dzhumandzhi, V. A.

    2016-09-01

    The flow of water mist in a narrow duct has been studied experimentally. The profile of the velocity of drops has been measured, and the viscosity of the mist has been calculated using the Navier-Stokes equation. It has been found that at low gradients of the rate of shear the viscosity of the mist can exceed that of clean air by tens and even hundreds of times. The electric charge of the drops has been measured. It has been found that the viscosity of the mist differs from that of clean air at gradients of the rate of shear that are less than the frequency of the establishment of electric equilibrium between the drops. A comparative analysis of the viscosities of the mist and a drop cluster has been carried out, and the dependence of the viscosity of the water aerosol on the radius and the charge of the drops has been predicted. The possible role of aerosols that contain submicron drops in the known "clear air turbulence" problem has been shown.

  8. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  9. Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols

    NASA Astrophysics Data System (ADS)

    Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.

    2002-05-01

    Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and

  10. Estimate of the aerosol properties over the ocean with POLDER

    NASA Astrophysics Data System (ADS)

    Deuzé, J. L.; Goloub, P.; Herman, M.; Marchand, A.; Perry, G.; Susana, S.; Tanré, D.

    2000-06-01

    The wide field of view imaging spectroradiometer Polarization and Directionality of the Earth's Reflectance (POLDER) developed by Centre National d'Etudes Spatiales and operated aboard the Japanese heliosynchronous platform Advanced Earth Observation Satellite (ADEOS) from October 30, 1996, to June 30, 1997, provided the first global systematic measurements of the spectral, directional, and polarized characteristics of the solar radiation reflected by the Earth/atmosphere system. These original observational capabilities offer an opportunity to enhance the characterization of several components of the global environment, especially the oceanic and terrestrial vegetal primary production, the aerosol physical and optical properties, and the tridimensional structure and microphysics of clouds. Here we examine the remote sensing of aerosols over the oceans. In a first step the aerosol optical thickness and Ångström exponent are derived from the radiance measurements. In a second step the polarization measurements are used for the retrieval of the aerosol refractive index. The inversion algorithm assumes spherical, nonabsorbing particles with monomodal lognormal size distribution. The adequacy of this modeling is discussed for a representative set of aerosol observations. Successful retrieval is generally achieved in the presence of small aerosols with Ångström exponent larger than ˜1.0. For such particles, polarization may provide information on the particle refractive index. As the Ångstrom exponent of the particle decreases, the data fitting residual errors increase, especially in polarized light, which prevents the retrieval of the aerosol refractive index. The trends of the discrepancies point out two shortcomings of the aerosol modeling. The theoretical results systematically underestimate the contribution of small polarizing particles in the polarization measurements for side-scattering angles ranging from 80° to 120°. This indicates very probably that

  11. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles.

  12. Study on optical and microphysical properties of mixed aerosols from lidar during the EMEP 2012 summer campaign at 45oN 26oE

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Nicolae, Doina; Belegante, Livio; Marmureanu, Luminita

    2013-04-01

    Aerosols optical and chemical properties in the upper layers of the atmosphere and near ground are variable, as function of the different mixtures of aerosol components resulting from their origin and transport over polluted areas. Due to a complex dynamics of air masses, the Romanian atmosphere has strong influences from dust and biomass-burning transported from South, West or East Europe. The dominant transport, and consequently the dominant aerosol type, depends on the season. As a result of the transport distance from the source and depending on the chemical and physical characteristics of the particles, tropospheric aerosols detected at Magurele, Romania, show different optical and microphysical properties than at the originating source. The differences are caused by the mixing with local particles, and also by the ageing processes and hygroscopic growth during the transport. This paper presents a statistical analysis of tropospheric aerosol optical properties during the EMEP (European Monitoring and Evaluation Programme) summer campaign (08 June - 17 July 2012), as retrieved from multiwavelength Raman and depolarization lidar data. Three elastic (1064, 532 and 355 nm), two Raman (607 and 387 nm) and one depolarization channel (532 nm parallel / 532 nm cross) are used to independently retrieve the backscatter coefficient, extinction coefficient and linear particle depolarization ratio of aerosols between 0.8 and 10 km altitude. Intensive optical parameters (Angstrom exponent, color ratios and color indexes) and microphysical parameters (effective radius, complex refractive index) from multiwavelength optical data inversion of the layer mean values are obtained. During the campaign, aerosol profiles were measured daily around sunset, following EARLINET standards. An intensive 3-days continuous measurements exercise was also performed. Layers were generally present above 2 km and bellow 6 km altitude, but descent of air masses from the free troposphere to the

  13. Vertically Resolved Aerosol Optical Properties over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Jonsson, H.; Strawa, A.; Provencal, B.; Covert, D.; Arnott, P.; Bucholtz, A.; Pilewskie, P.; Pommier, J.; Rissman, T.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. To this end, the ARM program will conduct an Aerosol Intensive Operational Period (IOP) in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma. The IOP involves airborne measurements from two airplanes over the heavily instrumented SGP site. We will give an overview of early airborne results obtained aboard Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The aircraft will carry instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size including such novel techniques as the photoacoustic and cavity ring-down methods. Aerosol optical depth and extinction will be measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore up- and downwelling solar (broadband and spectral) and infrared radiation will be measured using three different instruments. The up-looking radiation instruments will be mounted on a newly developed stabilized platform, which will keep the instruments level up to aircraft pitch and roll angles of 10 degrees. Additional effort will be directed toward measurement of cloud condensation nucleus concentration as a function of supersaturation and relating CCN concentration to aerosol composition and size distribution. This relation is central to description of the aerosol indirect effect.

  14. Midinfrared optical properties of petroleum oil aerosols

    NASA Astrophysics Data System (ADS)

    Gurton, K. P.; Bruce, C. W.

    1994-08-01

    The mass normalized absorption and extinction coefficients were measured for fog oil aerosol at 3.4 micrometers with a combined photoacoustic and transmissometer system. An extinction spectral profile was determined over a range of infrared (IR) wavelengths from 2.7 to 4.0 micrometers by an IR scanning transmissometer. The extinction spectrum was mass normalized by referencing it to the photoacoustic portion of the experiment. A corresponding Mie calculation was conducted and compared with the above measurements. Agreement is good for the most recent optical coefficients. An extrapolation of this data to other similar petroleum products such as kerosene or diesel fuel that exhibit similar bulk absorption characteristics were briefly examined.

  15. Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites.

    NASA Astrophysics Data System (ADS)

    Delene, David J.; Ogren, John A.

    2002-03-01

    Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in aerosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations. The mean aerosol light absorption coefficient (ap) is 10 times larger and the mean aerosol scattering coefficient (sp) is 5 times larger at the anthropogenically influenced site at BND than at BRW. The aerosol optical properties of single scattering albedo (o) and hemispheric backscatter fraction (b) have variability of approximately ±3% and ±8%, respectively, in mean values among the four stations. To assess the importance of the variability in o and b on top of the atmosphere aerosol radiative forcing calculations, the aerosol radiative forcing efficiency (F/) is calculated. The F/ is defined as the aerosol forcing (F) per unit optical depth () and does not depend explicitly on the amount of aerosol present. Based on measurements at four North American stations, radiative transfer calculations that assume fixed aerosol properties can have errors of 1%-6% in the annual average forcing at the top of the atmosphere due to variations in average single scattering albedo and backscatter fraction among the sites studied. The errors increase when shorter-term variations in aerosol properties are considered; for monthly and hourly timescales, errors are expected to be greater than 8% and 15%, respectively, approximately one-third of the time. Systematic relationships exist between various aerosol optical properties [ap, o, b, F/, and Ångström exponent (å)] and the amount of aerosol present (measured by sp) that are qualitatively similar but quantitatively

  16. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    SciTech Connect

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan; Petters, Markus D.; O'Brien, Rachel; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.

  17. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    SciTech Connect

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; Petters, Markus D.; O’Brien, Rachel E.; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.

  18. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE PAGES

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  19. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  20. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  1. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions

    SciTech Connect

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, E.; Lohmann, U.; Baltensperger, Urs; Cziczo, Daniel J.

    2009-11-01

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric processing of

  2. Influence of Delhi Pollution on Aerosol Properties Over Greater Noida

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Singh, R. P.; Kumar, R.

    2015-12-01

    Influence of Delhi Pollution on Aerosol Properties over Greater NoidaManish Sharma1, Ramesh P. Singh2 and Rajesh Kumar3 1Research and Technology Development Centre, Sharda University, Greater Noida, India. 2School of Earth and Environmental Sciences, Schmid College of Science, Chapman University, Orange 92866, USA 3School of Basic Sciences and Research, Sharda University, Greater Noida, India. Delhi capital of India is highly polluted during winter and summer seasons. Due to dominant westerly winds the air mass influence its neighboring city Greater Noida which is located 60 km south east of Delhi. Detailed analysis of multi satellite data and ground observations have been carried out during 2001-2015. The ground observation and satellite data show dynamic aerosol optical parameters over Greater Noida. During winter and summer seasons, dominant westerly wind outflow pollutants of Delhi that mix with the local anthropogenic emissions of Greater Noida influencing aerosol properties at different pressure levels. The characteristics of trace gases and aerosol parameters over Delhi and Greater Noida will be presented. The air quality is severely affected from the outflow of pollutants from Delhi which is threat to people living in the area. Due to dominant winds the air mass further transported towards eastern parts of Indo-Gangetic plains affecting weather conditions of the major cities.

  3. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  4. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  5. Aerosols physical properties at Hada Al Sham, western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.-P.; Hussein, T.; Aaltonen, V.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Almazroui, M.; Almehmadi, F. M.; Al Zawad, F. M.; Hakala, J.; Khoder, M.; Neitola, K.; Petäjä, T.; Shabbaj, I. I.; Hämeri, K.

    2016-06-01

    This is the first time to clearly derive the comprehensive physical properties of aerosols at a rural background area in Saudi Arabia. Aerosol measurements station was established at a rural background area in the Western Saudi Arabia to study the aerosol properties. This study gives overview of the aerosol physical properties (PM10, PM2.5, black carbon and total number concentration) over the measurement period from November 2012 to February 2015. The average PM10 and PM2.5 concentrations were 95 ± 78 μg m-3 (mean ± STD, at ambient conditions) and 33 ± 68 μg m-3 (at ambient conditions), respectively. As expected PM10 concentration was dominated by coarse mode particles (PM10-PM2.5), most probably desert dust. Especially from February to June the coarse mode concentrations were high because of dust storm season. Aerosol mass concentrations had clear diurnal cycle. Lower values were observed around noon. This behavior is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). During the day time the boundary layer is evolving, causing enhanced mixing and dilution leading to lower concentration. PM10 and PM2.5 concentrations were comparable to values measured at close by city of Jeddah. Black carbon concentration was about 2% and 6% of PM10 and PM2.5 mass, respectively. Total number concentration was dominated by frequent new particle formation and particle growth events. The typical diurnal cycle in particle total number concentration was clearly different from PM10 and PM2.5.

  6. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  7. Aerosol Particle Property Comparisons Between MISR and AERONET Retrieved Values

    NASA Astrophysics Data System (ADS)

    Gaitley, B. J.; Kahn, R. A.

    2005-12-01

    Aerosol optical depth (AOT) data from the Multi-angle ImagingSpectroRadiometer (MISR) instrument aboard the NASA Earth Observing System's Terra satellite have already been systematically compared with ground-based data from the AERONET network. As a result of that study, MISR data are now being reprocessed with improved aerosol algorithms and aerosol models. The follow-on study reported here systematically compares MISR and AERONET particle micro-physical properties. This project is currently underway. Our goal is to use the statistical power of numerous AERONET measurements to map the behavior of the MISR property retrievals, identify strength and surprises in the MISR data, and use this information both to refine further the MISR retrieval algorithms and to assess the likely error envelopes in the MISR products. Multi-year data from 36 carefully chosen sites having good long-term measurement records are stratified by broad classes of aerosol air mass types: maritime, biomass burning, desert dust, pollution, and continental aerosols. Available AERONET spectral AOT measurements for two-hour windows around MISR overpass times are interpolated to MISR wavelengths and averaged, and AOT variability over the two-hour window is noted. Sky-scan AERONET data, taken only once an hour, are also were interpolated to MISR wavelengths, and are averaged over a four-hour window provided the variability is smaller than MISR sensitivity to particle properties based on previous work. MISR retrievals over the 17.6 km standard retrieval regions that include the AERONET sites are preferentially used for the comparison. The MISR measurements are averages of over all "successful" aerosol type models in the MISR algorithm climatology, where success is measured by the degree to which multi-angle, multi-spectral top-of-atmosphere radiances match modeled radiances, using several chi-squared tests. Angstrom exponent, single scattering albedo, and size distribution mean values and variance

  8. A COMPARISON OF CMAQ-BASED AEROSOL PROPERTIES WITH IMPROVE, MODIS, AND AERONET DATA

    EPA Science Inventory

    We compare select aerosol Properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations with routine data from the National Aeronautics and Space Administration (NASA) satellite-borne Moderate Resolution Imaging Spectro-radiometer...

  9. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme.

    PubMed

    Yu, Pengfei; Toon, Owen B; Bardeen, Charles G; Mills, Michael J; Fan, Tianyi; English, Jason M; Neely, Ryan R

    2015-06-01

    A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size-resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1-CARMA is approximately ∼2.6 times as much computer time as the standard three-mode aerosol model in CESM1 (CESM1-MAM3) and twice as much computer time as the seven-mode aerosol model in CESM1 (CESM1-MAM7) using similar gas phase chemistry codes. Aerosol spatial-temporal distributions are simulated and compared with a large set of observations from satellites, ground-based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

  10. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  11. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  12. Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: insight from observations of aerosol and clouds during ISDAC

    SciTech Connect

    Earle, Michael; Liu, Peter S.; Strapp, J. Walter; Zelenyuk, Alla; Imre, D.; McFarquhar, Greg; Shantz, Nicole C.; Leaitch, W. R.

    2011-11-04

    Aircraft measurements during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 are used to investigate aerosol indirect effects in Arctic clouds. Two aerosol-cloud regimes are considered in this analysis: single-layer stratocumulus cloud with below-cloud aerosol concentrations (N{sub a}) below 300 cm{sup -3} on April 8 and April 26-27 (clean cases); and inhomogeneous layered cloud with N{sub a} > 500 cm{sup -3} below cloud base on April 19-20, concurrent with a biomass burning episode (polluted cases). Vertical profiles through cloud in each regime are used to determine average cloud microphysical and optical properties. Positive correlations between the cloud droplet effective radius (Re) and cloud optical depth ({tau}) are observed for both clean and polluted cases, which are characteristic of optically-thin, non-precipitating clouds. Average Re values for each case are {approx} 6.2 {mu}m, despite significantly higher droplet number concentrations (Nd) in the polluted cases. The apparent independence of Re and Nd simplifies the description of indirect effects, such that {tau} and the cloud albedo (A) can be described by relatively simple functions of the cloud liquid water path. Adiabatic cloud parcel model simulations show that the marked differences in Na between the regimes account largely for differences in droplet activation, but that the properties of precursor aerosol also play a role, particularly for polluted cases where competition for vapour amongst the more numerous particles limits activation to larger and/or more hygroscopic particles. The similarity of Re for clean and polluted cases is attributed to compensating droplet growth processes for different initial droplet size distributions.

  13. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  14. Relative humidity impact on aerosol parameters in a Paris suburban area

    NASA Astrophysics Data System (ADS)

    Randriamiarisoa, H.; Chazette, P.; Couvert, P.; Sanak, J.; Mégie, G.

    2006-05-01

    Measurements of relative humidity (RH) and aerosol parameters (scattering cross section, size distributions and chemical composition), performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the "Etude et Simulation de la Qualité de l'air en Ile-de-France" (ESQUIF) program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  15. Relative humidity impact on aerosol parameters in a Paris suburban area

    NASA Astrophysics Data System (ADS)

    Randriamiarisoa, H.; Chazette, P.; Couvert, P.; Sanak, J.; Mégie, G.

    2005-09-01

    Measurements of relative humidity (RH) and aerosol parameters (scattering cross section, size distributions and chemical composition), performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the ''Etude et Simulation de la Qualité de l'air en Ile-de-France'' (ESQUIF) program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  16. Studing Taklamakan aerosol properties with Lidar (STAPL)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By now, the global impacts of atmospheric dust have been well-established. Nevertheless, relevant properties such as size distribution, depolarization ratio, and even single-scattering albedo have been shown to vary substantially between dust producing regions and are also strongly dependent on the ...

  17. Aerosol properties and associated radiative effects over Cairo (Egypt)

    NASA Astrophysics Data System (ADS)

    El-Metwally, M.; Alfaro, S. C.; Wahab, M. M. Abdel; Favez, O.; Mohamed, Z.; Chatenet, B.

    2011-02-01

    Cairo is one of the largest megacities in the World and the particle load of its atmosphere is known to be particularly important. In this work we aim at assessing the temporal variability of the aerosol's characteristics and the magnitude of its impacts on the transfer of solar radiation. For this we use the level 2 quality assured products obtained by inversion of the instantaneous AERONET sunphotometer measurements performed in Cairo during the Cairo Aerosol CHaracterization Experiment (CACHE), which lasted from the end of October 2004 to the end of March 2006. The analysis of the temporal variation of the aerosol's optical depth (AOD) and spectral dependence suggests that the aerosol is generally a mixture of at least 3 main components differing in composition and size. This is confirmed by the detailed analysis of the monthly-averaged size distributions and associated optical properties (single scattering albedo and asymmetry parameter). The components of the aerosol are found to be 1) a highly absorbing background aerosol produced by daily activities (traffic, industry), 2) an additional, 'pollution' component produced by the burning of agricultural wastes in the Nile delta, and 3) a coarse desert dust component. In July, an enhancement of the accumulation mode is observed due to the atmospheric stability favoring its building up and possibly to secondary aerosols being produced by active photochemistry. More generally, the time variability of the aerosol's characteristics is due to the combined effects of meteorological factors and seasonal production processes. Because of the large values of the AOD achieved during the desert dust and biomass burning episodes, the instantaneous aerosol radiative forcing (RF) at both the top (TOA) and bottom (BOA) of the atmosphere is maximal during these events. For instance, during the desert dust storm of April 8, 2005 RF BOA, RF TOA, and the corresponding atmospheric heating rate peaked at - 161.7 W/m 2, - 65.8 W/m 2

  18. Optical properties of aerosols in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Skorov, Yu. V.; Keller, H. U.; Rodin, A. V.

    2008-04-01

    In the frame of fractal modeling of tholin aggregates we made a systematic analysis of their optical properties. Ballistic particle-cluster aggregation (BPCA) and diffusion-limited aggregation (DLA) of spherical primary particles (monomers) identical in material composition were considered. Aggregates composed of identical particles (monodisperse cluster), as well as of size-distributed particles (polydisperse cluster), were simulated. To calculate the light-scattering models, the code based on the superposition T-matrix method is used. Orientationally averaged properties of light scattering by model particles were extracted, and the normalized phase function and the degree of linear polarization were calculated as functions of scattering angle. We concluded that: (a) aggregation mechanism as well as specific internal structure of the clusters play only a minor role, and for the future it is not necessary to investigate aggregates of different types; (b) the intensity is very sensitive both to the size parameter of forming particles x and to the size parameter of the aggregates X; (c) characterization of the aggregates by the number of monomers is insufficient to retrieve physical properties of aggregates from optical measurement; and (d) it is very desirable to include into the analysis polarization data calculated for the different clusters.

  19. Evaluation of Aerosol Properties in GCMs using Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jiang, J. H.; Su, H.; Zhang, H.

    2015-12-01

    Atmospheric aerosols from natural or anthropogenic sources have profound impacts on the regional and global climate. Currently the radiative forcing of aerosols predicted by global climate models remains highly uncertain, representing the largest uncertainty in climate predictions. The uncertainty mainly arises from the complicated aerosol chemical and physical properties, coarse emission inventories for pre-cursor gases as well as unrealistic representations of aerosol activation and cloud processing in global climate models. In this study, we will utilize multiple satellite measurements including MODIS, MISR and CALIPSO to quantitatively evaluate aerosol simulations from climate models. Our analyses show that the global means in AOD climatology from NCAR CAM5 and GFDL AM3 simulations are comparable with satellite measurements. However, the overall correlation coefficient between the AOD spatial patterns from CAM5 and satellite is only 0.4. Moreover, at finer scales, the magnitude of AOD in CAM5 is much lower than satellite measurements for most of the non-dust regions, especially over East Asia. GFDL AM3 shows better AOD simulations over East Asia. The underestimated AOD over remote maritime areas in CAM5 was attributed to the unrealistic wet removal processes in convective clouds of CAM5. Over continents, biases on AOD could stem from underestimations in the emissions inventory and unresolved sub-grid variations of relative humidity due to the model's coarse resolution. Uncertainty from emission inventory over developing countries in East Asia will be assessed using the newly updated Regional Emission inventory in Asia (REAS) and Multi-resolution Emission Inventory in China (MEIC) in the model simulations.

  20. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    of aerosol properties in a marine environment from the boundary layer to the free troposphere. The analysis of these data will help us understand the role of aerosol aging, vertical transport and distribution in a marine environment.

  1. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  2. Radiative Properties of Smoke and Aerosol Over Land Surfaces

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.

  3. Ice Nucleation Properties of Amospherically Aged Biomass Burning Aerosol

    NASA Astrophysics Data System (ADS)

    Polen, M.; Lawlis, E.; Sullivan, R. C.

    2015-12-01

    Biomass burning can sometimes emit surprisingly active ice nucleating particles, though these emissions are not at all consistent between biomass fuel sources and burns. Soot from biomass combustion has been attributed to some but not all of the ice nucleating potential of biomass burning aerosol (BBA), while fossil fuel combustion soot emits very weak ice nucleants. The causes of the sometimes significant but variable ice nucleating ability of BBA are still largely unknown. BBA experiences significant atmospheric aging as the plume evolves and mixes with background air, yet almost no reports exploring the effects of atmospheric aging on the freezing properties of BBA have been made. We have performed some of the first experiments to determine the effects of simulated atmospheric aging on these ice nucleation properties, using a chamber reactor. T