Science.gov

Sample records for aerosol hygroscopicity parameter

  1. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Merkulov, V.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2011-11-01

    In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm, which can be deconvoluted into a dilute intrinsic hygroscopicity parameter (κm,∞) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For sodium chloride, the κm-interaction model (KIM) captures the observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1-99%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. By application of KIM to the measurement data we can distinguish three different regimes of hygroscopicity in the investigated aerosol samples: (I) A quasi-eutonic regime at low relative humidity (~60% RH) where the solutes co-exist in an aqueous and non-aqueous phase; (II) a gradually deliquescent regime at intermediate humidity (~60%-90% RH) where different solutes undergo gradual dissolution in the aqueous phase; and (III) a dilute regime at high humidity (≳90% RH) where the solutes are fully dissolved approaching their dilute intrinsic hygroscopicity. The characteristic features of the three hygroscopicity regimes are similar for both samples, while the RH threshold values vary as expected for samples of different chemical composition. In each regime, the

  2. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    PubMed

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate.

  3. A case study of single hygroscopicity parameter and its link to the functional groups and phase transition for urban aerosols in Taipei City

    NASA Astrophysics Data System (ADS)

    Hung, Hui-Ming; Hsu, Chia-Hung; Lin, Wei-Ting; Chen, Yu-Quan

    2016-05-01

    The hygroscopicity, functional groups and phase transitions of urban aerosol particles in Taipei City were studied using a cloud condensation nuclei counter (CCNc) with a scanning mobility particle sizer (SMPS) and an attenuated total reflectance with infrared (ATR-IR) detection technique. With the assumption of larger particles being activated first, the derived single hygroscopicity parameter (κ) exhibited an increasing trend with particle size, i.e., from 0.022 ± 0.01 at 87 ± 10 nm to 0.13 ± 0.03 at 240 ± 20 nm. The collected size-selected particles were characterized using ATR-IR for the functional groups of alkyl, carbonyl, ammonium, sulfate and nitrate, which showed various size dependence patterns, linked to different formation mechanisms. The hygroscopic response based on the ratio (xW_solute) for sample film of absorption by the enhanced water-stretching peak to that by the selected solute showed a better consistency with pure ammonium sulfate for sub-micron size particles. Based on the derived ammonium sulfate volume fraction from IR analysis, the κ received from CCNc measurements was concluded mainly contributed by ammonium sulfate for sub-micrometer particles. The increasing trend of sodium nitrate absorbance at aerosol diameter ≥1 μm was due to a reaction of nitric acid with sea salt particles. The micrometer sized particles were apparent not only in a significantly higher xW_solute than pure sodium nitrate but also had a deliquescence RH of 69 ± 1%, similar to that of sodium nitrate-sodium chloride mixtures. Overall, the organic species in this study exhibited a low hygroscopicity with less than 0.036 of contribution for the overall κ, and the major hygroscopic material of urban aerosols consisted primarily of ammonium sulfate in the sub-micrometer particles and sodium nitrate with sea salt in the coarse particles.

  4. The hygroscopicity of indoor aerosol particles

    SciTech Connect

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH{sub 4}){sub 2}SO{sub 4}, and (NH{sub 4})HS0{sub 4} particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components.

  5. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  6. Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign

    NASA Astrophysics Data System (ADS)

    Ye, Xingnan; Tang, Chen; Yin, Zi; Chen, Jianmin; Ma, Zhen; Kong, Lingdong; Yang, Xin; Gao, Wei; Geng, Fuhai

    2013-01-01

    The hygroscopic properties of submicrometer urban aerosol particles were studied during the 2009 Mirage-Shanghai Campaign. The urban aerosols were composed of more-hygroscopic and nearly-hydrophobic particles, together with a trace of less-hygroscopic particles. The mean hygroscopicity parameter κ of the more-hygroscopic mode varied in the range of 0.27-0.39 depending on particle size. The relative abundance of the more-hygroscopic particles at any size was ca. 70%, slightly increasing with particle size. The number fraction of the nearly-hydrophobic particles fluctuated between 0.1 and 0.4 daily, in accordance with traffic emissions and atmospheric diffusion. The results from relative humidity dependence on hygroscopic growth and chemical analysis of fine particles indicated that particulate nitrate formation through the homogenous gas-phase reaction was suppressed under ammonia-deficient atmosphere in summer whereas the equilibrium was broken by more available NH3 during adverse meteorological conditions.

  7. Relating hygroscopicity and composition of organic aerosol particulate matter

    SciTech Connect

    Duplissy, J.; DeCarlo, P. F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, T.; Gysel, M.; Aiken, A. C.; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, D. R.; Collins, D. R.; Tomlinson, J.; Baltensperger, U.

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg = 2.2 × f44 - 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. Finally, the use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.

  8. Hygroscopicity of Early Earth and Titan Laboratory Aerosol Analogs

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.; Beaver, M. R.; Freedman, M. A.; Toon, O. B.; Tolbert, M. A.

    2009-12-01

    We have explored the ability of organic hazes, known to exist in the atmosphere of Titan and postulated to have existed in the Archean Earth atmosphere, to act as cloud condensation nuclei (CCN). These laboratory aerosol analogs are generated via UV-photolysis of early Earth and Titan analog gas mixtures and are designed to mimic the present day atmospheric conditions on Titan and the early Earth atmosphere before the rise of oxygen. Water uptake is observed to occur on the early Earth and Titan aerosol analogs at relative humidities of 80% - 90% via optical growth measurements using cavity ring-down aerosol extinction spectroscopy. We find the optical growth of these aerosols is similar to known slightly-soluble organic acids, such as phthalic and pyromellitic acids. On average, the optical growth of the early Earth analog is slightly larger than the Titan analog. In order to translate our measurements obtained in a subsaturated regime into the CCN ability of these particles, we rely on the hygroscopicity parameter κ, developed by Petters & Kreidenweis (2007). We retrieve κ = 0.17±0.03 and 0.06±0.01 for the early Earth and Titan analogs, respectively. This early Earth analog hygroscopicity value indicates that the aerosol could activate at reasonable water vapor supersaturations. We use previous aerosol mass spectrometry results to correlate the chemical structure of the two types of analog with their hygroscopicity. The hygroscopicity of the early Earth aerosol analog, coupled with the apparent lack of other good CCN during the Archean, helps explain the role of the organic haze in the indirect effect of clouds on the early Earth and indicates that it may have had a significant impact on the hydrological cycle.

  9. Hygroscopicity of Black-Carbon-Containing Aerosol in Wildfire Plumes

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Markovic, M. Z.; Fahey, D. W.; Yokelson, R. J.; Jimenez, J. L.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.; Diskin, G. S.; Huey, L. G.; Gao, R. S.

    2015-12-01

    Water uptake by black carbon (BC) containing aerosol has been quantified in wildfire plumes of varying age (from 1 to ~40 hr old) sampled in North America during the NASA SEAC4RS mission of 2013. Measurements were made in flight using parallel single-particle soot photometers (SP2) that simultaneously detected the BC component of the ambient aerosol ensemble under contrasting humidity conditions. The hygroscopicity parameter, κ, of material internally mixed with BC derived from this data set is consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. We explore the temporal evolution of κ during aging of the Yosemite Rim Fire plume to constrain the rate of conversion of BC-containing aerosol from hydrophobic to hydrophilic modes in these emissions. We also investigate the relationship between κ values for BC-containing particles and the oxidation state and hygroscopicity of the bulk aerosol. These observations have implications for BC transport and removal in biomass burning plumes and provide important constraints on model treatment of BC optical and microphysical properties from wildfire sources in ambient conditions.

  10. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  11. Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado

    NASA Astrophysics Data System (ADS)

    Levin, E. J. T.; Prenni, A. J.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Winkler, P. M.; Kreidenweis, S. M.; DeMott, P. J.; Jimenez, J. L.; Smith, J. N.

    2014-03-01

    Aerosol hygroscopicity describes the ability of a particle to take up water and form a cloud droplet. Modeling studies have shown sensitivity of precipitation-producing cloud systems to the availability of aerosol particles capable of serving as cloud condensation nuclei (CCN), and hygroscopicity is a key parameter controlling the number of available CCN. Continental aerosol is typically assumed to have a representative hygroscopicity parameter, κ, of 0.3; however, in remote locations this value can be lower due to relatively large mass fractions of organic components. To further our understanding of aerosol properties in remote areas, we measured size-resolved aerosol chemical composition and hygroscopicity in a forested, mountainous site in Colorado during the six-week BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Rocky Mountain Biogenic Aerosol Study) campaign. This campaign followed a year-long measurement period at this site, and results from the intensive campaign shed light on the previously reported seasonal cycle in aerosol hygroscopicity. New particle formation events were observed routinely at this site and nucleation mode composition measurements indicated that the newly formed particles were predominantly organic. These events likely contribute to the dominance of organic species at smaller sizes, where aerosol organic mass fractions were between 70 and 90%. Corresponding aerosol hygroscopicity was observed to be in the range κ = 0.15-0.22, with hygroscopicity increasing with particle size. Aerosol chemical composition measured by an aerosol mass spectrometer and calculated from hygroscopicity measurements agreed very well during the intensive study, with an assumed value of κorg = 0.13 resulting in the best agreement.

  12. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  13. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  14. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  15. Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties

    SciTech Connect

    Herich, Hanna; Kammermann, Lukas; Friedman, Beth; Gross, Deborah S.; Weingartner, E.; Lohmann, U.; Spichtinger, Peter; Gysel, Martin; Baltensperger, Urs; Cziczo, Daniel J.

    2009-07-10

    Sub-arctic aerosols were sampled during July 2007 at the Abisko Scientific Research Station Stordalen site in northern Sweden with an instrument setup consisting of a custom-built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) connected in series to a single particle mass spectrometer. Aerosol chemical composition in the form of bipolar single particle mass spectra was determined as a function of hygroscopic growth both in situ and in real time. The HTDMA was deployed at a relative humidity of 82% and particles with a dry mobility diameter of 260 nm were selected. Aerosols from two distinct airmasses were analyzed during the sampling period. Sea salt aerosols were found to be the dominant particle group with the highest hygroscopicity. High intensities of sodium and related peaks in the mass spectra were identified as exclusive markers for large hygroscopic growth. Particles from biomass combustion were found to be the least hygroscopic aerosol category. Species normally considered soluble (e.g., sulfates and nitrates) were found in particles ranging from high to low hygroscopicity. Furthermore, the signal intensities of the peaks related to these species did not correlate with hygroscopicity.

  16. Numerical Model to Characterize the Size Increase of Combination Drug and Hygroscopic Excipient Nanoparticle Aerosols.

    PubMed

    Longest, P Worth; Hindle, Michael

    2011-01-01

    Enhanced excipient growth is a newly proposed respiratory delivery strategy in which submicrometer or nanometer particles composed of a drug and hygroscopic excipient are delivered to the airways in order to minimize extrathoracic depositional losses and maximize lung retention. The objective of this study was to develop a validated mathematical model of aerosol size increase for hygroscopic excipients and combination excipient-drug particles and to apply this model to characterize growth under typical respiratory conditions. Compared with in vitro experiments, the droplet growth model accurately predicted the size increase of single component and combination drug and excipient particles. For typical respiratory drug delivery conditions, the model showed that droplet size increase could be effectively correlated with the product of a newly defined hygroscopic parameter and initial volume fractions of the drug and excipient in the particle. A series of growth correlations was then developed that successively included the effects of initial drug and excipient mass loadings, initial aerosol size, and aerosol number concentration. Considering EEG delivery, large diameter growth ratios (2.1-4.6) were observed for a range of hygroscopic excipients combined with both hygroscopic and non-hygroscopic drugs. These diameter growth ratios were achieved at excipient mass loadings of 50% and below and at realistic aerosol number concentrations. The developed correlations were then used for specifying the appropriate initial mass loadings of engineered insulin nanoparticles in order to achieve a predetermined size increase while maximizing drug payload and minimizing the amount of hygroscopic excipient.

  17. Optical and Hygroscopic Studies of Aerosols In Simulated Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Hasenkopf, Christa A.

    2011-08-01

    in the UV-Vis than Khare et al. (1984) values. These results may imply that (a) photolysis is not the dominant source of aerosol on Titan, and/or (b) the optical retrievals are dominated by the more absorbing and scattering electric discharge generated aerosol. For the hygroscopicity studies, the optical growth of the early Earth analog at various relative humidities (RH) was measured, as well as a Titan analog for comparison. The retrieved hygroscopic parameter for the early Earth analog indicates that a humidified early Earth aerosol could have contributed to a larger antigreenhouse effect on the early Earth atmosphere than previously modeled with dry aerosol. Such effects would be important in regions where RH is greater than 50% because such high humidities are needed for significant amounts of water to be on the aerosol. The retrieved hygroscopicity parameter also indicates that the particles could activate into cloud droplets at reasonable supersaturations. In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would create short-lived, optically thin clouds. Such clouds, if predominant on the early Earth, would have a lower albedo than clouds today, thereby warming the planet relative to current day clouds.

  18. Initial size distributions and hygroscopicity of indoor combustion aerosol particles

    SciTech Connect

    Li, W.; Hopke, P.K.

    1993-10-01

    Cigarette smoke, incense smoke, natural gas flames, propane fuel flames, and candle flames are contributors of indoor aerosol particles. To provide a quantitative basis for the modeling of inhaled aerosol deposition pattern, the hygroscopic growth of particles from these five sources as well as the source size distributions were measured. Because the experiments were performed on the bases of particles of single size, it provided not only the averaged particle`s hygroscopic growth of each source, but also the detailed size change for particles of different sizes within the whole size spectrum. The source particle size distribution measurements found that cigarette smoke and incense smoke contained particles in the size range of 100-700 nm, while the natural gas, propane, and candle flames generated particles between 10 and 100 nm. The hygroscopic growth experiments showed that these combustion aerosol particles could grow 10% to 120%, depending on the particle sizes and origins. 18 refs., 15 figs., 3 tabs.

  19. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  20. Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Maßling, A.; Wiedensohler, A.; Busch, B.; Neusüß, C.; Quinn, P.; Bates, T.; Covert, D.

    2003-09-01

    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (National Oceanic and Atmospheric Administration) Research Vessel Ronald H. Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. Simultaneously, a seven-stage cascade impactor of which 3 stages were in the sub-mm size range was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-mm size range, 1 in the sup-mm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The occurrence of different air masses was classified into special time periods signifying the origin of the observed aerosol. All time periods showed a group of particles with high hygroscopic growth. The measured average hygroscopic growth factors defined by the ratio of dry and wet particle

  1. Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia

    NASA Astrophysics Data System (ADS)

    Sánchez Gácita, Madeleine; Longo, Karla M.; Freire, Julliana L. M.; Freitas, Saulo R.; Martin, Scot T.

    2017-02-01

    Smoke aerosols prevail throughout Amazonia because of widespread biomass burning during the dry season, and external mixing, low variability in the particle size distribution and low particle hygroscopicity are typical. There can be profound effects on cloud properties. This study uses an adiabatic cloud model to simulate the activation of smoke particles as cloud condensation nuclei (CCN) for three hypothetical case studies, chosen as to resemble biomass burning aerosol observations in Amazonia. The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. For a population with κp = 0.04, an overestimation of the cloud droplet number concentration Nd for the three selected case studies between 22.4 ± 1.4 and 54.3 ± 3.7 % was obtained when assuming a hygroscopicity parameter κp = 0.20. Assuming internal mixing of the aerosol population led to overestimations of up to 20 % of Nd when a group of particles with medium hygroscopicity was present in the externally mixed population cases. However, the overestimations were below 10 % for external mixtures between very low and low-hygroscopicity particles, as seems to be the case for Amazon smoke particles. Kinetic limitations were significant for medium- and high-hygroscopicity particles, and much lower for very low and low-hygroscopicity particles. When particles were assumed to be at equilibrium and to respond instantly to changes in the air parcel supersaturation, the overestimation of the droplet concentration was up to ˜ 100 % in internally mixed populations, and up to ˜ 250 % in externally mixed ones, being larger for the higher values of hygroscopicity. In addition, a perceptible delay between the times when maximum supersaturation and maximum aerosol activated fraction are reached was noticed and, for aerosol populations with effective hygroscopicity κpeff higher than a certain threshold value, the delay in

  2. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  3. Hygroscopic and chemical characterisation of Po Valley aerosol

    NASA Astrophysics Data System (ADS)

    Bialek, J.; Dall Osto, M.; Vaattovaara, P.; Decesari, S.; Ovadnevaite, J.; Laaksonen, A.; O'Dowd, C.

    2014-02-01

    Continental summer-time aerosol in the Italian Po Valley was characterised in terms of hygroscopic properties and the influence of chemical composition therein. Additionally, the ethanol affinity of particles was analysed. The campaign-average minima in hygroscopic growth factors (HGFs, at 90% relative humidity) occurred just before and during sunrise from 03:00 to 06:00 LT (all data are reported in the local time), but, more generally, the hygroscopicity during the whole night is very low, particularly in the smaller particle sizes. The average HGFs recorded during the low HGF period were in a range from 1.18 (for the smallest, 35nm particles) to 1.38 (for the largest, 165 nm particles). During the day, the HGF gradually increased to achieve maximum values in the early afternoon hours 12:00-15:00, reaching 1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting case scenarios were encountered during the measurement period: Case 1 was associated with westerly air flow moving at a moderate pace and Case 2 was associated with more stagnant, slower moving air from the north-easterly sector. Case 1 exhibited weak diurnal temporal patterns, with no distinct maximum or minimum in HGF or chemical composition, and was associated with moderate non-refractory aerosol mass concentrations (for 50% size cut at 1 μ) of the order of 4.5 μg m-3. For Case 1, organics contributed typically 50% of the mass. Case 2 was characterised by >9.5 μg m-3 total non-refractory mass (<1 μ) in the early morning hours (04:00), decreasing to ~3 μg m-3 by late morning (10:00) and exhibited strong diurnal changes in chemical composition, particularly in nitrate mass but also in total organic mass concentrations. Specifically, the concentrations of nitrate peaked at night-time, along with the concentrations of hydrocarbon-like organic aerosol (HOA) and of semi-volatile oxygenated organic aerosol (SV-OOA). In general, organic growth factors (OGFs) followed a trend which was

  4. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Bas Henzing, J. S.; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs

    2016-06-01

    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at ˜ 100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to ˜ 700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34 ± 0.12 and 0.19 ± 0.07 for 500 nm particles, at ˜ 100 and ˜ 700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18 ± 0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from

  5. On the Physicochemical Processes Controlling Organic Aerosol Hygroscopicity

    NASA Astrophysics Data System (ADS)

    Petters, Sarah Suda

    Aerosol particles in the atmosphere can influence air quality and climate through their interaction with water. Aerosols are an important factor in cloud formation because they serve as cloud condensation nuclei (CCN). Organic compounds contribute a large fraction of the atmospheric aerosol mass but their ability to serve as CCN is less certain relative to inorganic compounds. Limitations of the measurement techniques and theoretical gaps in understanding have prevented agreement between predicted and measured CCN. One way to quantify a compound's CCN activity is by the hygroscopicity parameter, kappa. This dissertation presents research towards constraining the variability of organic aerosol kappa at the process level using three approaches: developing a measurement technique; measuring the dependence of kappa on molecular functional groups; and measuring the effect of surface active molecules on kappa for mixtures. Chapter 2 presents a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) instrument to measure aerosol water uptake at high relative humidity (RH). Measurements up to 99% RH were achieved by improving the precision of aerosol sizing, actively controlling temperature, and calibrating RH between measurements. Osmotic coefficients were obtained within +/-20% for organic aerosols sized between 30 and 200 nanometers. These results may improve water uptake models by providing accurate data at high RH. Chapter 3 presents a study of the sensitivity of kappa to changes in molecular functional group composition for pure compounds. Molecules were synthesized via gas and liquidphase reactions varying the type and location of functional groups, purified by High Performance Liquid Chromatography (HPLC), and routed for CCN measurement. The hydroxyl (-OH) and carbon chain length (-CH2-) changed kappa most, where hydroxyl groups increase kappa and longer carbon chains decrease kappa. This suggests that hydroxyl groups and molecular size dominate the

  6. Hygroscopic and chemical characterisation of Po Valley aerosol

    NASA Astrophysics Data System (ADS)

    Bialek, J.; Dall'Osto, M.; Vaattovaara, P.; Ovadnevaite, J.; Decesari, S.; Laaksonen, A.; O'Dowd, C.

    2013-02-01

    Continental summer-time aerosol in the Italian Po Valley was characterized in terms of hygroscopic properties and the influence of chemical composition therein. The campaign-average minima in hygroscopic growth factors (HGFs) occurred just before and during sunrise from 03:00-06:00, but more generally, the whole night shows very low hygroscopicity, particularly in the smaller particle sizes. The average HGFs increased from 1.18 for the smallest sized particles (35 nm) to 1.38 for the largest sizes (165 nm) for the lowest HGF period while during the day, the HGF gradually increased to achieve maximum values in the early afternoon hours from 12:00-15:00, reaching 1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting case scenarios were encountered during the measurement period: Case 1 was associated with westerly air flow moving at a moderate pace and Case 2 was associated with more stagnant, slower moving air from the north-easterly sector. Case 1 exhibited low diurnal temporal patterns and was associated with moderate non-refractory aerosol mass concentrations (for 50% size cut at 1 μm) of the order of 4.5 μg m-3. For Case 1, organics contributed typically to 50% of the mass. Case 2 was characterized by > 9.5 μg m-3 total mass (< 1 μm) in the early morning hours (04:00), decreasing to ∼ 3 μg m-3 by late morning (10:00) and exhibited strong diurnal changes in chemical composition, particularly in nitrate mass but also in total organic mass concentrations. Organic growth factors (OGFs) exhibited a minimum around 15:00, 1-2 h after the peak in HGF. Particles sized 165 nm exhibited moderate diurnal variability in HGF, ranging from 80% at night to 95% of "more hygroscopic" growth factors (i.e. GF = 1.35-1.9) around noon. The diurnal changes in HGF progressively became enhanced with decreasing particle size, decreasing from 95% "more hygroscopic" growth factor fraction at noon to 10% fraction at midnight, while the "less hygroscopic" growth

  7. Water Uptake and Hygroscopic Growth of Organosulfate Aerosol.

    PubMed

    Estillore, Armando D; Hettiyadura, Anusha P S; Qin, Zhen; Leckrone, Erin; Wombacher, Becky; Humphry, Tim; Stone, Elizabeth A; Grassian, Vicki H

    2016-04-19

    Organosulfates (OS) are important components of secondary organic aerosol (SOA) that have been identified in numerous field studies. This class of compounds within SOA can potentially affect aerosol physicochemical properties such as hygroscopicity because of their polar and hydrophilic nature as well as their low volatility. Currently, there is a dearth of information on how aerosol particles that contain OS interact with water vapor in the atmosphere. Herein we report a laboratory investigation on the hygroscopic properties of a structurally diverse set of OS salts at varying relative humidity (RH) using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). The OS studied include the potassium salts of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-butenediol sulfate and the sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and propyl sulfate. In addition, mixtures of OS and sodium chloride were also studied. The results showed gradual deliquescence of these aerosol particles characterized by continuous uptake and evaporation of water in both hydration and dehydration processes for the OS, while the mixture showed prompt deliquescence and effloresce transitions, albeit at a lower relative humidity relative to pure sodium chloride. Hygroscopic growth of these OS at 85% RH were also fit to parameterized functional forms. This new information provided here has important implications about the atmospheric lifetime, light scattering properties, and the role of OS in cloud formation. Moreover, results of these studies can ultimately serve as a basis for the development and evaluation of thermodynamic models for these compounds in order to consider their impact on the atmosphere.

  8. Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Maßling, A.; Wiedensohler, A.; Busch, B.; Neusüß, C.; Quinn, P.; Bates, T.; Covert, D.

    2003-01-01

    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (Northern Organization Atlantic Administration) Research Vessel Ronald H Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. The HTDMA data provide insight into the mixing state of the aerosol in terms of its hygroscopic behavior. Simultaneously, a seven-stage cascade impactor (3 in the sub-µm size range) was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-µm size range, 1 in the sup-µm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The air mass back-trajectory analysis revealed marine air masses as well as air masses with continental influence from Africa, India, or Arabia. The occurrence of different air masses was classified into special

  9. Characterization of the Changes in Hygroscopicity of Ambient Organic Aerosol due to Oxidation by Gas Phase OH

    NASA Astrophysics Data System (ADS)

    Wong, J. P.; McWhinney, R. D.; Slowik, J. G.; Abbatt, J.

    2011-12-01

    Despite the ubiquitous nature of organic aerosols and their importance in climate forcing, the influence of chemical processes on their ability to act as cloud condensation nuclei (CCN) in the atmosphere remains uncertain. Changes to the hygroscopicity of ambient organic aerosol due to OH oxidation were explored at a remote forested (Whistler, British Columbia) and an urban (Toronto, Ontario) site. Organic aerosol was exposed to controlled levels of OH radicals in a portable flow tube reactor, the Toronto Photo-Oxidation Tube (TPOT). An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition due to OH-initiated oxidation. The CCN activity of size-selected particles was measured with a DMT Cloud Condensation Nuclei Counter (CCNc) to determine the hygroscopicity parameter, κ. Preliminary results suggest that gas phase OH oxidation increases the degree of oxygenation of organic aerosol, leading to increases in hygroscopicity. These results yield insights into the mechanism by which oxidation affects the hygroscopicity of ambient aerosol of various sources, and to constrain the main aging process that leads to the observation of increasing hygroscopicity with increasing oxidation of organic aerosol.

  10. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance.

    PubMed

    Lee, Alex K Y; Ling, T Y; Chan, Chak K

    2008-01-01

    Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.

  11. [Hygroscopic Properties of Aerosol Particles in North Suburb of Nanjing in Spring].

    PubMed

    Xu, Bin; Zhang, Ze-feng; Li, Yan-weil; Qin, Xin; Miao, Qing; Shen, Yan

    2015-06-01

    The hygroscopic properties of submicron aerosol particles have significant effects on spectral distribution, CCN activation, climate forcing, human health and so on. A Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) was utilized to analyze the hygroscopic properties of aerosol particles in the northern suburb of Nanjing during 16 April to 21 May, 2014. At relative humidity (RH) of 90%, for particles with dry diameters 30-230 nm, the probability distribution of GF (GF-PDF) shows a distinct bimodal pattern, with a dominant more-hygroscopic group and a smaller less-hygroscopic group. A contrast analysis between day and night suggests that, aerosol particles during day time have a stronger hygroscopicity and a higher number fraction of more-hygroscopic group than that at night overall. Aerosol particles during night have a higher degree of externally mixed state. Backward trajectory analysis using HYSPLIT mode reveals that, the sampling site is mainly affected by three air masses. For aitken nuclei, northwest continental air masses experience a longer aging process and have a stronger hygroscopicity. For condensation nuclei, east air masses have a stronger hygroscopicity and have a higher number fraction of more-hygroscopic group. Aerosol particles in local air masses have a high number fraction of more-hygroscopic group in the whole diameter range.

  12. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Gysel, M.; Rubach, F.; Mentel, T. F.; Goger, B.; Poulain, L.; Schlag, P.; Miettinen, P.; Pajunoja, A.; Virtanen, A.; Bialek, J.; Klein Baltink, H.; Henzing, J. S.; Größ, J.; Gobbi, G. P.; Wiedensohler, A.; Kiendler-Scharr, A.; O'Dowd, C.; Decesari, S.; Facchini, M. C.; Weingartner, E.; Baltensperger, U.

    2015-03-01

    Airborne measurements of the aerosol hygroscopic and optical properties as well as chemical composition were performed in the Netherlands and northern Italy on board of a Zeppelin NT airship during the PEGASOS field campaigns in 2012. The vertical changes in aerosol properties during the development of the mixing layer were studied. Hygroscopic growth factors (GF) at 95% relative humidity were determined using the white-light humidified optical particles spectrometer (WHOPS) for dry diameters of 300 and 500 nm particles. These measurements were supplemented by an aerosol mass spectrometer (AMS) and an aethalometer providing information on the aerosol chemical composition. Several vertical profiles between 100 and 700 m a.g. were flown just after sunrise close to the San Pietro Capofiume ground station in the Po Valley, Italy. During the early morning hours the lowest layer (newly developing mixing layer) contained a high nitrate fraction (20%) which was coupled with enhanced hygroscopic growth. In the layer above (residual layer) small nitrate fractions of ~ 2% were measured as well as low GFs. After full mixing of the layers, typically around noon and with increased temperature, the nitrate fraction decreased to 2% at all altitudes and led to similar hygroscopicity values as found in the residual layer. These distinct vertical and temporal changes underline the importance of airborne campaigns to study aerosol properties during the development of the mixed layer. The aerosol was externally mixed with 22 and 67% of the 500 nm particles in the range GF < 1.1 and GF > 1.5, respectively. Contributors to the non-hygroscopic mode in the observed size range are most likely mineral dust and biological material. Mean hygroscopicity parameters (κ) were 0.34, 0.19 and 0.18 for particles in the newly forming mixing layer, residual layer and fully mixed layer, respectively. These results agree well with those from chemical analysis which found values of κ = 0.27, 0.21 and 0

  13. Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea.

    PubMed

    Yan, Yu; Fu, Pingqing; Jing, Bo; Peng, Chao; Boreddy, S K R; Yang, Fan; Wei, Lianfang; Sun, Yele; Wang, Zifa; Ge, Maofa

    2017-02-01

    In this study, we investigated hygroscopic properties of water-soluble matter (WSM) in marine aerosols over the East China Sea, which were collected during a Natural Science Foundation of China (NSFC) sharing cruise in 2014. Hygroscopic growth factors (g) of WSM were measured by a hygroscopicity tandem differential mobility analyzer (H-TDMA) with an initial dry particle mobility diameter of 100nm. The observed g at 90% relative humidity (RH), g(90%)WSM, defined as the ratio of the particle diameter at 90% RH to that at RH<5% (initial dry diameter), ranged from 1.67 to 2.41 (mean±std: 1.99±0.23). The g values were lower than that of seawater (2.1) but comparable with those reported for marine aerosols (1.79-2.08). The H-TDMA retrieved hygroscopicity parameter of WSM, κWSM, ranged from 0.46 to 1.56 (0.88±0.35). The observed g(90%)WSM during the daytime ranged from 1.67 to 2.40 (1.95±0.21) versus 1.71 to 2.41 (2.03±0.26) during the nighttime. κWSM was 0.81±0.32 in the daytime and 0.95±0.40 in the nighttime. The day/night differences of g(90%)WSM and κWSM indicated that nighttime marine aerosols were more hygroscopic than those in daytime, which was likely related to enhanced heterogeneous reaction of ammonium nitrate in nighttime and the higher Cl(-)/Na(+) molar ratios obtained (0.80) in nighttime than those (0.47) in daytime. Inorganic ions accounted for 72-99% of WSM with SO4(2-) being the dominant species, contributing to 47% of the total inorganic ion mass. The declined g(90%) comparing with sea water was likely due to the transport of anthropogenic aerosols, chemical aging of dust particles, the contribution of biomass burning products, and the aerosol hygroscopic growth inhibition of organics.

  14. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2009-12-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  15. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2010-05-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  16. Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Bougiatioti, A.; Nenes, A.; Anderson, B. E.; Beyersdorf, A. J.; Brock, C. A.; Gordon, T. D.; Lack, D.; Law, D. C.; Liao, J.; Middlebrook, A. M.; Richardson, M.; Thornhill, K. L., II; Winstead, E.; Wagner, N. L.; Welti, A.; Ziemba, L. D.

    2014-12-01

    The evolutions of vertical distributions of aerosol chemical, microphysical, hygroscopic, and optical properties present fundamental challenges to the understanding of ground-level air quality and radiative transfer, and few datasets exist to date for evaluation of atmospheric models. Data collected from recent NASA and NOAA field campaigns in the California Central Valley (DISCOVER-AQ), southeast United States (SENEX, SEAC4RS) and Texas (DISCOVER-AQ) allow for a unique opportunity to constrain vertical profiles of climate-relevant aerosol properties. This work presents in-situ aircraft measurements of cloud condensation nuclei (CCN) concentration and derivations of aerosol hygroscopicity, water uptake, and light scattering. Aerosol hygroscopicity is derived from CCN and aerosol measurements. Inorganic water uptake is calculated from aerosol composition using ISORROPIA, a chemical thermodynamic model, while organic water uptake is calculated from organic hygroscopicity. Aerosol scattering closure is performed between scattering from water uptake calculations and in-situ scattering measurements.

  17. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  18. Phase state is a limiting factor in hygroscopic growth of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Virtanen, Annele

    2014-05-01

    Secondary organic aerosol (SOA) particles formed from oxidation products of volatile organic compounds (VOC) form a significant fraction of the total atmospheric particulate matter affecting climate both directly and indirectly. The dependence of hygroscopicity on particle composition is often represented with the single parameter κ, commonly used in global models to describe the hygroscopic properties of atmospheric aerosol particles. The physical phase state of SOA particles affects the partitioning of organic vapors and also may affect the uptake of water vapor and particle activation into cloud droplets. Thus, hygroscopic behaviour of SOA particles is affected by composition (i.e. oxidation state and molecular size) but also by phase of particles. In this study the following three distinct studies were performed: (1) particle bounced fraction (BF) measurements, which are qualitatively related to particle phase, as a function of relative humidity using an Aerosol Bounce Instrument (ABI). We assume that the particles with BF > 0 are solid or semisolid, and that particles with BF = 0 behave mechanically as liquids (2) water uptake measured in the sub-saturated region using hygroscopicity tandem differential mobility analyzer (HTDMA) by measuring the ratio of wet to dry particle diameter following exposure to water vapor at a controlled RH (3) cloud droplet formation in the supersaturated region using a cloud condensation nuclei counter (CCNc). Particle composition and oxidation state was measured with a compact time of flight aerosol mass spectrometer (c-ToF-AMS). In this study we show that at sub-saturation conditions water uptake by SOA particles is restricted due to the kinetic limitations. Diffusion and solubility limitations inhibit water uptake until the humidity is high enough for dissolution to occur. Our studies show that this 'threshold' humidity is dependent on particle composition, oxidation state, and average molecular size. Our laboratory results

  19. Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    NASA Astrophysics Data System (ADS)

    Lance, S.; Raatikainen, T.; Onasch, T. B.; Worsnop, D. R.; Yu, X.-Y.; Alexander, M. L.; Stolzenburg, M. R.; McMurry, P. H.; Smith, J. N.; Nenes, A.

    2013-05-01

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. κ-Köhler theory is used to evaluate the characteristic hygroscopicity parameter, κ*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions (forg) are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which predictions of the hygroscopicity parameter are compared against κ*. Strong diurnal changes in aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased κ* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN at 0.51% ± 0.06% supersaturation can surpass by more than a factor of two the corresponding concentrations of 100 nm particles. We also find that at 06:00-08:00 LT throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally mixed fraction for 40 nm particles and 30% externally mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as "internally mixed". Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning "rush hour" and the entire campaign. We show that κ* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for κ* versus particle size, which can be attributed to unresolved mixing state and the presence of refractory material not measured

  20. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A.; Ahern, A.; Williams, L. R.; Ehn, M.; Mikkila, J.; Canagaratna, M.; Brune, W. H.; Onasch, T. B.; Jayne, J.; Petdjd, T. T.; Kulmala, M. T.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between degree of oxidation and hygroscopic properties of secondary organic aerosol (SOA) particles. The hygroscopic growth factor (HGF), the CCN activity (κCCN) and the degree of aerosol oxidation (represented by the atomic O:C ratio) were measured for α-pinene, 1,3,5-trimethylbenzene (TMB), m-xylene and α pinene/m-xylene mixture SOA generated via OH radical oxidation in an aerosol flow reactor. Our results show that both HGF and κCCN increase with O:C. The TMB and m-xylene SOA were, respectively, the least and most hygroscopic of the system studied. An average HGF of 1.25 and a κCCN of 0.2 were measured at O:C of 0.65, in agreement with results reported for ambient data. The HGF based κ(κHGF) under predicted the κCCN values of 20 to 50% for all but the TMB SOA. Within the limitations of instrumental capabilities, we define the extent to which the hygroscopic properties of SOA particles can be predicted from their oxidation level and provide parameterizations suitable for interpreting ambient data.

  1. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  2. Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign

    NASA Astrophysics Data System (ADS)

    Kim, Najin; Park, Minsu; Yum, Seong Soo; Park, Jong Sung; Song, In Ho; Shin, Hye Jung; Ahn, Joon Young; Kwak, Kyung-Hwan; Kim, Hwajin; Bae, Gwi-Nam; Lee, Gangwoong

    2017-03-01

    Aerosol physical properties, chemical compositions, hygroscopicity and cloud condensation nuclei (CCN) activities were measured in Seoul, the highly populated capital city of Korea, during the Megacity Air Pollution Studies (MAPS-Seoul) campaign, in May-June 2015. The average aerosol concentration for particle diameters >10 nm was 11787 ± 7421 cm-3 with dominant peaks at morning rush hours and in the afternoon due to frequent new particle formation (NPF) events. The average CCN concentration was 4075 ± 1812 cm-3 at 0.6% supersaturation, with little diurnal variation. The average hygroscopicity parameter (κ) value determined using a humidified tandem differential mobility analyzer (HTDMA) ranged 0.17-0.27 for a range of particle diameters (30-150 nm). The κ values derived using the aerosol mass spectrometer (AMS) data with three different methods were 0.32-0.34, significantly higher than those from HTDMA due to the uncertainties in the hygroscopicity values of different chemical compositions, especially organics and black carbon. Factors affecting the aerosol hygroscopicity seemed to be traffic and chemical processes during the NPF events. The CCN concentration predicted based on HTDMA κ data showed very good agreement with the measured one. Because of the overestimation of κ, CCN closure with the predicted CCN concentration based on AMS κ data over-predicted CCN concentration although the linear correlation between measured and predicted CCN concentration was still very good.

  3. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A. T.; Ahern, A. T.; Williams, L. R.; Ehn, M.; Mikkilä, J.; Canagaratna, M. R.; Brune, W. H.; Onasch, T. B.; Jayne, J. T.; Petäjä, T.; Kulmala, M.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between oxidation level and hygroscopic properties of secondary organic aerosol (SOA) particles generated via OH radical oxidation in an aerosol flow reactor. The hygroscopic growth factor at 90% RH (HGF90%), the CCN activity ($\\kappa$ORG,CCN) and the level of oxidation (atomic O:C ratio) of the SOA particles were measured. Both HGF90% and $\\kappa$ORG,CCN increased with O:C; the HGF90% varied linearly with O:C, while $\\kappa$ORG,CCN mostly followed a nonlinear trend. An average HGF90% of 1.25 and $\\kappa$ORG,CCN of 0.19 were measured for O:C of 0.65, in agreement with results reported for ambient data. The $\\kappa$ORG values estimated from the HGF90% ($\\kappa$ORG,HGF) were 20 to 50% lower than paired $\\kappa$ORG,CCN values for all SOA particles except 1,3,5-trimethylbenzene (TMB), the least hygroscopic of the SOA systems. Within the limitations of instrumental capabilities, we show that differences in hygroscopic behavior among the investigated SOA systems may correspond to differences in elemental composition.

  4. Aerosol hygroscopic growth parameterization based on a solute specific coefficient

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Xu, L.; Penner, J. E.; Lelieveld, J.

    2011-09-01

    Water is a main component of atmospheric aerosols and its amount depends on the particle chemical composition. We introduce a new parameterization for the aerosol hygroscopic growth factor (HGF), based on an empirical relation between water activity (aw) and solute molality (μs) through a single solute specific coefficient νi. Three main advantages are: (1) wide applicability, (2) simplicity and (3) analytical nature. (1) Our approach considers the Kelvin effect and covers ideal solutions at large relative humidity (RH), including CCN activation, as well as concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). (2) A single νi coefficient suffices to parameterize the HGF for a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. (3) In contrast to previous methods, our analytical aw parameterization depends not only on a linear correction factor for the solute molality, instead νi also appears in the exponent in form x · ax. According to our findings, νi can be assumed constant for the entire aw range (0-1). Thus, the νi based method is computationally efficient. In this work we focus on single solute solutions, where νi is pre-determined with the bisection method from our analytical equations using RHD measurements and the saturation molality μssat. The computed aerosol HGF and supersaturation (Köhler-theory) compare well with the results of the thermodynamic reference model E-AIM for the key compounds NaCl and (NH4)2SO4 relevant for CCN modeling and calibration studies. The equations introduced here provide the basis of our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in a companion paper.

  5. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, B.; Tong, S. R.; Liu, Q. F.; Li, K.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2015-08-01

    Water soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, water uptake behavior of internally mixed WSOC aerosols remains limited characterization. Here, the hygroscopic properties of single component such as levoglucosan, oxalic acid, malonic acid, succinic acid and phthalic acid and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid and phthalic acid have strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppress its crystallization completely. The interactions between oxalic acid and levoglucosan are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with UNIFAC method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH due to positive chemical interactions between solutes. Organic mixture has more complex effect on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan accounts for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake under high RH conditions and thus affect the cloud condensation nuclei (CCN) activity, optical properties and chemical reactivity of atmospheric particles.

  6. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Tong, Shengrui; Liu, Qifan; Li, Kun; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2016-03-01

    Water-soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, knowledge on the water uptake behavior of internally mixed WSOC aerosols remains limited. Here, the hygroscopic properties of single components such as levoglucosan, oxalic acid, malonic acid, succinic acid, phthalic acid, and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid, and phthalic acid have a strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppressing its crystallization completely during the drying process. The phase behaviors of oxalic acid/levoglucosan mixed particles are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with the Universal Quasi-Chemical Functional Group Activity Coefficient (UNIFAC) method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a crystalline solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH compared to the model predictions based on reasonable oxalic acid phase assumption. Organic mixture has more complex effects on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan account for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing the phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake

  7. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg ·ρinorg-1 +forg ·ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  8. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  9. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    PubMed

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.

  10. Hygroscopicity of dicarbonyl-amine secondary organic aerosol products investigated with HTDMA

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; de Haan, D. O.

    2010-12-01

    Recent studies have shown the importance of amine-dicarbonyl chemistry as a secondary organic aerosol (SOA) formation pathway, producing imines, imidazoles, and N-containing oligomers. Preliminary work in our group has suggested that some of these products may be surface active. Therefore, the presence of these products may result in important changes to submicron particle hygroscopicity that affect aerosol scattering and cloud condensation nuclei (CCN) activity, especially in regions with significant amine-containing particles. To investigate their hygroscopicity, we have designed a hygroscopicity tandem differential mobility analyzer (HTDMA) system around a 300 L Teflon chamber that allows for longer humidification times needed for some organic aerosol components that are only slightly hygroscopic. This modification provides a range of residence times from 2.5 minutes up to 1 hour, unlike previously published systems that vary from 2-30 seconds. Using the modified hygroscopicity tandem differential mobility analyzer (HTDMA), we have measured the hygroscopic growth factor (HGF) of SOA formed from reactions of glyoxal (and methylglyoxal) with methylamine, ammonium sulfate, and several amino acids. Changes to inorganic aerosol HGF in response to the presence of SOA products are also investigated.

  11. The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient

    NASA Astrophysics Data System (ADS)

    Tao, Jiangchuan; Zhao, Chunsheng

    2016-04-01

    Hygroscopic growth of aerosol particles can significantly affect their single-scattering albedo (ω), and consequently alters the aerosol effect on tropospheric photochemistry. In this study, the impact of aerosol hygroscopic growth on ω and its application to the NO2 photolysis rate coefficient (JNO2) are investigated for a typical aerosol particle population in the North China Plain (NCP). The variations of aerosol optical properties with relative humidity (RH) are calculated using a Mie theory aerosol optical model, on the basis of field measurements of number-size distribution and hygroscopic growth factor (at RH values above 90 %) from the 2009 HaChi (Haze in China) project. Results demonstrate that ambient ω has pronouncedly different diurnal patterns from ω measured at dry state, and is highly sensitive to the ambient RHs. Ambient ω in the NCP can be described by a dry state ω value of 0.863, increasing with the RH following a characteristic RH dependence curve. A Monte Carlo simulation shows that the uncertainty ofω from the propagation of uncertainties in the input parameters decreases from 0.03 (at dry state) to 0.015 (RHs > 90 %). The impact of hygroscopic growth on ω is further applied in the calculation of the radiative transfer process. Hygroscopic growth of the studied aerosol particle population generally inhibits the photolysis of NO2 at the ground level, whereas accelerates it above the moist planetary boundary layer. Compared with dry state, the calculated JNO2 at RH of 98 % at the height of 1 km increases by 30.4 %, because of the enhancement of ultraviolet radiation by the humidified scattering-dominant aerosol particles. The increase of JNO2 due to the aerosol hygroscopic growth above the upper boundary layer may affect the tropospheric photochemical processes and this needs to be taken into account in the atmospheric chemical models.

  12. A study of phase transformations in hygroscopic aerosols by Raman spectroscopy

    SciTech Connect

    Tang, I.N.; Fung, K.H.

    1995-12-31

    Atmospheric aerosol particles are composed mostly of hygroscopic inorganic salts. These aerosols play an important role in many atmospheric processes which affect local air quality, visibility degradation, and the global climate as well. Indeed, hygroscopic aerosols as metastable supersaturated solution droplets are routinely observed in laboratories. Here, we report first spectroscopic evidence that new metastable solid states form from hygroscopic aerosol particles. Levitated single particles undergo hydration and crystallization in calibrated humidity environment. Laser Raman and Mie scattering techniques are used to probe the chemical and physical state of the microparticle before and after phase transformation. The formation of these states is not predicted from bulk-phase thermodynamics. In some cases, the resulting metastable state is entirely unknown heretofore. We also present new solid/solution and solid/solid phase transitions which occur exclusively in microparticles.

  13. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Väisänen, Olli; Ruuskanen, Antti; Ylisirniö, Arttu; Miettinen, Pasi; Portin, Harri; Hao, Liqing; Leskinen, Ari; Komppula, Mika; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Virtanen, Annele

    2016-08-01

    The relationship between aerosol hygroscopicity and cloud droplet activation was studied at the Puijo measurement station in Kuopio, Finland, during the autumn 2014. The hygroscopic growth of 80, 120 and 150 nm particles was measured at 90 % relative humidity with a hygroscopic tandem differential mobility analyzer. Typically, the growth factor (GF) distributions appeared bimodal with clearly distinguishable peaks around 1.0-1.1 and 1.4-1.6. However, the relative contribution of the two modes appeared highly variable reflecting the probable presence of fresh anthropogenic particle emissions. The hygroscopicity-dependent activation properties were estimated in a case study comprising four separate cloud events with varying characteristics. At 120 and 150 nm, the activation efficiencies within the low- and high-GF modes varied between 0-34 and 57-83 %, respectively, indicating that the less hygroscopic particles remained mostly non-activated, whereas the more hygroscopic mode was predominantly scavenged into cloud droplets. By modifying the measured GF distributions, it was estimated how the cloud droplet concentrations would change if all the particles belonged to the more hygroscopic group. According to κ-Köhler simulations, the cloud droplet concentrations increased up to 70 % when the possible feedback effects on effective peak supersaturation (between 0.16 and 0.29 %) were assumed negligible. This is an indirect but clear illustration of the sensitivity of cloud formation to aerosol chemical composition.

  14. An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tan, Haobo; Yin, Yan; Gu, Xuesong; Li, Fei; Chan, P. W.; Xu, Hanbing; Deng, Xuejiao; Wan, Qilin

    2013-10-01

    Hygroscopic growth can significantly affect size distribution and activation of aerosol particles, as well as their effects on human health, atmospheric visibility, and climate. In this study, an H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer) was utilized to measure hygroscopic growth factor and mixing state of aerosol particles at the CAWNET station in Panyu, Guangzhou, China. A statistical analysis of the results show that, at relative humidity (RH) of 90%, for less-hygroscopic particles of 40-200 nm in diameter, the growth factor (gLH) was around 1.13, while the number fraction (NFLH) varied between 0.41 ± 0.136 and 0.26 ± 0.078; for more-hygroscopic particles, the growth factor (gMH) varied between 1.46 and 1.55 with the average equivalent ammonium sulfate ratio (ɛAS) ranging from 0.63 to 0.68. The differences in ɛAS among particle of different sizes reveal that more-hygroscopic inorganic salts, such as ammonium sulfate and ammonium nitrate, are of more effective condensation growth for Aitken mode particles. A combined analysis of the probability density function of growth factor (Gf-PDF) and simultaneous meteorological data shows that during clean periods with air masses moving from the north, the particles are more likely to have homogeneous chemical composition, while during polluted or pollution accumulation periods, variations in mean number weighted growth factor (gmean) and NFMH become more pronounced, indicating that locally-emitted aerosol particles tend to be in an externally mixed state and contain a certain proportion of less-hygroscopic particles. This study can help improve our understanding of aerosol hygroscopicity and its impact on the atmospheric visibility and environment.

  15. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  16. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  17. Hygroscopic Properties of Atmospheric Aerosol Measured with an HTDMA in an Urban Background Site in Madrid

    NASA Astrophysics Data System (ADS)

    Alonso-Blanco, E.; Gómez-Moreno, F. J.; Becerril, M.; Coz, E.; Artíñano, B.

    2015-12-01

    The observation of high aerosol hygroscopic growth in Madrid is mainly limited to specific atmospheric conditions, such as local stagnation episodes, which take place in winter time. One of these episodes was identified in December 2014 and the hygroscopic growth factor (GF) measurements obtained in such episode were analysed in order to know the influence of the meteorological conditions on aerosol hygroscopic properties. The prevailing high atmospheric stability triggered an increase of the particle total concentration during the study period, with several peaks that exceeded 4.0 104 particles cm-3, as well as an increase in the inorganic fraction of the aerosol, the NO3- concentration, which in this case corresponded to 25% of the total PM1 non-refractory composition. The aerosol hygroscopic growth distribution was bimodal during the episode, with an average GF around 1.2 for the five dry particle sizes measured and an average GF spread ≥ 0.15. In addition, it is important to note that when a reduction in the concentrations of NO3- is observed, it coincides with a decrease of the GF and its spread. These data suggest, on the one hand, a high degree of external mixing state of the aerosol during the episode and, on the other hand, a notable association between the GF and the inorganic fraction of the aerosol.

  18. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  19. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    PubMed

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  20. Hygroscopic aerosol deposition in the human upper respiratory tract under various thermo-humidity conditions.

    PubMed

    Xi, Jinxiang; Kim, Jongwon; Si, Xiuhua A; Zhou, Yue

    2013-01-01

    The deposition of hygroscopic aerosols is highly complex in nature, which results from a cumulative effect of dynamic particle growth and the real-time size-specific deposition mechanisms. The objective of this study is to evaluate hygroscopic effects on the particle growth, transport, and deposition of nasally inhaled aerosols across a range of 0.2-2.5 μm in an adult image-based nose-throat model. Temperature and relative humidity fields were simulated using the LRN k-ω turbulence model and species transport model under a spectrum of thermo-humidity conditions. Particle growth and transport were simulated using a well validated Lagrangian tracking model coupled with a user-defined hygroscopic growth module. Results of this study indicate that the saturation level and initial particle size are the two major factors that determine the particle growth rate (d/d0), while the effect of inhalation flow rate is found to be not significant. An empirical correlation of condensation growth of nasally inhaled hygroscopic aerosols in adults has been developed based on a variety of thermo-humidity inhalation conditions. Significant elevated nasal depositions of hygroscopic aerosols could be induced by condensation growth for both sub-micrometer and small micrometer particulates. In particular, the deposition of initially 2.5 μm hygroscopic aerosols was observed to be 5-8 times that of inert particles under warm to hot saturated conditions. Results of this study have important implications in exposure assessment in hot humid environments, where much higher risks may be expected compared to normal conditions.

  1. In-situ determination of atmospheric aerosol composition as a function of hygroscopic growth

    SciTech Connect

    Herich, Hanna; Kammermann, Lukas; Gysel, Martin; Weingartner, E.; Baltensperger, Urs; Lohmann, U.; Cziczo, Daniel J.

    2008-08-30

    An in-situ measurement setup to determine the chemical composition of aerosols as a function of hygroscopicity is presented. This has been done by connecting a custom-built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) and an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS), commercially available from TSI (Model 3800). Single particle bipolar mass spectra from aerosols leaving the HTDMA could thus be obtained as a function of the hygroscopic growth factor. For these studies the HTDMA was set at a relative humidity of 82% and particles with a dry diameter of 260 nm were selected. The setup was first laboratory tested after which field experiments were performed. Two datasets were obtained during wintertime 2007 in Switzerland: the first in the urban Zurich environment and the other at the remote high alpine research station Jungfraujoch (JFJ). In Zurich several thousand mass spectra were obtained in less than two days of sampling due to a high aerosol loading. At the JFJ, due to low particle concentrations in free tropospheric airmasses, a longer sampling period was required. Both in Zurich and at the JFJ two different growth factor modes were observed. Results from these two locations show that most aerosol particles were a mixture of several compounds. A large contribution of organics and combustion species was found in the less hygroscopic growth mode for both locations. Non-combustion refractory material (e.g. metals, mineral dust, and fly ash) was also highly enhanced in the non-hygroscopic particles. Sulfate, normally considered highly soluble, was found to be a constituent in almost all particles independent of their hygroscopic growth factor.

  2. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-03-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  3. Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Buchholz, A.; Kortner, B.; Schlag, P.; Rubach, F.; Kiendler-Scharr, A.; Tillmann, R.; Wahner, A.; Flores, J. M.; Rudich, Y.; Watne, À. K.; Hallquist, M.; Wildt, J.; Mentel, Th. F.

    2015-12-01

    Secondary organic aerosol components (SOA) contribute significantly to the activation of cloud condensation nuclei (CCN) in the atmosphere. The CCN activity of internally mixed submicron SOA particles is often parameterized assuming a size-independent single-hygroscopicity parameter κ. In the experiments done in a large atmospheric reactor (SAPHIR, Simulation of Atmospheric PHotochemistry In a large Reaction chamber, Jülich), we consistently observed size-dependent κ and particle composition for SOA from different precursors in the size range of 50 nm-200 nm. Smaller particles had higher κ and a higher degree of oxidation, although all particles were formed from the same reaction mixture. Since decreasing volatility and increasing hygroscopicity often covary with the degree of oxidation, the size dependence of composition and hence of CCN activity can be understood by enrichment of higher oxygenated, low-volatility hygroscopic compounds in smaller particles. Neglecting the size dependence of κ can lead to significant bias in the prediction of the activated fraction of particles during cloud formation.

  4. Hygroscopic Properties of Aircraft Engine Exhaust Aerosol Produced From Traditional and Alternative Fuels

    NASA Astrophysics Data System (ADS)

    Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Crumeyrolle, S.; Chen, G.; Anderson, B. E.

    2012-12-01

    Aircraft emissions of greenhouse gases and aerosols constitute an important component of anthropogenic climate forcing, of which aerosol-cloud interactions remain poorly understood. It is currently thought that the ability of these aerosols to alter upper tropospheric cirrus cloud properties may produce radiative forcings many times larger than the impact of linear contrails alone and which may partially offset the impact of greenhouse gas emissions from aviation (Burkhardt and Karcher, Nature, 2011). Consequently, it is important to characterize the ability of these engine-emitted aerosol to act as cloud condensation nuclei (CCN) and ice nuclei (IN) to form clouds. While a number of studies in the literature have examined aerosol-cloud interactions for laboratory-generated soot or from aircraft engines burning traditional fuels, limited attention has been given to how switching to alternative jet fuels impacts the ability of engine-emitted aerosols to form clouds. The key to understanding these changes is the aerosol hygroscopicity. To address this need, the second NASA Alternative Aviation Fuel Experiment (AAFEX-II) was conducted in 2011 to examine the aerosol emissions from the NASA DC-8 under a variety of different engine power and fuel type conditions. Five fuel types were considered including traditional JP-8 fuel, synthetic Fischer-Tropsh (FT) fuel , sulfur-doped FT fuel (FTS) , hydrotreated renewable jet (HRJ) fuel, and a 50:50 blend of JP-8 with HRJ. Emissions were sampled from the DC-8 on the airport jetway at a distance of 145 meters downwind of the engine by a comprehensive suite of aerosol instrumentation that provided information on the aerosol concentration, size distribution, soot mass, and CCN activity. Concurrent measurements of carbon dioxide were used to account for plume dilution so that characteristic emissions indices could be determined. It is found that both engine power and fuel type significantly influence the hygroscopic properties of

  5. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  6. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  7. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    PubMed

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  8. Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations

    NASA Astrophysics Data System (ADS)

    Santarpia, Joshua L.; Gasparini, Roberto; Li, Runjun; Collins, Don R.

    2005-02-01

    During August and September of 2002, a relative humidity (RH) scanning tandem differential mobility analyzer system was used to measure the deliquescence/crystallization properties of ambient aerosol populations in southeast Texas. During August, sampling was conducted at a rural site on the Texas A&M campus in College Station, and in September, sampling was conducted at an urban site near the Houston ship channel. Measurements from both sites indicate that there are cyclical changes in the composition of the soluble fraction of the aerosol, which are not strongly linked to the local aerosol source. The observations show that as temperature increases and RH decreases, the hysteresis loop describing the RH dependence of aerosol hygroscopic growth collapses. On the basis of results from other studies that have shown the dominant ions present in aerosols in this region to be ammonium and sulfate, it is proposed that this collapse is due to a decrease in the ammonium to sulfate ratio in the aerosol particles, which coincides with increasing temperature and decreasing RH. This cyclical change in aerosol acidity may influence secondary organic aerosol production and may exaggerate the impact of the aerosol on human health. The compositional changes also result in a daily cycle in crystallization RH that is in phase with that of the ambient RH, which reduces the probability that hygroscopic particles will crystallize in the afternoon when the ambient RH is a minimum.

  9. Control over hygroscopic growth of saline aqueous aerosol using Pluronic polymer additives.

    PubMed

    Haddrell, Allen E; Hargreaves, Graham; Davies, James F; Reid, Jonathan P

    2013-02-25

    The hygroscopic properties of an aerosol originating from a nebulizer solution can affect the extent of peripheral deposition within the respiratory tract, which in turn affects drug efficacy of drugs delivered to the lungs. Thus, the ability to tailor the degree and rate of hygroscopic growth of an aerosol produced by a nebulizer through modification of the formulation would serve to improve drug efficacy through targeted lung deposition. In this study, the kinetic and thermodynamic hygroscopic properties of sodium chloride aerosol mixed with commercially available Pluronic polymers, specifically F77 and F127, are reported using three complementary single aerosol analysis techniques, specifically aerosol optical tweezers, a double ring electrodynamic balance and a concentric cylinder electrodynamic balance. The F77 polymer is shown to have a predictable effect on the hygroscopic properties of the aerosol: the ability of the droplet to uptake water from the air depends on the solute weight percent of sodium chloride present in a linear dose dependant manner. Unlike the smaller F77, a non-linear relationship was observed for the larger molecular weight F127 polymer, with significant suppression of hygroscopic growth (>50% by mass) for solution aerosol containing even only 1 wt% of the polymer and 99 wt% sodium chloride. The suppression of growth is shown to be consistent with the formation of mixed phase aerosol particles containing hydrophilic inorganic rich domains and hydrophobic polymer rich domains that sequester some of the inorganic component, with the two phases responding to changes in relative humidity independently. This independence of coupling with the gas phase is apparent in both the equilibrium state and the kinetics of water evaporation/condensation. By starting with a saline nebulizer solution with a concentration of F127 ∼10(-2)mM, a 12% reduction in the radius of all aerosol produced at a relative humidity (RH) of 84% is possible. The

  10. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    NASA Astrophysics Data System (ADS)

    Flores, J. Michel; Bar-Or, R. Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Koren, I.; Rudich, Y.

    2012-06-01

    One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. We found a weak linear dependence or no dependence of fRH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption

  11. Reconciling Organic Aerosol Volatility, Hygroscopicity, and Oxidation State During the Colorado DISCOVER-AQ Deployment

    NASA Astrophysics Data System (ADS)

    Hite, J. R.; Moore, R.; Martin, R.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.; Nenes, A.

    2014-12-01

    The organic fraction of submicron aerosol can profoundly impact radiative forcing on climate directly, through enhancement of extinction, or indirectly through modulation of cloud formation. Semi-volatile constituents of organic ambient aerosol are of particular interest as their partitioning between the vapor and aerosol phases is not well constrained by current atmospheric models and appears to play an important role in the formation of cloud condensation nuclei (CCN) as suggested by recent research. An experimental setup consisting of a DMT CCN counter and SMPS downstream of a custom-built thermodenuder assembly was deployed during the summer 2014 DISCOVER-AQ field campaign to retrieve simultaneous, size-resolved volatility and hygroscopicity - through the use of scanning mobility CCN analysis (SMCA). Housed in the NASA Langley mobile laboratory, a suite of complimentary measurements were made available onboard including submicron aerosol composition and oxidation state provided by an HR-ToF-AMS, and aerosol optical properties provided by a range of other instruments including an SP2. Air masses sampled from locations across the Central Colorado region include influences from regional aerosol nucleation/growth events, long-range transport of Canadian biomass burning aerosols, cattle feedlot emissions and influences of the Denver urban plume - amidst a backdrop of widespread oil and gas exploration. The analysis focuses on the reconciliation of the retrieved aerosol volatility distributions and corresponding hygroscopicity and oxidation state observations, including the use of AMS factor analysis.

  12. Characterizing the Hygroscopicity of Nascent Sea Spray Aerosol from Synthetic Blooms

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Cappa, C. D.; Sultana, C. M.; Lee, C.; Wang, X.; Helgestad, T.; Moore, K.; Prather, K. A.; Cornwell, G.; Novak, G.; Bertram, T. H.

    2015-12-01

    Marine sea spray aerosol (SSA) particles make up a significant portion of natural aerosols and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. Scattering of solar radiation by aerosols affects Earth's radiative budget and the degree of scattering is size-dependent. Thus, aerosols scatter more light at elevated relative humidities when they grow larger via water uptake. This growth depends critically on chemical composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Subsaturated hygroscopic growth factors at 85% relative humidity (GF(85%)) of SSA particles were quantified during two mesocosm experiments in enclosed marine aerosol reference tanks (MARTs). The two experiments were conducted with filtered seawater collected at separate times from the Scripps Institute of Oceanography Pier in La Jolla, CA. Phytoplankton blooms in each tank were induced via the addition of nutrients and photosynthetically active radiation. The "indoor" MART was illuminated with fluorescent light and the other "outdoor" MART was illuminated with sunlight. The peak chlorophyll-a concentrations were 59 micrograms/L and 341 micrograms /L for the indoor and outdoor MARTs, respectively. GF(85%) values for SSA particles were quantified using a humidified cavity ringdown spectrometer and particle size distributions. Particle composition was monitored with a single particle aerosol mass spectrometer (ATOFMS) and an Aerodyne aerosol mass spectrometer (AMS). Relationships between the observed particle GFs and the particle composition markers will be discussed.

  13. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-09-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  14. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  15. Calculation of aerosol optical properties under different assumptions on mixing state, refractive index, density and hygroscopicity: uncertainties and importance of representation of aerosol mixing state

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele

    2015-04-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. We used the FlexAOD post-processing tool to calculate the optical properties (aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (g)) from chemistry-transport model aerosol profiles, using a wide range of assumptions on aerosol chemical and physical properties. We calculated that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. We then tested simple parameterizations of the aerosol mixing state, expressed as a function of the aerosol aging, and verified that they may be helpful in reducing the uncertainty when comparing simulations with AERONET retrievals.

  16. Vacuum FTIR observation on hygroscopic properties and phase transition of malonic acid aerosols

    NASA Astrophysics Data System (ADS)

    Shao, Xu; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-02-01

    A novel approach based on a combination of a pulse relative humidity (RH) controlling system and a rapid scan vacuum FTIR spectrometer was utilized to investigate the hygroscopic property and phase transition of malonic acid (MA) aerosols. By using this approach, both water vapor amount around the aerosols and water content within aerosols with sub-second time resolution were obtained. Based on the features of FTIR absorbing bands, it can be known that the evolution of hydrogen-bonding structures of malonic acid aerosols took place from (H2O)n-MA to MA-MA accompanying with phase transition in the dehumidifying process. And in present paper, the stepwise efflorescence of MA aerosols and nucleation rates at different RHs are first reported. Our observation has shown that the efflorescence of MA started at ∼17% RH and the nucleation rates increased with decreasing RH.

  17. Photochemical aging of secondary organic aerosols: effects on hygroscopic growth and CCN activation

    NASA Astrophysics Data System (ADS)

    Buchholz, A.; Mentel, Th. F.; Tillmann, R.; Schlosser, E.; Mildenberger, K.; Clauss, T.; Henning, S.; Kiselev, A.; Stratmann, F.

    2009-04-01

    Plant emitted volatile organic carbons (VOCs) are a major precursor of secondary organic aerosols (SOA), an important constituent of atmospheric aerosols. The precursors are oxidized via ozonolysis, photooxidation, or by NO3 and form aerosol particles. Due to further oxidation of the organic matter the composition of the SOA may age with time. This will also change the hygroscopic growth (HG) and cloud condensation nuclei (CCN) activation of the particles. In this study we generated and aged SOA in the SAPHIR chamber at the Research Centre Juelich under near atmospheric conditions: natural sunlight, low precursor and O3 concentrations, and long reaction times. As precursor we used a mixture of 5 monoterpenes (MT) or 5 MT with 2 sesquiterpenes which had been identified as major constituents of plant emissions in previous experiments. Concentrations ranged between 4 and 100 ppb MT and the total reaction time was 36h. HG was measured at RH=10-97% by a Hygroscopic Tandem Differential Analyser (HTDMA, FZ Juelich) and at RH=97-99% by the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, IfT Leipzig). The agreement between HTDMA and LACIS-mobile data was generally good. CCN properties were measured with a continuous flow CCN Counter from DMT. SOA particles generated on a sunny day were more hygroscopic and had a lower activation diameter (Dcrit) than SOA formed under cloudy conditions. With aging it became more hygroscopic and Dcrit decreased. Sunlight enhanced this effect. But the change in HG and Dcrit due to aging was less than the difference between SOA generated under different conditions (i.e. sunny or cloudy). We did not observe a dependence of the HG on the precursor concentration.

  18. Deriving aerosol hygroscopic mixing state from size-resolved CCN activity and HR-ToF-AMS measurements

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, S. N.; Chakraborty, Abhishek

    2016-10-01

    The ability of a particle to uptake water and form a cloud droplet depends on its hygroscopicity. To understand its impact on cloud properties and ultimately radiative forcing, knowledge of chemically-resolved mixing state information or the one based on hygroscopic growth is crucial. Typically, global models assume either pure internal or external mixing state which might not be true for all conditions and sampling locations. To investigate into this, the current study employed an indirect approach to infer the probable mixing state. The hygroscopic parameters derived from κ-Kohler theory using size-resolved CCN measurements (κCCN) and bulk/size-resolved aerosol mass spectrometer (AMS) measurements (κAMS) were compared. The accumulation mode particles were found to be more hygroscopic (κCCN = 0.24) than Aitken mode (κCCN = 0.13), perhaps due to increased ratio of inorganic to organic mass fraction. The activation diameter calculated from size-resolved CCN activity measurements at 5 different supersaturation (SS) levels varied in the range of 115 nm-42 nm with κCCN = 0.13-0.23 (avg = 0.18 ± 0.10 (±1σ)). Further, κAMS>κCCN was observed possibly due to the fact that organic and inorganic mass present in the Aitken mode was not correctly represented by bulk chemical composition and size-resolved fractional contribution of oxidized OA was not accurately accounted. Better correlation of organic fraction (forg) and κCCN at lower SS explained this behaviour. The decrease in κCCN with the time of the day was more pronounced at lower SS because of the relative mass reduction of soluble inorganic species by ∼17%. Despite the large differences between κ measured from two approaches, less over-prediction (up to 18%) between measured and predicted CCN concentration suggested lower impact of chemical composition and mixing state at higher SS. However, at lower SS, presences of externally mixed CCN-inactive aerosols lead to CCN over-prediction reflecting the

  19. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  20. CCN Activity, Hygroscopicity, and Droplet Activation Kinetics of Secondary Organic Aerosol Resulting from the 2010 Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lathem, T. L.; Cerully, K.; Bahreini, R.; Brock, C. A.; Langridge, J. M.; Middlebrook, A. M.; Nenes, A.; Calnex Science Team

    2010-12-01

    We present an analysis of the hygroscopicity and droplet activation kinetics of cloud condensation nuclei (CCN) sampled onboard the National Oceanic and Atmospheric Administration WP-3D aircraft downwind of the Deepwater Horizon oil spill site on June 8th and 10th, 2010. This set of measurements provides a unique case study for assessing in-situ the impact of fresh, hydrocarbonlike aerosols, which are expected to be formed via gas-to-particle conversion of the semi-volatile vapors released from oil evaporation. Similar hydrocarbon-rich aerosols constitute an important local emissions source in urban areas, but often coexist as an external/partially-internal mixture with more-oxidized, aged organic and sulfate aerosol. The DWH site provides the means to study the hygroscopic properties of these less-oxidized organic aerosols above a cleaner environmental background typical of marine environments in order to better discern their contribution to CCN activity and droplet growth. Measurements were performed with a Droplet Measurement Technologies Streamwise, Thermal-Gradient CCN counter, operating both as a counter (s=0.3%) and as a spectrometer (s=0.2-0.6%) using the newly-developed Scanning Flow CCN Analysis (SFCA) technique [1]. The instrument measures both the number concentration of particles able to nucleate droplets and also their resulting droplet sizes. The measured size information combined with a comprehensive computational fluid dynamics instrument model enables us to determine the rate of water uptake onto the particles and parameterize it in terms of an effective mass transfer coefficient [2], a key parameter needed to predict the number of activated droplets in ambient clouds. Non-refractory aerosol chemical composition was measured with an Aerodyne compact time-of-flight aerosol mass spectrometer. It was observed that the aerosols sampled downwind of the site on both days were composed predominantly of organics with a low degree of oxidation and low

  1. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance

    NASA Astrophysics Data System (ADS)

    Liu, Qifan; Jing, Bo; Peng, Chao; Tong, Shengrui; Wang, Weigang; Ge, Maofa

    2016-01-01

    The hygroscopic properties of two water-soluble organic compounds (WSOCs) relevant to urban haze pollution (phthalic acid and levoglucosan) and their internally mixtures with inorganic salts (ammonium sulfate and ammonium nitrate) are investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA) system. The multi-component particles uptake water gradually in the range 5-90% relative humidity (RH). The experimental results are compared with the thermodynamic model predictions. For most mixtures, Extended Aerosol Inorganic Model (E-AIM) predictions agree well with the measured growth factors. The hygroscopic growth of mixed particles can be well described by the Zdanovskii-Stokes-Robinson (ZSR) relation as long as the mixed particles are completely liquid. ZSR calculations underestimate the water uptake of mixed particles at moderate RH due to the partial dissolution of ammonium sulfate in the organic and ammonium nitrate solution in this RH region. The phase of ammonium nitrate in the initial dry particles changes dramatically with the composition of mixtures. The presence of organics in the mixed particles can inhibit the crystallization of ammonium nitrate during the drying process and results in water uptake at low RH (RH < 60%). These results demonstrate that certain representative WSOCs can substantially influence the hygroscopicity of inorganic salts and overall water uptake of particles.

  2. Aerosol mixingstate, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    SciTech Connect

    Lance, Sara; Raatikainen, T.; Onasch, Timothy B.; Worsnop, Douglas R.; Yu, Xiao-Ying; Alexander, M. L.; Stolzenberg, Mark; McMurry, Peter; Smith, James N.; Nenes, Athanasios

    2013-05-15

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. K¨ohler theory is used to evaluate the characteristic water uptake coefficient, k*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions, (forg), are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which kAMS is inferred and compared against k*. Strong diurnal profiles of aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased k* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN can surpass by more than a factor of two the concentrations of 100 nm particles acting as CCN, at supersaturations of 0.51% +/- 0.06%. We also find that at 0600-0800 in the morning throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally-mixed fraction for 40 nm particles and 30% externally-mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as “internally-mixed”. Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning “rush hour”, and the entire campaign. We show that k* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for k* versus particle size, which can be attributed to unresolved mixing-state and the presence of refractory material not measured by the

  3. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  4. Long-term observations of cloud condensation nuclei in the Amazon rain forest - Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; Klimach, Thomas; Hrabe de Angelis, Isabella; Araújo, Alessandro; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditz, Reiner; Gunthe, Sachin S.; Kesselmeier, Jürgen; Könemann, Tobias; Lavrič, Jošt V.; Martin, Scot T.; Mikhailov, Eugene; Moran-Zuloaga, Daniel; Rose, Diana; Saturno, Jorge; Su, Hang; Thalman, Ryan; Walter, David; Wang, Jian; Wolff, Stefan; Barbosa, Henrique M. J.; Artaxo, Paulo; Andreae, Meinrat O.; Pöschl, Ulrich

    2016-12-01

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014-February 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.

  5. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing

    PubMed Central

    Zhang, Renyi; Khalizov, Alexei F.; Pagels, Joakim; Zhang, Dan; Xue, Huaxin; McMurry, Peter H.

    2008-01-01

    The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably altering their properties. Soot particles exposed to subsaturated sulfuric acid vapor exhibit a marked change in morphology, characterized by a decreased mobility-based diameter but an increased fractal dimension and effective density. These particles experience large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity) and act efficiently as cloud-condensation nuclei. Coating with sulfuric acid and subsequent hygroscopic growth enhance the optical properties of soot aerosols, increasing scattering by ≈10-fold and absorption by nearly 2-fold at 80% relative humidity relative to fresh particles. In addition, condensation of sulfuric acid is shown to occur at a similar rate on ambient aerosols of various types of a given mobility size, regardless of their chemical compositions and microphysical structures. Representing an important mechanism of atmospheric aging, internal mixing of soot with sulfuric acid has profound implications on visibility, human health, and direct and indirect climate forcing. PMID:18645179

  6. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing.

    PubMed

    Zhang, Renyi; Khalizov, Alexei F; Pagels, Joakim; Zhang, Dan; Xue, Huaxin; McMurry, Peter H

    2008-07-29

    The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably altering their properties. Soot particles exposed to subsaturated sulfuric acid vapor exhibit a marked change in morphology, characterized by a decreased mobility-based diameter but an increased fractal dimension and effective density. These particles experience large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity) and act efficiently as cloud-condensation nuclei. Coating with sulfuric acid and subsequent hygroscopic growth enhance the optical properties of soot aerosols, increasing scattering by approximately 10-fold and absorption by nearly 2-fold at 80% relative humidity relative to fresh particles. In addition, condensation of sulfuric acid is shown to occur at a similar rate on ambient aerosols of various types of a given mobility size, regardless of their chemical compositions and microphysical structures. Representing an important mechanism of atmospheric aging, internal mixing of soot with sulfuric acid has profound implications on visibility, human health, and direct and indirect climate forcing.

  7. Hygroscopic properties of humic-like organics isolated from atmospheric fine aerosol

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Galambos, I.; Kiss, G.; Baltensperger, U.

    2003-04-01

    Organic species are a major fraction of the fine aerosol mode and it has been suggested that water-soluble organic carbon (WSOC) compounds may play an important role in cloud formation. Fine aerosol samples (diameter D < 1.5 μm) from the continental rural site K-puszta, Hungary, were characterized using a solid phase extraction method. The total water-soluble content (WSC) was composed of 49 % inorganics, 14 % highly water-soluble organics, and 37 % of less soluble organics. The latter, called isolated organic matter (ISOM), is assumed to be mainly composed of humic-like substances. Hygroscopic growth factors (HGF) of nebulised WSC and ISOM extracts, as well as reference substances NRFA and NRHA (fulvic and humic acids), were measured with an H-TDMA. Under increasing RH dry ISOM particles (D{_o} = 100 nm) dissolved in the range RH = 30 - 60 %, followed by continuous growth above this deliquescence transition, resulting in HGFs of D/D{_o} 1.14 at 90 % RH. Particles from WSC extracts exhibited HGFs of D/D{_o} 1.61 at 90 % RH. This is close to the HGF of pure ammonium sulfate (D/D{_o} = 1.69 at 90 % RH), indicating that ISOM contributes significantly to water uptake of mixed WSC particles. Although ISOM is distinctly less hygroscopic than pure inorganic salt particles, its role in the hygroscopic behavior of atmospheric particles is important because of the large abundance and relatively low deliquescence RH. HGFs of NRFA and NRHA were 1.15 and 1.07 at 90 % RH, and deliquescence was at 80 and 90 % RH, respectively. Their hygroscopic behavior was qualitatively similar to ISOM samples, but quantitative differences might be a result of larger average molecular size of the reference substances.

  8. Role of the volatile fraction of submicron marine aerosol on its hygroscopic properties

    NASA Astrophysics Data System (ADS)

    Sellegri, Karine; Villani, Paolo; Picard, David; Dupuy, Regis; O'Dowd, Colin; Laj, Paolo

    2008-11-01

    The hygroscopic growth factor (HGF) of 85 nm and 20 nm marine aerosol particles was measured during January 2006 for a three-week period within the frame of the EU FP6 project MAP (Marine Aerosol Production) winter campaign at the coastal site of Mace Head, using the TDMA technique. The results are compared to aerosol particles produced in a simulation tank by bubbling air through sea water sampled near the station, and through synthetic sea water (inorganic salts). This simulation is assimilated to primary production. Aitken and mode particles (20 nm) and accumulation mode particles (85 nm) both show HGF of 1.92 and 2.01 for particles generated through bubbling in natural and artificial sea water respectively. In the Aitken mode, the marine particles sampled in the atmosphere shows a monomodal HGF slightly lower than the one measured for sea salt particles artificially produced by bubble bursting in natural sea water (HGF = 1.83). This is also the case for the more hygroscopic mode of accumulation mode particles. In addition, the HGF of 85 nm particles observed in the atmosphere during clean marine sectors exhibits half of its population with a 1.4 HGF. An external mixture of the accumulation mode marine particles indicates a secondary source of this size of particles, a partial processing during transport, or an inhomogeneity of the sea water composition. A gentle 90 °C thermo-desorption results in a significant decrease of the number fraction of moderately hygroscopic (HGF = 1.4) particles in the accumulation mode to the benefit of the seasalt mode, pointing to the presence of semi-volatile compounds with pronounced hydrophobic properties. The thermo-desorption has no effect on the HGF of bubble generated aerosols, neither for synthetic or natural sea water, nor on the atmospheric Aitken mode, indicating that these hydrophobic compounds are secondarily integrated in the particulate phase. No difference between night and day samples is observed on the natural

  9. Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Tao, J. C.; Bian, Y. X.; Ma, N.

    2016-12-01

    In this paper, relative humidity (RH) profiles and their impacts on the vertical variations of aerosol optical properties and the direct aerosol radiative effect (DARE) have been investigated based on surface measurements from the Haze in China campaign and sounding data from the North China Plain. Among the profiles obtained from July to September in 2008, about half have RHs greater than 80% within the mixed layer. The vertical variations in the aerosol optical properties at ambient RH, including the extinction coefficient (σext), single scattering albedo (SSA) and asymmetry factor (g), are remarkably different from the variations in the dry aerosols and are highly dependent on the RH profiles. Increases of the aerosol optical depth and column-averaged SSA and g due to aerosol water uptake can reach up to 64%, 0.052 and 0.079, respectively. The fractional contribution to the instantaneous DARE at the top of the atmosphere due to aerosol hygroscopic growth reaches 60% in high RH profiles. DARE estimates can be significantly biased if the RH dependence of SSA or g is not considered. We suggest that if their vertical profiles or column-averaged values are absent, then the ambient values of SSA and g at the surface should be used rather than the values of SSA and g obtained from dry aerosols when estimating DAREs.

  10. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology

  11. Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN)

    NASA Astrophysics Data System (ADS)

    Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S. S.; Wernli, H.; Andreae, M. O.; Pöschl, U.

    2009-09-01

    We have investigated the formation of cloud droplets under pyro-convective conditions using a cloud parcel model with detailed spectral microphysics and with the κ-Köhler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution (accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (NCD) for a wide range of updraft velocities (w=0.25-20 m s-1) and aerosol particle number concentrations (NCN=200-105 cm-3) at the cloud base. Depending on the ratio between updraft velocity and particle number concentration (w/NCN), we found three distinctly different regimes of CCN activation and cloud droplet formation: (1) An aerosol-limited regime that is characterized by high w/NCN ratios (>≈10-3 m s-1 cm3), high maximum values of water vapour supersaturation (Smax>≈0.5%), and high activated fractions of aerosol particles (NCN/NCN>≈90%). In this regime NCD is directly proportional to NCN and practically independent of w. (2) An updraft-limited regime that is characterized by low w/NCN ratios (<≈10-4 m s-1 cm3), low maximum values of water vapour supersaturation (Smax<≈0.2%), and low activated fractions of aerosol particles (NCD/NCN<≈20%). In this regime NCD is directly proportional to w and practically independent of NCN. (3) An aerosol- and updraft-sensitive regime (transitional regime), which is characterized by parameter values in between the two other regimes and covers most of the conditions relevant for pyro-convection. In this regime NCD depends non-linearly on both NCN and w. In sensitivity studies we have tested the influence of aerosol particle size distribution and hygroscopicity on NCD. Within the range of effective hygroscopicity parameters that is characteristic for continental atmospheric aerosols (κ≈0.05-0.6), we found that NCD depends rather weakly on the actual value of κ

  12. Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Freney, Evelyn J.; Buseck, Peter R.

    2011-07-01

    Hygroscopic aerosol particles change the magnitude of light scattering through condensation and evaporation of water vapor. We collected aerosol particles from two megacities and observed the particle shapes at various values of relative humidity (RH) using an environmental cell within a transmission electron microscope. Many Mexico City samples had sulfate particles that were embedded within weakly hygroscopic organic aerosol, whereas the Los Angeles samples mainly consisted of externally mixed sulfate particles. For the Mexico City samples, when the RH was increased in the microscope, only the sulfate parts deliquesced, but the entire particle did not become spherical, i.e., particles containing deliquescent phases do not necessarily become spherical upon deliquescence. This result conflicts with the assumption used in many models, i.e., that deliquesced particles become spherical. Using a discrete-dipole approximation to calculate light scattering of simulated particles that resemble the observed ones, we show that, for particles >1.0 μm, the spherical-shape assumption used in Mie theory underestimates the light scattering by ˜50%, with the exact value depending on the sizes and relative volumes of the constituent phases.

  13. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  14. CCN spectra, hygroscopicity, and droplet activation kinetics of secondary organic aerosol resulting from the 2010 Deepwater Horizon oil spill.

    PubMed

    Moore, Richard H; Raatikainen, Tomi; Langridge, Justin M; Bahreini, Roya; Brock, Charles A; Holloway, John S; Lack, Daniel A; Middlebrook, Ann M; Perring, Anne E; Schwarz, Joshua P; Spackman, J Ryan; Nenes, Athanasios

    2012-03-20

    Secondary organic aerosol (SOA) resulting from the oxidation of organic species emitted by the Deepwater Horizon oil spill were sampled during two survey flights conducted by a National Oceanic and Atmospheric Administration WP-3D aircraft in June 2010. A new technique for fast measurements of cloud condensation nuclei (CCN) supersaturation spectra called Scanning Flow CCN Analysis was deployed for the first time on an airborne platform. Retrieved CCN spectra show that most particles act as CCN above (0.3 ± 0.05)% supersaturation, which increased to (0.4 ± 0.1)% supersaturation for the most organic-rich aerosol sampled. The aerosol hygroscopicity parameter, κ, was inferred from both measurements of CCN activity and from humidified-particle light extinction, and varied from 0.05 to 0.10 within the emissions plumes. However, κ values were lower than expected from chemical composition measurements, indicating a degree of external mixing or size-dependent chemistry, which was reconciled assuming bimodal, size-dependent composition. The CCN droplet effective water uptake coefficient, γ(cond), was inferred from the data using a comprehensive instrument model, and no significant delay in droplet activation kinetics from the presence of organics was observed, despite a large fraction of hydrocarbon-like SOA present in the aerosol.

  15. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-02-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.

  16. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    PubMed Central

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-01-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles. PMID:28240258

  17. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles.

    PubMed

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-02-27

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.

  18. Effect of aging on morphology, hygroscopicity, and optical properties of soot aerosol

    NASA Astrophysics Data System (ADS)

    Khalizov, A. F.; Xue, H.; Pagels, J.; McMurry, P. H.; Zhang, R.

    2009-12-01

    Soot from incomplete combustion represents one of the major forms of particulate matter pollution, profoundly impacting human health, air quality, and climate. The direct and indirect radiative effects of soot aerosol depend on particle composition and morphology, which may vary significantly when aerosol is subjected to atmospheric aging. We will present an overview of a comprehensive set of experimental measurements performed in our laboratory at Texas A&M to study the effect of internal mixing with atmospheric species on morphology, hygroscopicity, and optical properties of combustion soot. In our experiments, size-classified soot aerosol was exposed to 0.1 - 1000 ppb (part per billion) mixing ratios of sulfuric acid and dicarboxylic organic acids and resulting changes particle morphology and mixing state under dry and humid conditions were characterized through mass-mobility measurements by aerosol particle mass analyzer (APM) and tandem differential mobility analyzer (TDMA). Light absorption and scattering cross-sections for well-characterized fresh and coated soot aerosol were derived using a cavity ring-down spectrometer and an integrating nephelometer in order to assess the effect of atmospheric processing on the radiative properties of atmospheric soot. Internally mixed soot shows significant changes in particle morphology, increasing with the mass fraction of the coating material and relative humidity. Restructuring was the strongest for aggregates coated by sulfuric and glutaric acids whereas succinic acid coating did not result in observable morphology change. Sulfuric acid - coated particles experienced large hygroscopic growth at sub-saturated conditions and activated to cloud droplets at atmospherically relevant supersaturations. Furthermore, coating and subsequent hygroscopic growth considerably altered the optical properties of soot aerosol, increasing light scattering and absorption cross-sections. We found that irreversible restructuring of soot

  19. Aerosol hygroscopicity and CCN activity during the AC3Exp campaign: Implications for CCN parameterization

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Yanan; Li, Zhanqing

    2015-04-01

    Atmospheric aerosol particles acting as CCN are pivotal elements of the hydrological cycle and climate change. In this study, we measured and characterized NCCN in relatively clean and polluted air during the AC3Exp campaign conducted at Xianghe, China during summer 2013. The aim was to examine CCN activation properties under high aerosol loading conditions in a polluted region and to assess the impacts of particle size and chemical composition on the CCN AR which acts as a proxy of the total number of aerosol particles in the atmosphere. A gradual increase in size-resolved AR with particle diameter suggests that aerosol particles have different hygroscopicities. For particles in the accumulation mode, values of κapa range from 0.31-0.38 under background conditions, which is about 20% higher than that derived under polluted conditions. For particles in the nucleation or Aitken mode, κ range from 0.20-0.34 under both background and polluted conditions. Larger particles were on average more hygroscopic than smaller particles. However, the case is more complex for particles originating from heavy pollution due to the diversity in particle composition and mixing state. The low R2 for the NPO CCN closure test suggests a 30%-40% uncertainty in total NCCN estimation. Using bulk chemical composition data from ACSM measurements, the relationship between bulk AR and the physical and chemical properties of atmospheric aerosols is investigated. Based on a case study, it has been concluded that one cannot use a parameterized formula using only total NCN to estimate total NCCN. Our results showed a possibility of using bulk κchem and f44 in combination with bulk NCN > 100 nm to parameterize CCN number concentrations.

  20. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    DOE PAGES

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; ...

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water solublemore » fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the

  1. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-08-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws

  2. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ∼34% in the accumulation vs. ∼47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ∼70%, while efflorescence occurred at different humidities, i.e., at ∼35% RH for submicron particles vs. ∼50% RH for supermicron particles. This ∼15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ∼0.15 for

  3. Variations in hygroscopic growth of sub- and super-micron sea spray aerosols during a phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Jayarathne, T. S.; Stone, E. A.; Laskina, O.; Grassian, V. H.; Lee, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Novak, G.; Bertram, T. H.; Prather, K. A.; Cappa, C. D.

    2014-12-01

    Marine sea spray aerosols (SSA) make up an important portion of natural aerosols (prior to anthropogenic influence) and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. One way aerosols impact climate is by scattering solar radiation, and how much light is scattered depends upon the size of aerosols. Aerosols grow larger via water uptake and thus scatter more light at elevated relative humidities. This growth depends on composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Aerosol hygroscopicity of SSA sampled during an in-lab phytoplankton bloom were measured during the CAICE-IMPACTS 2014 study. SSA were generated via breaking waves in an enclosed 33 m wave channel filled with natural seawater. Aerosol hygroscopicity was characterized by measuring light extinction at 532 nm of dry aerosols and of aerosols humidified to 85% relative humidity using a Cavity Ringdown Spectrometer. These optical growth factors (humidified extinction/dry extinction) were converted to physical growth factors using Mie Theory calculations and aerosol size distributions measured with a scanning electrical mobility spectrometer (SEMS) and an aerodynamic particle sizer (APS). Growth factors for super- and sub-micron SSA were quantified separately through the use of a PM2.5 cyclone or PM1 impactor. The observed SSA growth factors will be linked to SSA and source water chemical composition determined by both offline and online analysis of samples. The SSA bulk growth factors will also be compared with concurrent measurements of the efficiency with which SSA act as cloud condensation nuclei. Observed SSA growth factors will also be compared to offline hygroscopic growth measurements.

  4. Influence of collecting substrates on the characterization of hygroscopic properties of inorganic aerosol particles.

    PubMed

    Eom, Hyo-Jin; Gupta, Dhrubajyoti; Li, Xue; Jung, Hae-Jin; Kim, Hyekyeong; Ro, Chul-Un

    2014-03-04

    The influence of six collecting substrates with different physical properties on the hygroscopicity measurement of inorganic aerosol particle surrogates and the potential applications of these substrates were examined experimentally. Laboratory-generated single salt particles, such as NaCl, KCl, and (NH4)2SO4, 1-5 μm in size, were deposited on transmission electron microscopy grids (TEM grids), parafilm-M, Al foil, Ag foil, silicon wafer, and cover glass. The particle hygroscopic properties were examined by optical microscopy. Contact angle measurements showed that parafilm-M is hydrophobic, and cover glass, silicon wafer, Al foil, and Ag foil substrates are hydrophilic. The observed deliquescence relative humidity (DRH) values for NaCl, KCl, and (NH4)2SO4 on the TEM grids and parafilm-M substrates agreed well with the literature values, whereas the DRHs obtained on the hydrophilic substrates were consistently ∼1-2% lower, compared to those on the hydrophobic substrates. The water layer adsorbed on the salt crystals prior to deliquescence increases the Gibb's free energy of the salt crystal-substrate system compared to the free energy of the salt droplet-substrate system, which in turn reduces the DRHs. The hydrophilic nature of the substrate does not affect the measured efflorescence RH (ERH) values. However, the Cl(-) or SO4(2-) ions in aqueous salt droplets seem to have reacted with Ag foil to form AgCl or Ag2SO4, respectively, which in turn acts as seeds for the heterogeneous nucleation of the original salts, leading to higher ERHs. The TEM grids were found to be most suitable for the hygroscopic measurements of individual inorganic aerosol particles by optical microscopy and when multiple analytical techniques, such as scanning electron microscopy-energy dispersive X-ray spectroscopy, TEM-EDX, and/or Raman microspectrometry, are applied to the same individual particles.

  5. Influence of particle phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2014-12-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids, to phase-separated particles, to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40-90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids, (2) forcing a single phase, but accounting for non-ideal interactions through activity coefficient calculations, and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation between the inorganic and organic components is assumed at all RH values, with water-uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  6. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2015-05-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle-phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids to phase-separated particles to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40 to 90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids; (2) forcing a single phase but accounting for non-ideal interactions through activity coefficient calculations; and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation of the inorganic and organic components is assumed at all RH values, with water uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  7. Sensitivity of depositions to the size and hygroscopicity of Cs-bearing aerosols released from the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Adachi, Kouji; Sekiyama, Tsuyoshi; Zaizen, Yuji; Igarashi, Yasuhito

    2014-05-01

    We recently revealed that the microphysical properties of aerosols carrying the radioactive Cs released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) at an early stage (March 14-15, 2011) of the accident could be very different from what we assumed previously: super-micron and non-hygroscopic at the early stage, whereas sub-micron and hygroscopic afterwards (at least later than March 20-22). In the study, two sensitivity simulations with the two different aerosol microphysical properties were conducted using a regional scale meteorology- chemical transport model (NHM-Chem). The impact of the difference was quite significant. 17% (0.001%) of the radioactive Cs fell onto the ground by dry (wet) deposition processes, and the rest was deposited into the ocean or was transported out of the model domain, which is central and northern part of the main land of Japan, under the assumption that Cs-bearing aerosols are non-hygroscopic and super-micron. On the other hand, 5.7% (11.3%) fell onto the ground by dry (wet) deposition, for the cases under the assumption that the Cs-bearing aerosols are hygroscopic and sub-micron. For the accurate simulation of the deposition of radionuclides, knowledge of the aerosol microphysical properties is essential as well as the accuracy of the simulated wind fields and precipitation patterns.

  8. Hygroscopic Behavior of Ambient Aerosols at an Anthropogenically Perturbed Continental U.S.A. Site, Bondville, Illinois.

    NASA Astrophysics Data System (ADS)

    Kus, P.; Rood, M. J.; Ogren, J.; Quinn, P.; Covert, D. S.

    2002-12-01

    The dependence of ambient aerosols' light scattering coefficient on controlled relative humidity (RH) conditions was measured for ambient aerosol at the Bondville Aerosol Research Site (BEARS), located in east-central Illinois, USA. The measurements were made with a controlled RH nephelometry system between 1995 and 2000. The fact that an aerosol's hygroscopic growth is one of the most important parameters in estimating an aerosol's ability to cause radiative forcing makes it important to characterize that property at relevant locations on a regional scale. Total and hemispheric back scattering coefficients were measured by two nephelometers operating in series as a function of wavelength of light (450, 550, and 700 nm), controlled RH, and upper particle diameter (Dp) of 1 and 10 μm. In addition, gravimetric and inorganic ion composition of the sub-micrometer diameter particles were determined using filter samples. Particle size distributions were measured by a combined system of Differential Mobility Analyzer (DMA) and Aerodynamic Particle Sizer (APS) during a 20-day intensive field campaign. Hygroscopic growth factor (f(RH=82%)) is expressed as the ratio of the scattering coefficient at 82% RH to the scattering at a reference RH (RH<40%). The measured f(RH) values exhibited both deliquescent and monotonic types of growth and were fitted to two different nonlinear equations depending on the type of observed growth. The value of f(RH=82%) at 550 nm was 1.84 +/- 0.43 for sub-micrometer and almost the same with 1.83 +/- 0.42 for super-micrometer aerosols. Higher f(RH) values were associated with the periods where the scattering was dominated by sub-micrometer diameter particles. Deliquescent type of growth was observed 20% of the time. The f(RH) values were higher for aerosol exhibiting deliquescent growth by 8%, which is statistically significant. Available air mass trajectories revealed that the highest f(RH) values were observed when the air mass reaching the

  9. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  10. Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P. P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Hong, J.; Komppula, M.; Krejci, R.; Laborde, M.; Lampilahti, J.; de Leeuw, G.; Pfüller, A.; Rosati, B.; Tesche, M.; Tunved, P.; Väänänen, R.; Petäjä, T.

    2015-07-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH <30-40 %). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiälä, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground level by a humidified nephelometer is found to be generally lower (e.g. 1.63±0.22 at RH = 85 % and λ = 525 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiälä to which f(RH) is clearly anti-correlated (R2≈0.8). A simplified parametrization of f(RH) based on the measured chemical mass fraction can therefore be derived for this aerosol type. A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground-based in situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to columnar measurements of a co-located AERONET sun photometer. The water

  11. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  12. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration.

  13. Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P. P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Hong, J.; Komppula, M.; Krejci, R.; Laborde, M.; Lampilahti, J.; de Leeuw, G.; Pfüller, A.; Rosati, B.; Tesche, M.; Tunved, P.; Väänänen, R.; Petäjä, T.

    2015-02-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in-situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH <30-40%). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiälä, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground by a humidified nephelometer is found to be significantly lower (1.53±0.24 at RH = 85% and λ=450 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiälä to which f(RH) is clearly anti-correlated (R2≈0.8). A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground based in-situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to direct measurements of a co-located AERONET Sun photometer. The water uptake is found to be of minor importance for the column averaged properties due to the low particle hygroscopicity and the low RH during the

  14. Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor; Crosbie, Ewan; Ortega, Amber; Shiraiwa, Manabu; Zuend, Andreas; Beyersdorf, Andreas; Ziemba, Luke; Anderson, Bruce; Thornhill, Lee; Perring, Anne E.; Schwarz, Joshua P.; Campazano-Jost, Pedro; Day, Douglas A.; Jimenez, Jose L.; Hair, Johnathan W.; Mikoviny, Tomas; Wisthaler, Armin; Sorooshian, Armin

    2016-04-01

    In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52-1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.

  15. At-Sea Evaluation of the Obscuration Characteristics of a Hygroscopic Aerosol Smoke Produced by the CY85A Pyrotechnic

    DTIC Science & Technology

    1983-12-01

    and IiWIU* by block nmber) Salty Dog Obscuration .2Hygroscopic aerosol Extinction ISmoke Pyrotechnically Generated ’For the past six years, Calapan, in...Extinction Characteristics for Salty Dog , NWC 29 and NWC 78 Pyrotechnics,", Calspan Report No. 6663-M-l, 40 pp, Calspan Corporation, Buffalo, NY 14225. 4

  16. Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child.

    PubMed

    Kim, Jong Won; Xi, Jinxiang; Si, Xiuhua A

    2013-01-01

    Hygroscopic growth within the human respiratory tract can be significant, which may notably alter the behavior and fate of the inhaled aerosols. The objective of this study is to evaluate the hygroscopic effects upon the transport and deposition of nasally inhaled fine-regime aerosols in children. A physiologically realistic nasal-laryngeal airway model was developed based on magnetic resonance imaging of a 5-year-old boy. Temperature and relative humidity field were simulated using the low Reynolds number k - ε turbulence model and chemical specie transport model under a spectrum of four thermo-humidity conditions. Particle growth and transport were simulated using a well validated Lagrangian tracking model coupled with a user-defined hygroscopic growth module. The subsequent aerosol depositions for the four inhalation scenarios were evaluated on a multiscale basis such as total, subregional, and cellular-level depositions. Results of this study show that a supersaturated humid environment is possible in the nasal turbinate region and can lead to significant condensation growth (d / d(0)  > 10) of nasally inhaled aerosols. Depositions in the nasal airway can also be greatly enhanced by condensation growth with appropriate inhalation temperature and humidity. For subsaturated and mild inhalation conditions, the hygroscopic effects were found to be nonsignificant for total depositions, while exerting a large impact upon localized depositions.

  17. The Effects of Mineral Dust on the Hygroscopic and Optical Properties of Inorganic Salt Aerosols

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Greenslade, M. E.

    2011-12-01

    Mineral dust particles are a significant fraction of the total aerosol mass, thus they play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. Assessing this impact is complicated by the variability of optical properties resulting from water uptake and changes in chemical composition due to atmospheric mixing. Internal mixtures of montmorillonite, a clay component of mineral dust, with sodium chloride and ammonium sulfate were studied optically using cavity ring down spectroscopy. The effects of the addition of the clay to the optically observed deliquescence relative humidity (DRH) and water uptake of these salts was considered by investigating a series of different salt mass fractions. In most cases, montmorillonite alters the hygroscopic properties and causes the DRH to occur at a lower relative humidity. For ammonium sulfate, optical properties can be approximated by volume weighted mixing rules with some minor deviations around the DRH. For sodium chloride, this approximation is only accurate below the DRH with enhanced water uptake at higher relative humidities. Our results show that salt particles may transition from solid to liquid at a lower relative humidity than is expected based on the salt alone, as observed with changes in optical properties. Further, they contradict current measurements in the literature that suggest little change in the hygroscopic behavior of salts when insoluble mineral dust components are added and should continue to be investigated. Accurate, direct measurements of the effect of the addition of clays to the optical properties of common aerosol species will allow for improvements in the prediction of the aerosol direct effect.

  18. A Method for Determining Hygroscopic Growth Factor for Organic Aerosols From Vapor Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Tabazadeh, A.; Golden, D. M.; Jacobson, M. Z.

    2008-12-01

    Currently, the tandem differential mobility analyzer (TDMA) is one of the most commonly used instruments to study the hygroscopic behavior of aerosols. The hygroscopic growth factor (HGF), defined as the ratio of the diameter of a spherical particle when it is exposed to humid conditions to that at dry conditions, is typically used to quantify particle water uptake. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aW) in the aqueous phase. Our approach is based on the fact that water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aW of aqueous solutions as a function of solution concentration and temperature. For the pertinent solutions, we report coefficients resulting from a least square fitting of the water activity data as a function of molality for temperatures from 0 to 30°C. We compared the results obtained using our measured water activities in the HGF formulation with previous studies published, where TDMA is used to directly measure the HGF, for solutes commonly found in atmospheric aerosols. Our results indicate agreement with TDMA studies for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidity (RH). However, we find a difference for organic particles that show no deliquescence behavior at low RH. For example, one TDMA study measured a HGF of 1.18 for 100 nm phthalic acid particles at 90% RH (aW= 0.9) and 30°C. Our data showed that even an aqueous solution saturated in phthalic acid did not lower the vapor pressure of pure water at 30°C. We propose that the adsorption of a negligible mass of water by a porous particle can lead to an apparent growth in particle size by changing the particle morphology.

  19. Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai

    2015-05-01

    A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.

  20. Dynamics of aerosol size during inhalation: hygroscopic growth of commercial nebulizer formulations.

    PubMed

    Haddrell, Allen E; Davies, James F; Miles, Rachael E H; Reid, Jonathan P; Dailey, Lea Ann; Murnane, Darragh

    2014-03-10

    The size of aerosol particles prior to, and during, inhalation influences the site of deposition within the lung. As such, a detailed understanding of the hygroscopic growth of an aerosol during inhalation is necessary to accurately model the deposited dose. In the first part of this study, it is demonstrated that the aerosol produced by a nebulizer, depending on the airflows rates, may experience a (predictable) wide range of relative humidity prior to inhalation and undergo dramatic changes in both size and solute concentration. A series of sensitive single aerosol analysis techniques are then used to make measurements of the relative humidity dependent thermodynamic equilibrium properties of aerosol generated from four common nebulizer formulations. Measurements are also reported of the kinetics of mass transport during the evaporation or condensation of water from the aerosol. Combined, these measurements allow accurate prediction of the temporal response of the aerosol size prior to and during inhalation. Specifically, we compare aerosol composed of pure saline (150 mM sodium chloride solution in ultrapure water) with two commercially available nebulizer products containing relatively low compound doses: Breath®, consisting of a simple salbutamol sulfate solution (5 mg/2.5 mL; 1.7 mM) in saline, and Flixotide® Nebules, consisting of a more complex stabilized fluticasone propionate suspension (0.25 mg/mL; 0.5 mM in saline. A mimic of the commercial product Tobi© (60 mg/mL tobramycin and 2.25 mg/mL NaCl, pH 5.5-6.5) is also studied, which was prepared in house. In all cases, the presence of the pharmaceutical was shown to have a profound effect on the magnitude, and in some cases the rate, of the mass flux of water to and from the aerosol as compared to saline. These findings provide physical chemical evidence supporting observations from human inhalation studies, and suggest that using the growth dynamics of a pure saline aerosol in a lung inhalation model

  1. Airborne measurements of hygroscopicity and mixing state of aerosols in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Weingartner, Ernest; Gysel, Martin; Rubach, Florian; Mentel, Thomas; Baltensperger, Urs

    2014-05-01

    Aerosols interact directly with the incident solar radiation by scattering or absorbing the light. The optical properties of an aerosol particle can strongly be altered at enhanced relative humidity (RH). Depending on the particle's chemical composition, it can experience hygroscopic growth, leading to a change in size and index of refraction compared to the dry particle (Zieger et al., 2011). Besides, aerosols can exist in different mixing states which are usually divided into internal and external mixtures. If all particles of a certain size have the same chemical composition, they are described as internally mixed, whereas if particles of equal size have different chemical composition, they are defined as externally mixed. Depending on the mixture the hygroscopic behavior will change: internally mixed aerosols will grow uniformly with increasing RH, while the different substances in external mixtures will experience different growing behaviors leading to a mode-splitting or broadened size distribution. Laboratory studies are commonly performed at dry conditions but it is known that temperature and RH as well as chemical composition are changing with altitude (Morgan et al., 2010). This further leads to the conclusion that the in-situ measurements of optical properties at different heights are crucial for climate forcing calculations. Within the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) the white- light humidified optical particle spectrometer (WHOPS) was developed and installed on the Zeppelin to investigate changes of light scattering with regard to water uptake and altitude. This instrument firstly selects a dry monodisperse aerosol by its electrical mobility and then exposes it to a well-defined RH (typically 95%). Alternately, the dry and humidified particles are measured in a white-light optical particle spectrometer (WELAS). In this way it is possible to infer the effective index of refraction of the dry particles, their hygroscopic

  2. Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011

    NASA Astrophysics Data System (ADS)

    Ryshkevich, T. I.; Mironov, G. N.; Mironova, S. Yu.; Vlasenko, S. S.; Chi, X.; Andreae, M. O.; Mikhailov, E. F.

    2015-09-01

    The results of measurements of hygroscopic properties and chemical analysis of atmospheric aerosol samples collected from June 10 to 20 and December 15 to 25, 2011, at the ZOTTO background stations (60.8° N, 89.35° E) in Central Siberia are presented. The sorption properties of aerosols are studied with the help of a differential analyzer of absorbed water mass in the relative humidity range of 5 to 99%. It has been found that the hygroscopic growth factor of aerosol particles collected during the winter campaign is on average 45% higher than that of the aerosol collected in the summer campaign, which leads to a 40% decrease in the critical supersaturation threshold of cloud activation of particles. The measurement data are analyzed and parameterized using a new approach that takes into account the concentration effects in the particle—water vapor system at low humidities. Based on the chemical analysis, the content of water-soluble substances in the winter sample is 2.5 times higher than in the summer sample. Here, the amount of sulfates and nitrates increases 20 and 88 times, respectively. A trajectory analysis of air mass motion shows that the increased content of inorganic ions in aerosols for the winter sample is caused by long-range transport of pollutants from industrial areas of Siberia. This difference in the chemical composition is the main source of the observed difference in hygroscopic and condensation properties of the aerosol particles.

  3. Hygroscopicity and CCN activity of atmospheric aerosol particles and their relation to organics: Characteristics of urban aerosols in Nagoya, Japan

    NASA Astrophysics Data System (ADS)

    Kawana, Kaori; Nakayama, Tomoki; Mochida, Michihiro

    2016-04-01

    The size-resolved distributions of hygroscopic growth factor g and the ratios of cloud condensation nuclei (CCN) to condensation nuclei of atmospheric aerosols were investigated in Nagoya, Japan. The average of the distributions of g at 85% relative humidity was bimodal. The size-resolved mean κ derived from g showed an increasing trend with diameter: 0.17-0.33 at 24-359 nm. The κ values calculated from CCN activation curves were 37% higher than those derived from g. Only 9% of the 37% difference is explained by the difference in the κ of inorganics under subsaturated and supersaturated conditions, suggesting a contribution of organics to the remaining 28% difference. The size-averaged κ of organics (κorg) was calculated as 0.14 and 0.19 by two different methods. The number fractions of CCN predicted from the hygroscopicity data over the range of 24-359 nm are loosely consistent with those observed if the size- and time-averaged g is applied to all particles (differences: -30% to +10%). This consistency improves if size- and time-resolved g and g distribution are used (differences: -19% to -3%). Whereas the number fractions of CCN predicted from the composition data are greatly underestimated if organics are assumed to be insoluble (differences: -64% to -45%), they are more consistent if κorg of 0.14 or 0.19 is applied (differences: -10% to +14%). The results demonstrate the importance of the dependence of the g of particles on time and particle size and the hygroscopicity of organics for CCN number concentrations in the urban atmosphere.

  4. Cloud Condensation Nuclei Activity, Droplet Growth Kinetics and Hygroscopicity of Biogenic and Anthropogenic Secondary Organic Aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Buchholz, Angela; Kortner, Birthe; Schlag, Patrick; Rubach, Florian; Hendrik, Fucks; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wahner, Andreas; Hallquist, Mattias; Flores, Michel; Rudich, Yinon; Glasius, Marianne; Kourtchev, Ivan; Kalberer, Markus; Mentel, Thomas

    2015-04-01

    Recent field data and model analysis show that secondary organic aerosol (SOA) formation is enhanced under anthropogenic influences (de Gouw et al. 2005, Spracklen et al. 2011). The interaction of biogenic VOCs (BVOCs) with anthropogenic emissions such as anthropogenic VOCs (AVOCs) could change the particle formation yields and the aerosol properties, as was recently demonstrated (Emanuelsson et al., 2013; Flores et al., 2014). However, the effect of the interaction of BVOCs with AVOCs on cloud condensation nuclei (CCN) activity and hygroscopicity of SOA remains elusive. Characterizing such changes is necessary in order to assess the indirect radiative forcing of biogenic aerosols that form under anthropogenic influence. In this study, we investigated the influence of AVOCs on CCN activation and hygroscopic growth of BSOA. SOA was formed from photooxidation of monoterpenes and aromatics as representatives of BVOCs and AVOCs, respectively. The hygroscopicity and CCN activation of BSOA were studied and compared with that of anthropogenic SOA (ASOA) and the mixture of ASOA and BSOA (ABSOA). We found that ASOA had a significantly higher hygroscopicity than BSOA at similar OH dose, which is attributed to a higher oxidation level of ASOA. While the ASOA fraction had an enhancing effect on the hygroscopicity of ABSOA compared to BSOA, the hygroscopicity of ABSOA cannot be explained by a linear combination of the pure ASOA and BSOA systems, indicating potentially additional non-linear effects such as oligomerization. However, in contrast to hygroscopicity, ASOA showed similar CCN activity as BSOA, in spite of its higher oxidation level. The ASOA fraction did not enhance the CCN activity of ABSOA. The discrepancy between hygroscopicity and CCN activity is discussed. In addition, BSOA, ABSOA and ASOA formed similar droplet size with ammonium sulfate in CCN at a given supersaturation, indicating none of these aerosols had a delay in the water uptake in the supersaturated

  5. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, Natasha; Zuend, Andreas; Schilling, Katherine; Berkemeier, Thomas; Shiraiwa, Manabu; Flagan, Richard C.; Seinfeld, John H.

    2016-10-01

    Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol-1 and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid-liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG-AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000-AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also

  6. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1).

  7. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources

    NASA Astrophysics Data System (ADS)

    Titos, G.; Cazorla, A.; Zieger, P.; Andrews, E.; Lyamani, H.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2016-09-01

    Knowledge of the scattering enhancement factor, f(RH), is important for an accurate description of direct aerosol radiative forcing. This factor is defined as the ratio between the scattering coefficient at enhanced relative humidity, RH, to a reference (dry) scattering coefficient. Here, we review the different experimental designs used to measure the scattering coefficient at dry and humidified conditions as well as the procedures followed to analyze the measurements. Several empirical parameterizations for the relationship between f(RH) and RH have been proposed in the literature. These parameterizations have been reviewed and tested using experimental data representative of different hygroscopic growth behavior and a new parameterization is presented. The potential sources of error in f(RH) are discussed. A Monte Carlo method is used to investigate the overall measurement uncertainty, which is found to be around 20-40% for moderately hygroscopic aerosols. The main factors contributing to this uncertainty are the uncertainty in RH measurement, the dry reference state and the nephelometer uncertainty. A literature survey of nephelometry-based f(RH) measurements is presented as a function of aerosol type. In general, the highest f(RH) values were measured in clean marine environments, with pollution having a major influence on f(RH). Dust aerosol tended to have the lowest reported hygroscopicity of any of the aerosol types studied. Major open questions and suggestions for future research priorities are outlined.

  8. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    NASA Astrophysics Data System (ADS)

    Forestieri, Sara D.; Cornwell, Gavin C.; Helgestad, Taylor M.; Moore, Kathryn A.; Lee, Christopher; Novak, Gordon A.; Sultana, Camille M.; Wang, Xiaofei; Bertram, Timothy H.; Prather, Kimberly A.; Cappa, Christopher D.

    2016-07-01

    The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative

  9. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  10. Assessment of CCN based on size-resolved hygroscopicity data: Results from urban aerosol measurements in Nagoya, Japan

    NASA Astrophysics Data System (ADS)

    Kawana, K.; Nakayama, T.; Mochida, M.

    2012-12-01

    To assess the number concentrations and the proportion of cloud condensation nuclei (CCN) and the CCN activation diameter (dact) of urban aerosols based on size-resolved hygroscopicity, the atmospheric observation was performed for 10 days at an urban site of Nagoya, Japan in September 2009. The hygroscopic growth factor (HGF) distributions of aerosol particles at 85% RH were measured using a hygroscopicity tandem differential mobility analyzer (HTDMA) system, which consists of two differential mobility analyzers (DMAs) and a condensation particle counter (CPC). The proportion of CCN in the aerosol particles exiting the first DMA of the HTDMA was measured using a CCN counter and a CPC. The number concentrations of CCN (NCCN), the ratio of NCCN to the number concentrations of condensation nuclei (NCN), and dact were predicted from the observed HTDMA data based on k-köhler theory, and they were compared with measured values. Here, measured NCCN is that obtained from the number-size distribution of aerosol particles and the size-resolved NCCN/NCN. The measured dact was obtained from a curve fit to a CCN efficiency spectrum. The dact was predicted using different two methods. Whereas one of the methods to predict dact is based on the mean hygroscopic growth factor (gmean) at each diameter, the other accounts for activation of aerosol particles at each HGF bin. The NCCN and NCCN/NCN were predicted using the latter method only. The predicted NCCN and the predicted NCCN/NCN were, respectively, on average 19% and 15% lower than the measured values. The predicted dact were on average 8% higher than the measured values by both of the methods.

  11. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  12. Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Nenes, Athanasios; Marinou, Eleni; Solomos, Stavros; Rosenberg, Phil; Trembath, Jamie; Nott, Graeme J.; Allan, James; Le Breton, Michael; Bacak, Asan; Coe, Hugh; Percival, Carl; Mihalopoulos, Nikolaos

    2017-01-01

    We present the In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) that combines airborne in situ and lidar remote sensing data to retrieve vertical profiles of ambient aerosol optical, microphysical and hygroscopic properties, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. Here we apply the algorithm on data collected from the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft during the ACEMED campaign in the Eastern Mediterranean. Vertical profiles of aerosol microphysical properties have been derived successfully for an aged smoke plume near the city of Thessaloniki with aerosol optical depth of ˜ 0.4 at 532 nm, single scattering albedos of ˜ 0.9-0.95 at 550 nm and typical lidar ratios for smoke of ˜ 60-80 sr at 532 nm. IRRA retrieves highly hydrated particles above land, with 55 and 80 % water volume content for ambient relative humidity of 80 and 90 %, respectively. The proposed methodology is highly advantageous for aerosol characterization in humid conditions and can find valuable applications in aerosol-cloud interaction schemes. Moreover, it can be used for the validation of active space-borne sensors, as is demonstrated here for the case of CALIPSO.

  13. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  14. Hygroscopic and chemical properties of aerosols collected near a copper smelter: implications for public and environmental health.

    PubMed

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J; Sáez, A Eduardo; Betterton, Eric A

    2012-09-04

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g., arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18-0.55 μm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10-0.32 μm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles.

  15. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-04

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  16. Hygroscopic and Chemical Properties of Aerosols collected near a Copper Smelter: Implications for Public and Environmental Health

    PubMed Central

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J.; Sáez, A. Eduardo; Betterton, Eric A.

    2012-01-01

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples collected near an active copper smelter were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g. arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18–0.55 µm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10–0.32 µm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles. PMID:22852879

  17. A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Su, H.; Cheng, Y.; Ma, N.; Wang, Z.; Wang, X.; Pöhlker, M.; Nillius, B.; Wiedensohler, A.; Pöschl, U.

    2015-09-01

    The activation and hygroscopicity of cloud condensation nuclei (CCN) are key to understand aerosol-cloud interactions and their climate impact. It can be measured by scanning the particle size and supersaturation in CCN measurements. The scanning of supersaturation is often time-consuming and limits the temporal resolution and performance of CCN measurements. Here we present a new approach, termed broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned reducing the time interval between different supersaturation scans. The practical applicability of the BS2 approach is demonstrated with nano-CCN measurements of laboratory-generated aerosol particles. Model simulations show that the BS2 approach is also applicable for measuring CCN activation of ambient mixed particles. Due to its fast response and technical simplicity, the BS2 approach may be well suited for long-term measurements. Since hygroscopicity is closely related to the fraction of organics/inorganics in aerosol particles, a BS2-CCN counter can also serve as a complementary sensor for fast detection/estimation of aerosol chemical compositions.

  18. A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Su, Hang; Cheng, Yafang; Ma, Nan; Wang, Zhibin; Wang, Xiaoxiang; Pöhlker, Mira L.; Nillius, Björn; Wiedensohler, Alfred; Pöschl, Ulrich

    2016-10-01

    The activation and hygroscopicity of cloud condensation nuclei (CCN) are key to the understanding of aerosol-cloud interactions and their impact on climate. They can be measured by scanning the particle size and supersaturation in CCN measurements. The scanning of supersaturation is often time-consuming and limits the temporal resolution and performance of CCN measurements. Here we present a new approach, termed the broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned, reducing the time interval between different supersaturation scans. The practical applicability of the BS2 approach is demonstrated with nano-CCN measurements of laboratory-generated aerosol particles. Model simulations show that the BS2 approach may also be applicable for measuring CCN activation of ambient mixed particles. Due to its fast response and technical simplicity, the BS2 approach may be well suited for aircraft and long-term measurements. Since hygroscopicity is closely related to the fraction of organics/inorganics in aerosol particles, a BS2-CCN counter can also serve as a complementary sensor for fast detection/estimation of aerosol chemical compositions.

  19. Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign

    NASA Astrophysics Data System (ADS)

    Lv, Min; Liu, Dong; Li, Zhanqing; Mao, Jietai; Sun, Yele; Wang, Zhenzhu; Wang, Yingjian; Xie, Chenbo

    2017-02-01

    Lidar, radiosonde, and ground-based in situ nephelometer measurements made during an intensive field campaign carried out from July to September 2014 at the Xinzhou meteorological station were used to determine the aerosol hygroscopic growth effect in a cloud-capped, well-mixed boundary layer. Aerosol hygroscopic properties at 355 and 532 nm were examined for two cases with distinct aerosol layers. Lidar-derived maximum enhancement factors in terms of aerosol backscatter coefficient derived using a relative humidity (RH) reference value of 85% were 1.19 at 532 nm and 1.10 at 355 nm for Case I and 2.32 at 532 nm and 1.94 at 355 nm for Case II. To derive the aerosol particle hygroscopic growth factor at specific RH values, the Kasten and Hänel models were used. A comparison of the goodness of fit for the two models showed that the Kasten model performed better. The hygroscopic growth curve for RH>90% was much steeper than that for RH in the range of 85-90%. The slopes of the lidar-derived enhancement factor curve (measured from 85% to 95% RH) and the nephelometer-derived enhancement factor curve (measured from 40% to 62% RH) in Case I show similar trends, which lends confidence to using lidar measurements for studying aerosol particle hygroscopic growth. Data from a ground aerosol chemical speciation monitor showed that the larger values of aerosol hygroscopic enhancement factor in Case II corresponded to greater mass concentrations of sulfate and nitrate in the atmosphere.

  20. Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Hong, J.; Kim, J.; Nieminen, T.; Duplissy, J.; Ehn, M.; Äijälä, M.; Hao, L. Q.; Nie, W.; Sarnela, N.; Prisle, N. L.; Kulmala, M.; Virtanen, A.; Petäjä, T.; Kerminen, V.-M.

    2015-10-01

    Measurements of the hygroscopicity of 15-145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a high-resolution aerosol mass spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGForg), fitted using the inverse Zdanovskii-Stokes-Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics concentration (ELVOC) and the HGF of particles of any size.

  1. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    SciTech Connect

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode.

    The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments.

    The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was

  2. Cloud condensation nuclei in polluted air and biomass burning smoke: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    NASA Astrophysics Data System (ADS)

    Rose, D.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2009-04-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate, but their abundance, properties and sources are highly variable and not well known. We have measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign on 1-30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20-300 nm) were recorded at water vapor supersaturations (S) in the range of 0.07% to 1.27%. Depending on S, the dry CCN activation diameters were in the range of 30-200 nm, corresponding to effective hygroscopicity parameters kappa in the range of 0.1-0.5. The hygroscopicity of particles in the accumulation size range was generally higher than that of particles in the nucleation and Aitken size range. The campaign average value of kappa for all aerosol particles across the investigated size range was 0.3, which equals the average value of kappa for other continental locations. During a strong local biomass burning event, the activation diameters increased by ~10% and the average value of kappa dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, which indicates substantial proportions of externally mixed CCN-inactive particles with much lower hygroscopicity - most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (N_CCN,S) ranged from 1100 cm-3 at S=0.07% to 16 000 cm-3 at S=1.27%, representing ~7% to ~85% of the total aerosol particle number concentration. Based on the measurement data, we have tested different model approaches (power laws and kappa-Köhler model) for the approximation/prediction of N_CCN,S as a function of water vapor supersaturation, aerosol particle number

  3. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic-ammonium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-05-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid and humic acid, and their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH above ∼70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydrobenxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology effects), which are not

  4. From hygroscopic aerosols to cloud droplets: The HygrA-CD campaign in the Athens basin - An overview.

    PubMed

    Papayannis, A; Argyrouli, A; Bougiatioti, A; Remoundaki, E; Vratolis, S; Nenes, A; Solomos, S; Komppula, M; Giannakaki, E; Kalogiros, J; Banks, R; Eleftheriadis, K; Mantas, E; Diapouli, E; Tzanis, C G; Kazadzis, S; Binietoglou, I; Labzovskii, L; Vande Hey, J; Zerefos, C S

    2017-01-01

    The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), organized in the Greater Athens Area (GAA), Greece from 15 May to 22 June 2014, aimed to study the physico-chemical properties of aerosols and their impact on the formation of clouds in the convective Planetary Boundary Layer (PBL). We found that under continental (W-NW-N) and Etesian (NE) synoptic wind flow and with a deep moist PBL (~2-2.5km height), mixed hygroscopic (anthropogenic, biomass burning and marine) particles arrive over the GAA, and contribute to the formation of convective non-precipitating PBL clouds (of ~16-20μm mean diameter) with vertical extent up to 500m. Under these conditions, high updraft velocities (1-2ms(-1)) and cloud condensation nuclei (CCN) concentrations (~2000cm(-3) at 1% supersaturation), generated clouds with an estimated cloud droplet number of ~600cm(-3). Under Saharan wind flow conditions (S-SW) a shallow PBL (<1-1.2km height) develops, leading to much higher CCN concentrations (~3500-5000cm(-3) at 1% supersaturation) near the ground; updraft velocities, however, were significantly lower, with an estimated maximum cloud droplet number of ~200cm(-3) and without observed significant PBL cloud formation. The largest contribution to cloud droplet number variance is attributed to the updraft velocity variability, followed by variances in aerosol number concentration.

  5. Real-Time Investigation of Chemical Compositions and Hygroscopic Properties of Aerosols Generated from NaCl and Malonic Acid Mixture Solutions Using in Situ Raman Microspectrometry.

    PubMed

    Li, Xue; Gupta, Dhrubajyoti; Lee, Jisoo; Park, Geonhee; Ro, Chul-Un

    2017-01-03

    Recently, ambient sea spray aerosols (SSAs) have been reported to undergo reactions with dicarboxylic acids (DCAs). Several studies have examined the hygroscopic behavior and chemical reactivity of aerosols generated from NaCl-DCA mixture solutions, but the results have varied, especially for the NaCl-malonic acid (NaCl-MA) mixture system. In this work, in situ Raman microspectrometry (RMS) was used to simultaneously monitor the change in chemical composition, size, and phase as a function of the relative humidity, for individual aerosols generated from NaCl-MA solutions, during two hygroscopic measurement cycles, which were performed first through the dehydration process, followed by a humidification process, in each cycle. In situ RMS analysis for the aerosols showed that the chemical reaction between NaCl and MA occurred rapidly in the time scale of 1 h and considerably in the aqueous phase, mostly during the first dehydration process, and the chemical reaction occurs more rapidly when MA is more enriched in the aerosols. For example, the reaction between NaCl and MA for aerosols generated from solutions of NaCl:MA = 2:1 and 1:2 occurred by 81% and 100% at RH = 42% and 45%, respectively, during the first dehydration process. The aerosols generated from the solution of NaCl:MA = 2:1 revealed single efflorescence and deliquescence transitions repeatedly during two hygroscopic cycles. The aerosols from NaCl:MA = 1:1 and 1:2 solutions showed just an efflorescence transition during the first dehydration process and no efflorescence and deliquescence transition during the hygroscopic cycles, respectively. The observed different hygroscopic behavior was due to the different contents of NaCl, MA, and monosodium malonate in the aerosols, which were monitored real-time by in situ RMS.

  6. Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Hong, J.; Kim, J.; Nieminen, T.; Duplissy, J.; Ehn, M.; Äijälä, M.; Hao, L.; Nie, W.; Sarnela, N.; Prisle, N. L.; Kulmala, M.; Virtanen, A.; Petäjä, T.; Kerminen, V.-M.

    2015-06-01

    Measurements of the hygroscopicity of 15-145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-AeroSOIs-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a High-Resolution Aerosol Mass Spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGForg), fitted using the inverse Zdanovskii-Stokes-Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more there was sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics (ELVOCs) concentration and the HGF of particles of any size.

  7. Relative humidity impact on aerosol parameters in a Paris suburban area

    NASA Astrophysics Data System (ADS)

    Randriamiarisoa, H.; Chazette, P.; Couvert, P.; Sanak, J.; Mégie, G.

    2006-05-01

    Measurements of relative humidity (RH) and aerosol parameters (scattering cross section, size distributions and chemical composition), performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the "Etude et Simulation de la Qualité de l'air en Ile-de-France" (ESQUIF) program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  8. Relative humidity impact on aerosol parameters in a Paris suburban area

    NASA Astrophysics Data System (ADS)

    Randriamiarisoa, H.; Chazette, P.; Couvert, P.; Sanak, J.; Mégie, G.

    2005-09-01

    Measurements of relative humidity (RH) and aerosol parameters (scattering cross section, size distributions and chemical composition), performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the ''Etude et Simulation de la Qualité de l'air en Ile-de-France'' (ESQUIF) program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  9. Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation.

    PubMed

    Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong

    2010-12-09

    Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.

  10. Aerosol Activity and Hygroscopicity Combined with Lidar Data in the Urban Atmosphere of Athens, Greece in the Frame of the HYGRA_CD Campaign

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Papayannis, Alexandros; Vratolis, Stergios; Argyrouli, Athina; Mihalopoulos, Nikolaos; Tsagkaraki, Maria; Nenes, Athanasios; Eleftheriadis, Konstantinos

    2016-06-01

    Measurements of cloud condensation nuclei (CCN) concentrations between 0.2-1.0% supersaturation and aerosol size distribution were performed at an urban background site of Athens during HygrA-CD. The site is affected by local and long-range transported emissions as portrayed by the external mixing of the particles, as the larger ones appear to be more hygroscopic and more CCN-active than smaller ones. Activation fractions at all supersaturations exhibit a diurnal variability with minimum values around noon, which are considerably lower than unity. This reinforces the conclusion that the aerosol is mostly externally mixed between "fresher", less hygroscopic components with more aged, CCN active constituents.

  11. Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J. F.

    2015-03-01

    Secondary organic aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber. The SOA formation and aging were studied by following their optical, hygroscopic and chemical properties. The optical properties were investigated by determining the particle complex refractive index (CRI). The hygroscopicity was quantified by measuring the effect of relative humidity (RH) on the particle size (size growth factor, GF) and on the scattering coefficient (scattering growth factor, f(RH)). The oxygen to carbon atomic ratios (O : C) of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition during their formation and aging in CESAM. The real CRI at 525 nm wavelength decreased from 1.43-1.60 (±0.02) to 1.32-1.38 (±0.02) during the SOA formation. The decrease in the real CRI correlated to the O : C decrease from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF remained roughly constant over the reaction time, with values of 1.02-1.07 (±0.02) at 90% (±4.2%) RH. Simultaneous measurements of O : C of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but contained less oxidised species at the surface which may limit water absorption. In addition, an apparent change in both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 14 h of reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.

  12. An alternative method estimating hygroscopic growth factor of aerosol light scattering coefficient: a case study in an urban area of Guangzhou, South China

    NASA Astrophysics Data System (ADS)

    Lin, Z. J.; Zhang, Z. S.; Zhang, L.; Tao, J.; Zhang, R. J.; Cao, J. J.; Zhang, Y. H.

    2014-01-01

    A method was developed to estimate hygroscopic growth factor (f(RH)) of aerosol light scattering coefficient (bsp), making use of the measured size- and chemically-resolved aerosol samples. Regarding this method, chemical composition of the measured aerosol samples were first reconstructed using the equilibrium model ISOPPORIA II. The model reconstructed chemical composition varies with a varying relative humidity (RH) input, which was then employed to calculate bsp and f(RH) of bsp using Mie Model. Further, the RH dependence of f(RH) of bsp (denoted as f(RH) derived from model calculation was empirically fitted with a two-parameter formula. One of the two parameters was set to be a constant for practical applications. For validation, the developed formula of fsp(RH) was applied to correct the long-term records of measured bsp from the values under comparative dry conditions to the ones under ambient RH conditions. Compared with the original bsp data, the f(RH)-corrected bsp had a higher linear correlation with and a smaller discrepancy from the bsp data derived directly from visibility and absorption measurements. The method described in this paper provides an alternative approach to estimate fsp(RH) and has many potential applications.

  13. Hygroscopic Measurements of Aerosol Particles in the San Joaquin Valley California during the DRAGON and Discover AQ Campaign 2013

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2013-12-01

    In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f

  14. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    PubMed

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  15. Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.

    PubMed

    Mihara, Toshiyuki; Mochida, Michihiro

    2011-11-01

    To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM.

  16. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  17. In-Situ Measurements of Aerosol Optical and Hygroscopic Properties at the Look Rock Site during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Guzman, J. M.; Russell, L. M.; Budisulistiorini, S.; Li, X.; Surratt, J. D.; Hicks, W.; Bairai, S. T.; Cappa, C. D.

    2013-12-01

    One of the main goals of the Southern Oxidant and Aerosol Study (SOAS) is to characterize the climate-relevant properties of aerosols over the southeastern United States at the interface of biogenic and anthropogenic emissions. As part of the SOAS campaign, the UCD cavity ringdown/photoacoustic spectrometer was deployed to make in-situ measurements of aerosol light extinction, absorption and sub-saturated hygroscopicity at the Look Rock site (LRK) in the Great Smoky Mountains National Park, TN from June 1 to July 15, 2013. The site is influenced by substantial biogenic emissions with varying impacts from anthropogenic pollutants, allowing for direct examination of the optical and hygroscopic properties of anthropogenic-influenced biogenic secondary organic aerosols (SOA). During the experiment period, the average dry aerosol extinction (Bext), absorption (Babs) coefficients and single scattering albedo (SSA) at 532 nm were 30.3 × 16.5 Mm-1, 1.12 × 0.78 Mm-1 and 0.96 × 0.06. The Babs at 532 nm was well correlated (r2 = 0.79) with the refractory black carbon (rBC) number concentration determined by a single particle soot spectrometer (SP2). The absorption by black carbon (BC), brown carbon (BrC) and the absorption enhancement due to the 'lensing' effect were quantified by comparing the Babs of ambient and thermo-denuded aerosols at 405 nm and 532 nm. The optical sub-saturated hygroscopic growth factor was derived from extinction and particle size distribution measurements at dry and elevated relative humidity. In addition, to explore the extent to which ammonia mediated chemistry leads to BrC formation, as suggested in recent laboratory studies(1,2), we performed an NH3 perturbation experiment in-situ for 1 week during the study, in which ambient aerosols were exposed to approximately 100 ppb NH3 with a residence time of ~ 3hr. The broader implications of these observational data at LRK will be discussed in the context of the concurrent gas and aerosol chemical

  18. Parameter sensitivity study of Arctic aerosol vertical distribution in CAM5

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Flanner, M.

    2015-12-01

    Arctic surface temperature response to light-absorbing aerosols (black carbon, brown carbon and dust) depends strongly on their vertical distributions. Improving model simulations of three dimensional aerosol fields in the remote Arctic region will therefore lead to improved projections of the climate change caused by aerosol emissions. In this study, we investigate how different physical parameterizations in the Community Atmosphere Model version 5 (CAM5) influence the simulated vertical distribution of Arctic aerosols. We design experiments to test the sensitivity of the simulated aerosol fields to perturbations of selected aerosol process-related parameters in the Modal Aerosol Module with seven lognormal modes (MAM7), such as those govern aerosol aging, in-cloud and below-cloud scavenging, aerosol hygroscopicity and so on. The simulations are compared with observed aerosol vertical distributions and total optical depth to assess model performance and quantify uncertainties associated with these model parameterizations. Observations applied here include Arctic aircraft measurements of black carbon and sulfate vertical profiles, along with Aerosol Robotic Network (AERONET) optical depth measurements. We also assess the utility of using High Spectral Resolution Lidar (HSRL) measurements from the ARM Barrow site to infer vertical profiles of aerosol extinction. The sensitivity study explored here will provide guidance for optimizing global aerosol simulations.

  19. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Yao; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-07-01

    The hygroscopic and volatility properties of secondary organic aerosol (SOA) produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in a laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase photooxidation of terpenes, usually found almost hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weight compounds), which evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon the droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  20. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  1. Hygroscopic growth of water-soluble matter extracted from remote marine aerosols over the western North Pacific: Influence of pollutants transported from East Asia.

    PubMed

    Boreddy, S K R; Kawamura, K

    2016-07-01

    We examined the hygroscopic properties of water-soluble matter (WSM) nebulized from water extracts of total suspended particles (TSP) collected at Chichijima Island in the western North Pacific during January to September 2003. The hygroscopic growth factor g(RH) of the aerosol particles was measured using a hygroscopic tandem differential mobility analyzer (HTDMA) with an initial dry particle diameter of 100nm and relative humidity (RH) of 5-95%. The measured growth factor at 90% RH, g(90%), ranged from 1.51 to 2.14 (mean: 1.76±0.15), significantly lower than that of sea salts (2.1), probably owing to the heterogeneous reactions associated with chloride depletion in sea-salt particles and water-soluble organic matter (WSOM). The g(90%) maximized in summer and minimized in spring. The decrease in spring was most likely explained by the formation of less hygroscopic salts or particles via organometallic reactions during the long-range transport of Asian dust. Cl(-) and Na(+) dominate the mass fractions of WSM, followed by nss-SO4(2-) and WSOM. Based on regression analysis, we confirmed that g(90%) at Chichijima Island largely increased due to the dominant sea spray; however, atmospheric processes associated with chloride depletion in sea salts and WSOM often suppressed g(90%). Furthermore, we explored the deviation (average: 18%) between the measured and predicted g(90%) by comparing measured and model growth factors. The present study demonstrates that long-range atmospheric transport of anthropogenic pollutants (SO2, NOx, organics, etc.) and the interactions with sea-salt particles often suppress the hygroscopic growth of marine aerosols over the western North Pacific, affecting the remote background conditions. The present study also suggests that the HCl liberation leads to the formation of less hygroscopic aerosols over the western North Pacific during long-range transport.

  2. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w

  3. Absorbing aerosols at high relative humidity: closure between hygroscopic growth and optical properties

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Bar-Or, R. Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Rudich, Y.

    2012-01-01

    The extinction coefficient and growth factor of humidified aerosols, at 80% and 90% RH, and at 532 nm and 355 nm wavelengths were measured for size-selected particles for ammonium sulfate, IHSS Pahokee peat (a lightly absorbing humic-like substance proxy), nigrosine (a black dye to model highly absorbing substances), and a mixture of AS and nigrosine. The ratio of the humidified extinction coefficients to the dry (fRHext(%RH, Dry)) was explored. The measured fRHext(%RH, Dry) was compared to theoretical calculations based on Mie theory, using the measured growth factors and assuming homogeneous mixing. The expected complex refractive indices (RIs) using the volume weighted mixing rule were compared to the RIs derived from the extinction measurements. Moreover, the differences between assuming a core-shell structure or a homogeneous mixing of the substances is examined. The laboratory results were used as a basis to model the change in the total extinction, the single scattering albedo (ω), and the asymmetry parameter (g) in the twilight zone of clouds at 355 nm and 532 nm. We found slightly linear to no dependency of fRH(%RH, Dry) with size for absorbing substances in contrast to the decreasing exponential behavior with size for purely scattering substances. However, no discernable difference could be made between the two wavelengths used. Less than 5% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. Moreover, for substances with growth factor less than 1.15 there was, in average, less than 5% difference between the extinction efficiencies calculated using a core-shell model and assuming homogeneous mixing for size parameters less than 2.5. For x>2.5 the differences were greater causing and overestimation of the extinction efficiency (Qext) values if homogenous mixing was assume instead of a core-shell structure. The

  4. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  5. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  6. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; Pöschl, U.

    2003-09-01

    The interaction of aerosol particles in the 100-200 nm size range composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor at ambient temperature and pressure (25°C, 1 atm) has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations. BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at ~35% relative humidity (RH) and a hygroscopic diameter increase by up to ~10% at 95% RH in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical or polyhedral shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the

  7. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    NASA Astrophysics Data System (ADS)

    Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2008-09-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate, but their abundance, properties and sources are highly variable and not well known. We have measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign on 1 30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20 300 nm) were recorded at water vapor supersaturations (S) in the range of 0.07% to 1.27%. Depending on S, the dry CCN activation diameters were in the range of 30 200 nm, corresponding to effective hygroscopicity parameters κ in the range of 0.1 0.5. The hygroscopicity of particles in the accumulation size range was generally higher than that of particles in the nucleation and Aitken size range. The campaign average value of κ for all aerosol particles across the investigated size range was 0.3, which equals the average value of κ for other continental locations. During a strong local biomass burning event, the activation diameters increased by ~10% and the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, which indicates substantial proportions of externally mixed CCN-inactive particles with much lower hygroscopicity most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (NCCN,S) ranged from 1100 cm-3 at S=0.07% to 16 000 cm-3 at S=1.27%, representing ~7% to ~85% of the total aerosol particle number concentration. Based on the measurement data, we have tested different model approaches (power laws and κ-Köhler model) for the approximation/prediction of NCCN,S as a function of water vapor supersaturation, aerosol particle number concentration, size

  8. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH < 90%, under supersaturated conditions (with respect to RH), an increase in CCN activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric

  9. The Effect of Temperature on Hygroscopic Growth of Organic Aerosols Over The 273-303K Range as Derived From Bulk Solution Experiments

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Tabazadeh, A.; Golden, D. M.; Jacobson, M. Z.

    2009-12-01

    Studies have shown that organic matter often constitutes up to 50% by mass of tropospheric aerosols. It is also known that these organics may considerably alter the water uptake properties of aerosol particles. Water uptake of a particle is typically quantified by the hygroscopic growth factor, defined as the ratio of the diameter of a spherical particle when it is exposed to humid conditions to that under dry conditions. In this study, we have assembled an apparatus to measure water activity over aqueous solutions as a function of temperature and solute concentration. We report the experimental precision of our vapor pressure apparatus, obtained by replicating several experiments. Using this apparatus, we studied aqueous solutions of organic compounds representing the categories found in atmospheric aerosols such as simple sugars, diacids, humic materials, and some of their mixtures with inorganic salts. From these measurements, we directly computed the hygroscopic growth factor (HGF) using a formulation that expresses HGF as a function of water activity. Our approach is based on the fact that water activity limits the growth of a particle that can be attributed to water uptake. While most studies report the hygroscopic growth factor of atmospheric aerosols at room temperature (20 - 30°C), we explored the temperature effect on hygroscopic growth of organic aerosols within the 0 - 30°C temperature range. Within experimental error, we found no temperature dependence of the HGF in the 0 - 30°C range, for solutes d-glucose, levoglucosan, succinic acid, phthalic acid, humic acid and Suwanne River fulvic acid. For example, the water activity of an aqueous solution of d-glucose corresponding to a HGF of 1.72 varied by only 1% from 0 to 30°C, well below the experimental error. We report hygroscopic growth curves as a function of temperature and relative humidity for these six organic solutes and some of their mixtures with inorganic salts. Finally, we compare our HGF

  10. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    NASA Astrophysics Data System (ADS)

    Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2010-04-01

    Atmospheric aerosol particles serving as Cloud Condensation Nuclei (CCN) are key elements of the hydrological cycle and climate. We measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign from 1-30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20-290 nm) were recorded at water vapor supersaturations (S) in the range of 0.068% to 1.27%. The corresponding effective hygroscopicity parameters describing the influence of particle composition on CCN activity were in the range of κ≍0.1-0.5. The campaign average value of κ=0.3 equals the average value of κ for other continental locations. During a strong local biomass burning event, the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, indicating substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity - most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (NCCN,S) ranged from 1000 cm-3 at S=0.068% to 16 000 cm-3 at S=1.27%, which is about two orders of magnitude higher than in pristine air. Nevertheless, the ratios between CCN concentration and total aerosol particle concentration (integral CCN efficiencies) were similar to the ratios observed in pristine continental air (~6% to ~85% at S=0.068% to 1.27%). Based on the measurement data, we have tested different model approaches for the approximation/prediction of NCCN,S. Depending on S and on the model approach, the relative deviations between observed and predicted NCCN,S ranged from a few percent to several hundred percent. The largest deviations occurred at low S with a simple power law. With a Köhler model using variable κ values obtained from

  11. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; Pöschl, U.

    2004-02-01

    The interaction of aerosol particles composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations (100-300nm particle size range, 298K, 960hPa). BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter.

    Pure BSA particles exhibited deliquescence and efflorescence transitions at sim35% relative humidity (RH) and a hygroscopic diameter increase by up to sim10% at 95% RH in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation.

    Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the

  12. Aerosol Number-size Distributions and Hygroscopic Growth in the Marine Boundary Layer during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Covert, D. S.; Coffman, D. J.; Bates, T. S.

    2001-12-01

    As part of the Aerosol Chemistry Experiment-Asia (ACE-Asia), measurements of the physical and hygroscopic properties of aerosol particles were made on the NOAA Research Vessel Ron Brown in the experiment's study area around southern Japan, the Sea of Japan and the Yellow Sea from 30 March through 19 April, 2001 (Day of Year 90 through 109). The number-size distribution from 3 nm to 10 um diameter was measured with a combination of differential mobility analyzers and aerodynamic particle sizers. The system was operated at 55% relative humidity (RH) for consistency with optical measurements and size dependent chemical sampling on the ship. A separate system consisting of three differential mobility analyzers and humidity conditioners measured the change in hydration of the accumulation mode particles from an initial condition of 55% RH to humidities of 20% and 90% RH. The result is a distribution of hygroscopic growth factors at the end RH relative to the initial humidity. The size distributions varied widely depending on the location of the ship, the source of the air mass and the local meteorological conditions. The dominant features included ultrafine particles (less than 20 nm), soil dust particulate mass (greater than 2 um) and Aitken, accumulation mode number and mass (40 to 600 nm). The results are limited to case studies rather than any statistical or time-space average due to the limited data base and the few sources and air mass types encountered in the 21 day period. The results have been analyzed and categorized according to specific air mass trajectories and chemical analysis and are considered representative of those air masses at the marine boundary layer level. Soil dust dominated distributions were observed on days 101 through 103 with volume concentrations of 50 to 100 um3/cm3 and a volume mean diameter of 3 um. High concentrations of ultrafine particles were observed on the later two of these days from early morning through mid-afternoon in spite

  13. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-11-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1) shielding of inner monomers after particle consolidation or collapse with water uptake; (2) the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH) to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  14. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-07-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  15. Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid.

    PubMed

    Sullivan, Ryan C; Moore, Meagan J K; Petters, Markus D; Kreidenweis, Sonia M; Roberts, Greg C; Prather, Kimberly A

    2009-09-28

    Atmospheric heterogeneous reactions can potentially change the hygroscopicity of atmospheric aerosols as they undergo chemical aging processes in the atmosphere. A particle's hygroscopicity influences its cloud condensation nuclei (CCN) properties with potential impacts on cloud formation and climate. In this study, size-selected calcite mineral particles were reacted with controlled amounts of nitric acid vapour over a wide range of relative humidities in an aerosol flow tube to study the conversion of insoluble and thus apparently non-hygroscopic calcium carbonate into soluble and hygroscopic calcium nitrate. The rate of hygroscopic change particles undergo during a heterogeneous reaction is derived from experimental measurements for the first time. The chemistry of the reacted particles was determined using an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS) while the particles' hygroscopicity was determined through measuring CCN activation curves fit to a single parameter of hygroscopicity, kappa. The reaction is rapid, corresponding to atmospheric timescales of hours. At low to moderate HNO3 exposures, the increase in the hygroscopicity of the particles is a linear function of the HNO3(g) exposure. The experimentally observed conversion rate was used to constrain a simple but accurate kinetic model. This model predicts that calcite particles will be rapidly converted into hygroscopic particles (kappa>0.1) within 4 h for low HNO3 mixing ratios (10 pptv) and in less than 3 min for 1000 pptv HNO3. This suggests that the hygroscopic conversion of the calcite component of atmospheric mineral dust aerosol will be controlled by the availability of nitric acid and similar reactants, and not by the atmospheric residence time.

  16. Aerosol water parameterisation: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, Swen; Steil, Benedikt; Abdelkader, Mohamed; Klingmüller, Klaus; Xu, Li; Penner, Joyce E.; Fountoukis, Christos; Nenes, Athanasios; Lelieveld, Jos

    2016-06-01

    We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  17. Aerosol water parameterization: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Abdelkader, M.; Klingmüller, K.; Xu, L.; Penner, J. E.; Fountoukis, C.; Nenes, A.; Lelieveld, J.

    2015-11-01

    We introduce a framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute specific coefficient was introduced in Metzger et al. (2012) to accurately parameterize the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer sized particles up to dilute solutions, i.e., from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler-theory). Here we extend the νi-parameterization from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II, ISORROPIA II models as well as textbook examples. We apply our parameterization in EQSAM4clim, the EQuilibrium Simplified Aerosol Model V4 for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show: (i) that the νi-approach enables to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that, e.g., pure ammonium nitrate and mixed ammonium nitrate - ammonium sulfate mixtures can be solved with a simple method, and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  18. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and

  19. Hygroscopic growth and CCN activity of HULIS from different environments

    NASA Astrophysics Data System (ADS)

    Kristensen, Thomas B.; Wex, Heike; Nekat, Bettina; Nøjgaard, Jacob K.; van Pinxteren, Dominik; Lowenthal, Douglas H.; Mazzoleni, Lynn R.; Dieckmann, Katrin; Bender Koch, Christian; Mentel, Thomas F.; Herrmann, Hartmut; Gannet Hallar, A.; Stratmann, Frank; Bilde, Merete

    2012-11-01

    Humic-like substances (HULIS) constitute a significant fraction of aerosol particles in different environments. Studies of the role of HULIS in hygroscopic growth and cloud condensation nuclei (CCN) activity of aerosol particles are scarce, and results differ significantly. In this work the hygroscopic growth and CCN activity of water extracts (WE) and HULIS extracted from particulate matter (PM) collected at a polluted urban site (Copenhagen, Denmark), a rural site (Melpitz, Germany) and the remote site Storm Peak Laboratory (Colorado, USA) were investigated. Measurements of inorganic ions, elemental carbon, organic carbon and water soluble organic carbon (WSOC) within the PM confirmed that the sources of aerosol particles most likely differed for the three samples. The hygroscopic properties of the filtered WE were characterized by hygroscopicity parameters for subsaturated conditions (κGF) of 0.25, 0.41 and 0.22, and for supersaturated conditions κCCN were 0.23, 0.29 and 0.22 respectively for the urban, rural and remote WE samples. The measured hygroscopic growth and CCN activity were almost identical for the three HULIS samples and could be well represented by κGF = 0.07 and κCCN = 0.08-0.10 respectively. Small amounts of inorganic ions were present in the HULIS samples so the actual values for pure HULIS are expected to be slightly lower (κGF* = 0.04-0.06 and κCCN* = 0.07-0.08). The HULIS samples are thus less hygroscopic compared to most previous studies. To aid direct comparison of hygroscopic properties of HULIS from different studies, we recommend that the fraction of inorganic species in the HULIS samples always is measured and reported.

  20. Aerosol Hygroscopicity in the Marine Atmosphere: a Closure Study Using High- Resolution, Size-Resolved AMS and Multiple-RH DASH-SP Data

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Sorooshian, A.; Murphy, S.; Flagan, R. C.; Seinfeld, J. H.

    2008-12-01

    We have conducted the first closure study to couple high-resolution aerosol mass spectrometer (AMS) composition data with size-resolved, multiple-RH, high-time-resolution hygroscopic growth factor (GF) measurements from the differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). These data were collected off the coast of Central California during seven of the 16 flights carried out during the MASE-II field campaign in July 2007. Two of the seven flights were conducted in airmasses that originated over the continental United States. These flights exhibited elevated organic volume fractions (VForganic =~0.46 ± 0.22, as opposed to 0.24 ± 0.18 for all other flights), corresponding to significantly suppressed GFs at high RH (1.61 ± 0.14 at 92%RH, as compared with 1.91 ± 0.07 for all other flights), more moderate GF suppression at intermediate RH (1.53 ± 0.10 at 85%, compared with 1.58 ± 0.08 for all other flights, and no measurable GF suppression at low RH (1.31 ± 0.06 at 74%, compared with 1.31 ± 0.07 for all other flights). Organic loadings were slightly elevated in above-cloud aerosols, as compared with below-cloud aerosols, and corresponded to a similar trend of significantly suppressed GF at high RH, but more moderate impacts at lower values of RH. A hygroscopic closure based on a volume-weighted mixing rule provided excellent agreement with DASH-SP measurements (R2 = 0.79). Minimization of root mean square error between observations and predictions indicated mission-averaged organic GFs of 1.20, 1.43, and 1.46 at 74, 85, and 92% RH, respectively. These values agree with previously reported values for water-soluble organics such as dicarboxylic and multifunctional acids, and correspond to a highly oxidized, presumably water-soluble, organic fraction (O:C = 0.92 ± 0.33). Finally, a backward stepwise linear regression revealed that, other than RH, the most important predictor for GF is VForganic, indicating that a simple emperical model

  1. Aerosol hygroscopicity in the marine atmosphere: a closure study using high-resolution, size-resolved AMS and multiple-RH DASH-SP data

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Sorooshian, A.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H.

    2008-09-01

    We have conducted the first closure study to couple high-resolution aerosol mass spectrometer (AMS) composition data with size-resolved, multiple-RH, high-time-resolution hygroscopic growth factor (GF) measurements from the differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). These data were collected off the coast of Central California during seven of the 16 flights carried out during the MASE-II field campaign in July 2007. Two of the seven flights were conducted in airmasses that originated over the continental United States. These flights exhibited elevated organic volume fractions (VForganic=0.46±0.22, as opposed to 0.24±0.18 for all other flights), corresponding to significantly suppressed GFs at high RH (1.61±0.14 at 92% RH, as compared with 1.91±0.07 for all other flights), more moderate GF suppression at intermediate RH (1.53±0.10 at 85%, compared with 1.58±0.08 for all other flights, and no measurable GF suppression at low RH (1.31±0.06 at 74%, compared with 1.31±0.07 for all other flights). Organic loadings were slightly elevated in above-cloud aerosols, as compared with below-cloud aerosols, and corresponded to a similar trend of significantly suppressed GF at high RH, but more moderate impacts at lower values of RH. A hygroscopic closure based on a volume-weighted mixing rule provided excellent agreement with DASH-SP measurements (R2=0.79). Minimization of root mean square error between observations and predictions indicated mission-averaged organic GFs of 1.20, 1.43, and 1.46 at 74, 85, and 92% RH, respectively. These values agree with previously reported values for water-soluble organics such as dicarboxylic and multifunctional acids, and correspond to a highly oxidized, presumably water-soluble, organic fraction (O:C=0.92±0.33). Finally, a backward stepwise linear regression revealed that, other than RH, the most important predictor for GF is VForganic, indicating that a simple emperical model relating GF, RH, and

  2. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise.

    PubMed

    Löndahl, Jakob; Massling, Andreas; Pagels, Joakim; Swietlicki, Erik; Vaclavik, Elvira; Loft, Steffen

    2007-02-01

    Airborne ultrafine particles (diameter <100 nm) are ubiquitous in the environment and have been associated with adverse health effects. The respiratory-tract deposition of these particles is fundamentally influenced by their hygroscopicity: their ability to grow by condensation of water in the humid respiratory system. Ambient particles are typically hygroscopic, to varying degrees. This article investigates the influence of hygroscopicity, exercise level, gender, and intersubject variability on size-dependent deposition of fine and ultrafine particles during spontaneous breathing. Using a novel and well-characterized setup, respiratory-tract deposition in the range 12-320 nm has been measured for 29 healthy adults (20 men, 9 women). Each subject completed four sessions: rest and light exercise on an ergometer bicycle while inhaling both hydrophobic (diethylhexylsebacate) and hygroscopic (NaCl) particles. The deposited fraction (DF) based on dry diameters was two to four times higher for the hydrophobic ultrafine particles than for the hygroscopic. The DF of hygroscopic ultrafine particles could be estimated by calculating their equilibrium size at 99.5% relative humidity. The differences in average DF due to exercise level and gender were essentially less than 0.03. However, the minute ventilation increased fourfold during exercise and was 18-46% higher for the men than for the women. Consequently the deposited dose of particles was fourfold higher during exercise and considerably increased for the male subjects. Some individuals consistently had a high DF in all four sessions. As an example, the results show that an average person exposed to 100-nm hydrophobic particles during exercise will receive a 16 times higher dose than a relaxed person exposed to an equal amount of hygroscopic (NaCl) particles.

  3. Modeling aerosol water uptake in the arctic based on the κ-Kohler theory

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Ekman, A.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Tunved, P.; Riipinen, I.

    2013-05-01

    Water uptake or hygroscopicity is one of the most fundamental properties of atmospheric aerosols. Aerosol particles containing soluble materials can grow in size by absorbing water in ambient atmosphere. This property is measured by a parameter known as growth factor (GF), which is defined as the ratio of the wet diameter to the dry diameter. Hygroscopicity controls the size of an aerosol particle and therefore its optical properties in the atmosphere. Hygroscopic growth depends on the dry size of the particle, its chemical composition and the relative humidity in the ambient air (Fitzgerald, 1975; Pilinis et al., 1995). One of the typical problems in aerosol studies is the lack of measurements of aerosol size distributions and optical properties in ambient conditions. The gap between dry measurements and the real humid atmosphere is filled in this study by utilizing a hygroscopic model which calculates the hygroscopic growth of aerosol particles at Mt Zeppelin station, Ny Ålesund, Svalbard during 2008.

  4. Hygroscopic growth of atmospheric and model humic-like substances

    NASA Astrophysics Data System (ADS)

    Dinar, E.; Taraniuk, I.; Graber, E. R.; Anttila, T.; Mentel, T. F.; Rudich, Y.

    2007-03-01

    The hygroscopic growth (HG) of humic-like substances (HULIS) extracted from smoke and pollution aerosol particles and of Suwannee River fulvic acid (SRFA, bulk and fractions of different molecular weight) was measured by humidity tandem differential mobility analyzer (H-TDMA). By characterizing physical and chemical parameters such as molecular weight, elemental composition, and surface tension, we test the effect of these parameters on particle interactions with water vapor. For molecular weight-fractionated SRFA fractions, the growth factor at 90% relative humidity was generally inversely proportional to the molecular weight. HULIS extracts from ambient particles are more hygroscopic than all the SRFA fractions and exhibit different hygroscopic properties depending on their origin and residence time in the atmosphere. The results point out some dissimilarities between SRFA and aerosol-derived HULIS. The cloud condensation nuclei (CCN) behavior of the studied materials was predicted on the basis of hygroscopic growth using a recently introduced approach of Kreidenweis et al. (2005) and compared to CCN activity measurements on the same samples (Dinar et al., 2006). It is found that the computational approach (Kreidenweis et al., 2005) works reasonably well for SRFA fractions but is limited in use for the HULIS extracts from aerosol particles. The difficulties arise from uncertainties associated with HG measurements at high relative humidity, which leads to large errors in the predicted CCN activity.

  5. Hygroscopic Properties of Oxidation Products of Terpenes

    NASA Astrophysics Data System (ADS)

    Lodhi, N. A.; Mozurkewich, M.

    2009-05-01

    To understand the hygroscopic growth factor (HGF) of secondary organic aerosol (SOA) formed by the oxidation of terpenes, a series of seeded and nucleation experiments were conducted at the York University smog chamber facility. Oxidation of terpenes by OH was carried out in a dry chamber (RH˜5%). In nucleation experiments particles formed were pure organic and their hygroscopic growth factor was measured as function of relative humidity by using a tandem differential mobility analyzer (HTDMA). Humidograms of these particles don't show any deliquescence or efflorescence. Humidograms of pure organic particles formed by the oxidation products of β-pinene show slight but smooth take up of water while particles formed by α-pinene and δ3-carene exhibit very little or no water uptake. Experimental results were fitted with an empirical equation and the hygroscopicity parameter for the particles formed by β-pinene was found to be 0.019±0.009. To examine the interaction of organic and inorganic phases, monodisperse ammonium sulfate seed particles injected into the smog chamber were allowed to undergo condensational growth due to partitioning of terpenes oxidation products from the gas phase. Humidograms of seeded particles show both smooth hygroscopic growth and deliquescence. These experimental results were fitted with a numerical model that accounts for water uptake by both phases and for the gradual dissolution of ammonium sulfate. The results show that volume additivity is a reasonable approximation for this system and that HTDMA results can be inverted to obtain the organic hygroscopicity parameter and the relative amounts of organic and inorganic material

  6. Aerosol Hygroscopicity Measured in Pristine and Polluted Conditions During the First Year of the GoAmazon 2014/15 Experiment

    NASA Astrophysics Data System (ADS)

    Barbosa, H. M.; Krüger, M. L.; Thalman, R.; Wang, J.; Pauliquevis, T.; Brito, J.; Poeschl, U.; Andreae, M. O.; Martin, S. T.; Artaxo, P.

    2015-12-01

    The effects of aerosol particles on cloud microphysical properties, cloud cover, precipitation, and regional climate are an important aspect of the climate system. The Amazon region is particularly susceptible to changes in number-diameter distributions of the atmospheric particle population because of the low background concentrations and high water vapor levels, indicating a regime of cloud properties that is highly sensitive to aerosol microphysics. This natural regime, different from most other continental areas worldwide, is expected to be perturbed by the interaction of the Manaus urban plume with the natural the natural environment. Studying the effects of this interaction on the cloud and aerosol life cycle is the main objective of the Green Ocean Amazon (GoAmazon) campaign taking place around Manaus-Brazil from January 2014 to December 2015. In this paper we compare the particle hygroscopicity calculated from measurements of size-resolved cloud condensation nuclei performed at three ground sites during the first year of the GoAmazon 2014/15 experiment. Site T3 is about 70 km downwind from Manaus experiencing urban polluted and background conditions; site T2 is just across the Rio Negro from Manaus and CCN measurements were performed there only from 15 August 2014 to 30 Jan 2015; and T0, at the Amazon Tall Tower Observatory (ATTO), is a pristine site about 200 km upwind from Manaus. Our results indicate a lower hygroscopicity under polluted conditions (mean kappa values around 0.14 to 0.16) than under clean conditions (mean kappa around 0.2 to 0.3). At the clean site, it was possible to identify peaks of large sea salt particles with organic coating, while small particles seems to be purely organic. The activation fraction and hygroscopicity will be compared and discussed as a function of particle size. The mean kappa at ATTO is 0.17+-0.05 (mean of June and September) when there is no impact from long range transport from Africa or fresh soot emissions

  7. Study of the effect of humidity, particle hygroscopicity and size on the mass loading capacity of HEPA filters

    SciTech Connect

    Gupta, A.

    1992-09-01

    The effect of humidity, particle hygroscopicity and size on the mass loading capacity of glass fiber HEPA filters has been studied. At humidifies above the deliquescent point, the pressure drop across the HEPA filter increased non-linearly with the areal loading density (mass collected/filtration area) of NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or non-hygroscopic particle mass loadings. The specific cake resistance, K{sub 2}, has been computed for different test conditions and used as a measure of the mass loading capacity. K. was found to decrease with increasing humidity for the non-hygroscopic aluminum oxide particles and the hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K{sub 2} for lognormally distributed aerosols (parameters obtained from impactor data) is derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the non-hygroscopic aluminum oxide the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor.

  8. Study of the effect of humidity, particle hygroscopicity and size on the mass loading capacity of HEPA filters

    SciTech Connect

    Gupta, A.

    1992-01-01

    The effect of humidity, particle hygroscopicity and size on the mass loading capacity of glass fiber HEPA filters has been studied. At humidifies above the deliquescent point, the pressure drop across the HEPA filter increased non-linearly with the areal loading density (mass collected/filtration area) of NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or non-hygroscopic particle mass loadings. The specific cake resistance, K{sub 2}, has been computed for different test conditions and used as a measure of the mass loading capacity. K. was found to decrease with increasing humidity for the non-hygroscopic aluminum oxide particles and the hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K{sub 2} for lognormally distributed aerosols (parameters obtained from impactor data) is derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the non-hygroscopic aluminum oxide the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor.

  9. Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. I. Hygroscopic growth.

    PubMed

    Pope, Francis D; Dennis-Smither, Ben J; Griffiths, Paul T; Clegg, Simon L; Cox, R Anthony

    2010-04-29

    We describe a newly constructed electrodynamic balance with which to measure the relative mass of single aerosol particles at varying relative humidity. Measurements of changing mass with respect to the relative humidity allow mass (m) growth factors (m(aqueous)/m(dry)) and diameter (d) growth factors (d(aqueous)/d(dry)) of the aerosol to be determined. Four aerosol types were investigated: malonic acid, glutaric acid, mixtures of malonic acid and sodium chloride, and mixtures of glutaric acid and sodium chloride. The mass growth factors of the malonic acid and glutaric acid aqueous phase aerosols, at 85% relative humidity, were 2.11 +/- 0.08 and 1.73 +/- 0.19, respectively. The mass growth factors of the mixed organic/inorganic aerosols are dependent upon the molar fraction of the individual components. Results are compared with previous laboratory determinations and theoretical predictions.

  10. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  11. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  12. Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways.

    PubMed

    Boreddy, S K R; Kawamura, Kimitaka; Bikkina, Srinivas; Sarin, M M

    2016-02-15

    Hygroscopic properties of water-soluble matter (WSM) extracted from fine-mode aerosols (PM2.5) in the marine atmospheric boundary layer of the Bay of Bengal (BoB) have been investigated during a cruise from 27th December 2008 to 30th January 2009. Hygroscopic growth factors were measured on particles generated from the WSM using an H-TDMA system with an initial dry size of 100 nm in the range of 5-95% relative humidity (RH). The measured hygroscopic growth of WSM at 90% RH, g(90%)WSM, were ranged from 1.11 to 1.74 (mean: 1.43 ± 0.19) over the northern BoB and 1.12 to 1.38 (mean: 1.25 ± 0.09) over the southern BoB. A key finding is that distinct hygroscopic growth factors are associated with the air masses from the Indo-Gangetic plains (IGP), which are clearly distinguishable from those associated with air masses from Southeast Asia (SEA). We found higher (lower) g(90%)WSM over the northern (southern) BoB, which were associated with an IGP (SEA) air masses, probably due the formation of high hygroscopic salts such as (NH4)2SO4. On the other hand, biomass burning influenced SEA air masses confer the low hygroscopic salts such as K2SO4, MgSO4, and organic salts over the southern BoB. Interestingly, mass fractions of water-soluble organic matter (WSOM) showed negative and positive correlations with g(90%)WSM over the northern and southern BoB, respectively, suggesting that the mixing state of organic and inorganic fractions could play a major role on the g(90%)WSM over the BoB. Further, WSOM/SO4(2-) mass ratios suggest that SO4(2-) dominates the g(90%)WSM over the northern BoB whereas WSOM fractions were important over the southern BoB. The present study also suggests that aging process could significantly alter the hygroscopic growth of aerosol particles over the BoB, especially over the southern BoB.

  13. Aerosol hygroscopicity in the marine atmosphere: a closure study using high-time-resolution, multiple-RH DASH-SP and size-resolved C-ToF-AMS data

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Sorooshian, A.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H.

    2009-04-01

    We have conducted the first airborne hygroscopic growth closure study to utilize data from an Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) coupled with size-resolved, multiple-RH, high-time-resolution hygroscopic growth factor (GF) measurements from the differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). These data were collected off the coast of Central California during seven of the 16 flights carried out during the MASE-II field campaign in July 2007. Two of the seven flights were conducted in airmasses characterized by continental origin. These flights exhibited elevated organic volume fractions (VForganic=0.56±0.19, as opposed to 0.39±0.20 for all other flights), corresponding to significantly suppressed GFs at high RH (1.61±0.14 at 92% RH, as compared with 1.91±0.07 for all other flights), more moderate GF suppression at intermediate RH (1.53±0.10 at 85%, compared with 1.58±0.08 for all other flights), and no measurable GF suppression at low RH (1.31±0.06 at 74%, compared with 1.31±0.07 for all other flights). Organic loadings were slightly elevated in above-cloud aerosols, as compared with below-cloud aerosols, and corresponded to a similar trend of significantly suppressed GF at high RH, but more moderate impacts at lower values of RH. A hygroscopic closure based on a volume-weighted mixing rule provided good agreement with DASH-SP measurements (R2=0.78). Minimization of root mean square error between observations and predictions indicated mission-averaged organic GFs of 1.22, 1.45, and 1.48 at 74, 85, and 92% RH, respectively. These values agree with previously reported values for water-soluble organics such as dicarboxylic and multifunctional acids, and correspond to a highly oxidized, presumably water-soluble, organic fraction (mission-averaged O:C=0.92±0.33). Finally, a backward stepwise linear regression revealed that, other than RH, the most important predictor for GF is VForganic, indicating

  14. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2014-12-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx / HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at ten mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9(± 0.5)%. On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions, i.e., the eutonic component dissolved at MDRH and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed two-stage efflorescence transitions: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles XNaCl ≤ 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH, because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously

  15. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2015-03-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx/HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at 10 mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9 (±0.5)% On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions; i.e., the eutonic component dissolved at MDRH, and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed a two stage efflorescence transition: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence, with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles (XNaCl ≤ 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously

  16. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.

    PubMed

    Braham, R R

    1959-01-16

    On the basis of presently available data, combined with present-day knowledge of the physics and chemistry of cloud particle development, it is possible to make the following generalizations about the mode of precipitation in natural clouds. 1) The all-water mechanism begins to operate as soon as a parcel of cloud air is formed and continues to operate throughout the life of the cloud. The ice-crystal mechanism, on the other hand, can begin to operate only after the top of the cloud has reached levels where ice nuclei can be effective (about -15 degrees C). Some clouds never reach this height; any precipitation from them must be through the all-water mechanism. In cold climates and at high levels in the atmosphere, the cloud bases may be very close to this critical temperature. In the tropics, approximately 25,000 feet separate the bases of low clouds from the natural ice level. 2) The number of large hygroscopic nuclei in maritime air over tropical oceans is entirely adequate to rain-out any cloud with a base below about 10,000 feet, provided the cloud duration and cloud depth is sufficient for the precipitation process to operate. Extensive trajectories over land will decrease the number of sea-salt particles, both because of sedimentation and removal in rain. Measurements show an order-of-magnitude decrease in the number of large particles as maritime air moves from the Gulf of Mexico to the vicinity of St. Louis, during the summer months. Measurements in Arizona and New Mexico show even smaller chloride concentrations, presumably because of the long overland trajectories required in reaching these areas. The maritime particles lost in overland trajectories apparently are more than replaced by particles of land origin. The latter are usually of mixed composition and are less favorable for the formation of outsized solution droplets. 3) Ice nuclei, required for the formation of ice crystals and for droplet freezing, are rather rare at temperatures higher than

  17. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Y.; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-03-01

    The hygroscopic and volatility properties of SOA produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase phtooxidation of terpenes, usually found nearly hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weigh compounds), evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  18. Multi-Parameter Aerosol Scattering Sensor

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  19. Hygroscopicity and optical properties of alkylaminium sulfates.

    PubMed

    Hu, Dawei; Li, Chunlin; Chen, Hui; Chen, Jianmin; Ye, Xingnan; Li, Ling; Yang, Xin; Wang, Xinming; Mellouki, Abdelwahid; Hu, Zhongyang

    2014-01-01

    The hygroscopicity and optical properties of alkylaminium sulfates (AASs) were investigated using a hygroscopicity tandem differential mobility analyzer coupled to a cavity ring-down spectrometer and a nephelometer. AAS particles do not exhibit a deliquescence phenomenon and show a monotonic increase in diameter as the relative humidity (RH) ascends. Hygroscopic growth factors (GFs) for 40, 100 and 150 nm alkylaminium sulfate particles do not show an apparent Kelvin effect when RH is less than 45%, whereas GFs of the salt aerosols increase with initial particle size when RH is higher than 45%. Calculation using the Zdanovskii-Stokes-Robinson mixing rule suggests that hygroscopic growth of triethylaminium sulfate-ammonium sulfate mixtures is non-deliquescent, occurring at very low RH, implying that the displacement of ammonia by amine will significantly enhance the hygroscopicity of (NH4)2SO4 aerosols. In addition, light extinction of AAS particles is a combined effect of both scattering and absorption under dry conditions, but is dominated by scattering under wet conditions.

  20. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  1. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  2. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Bezantakos, Spiros; Stavroulas, Iasonas; Kalivitis, Nikos; Kokkalis, Panagiotis; Biskos, George; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Nenes, Athanasios

    2016-06-01

    This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ˜ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10

  3. Hygroscopic growth and cloud droplet activation of xanthan gum as a proxy for marine hydrogels

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Petters, M. D.; Meskhidze, N.; Petters, S. Suda; Kreidenweis, S. M.

    2016-10-01

    Knowledge of the physical characteristics and chemical composition of marine organic aerosols is needed for the quantification of their effects on cloud microphysical processes and solar radiative transfer. Here we use xanthan gum (XG)—a bacterial biopolymer—as a proxy for marine hydrogels. Measurements were performed for pure XG particles and mixtures of XG with sodium chloride, calcium nitrate, and calcium carbonate. The aerosol hygroscopicity parameter (κ) is derived from hygroscopic growth factor measurements (κgf) at variable water activity (aw) and from cloud condensation nuclei activation efficiency (κccn). The Zdanovskii, Stokes, and Robinson (ZSR) hygroscopicity parameter derived for multicomponent systems (κmix, sol) is used to compare measurements of κgf and κccn. Pure XG shows close agreement of κgf (at aw = 0.9) and κccn of 0.09 and 0.10, respectively. Adding salts to the system results in deviations of κgf (at aw = 0.9) from κccn. The measured κgf and ZSR-derived hygroscopicity parameter (κmix, sol) values for different solutions show close agreement at aw > 0.9, while κgf is lower in comparison to κmix, sol at aw < 0.9. The differences between predicted κmix, sol and measured κgf and κccn values are explained by the effects of hydration and presence of salt ions on the structure of the polymer networks. Results from this study imply that at supersaturations of 0.1 and 0.5%, the presence of 30% sea salt by mass can reduce the activation diameter of pure primary marine organic aerosols from 257 to 156 nm and from 87 to 53 nm, respectively.

  4. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Zheng, J.; Shang, D. J.; Du, Z. F.; Wu, Y. S.; Zeng, L. M.; Wiedensohler, A.; Hu, M.

    2016-02-01

    Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the mean hygroscopicity parameters (κs) of 50, 100, 150, 200, and 250 nm particles were respectively 0.16 ± 0.07, 0.19 ± 0.06, 0.22 ± 0.06, 0.26 ± 0.07, and 0.28 ± 0.10, showing an increasing trend with increasing particle size. Such size dependency of particle hygroscopicity was similar to that of the inorganic mass fraction in PM1. The hydrophilic mode (hygroscopic growth factor, HGF > 1.2) was more prominent in growth factor probability density distributions and its dominance of hydrophilic mode became more pronounced with increasing particle size. When PM2.5 mass concentration was greater than 50 μg m-3, the fractions of the hydrophilic mode for 150, 250, and 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high-time-resolution size-resolved chemical composition derived from aerosol mass spectrometer (AMS) measurements using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. The organic hygroscopicity parameter (κorg) showed a positive correlation with the oxygen to carbon ratio. During the new particle formation event associated with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particles with the same sizes not during new particle formation (NPF) periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example, 250 nm particles) was observed. Such transformations may modify the state of the mixture of pre-existing particles and thus modify properties such as the light absorption coefficient and cloud condensation nuclei activation.

  5. Raman lidar observations of particle hygroscopicity during COPS

    NASA Astrophysics Data System (ADS)

    Stelitano, D.; Di Girolamo, P.; Summa, D.

    2012-04-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and

  6. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  7. Cloud Forming Potential of Aminium Carboxylate Aerosols

    NASA Astrophysics Data System (ADS)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  8. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  9. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    SciTech Connect

    Gupta, A.; Biswas, P. ); Monson, P.R. ); Novick, V.J. )

    1993-07-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K[sub 2] was computed for different test conditions and used as a measure of the mass loading capacity. K[sub 2] was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K[sub 2] for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs.

  10. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-03-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate was investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for sodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, sodium malonate, sodium succinate, sodium tartrate, ammonium tartrate, sodium pyruvate, sodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The mixtures of organic salts with ammonium sulfate, which are prepared simulating the atmospheric aerosols, are determined. A clear shift in DRH of mixture to lower RH is observed with increasing organic mass fraction. Above RH = 80%, the humidograms of the different mixtures are quite close to that of pure ammonium sulfate. Köhler theory is used to predict the effective hygroscopicity parameter, κ, for mixtures at 90% RH. The results show that Köhler theory underestimated kappa for mixtures without considering the water solubility of ammonium oxalate. However, if the water solubility of ammonium oxalate is taken into account, the results show a much better agreement with those derived from H-TDMA measurements.

  11. Influence of semi-volatile species on particle hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Villani, Paolo; Sellegri, Karine; Monier, Marie; Laj, Paolo

    2013-11-01

    In this study, we use a Tandem Differential Mobility Analyser (TDMA) system combining particle volatilization and humidification conditioning (VH-TDMA) to test the effect of the gentle volatilization of a small fraction of the atmospheric particles on the particle hygroscopic growth in several environments (urban to remote). We first give an overview of the Hygroscopic Growth Factors (HGF) in these various environments, showing that in most of them, aerosol particles are externally mixed. We then show that the particle hygroscopicity can either be increased or decreased after thermal conditioning of the particle at moderate temperatures (50-110 °C). The hygroscopic growth factor changes induced by volatilization indicate that some volatile compounds, although present at low concentrations, can significantly influence the hygroscopic growth of particles in a way that can most of time be theoretically explained if simplified assumptions are used. However, simplified assumptions occasionally fail over several hours to explain hygroscopic changes, kinetic/surface effects observed at remote environments are suspected to be important.

  12. The optical properties of hygroscopic soot aggregates with water coating

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan

    2014-05-01

    Anthropogenic aerosols, such as soot, have modified the Earth's radiation balance by scattering and absorbing solar and long-wave radiative transmission, which have largely influenced the global climate change since the industrial era. Based on transmission electron microscope images (TEM), soot particles are shown as the complex, fractal-like aggregate structures. In humid atmospheric environments, these soot aggregates tend to acquire a water coating, which introduces further complexity to the problem of determining the optical properties of the aggregates. The hygroscopic growth of soot aggregates is important for the aging of these absorbing aerosols, which can significantly influence the optical properties of these kinds of soot particles. In this paper, according to the specific volume fractions of soot core in the water coated soot particle, the monomers of fractal soot aggregates are modeled as semi-external mixtures (physical contact) with constant radius of soot core and variable size of water coating. The single scattering properties of these hygroscopic soot particles, such as scattering matrices, the cross sections of extinction, absorption and scattering, single scattering albedo (SSA), and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The morphological effects are compared with different monomer numbers and fractal dimensions of the soot aggregates, as well as different size of water coating for these concentric spherical monomers. The results have shown that SSA, cross sections of extinction and absorption are increased for soot aggregates with thicker weakly absorbing coating on the monomers. It is found that the SSA of aged soot aggregates with hygroscopic grown are remarkably (~50% for volume fraction of soot aggregates is 0.5, at 0.670μm) larger than fresh soot particles without the consideration of water coating, due to the size of water coating and the morphological features, such as the

  13. Changes of hygroscopicity and morphology during ageing of diesel soot

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Jurányi, Zsófia; Martin, Maria; Chirico, Roberto; Gysel, Martin; Heringa, Maarten F.; DeCarlo, Peter F.; Sierau, Berko; Prévôt, André S. H.; Weingartner, Ernest; Baltensperger, Urs

    2011-07-01

    Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 < κH - TDMA < 0.12 and 0.09 < κCCN < 0.14) as SOA from other precursor gases investigated in previous studies.

  14. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  15. Characterization of particle hygroscopicity by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato

    2013-05-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.

  16. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  17. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K.-S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  18. Aerosol Single-Scattering Albedo and Asymmetry Parameter from MFRSR Observations during the ARM Aerosol IOP 2003

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Ackerman, Thomas P.; Barnard, James C.

    2007-06-15

    Multi-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measurements of the aerosol optical depth ( << OLE Object: Microsoft Equation 3.0 >> ) at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94  << OLE Object: Picture (Metafile) >> ). The single-scattering albedo ( << OLE Object: Microsoft Equation 3.0 >> ) is typically estimated from the MFRSR measurements by assuming the asymmetry parameter ( << OLE Object: Microsoft Equation 3.0 >> ). In most instances, however, it is not easy to set an appropriate value of << OLE Object: Microsoft Equation 3.0 >> due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously << OLE Object: Microsoft Equation 3.0 >> and << OLE Object: Microsoft Equation 3.0 >> for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Science Program (ARM) Aerosol Intensive Operational Period (IOP) to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET) and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~ 5 << OLE Object: Microsoft Equation 3.0 >> ) to those obtained from measurements.

  19. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  20. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  1. Simultaneous Measurement of Size, Composition, Hygroscopicity, and Density of Single Ambient Particles

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Han, J.; Oatis, S.

    2003-12-01

    The holly grail in aerosol climate interaction is a roadmap that takes one from emissions of aerosol and aerosol precursors through aerosol transformations, to optical and cloud effects and finally to climate impacts. A critical element on this path must be the behavior of aerosol as a function of atmospheric relative humidity, which in turn requires an understanding of the correlation between aerosol composition and hygroscopicity. For single component particles this problem is tractable and reasonably understood. But, the vast majority of particles in the real atmosphere are internal mixtures of hygroscopic salts, organic acids and or bases, long chain hydrocarbons, soot, mineral dust and the list go on. Hundreds of organic compounds with highly varying hygroscopicities can be found in single particles. It would be unrealistic to expect global climate models to include and track each of these compounds. A similar problem faces the experimental world, where measuring the size, detailed molecular composition and hygroscopicity of individual particles although, in principle possible, is impractical. Single particle mass spectroscopy can be used to classify particles as organics mixed with sulfate, for example. Or in some cases pinpoint the class of some of the organics found in the mixture. But it cannot yield a quantitative measure of relative amounts. In an attempt to address this issue we have developed the method to measure simultaneously hygroscopicity, size, and composition of individual ambient particles. However, the data from Long Island NY, where the vast majority of particles were internally mixed sulfate with organics, the correlation between composition and hygroscopicity was rather weak. This is due to the fact that single-laser single particle mass spectra cannot quantitatively measure the ratio of organics to sulfates. In contrast, we found a very clear correlation between hygroscopicity and particle density for a given class of particles. In this

  2. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  3. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles.

  4. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.

    PubMed

    Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P

    2012-04-15

    The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period.

  5. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    SciTech Connect

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan; Petters, Markus D.; O'Brien, Rachel; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.

  6. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    SciTech Connect

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; Petters, Markus D.; O’Brien, Rachel E.; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.

  7. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE PAGES

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  8. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions

    SciTech Connect

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, E.; Lohmann, U.; Baltensperger, Urs; Cziczo, Daniel J.

    2009-11-01

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric processing of

  9. Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multi-Parameter Algorithm

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Kacenelenbogen, M. S.; Livingston, J. M.; Hasekamp, O.; Burton, S. P.; Schuster, G. L.; Redemann, J.; Ramachandran, S.; Holben, B. N.

    2013-12-01

    In this presentation we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimeter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e,g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals; and quantifying assessments of aerosol radiative impacts on climate. With ongoing improvements in satellite measurement capability, the number of aerosol parameters retrieved from spaceborne sensors has been growing, from the initial aerosol optical depth at one or a few wavelengths to a list that now includes complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at several wavelengths; wavelength dependences of extinction, scattering, absorption, SSA, and backscatter; and several particle size and shape parameters. Making optimal use of these varied data products requires objective, multi-dimensional analysis methods. We describe such a method, which uses a modified Mahalanobis distance to quantify how far a data point described by N aerosol parameters is from each of several prespecified classes. The method makes explicit use of uncertainties in input parameters, treating a point and its N-dimensional uncertainty as an extended data point or pseudo-cluster E. It then uses a modified Mahalanobis distance, DEC, to assign that observation to the class (cluster) C that has minimum DEC from the point (equivalently, the class to which the point has maximum probability of belonging). The method also uses Wilks' overall lambda to indicate how well the input data lend themselves to separation into classes and Wilks' partial lambda to indicate the relative

  10. Ambient Observations of Sub-1.0 Hygroscopic Growth Factor and f(RH) Values: Case Studies from Surface and Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Shingler, T.; Crosbie, E.; Wonaschutz, A.; Froyd, K. D.; Adler, G.; Gao, R. S.; Schwarz, J. P.; Perring, A. E.; Brock, C. A.; Beyersdorf, A. J.; Ziemba, L. D.; Jimenez, J. L.; Campuzano Jost, P.; Wisthaler, A.; Sorooshian, A.

    2015-12-01

    Hygroscopic growth occurs when particles take up water vapor and grow when exposed to elevated relative humidity (RH), and is controlled largely by chemical composition. Previous laboratory studies of biomass burning and combustion particles observed particle size shrinkage as soot aerosols, especially those with coatings, were exposed to increasing RH levels, which resulted in sub-1.0 hygroscopicity parameter values (i.e., ratio of humidified-to-dry diameter g(RH) and ratio of humidified-to-dry scattering coefficients f(RH)). To investigate the potential for sub-1.0 hygroscopicity in ambient aerosol, we utilized data from (i) a ship-board HTDMA during E-PEACE 2011, (ii) multiple instruments on the DC8 during SEAC4RS-2013, as well as (iii) the DASH-SP during measurement intensives in Summer 2014 and Winter 2015 in Tucson, Arizona. Suppressed hygroscopicity, including sub-1.0 g(RH), was observed during smoke-influenced periods in SEAC4RS, episodic events in the winter season in Arizona, and smoke-influenced air during E-PEACE. Across the range of RH investigated (75-95%), sub-1.0 g(RH) was lowest at the highest RH values probed (~95%). These sub-1.0 g(RH) observations are consistent with elevated black carbon and organic aerosol concentration in both E-PEACE and SEAC4RS. Collocated measurements during SEAC4RS indicate elevated spikes in black carbon concentrations are coincident with both sub-1.0 f(RH) and g(RH) observations, as well as elevated organic aerosol- and gas-phase fire tracers such as AMS f60 and PTR-MS acetonitrile concentration. This is the first set of ambient observations of sub-1.0 hygroscopicity factors g(RH) and f(RH), with consistency across different instruments, regions, and platforms. Although particle restructuring has been demonstrated in laboratory experiments, field observations are complex as soot coating, secondary chemistry, and heterogeneous processing can occur on the same time scale as measurements. This work motivates continued

  11. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  12. Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters

    NASA Astrophysics Data System (ADS)

    Mu, Q.; Liao, H.

    2014-05-01

    We used the nested grid version of the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the interannual variations (IAVs) of aerosols over heavily polluted regions in China for years 2004-2012. The role of variations in meteorological parameters was quantified by a simulation with fixed anthropogenic emissions at year 2006 levels and changes in meteorological parameters over 2004-2012. Simulated PM2.5 (particles with a diameter of 2.5 μm or less) aerosol concentrations exhibited large IAVs in North China (NC, 32-42° N, 110-120° E), with regionally averaged absolute percent departure from the mean (APDM) values of 17, 14, 14, and 11% in December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. Over South China (SC, 22-32° N, 110-120° E), the IAVs in PM2.5 were found to be the largest in JJA, with the regional mean APDM values of 14% in JJA and of about 9% in other seasons. Concentrations of PM2.5 over the Sichuan Basin (SCB, 27-33° N, 102-110° E) were simulated to have the smallest IAVs among the polluted regions examined in this work, with the APDM values of 8-9% in all seasons. All aerosol species (sulfate, nitrate, ammonium, black carbon, and organic carbon) were simulated to have the largest IAVs over NC in DJF, corresponding to the large variations in meteorological parameters over NC in this season. Process analyses were performed to identify the key meteorological parameters that determined the IAVs of different aerosol species in different regions. While the variations in temperature and specific humidity, which influenced the gas-phase formation of sulfate, jointly determined the IAVs of sulfate over NC in both DJF and JJA, wind (or convergence of wind) in DJF and precipitation in JJA were the dominant meteorological factors to influence IAVs of sulfate over SC and the SCB. The IAVs in temperature and specific humidity

  13. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  14. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Jiyoung

    In situ measurements at Gosan, South Korea, and onboard C-130 aircraft during ACE-Asia were analyzed to investigate the influence of relative humidity (RH) on aerosol optical properties and radiative forcing. The temporal variation of aerosol chemical composition at the Gosan super-site was highly dependent on the air mass transport pathways and source region. RH in the springtime over East Asia were distributed with very high spatial and temporal variation. The RH profile onboard C-130 aircraft measurements exhibits a mixed layer height of about 2 km. Aerosol scattering coefficient ( σsp) under ambient RH was greatly enhanced as compared with that at dry RH (RH<40%). From the aerosol optical and radiative transfer modeling studies, we found that the extinction and scattering coefficients are greatly enhanced with RH. Single scattering albedo with RH is also sensitively changed in the longer wavelength. Asymmetry parameter ( g) is gradually increased with RH although g decreases with wavelength at a given RH. Aerosol optical depth (AOD) at 550 nm and RH of 50% increased to factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90, and 95%, respectively. Diurnal-averaged aerosol radiative forcings for surface, TOA, and atmosphere were increased with RH because AOD was increased with RH due to hygroscopic growth of aerosol particles. This result implies that the hygroscopic growth due to water-soluble or hydrophilic particles in the lower troposphere may significantly modify the magnitude of aerosol radiative forcing both at the surface and TOA. However, the diurnal-averaged radiative forcing efficiencies at the surface, TOA, and atmosphere were decreased with increasing RH. The decrease of the forcing efficiency with RH results from the fact that increasing rate of aerosol optical depth with RH is greater than the increasing rate of aerosol radiative forcing with RH.

  15. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.

    2015-06-01

    Even though organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments spanning from the subtropics to the high Arctic, their hygroscopic properties have not been investigated prior to this study. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesized and used for simultaneous measurements with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry size for all chemical compositions investigated, indicating size dependency and/or surface effects. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical activation diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w/w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water-value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ obtained from the

  16. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.

    2015-12-01

    Organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments; however their hygroscopic properties remain uncharacterised. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesised and used for simultaneous measurements with a hygroscopicity tandem differential mobility analyser (H-TDMA) and a cloud condensation nuclei counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry diameter for all chemical compositions investigated, indicating that κH-TDMA depends on particle diameter and/or surface effects; however, it is not clear if this trend is statistically significant. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical particle diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w / w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ

  17. Assessment of the MODIS Algorithm for Retrieval of Aerosol Parameters over the Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, W.; Stamnes, K.; Eide, H.; Spurr, R.; Tsay, S.

    2006-12-01

    The MODIS aerosol algorithm over the ocean derives spectral aerosol optical depth and aerosol size parameters from satellite measured radiances at the top of atmosphere (TOA). It is based on the addition of Apparent Optical Properties (AOPs): TOA reflectance is approximated as a linear combination of reflectance resulting from a small particle mode and a large particle mode. The weighting parameter is defined as the fraction of the optical depth at 550 nm due to the small mode. The AOP approach is correct only in the single scattering limit. For a physically correct TOA reflectance simulation, we create linear combinations of the Inherent Optical Properties (IOPs) of small and large particle modes, in which the weighting parameter is defined as the fraction of the number density attributed to the small particle mode. We use these IOPs as inputs to an accurate multiple scattering radiative transfer model. We show that the use of accurate radiative transfer simulations and weighting parameters as used in the IOP approach yields more satisfactory results for the retrieved aerosol optical depth and the size parameters.

  18. Atmospheric aerosol optical parameters, deep convective clouds and hail occurence - a correlation study

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Andrei, Simona; Toanca, Florica; Stefan, Sabina

    2016-04-01

    Among the severe weather phenomena, whose frequency has increased during the past two decades, hail represents a major threat not only for agriculture but also for other economical fields. Generally, hail are produced in deep convective clouds, developed in an unstable environment. Recent studies have emphasized that besides the state of the atmosphere, the atmospheric composition is also very important. The presence of fine aerosols in atmosphere could have a high impact on nucleation processes, initiating the occurrence of cloud droplets, ice crystals and possibly the occurrence of graupel and/or hail. The presence of aerosols in the atmosphere, correlated with specific atmospheric conditions, could be predictors of the occurrence of hail events. The atmospheric investigation using multiwavelength Lidar systems can offer relevant information regarding the presence of aerosols, identified using their optical properties, and can distinguish between spherical and non-spherical shape, and liquid and solid phase of these aerosols. The aim of this study is to analyse the correlations between the presence and the properties of aerosols in atmosphere, and the production of hail events in a convective environment, using extensive and intensive optical parameters computed from lidar and ceilometer aerosols measurements. From these correlations, we try to evaluate if these aerosols can be taken into consideration as predictors for hail formation. The study has been carried out in Magurele - Romania (44.35N, 26.03E, 93m ASL) using two collocated remote sensing systems: a Raman Lidar (RALI) placed at the Romanian Atmospheric 3D Observatory and a ceilometer CL31 placed at the nearby Faculty of Physics, University of Bucharest. To evaluate the atmospheric conditions, radio sounding and satellite images were used. The period analysed was May 1st - July 15th, 2015, as the May - July period is climatologically favorable for deep convection events. Two hail events have been

  19. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    NASA Astrophysics Data System (ADS)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  20. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  1. The influence of fog parameters on aerosol depletion measured in the KAEVER experiments

    SciTech Connect

    Poss, G.; Weber, D.; Fritsche, B.

    1995-12-31

    The release of radioactive aerosols in the environment is one of the most serious hazards in case of an accident in nuclear power plant. Many efforts have been made in the past in numerous experimental programs like NSPP, DEMONA, VANAM, LACE, MARVIKEN, others are still underway to improve the knowledge of the aerosol behavior and depletion in a reactor containment in order to estimate the possible source term and to validate computer codes. In the German single compartment KAEVER facility the influence of size distribution, morphology, composition and solubility on the aerosol behavior is investigated. One of the more specific items is to learn about {open_quotes}wet depletion{close_quotes} means, the aerosol depletion behavior in condensing atmospheres. There are no experiments known where the fog parameters like droplet size distribution, volume concentration, respectively airborne liquid water content have been measured in- and on-line explicitly. To the authors knowledge the use of the Battelle FASP photometer, which was developed especially for this reason, for the first time gives insight in condensation behavior under accident typical thermal hydraulic conditions. It delivers a basis for code validation in terms of a real comparison of measurements and calculations. The paper presents results from {open_quotes}wet depletion{close_quotes} aerosol experiments demonstrating how depletion velocity depends on the fog parameters and where obviously critical fog parameter seem to change the regime from a {open_quotes}pseudo dry depletion{close_quotes} at a relative humidity of 100% but quasi no or very low airborne liquid water content to a real {open_quotes}wet depletion{close_quotes} under the presence of fogs with varying densities. Characteristics are outlined how soluble and insoluble particles as well as aerosol mixtures behave under condensing conditions.

  2. Variability of CCN Activation Behaviour of Aerosol Particles in the Marine Boundary Layer of the Northern and Southern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Henning, Silvia; Dieckmann, Katrin; Hartmann, Susan; Schäfer, Michael; Wu, Zhijun; Merkel, Maik; Wiedensohler, Alfred; Stratmann, Frank

    2013-04-01

    The variability of cloud condensation nucleus (CCN) activation behaviour and total CCN number concentrations was investigated during three ship cruises. Measurements were performed in a mobile laboratory on the German research vessel FS Polarstern cruising between Cape Town and Bremerhaven (April / May and October / November 2011) as well as between Punta Arenas and Bremerhaven (April / May 2012). CCN size distributions were measured for supersaturations between 0.1% and 0.4% using a Cloud Condensation Nucleus Counter (DMT, USA). Aerosol particle and CCN total number concentrations as well as the hygroscopicity parameter κ (Petters and Kreidenweis, 2007) were determined. Furthermore, size distribution data were collected. The hygroscopicity parameter κ featured a high variability during the cruises, with a median κ-value of 0.52 ± 0.26. The κ-values are depended on air mass origin; and are as expected mainly dominated by marine influences, but also long range transport of aerosol particles was detected. In the Celtic Sea, κ was found to be lower than that of clean marine aerosol particles (0.72 ± 0.24; Pringle et al., 2010) with κ-values ~0.2, possibly influenced by anthropogenic emissions from Europe. Close to the West African coast particle hygroscopicity was found to be influenced by the Saharan dust plume, resulting in low κ-values ~0.25. Petters, M.D. and S.M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. and Phys., 7, 1961-1971. Pringle, K.J., H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld (2010), Global distribution of the effective aerosol hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241-5255.

  3. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2012-05-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  4. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2011-10-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  5. A non-equilibrium model for the hygroscopic growth and dry deposition of atmospheric particles to water surfaces

    SciTech Connect

    Zufall, M.J.; Davidson, C.I.; Bergin, M.H.

    1995-12-31

    Atmospheric dry deposition may provide a significant contribution of pollutants to a body of water. The rate of dry deposition to water surfaces may be enhanced by the growth of hygroscopic aerosols. Current dry deposition models predict hygroscopic growth by assuming equilibrium between the particles and atmosphere. However, particles larger than 1 mm may not reach their equilibrium size. These models also assume a constant, high (> 99%) relative humidity throughout the laminar flow region several centimeters above the water surface. Relative humidity profiles determined for ocean surfaces show that this is generally not the case, as the relative humidity decreases quickly above the water surface. A hygroscopic growth model is presented that combines more accurate relative humidity profiles with detailed water vapor mass transport. Hygroscopic growth estimates for ammonium nitrate, ammonium sulfate and mixtures of these two salts show that the current deposition models greatly over predict the influence of hygroscopic growth on deposition velocity to water surfaces.

  6. MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4

    SciTech Connect

    Kmetyk, L.N.

    1991-09-01

    The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

  7. A novel technique for estimating aerosol optical thickness trends using meteorological parameters

    NASA Astrophysics Data System (ADS)

    Emetere, Moses E.; Akinyemi, M. L.; Akin-Ojo, O.

    2016-02-01

    Estimating aerosol optical thickness (AOT) over regions can be tasking if satellite data set over such region is very scanty. Therefore a technique whose application captures real-time events is most appropriate for adequate monitoring of risk indicators. A new technique i.e. arithmetic translation of pictorial model (ATOPM) was developed. The ATOPM deals with the use mathematical expression to compute other meteorological parameters obtained from satellite or ground data set. Six locations within 335 × 230 Km2 area of a selected portion of Nigeria were chosen and analyzed -using the meteorological data set (1999-2012) and MATLAB. The research affirms the use of some parameters (e.g. minimum temperature, cloud cover, relative humidity and rainfall) to estimate the aerosol optical thickness. The objective of the paper was satisfied via the use of other meteorological parameters to estimate AOT when the satellite data set over an area is scanty.

  8. Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters

    NASA Astrophysics Data System (ADS)

    Mu, Q.; Liao, H.

    2014-09-01

    We used the nested grid version of the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the interannual variations (IAVs) of aerosols over heavily polluted regions in China for years 2004-2012. The role of variations in meteorological parameters was quantified by a simulation with fixed anthropogenic emissions at year 2006 levels and changes in meteorological parameters over 2004-2012. Simulated PM2.5 (particles with a diameter of 2.5 μm or less) aerosol concentrations exhibited large IAVs in North China (NC; 32-42° N, 110-120° E), with regionally averaged absolute percent departure from the mean (APDM) values of 17, 14, 14, and 11% in December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. Over South China (SC; 22-32° N, 110-120° E), the IAVs in PM2.5 were found to be the largest in JJA, with the regional mean APDM values of 14% in JJA and of about 9% in other seasons. The concentrations of PM2.5 over the Sichuan Basin (SCB; 27-33° N, 102-110° E) were simulated to have the smallest IAVs among the polluted regions examined in this work, with APDM values of 8-9% in all seasons. All aerosol species (sulfate, nitrate, ammonium, black carbon, and organic carbon) were simulated to have the largest IAVs over NC in DJF, corresponding to the large variations in meteorological parameters over NC in this season. Process analyses were performed to identify the key meteorological parameters that determined the IAVs of different aerosol species in different regions. While the variations in temperature and specific humidity, which influenced the gas-phase formation of sulfate, jointly determined the IAVs of sulfate over NC in both DJF and JJA, wind (or convergence of wind) in DJF and precipitation in JJA were the dominant meteorological factors to influence IAVs of sulfate over SC and the SCB. The IAVs in temperature and specific humidity

  9. Cloud forming potential of oligomers relevant to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Guo, Song; Gomez-Hernandez, Mario; Zamora, Misti L.; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Zhang, Annie L.; Collins, Don R.; Zhang, Renyi

    2014-09-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity are measured for surrogates that mimic atmospherically relevant oligomers, including glyoxal trimer dihydrate, methyl glyoxal trimer dihydrate, sucrose, methyl glyoxal mixtures with sulfuric acid and glycolic acid, and 2,4-hexandienal mixtures with sulfuric acid and glycolic acid. For the single-component aerosols, the measured HGF ranges from 1.3 to 1.4 at a relative humidity of 90%, and the hygroscopicity parameter (κ) is in the range of 0.06 to 0.19 on the basis of the measured CCN activity and 0.13 to 0.22 on the basis of the measured HGF, compared to the calculated values of 0.08 to 0.16. Large differences exist in the κ values derived using the measured HGF and CCN data for the multi-component aerosols. Our results reveal that, in contrast to the oxidation process, oligomerization decreases particle hygroscopicity and CCN activity and provides guidance for analyzing the organic species in ambient aerosols.

  10. Long-term (2001-2012) observation of the modeled hygroscopic growth factor of remote marine TSP aerosols over the western North Pacific: impact of long-range transport of pollutants and their mixing states.

    PubMed

    Boreddy, S K R; Kawamura, Kimitaka; Haque, Md Mozammel

    2015-11-21

    In order to assess the seasonal and annual variability of long-range transported anthropogenic pollutants from East Asia and their effect on the hygroscopicity and precipitation process over the western North Pacific, we conducted long-term calculations of bulk hygroscopicity, g(90%)ZSR, based on the ZSR model using chemical composition data from 2001-2012 at Chichijima Island. We found that sea-salts (Na(+) and Cl(-)) are the major mass fraction (65%) of the total water-soluble matter followed by SO4(2-) (20%) and WSOM (6%). The seasonal variation of g(90%)ZSR was high in summer to autumn and low in winter to spring months, probably due to the influence of the long-range transport of anthropogenic SO4(2-), dust, and organics from East Asia and their interaction with sea-salts through heterogeneous reactions. On the other hand, annual variations of g(90%)ZSR showed a decrease from 2001 to 2006 and then an increase from 2007 to 2012. Interestingly, the annual variations in SO4(2-) mass fractions showed an increase from 2001 to 2006 and then a decrease from 2007 to 2012, demonstrating that SO4(2-) seriously suppresses the hygroscopic growth of sea-salt particles over the western North Pacific. This is further supported by the strong negative correlation between SO4(2-) and g(90%)ZSR. Based on the MODIS satellite data, the present study demonstrates that long-range transported anthropogenic pollutants from East Asia to the North Pacific can act as efficient cloud condensation nuclei but significantly suppress the precipitation by reducing the size of cloud droplets over the western North Pacific.

  11. Thermophoresis and Its Thermal Parameters for Aerosol Collection

    SciTech Connect

    Huang, Z.; Apte, Michael; Gundel, Lara

    2007-08-01

    The particle collection efficiency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25mu m in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  12. THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION

    SciTech Connect

    Huang, Z.; Apte, M.; Gundel, L.

    2007-01-01

    The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler’s heating element was made of three sets of thermophoretic (TP) wires 25μm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  13. Impact of aerosols and cloud parameters on Indian summer monsoon rain at intraseasonal scale: a diagnostic study

    NASA Astrophysics Data System (ADS)

    Singh, Charu; Thomas, Litty; Kumar, K. Kishore

    2017-01-01

    Aerosol and cloud parameters are known to be the influencing factors of the Indian summer monsoon rainfall (ISMR) variability at interannual and intraseasonal scales. In this study, we investigate the impact of remotely sensed aerosol optical depth and associated parameters (cloud fraction, cloud optical depth, cloud effective radii, cloud top pressure, and single-scattering albedo) on the individual active (break) spells of the Indian summer monsoon (ISM) season. Active and break spells are identified using satellite-derived data sets over the central Indian (CI) region. The present analysis suggests that the CI region is loaded with higher aerosol concentration and that rainfall is significantly negatively correlated with aerosol optical depth (significant at 1 % significance level) over CI. Contrary to the composite-based previous studies, it has been observed that the aerosol loading and cloud properties are considerably different during the individual active and break events. For break events, composite representation shows that aerosols are stacked along the Himalayan region while all individual break events do not portray this type of aerosol dispensation. It appears from the present analysis that the aerosols may impact the intraseasonal variability of ISMR through its indirect effect by altering the cloud properties and consequently the rainfall. Therefore, aerosols are supposed to be a regional contributor in affecting the intraseasonal variability of summer monsoon rainfall.

  14. The single scattering properties of hygroscopic soot aggregates with water coated monomers

    NASA Astrophysics Data System (ADS)

    YU, W.; Tianhai, C.; Hao, C.; Lijuan, Z.

    2013-12-01

    Anthropogenic aerosols, such as soot, have modified the Earth's radiation balance by scattering and absorbing solar and long-wave radiative transmission, which have largely influenced the global climate change since the industrial era. Based on transmission electron microscope images (TEM), soot particles are shown as the complex, fractal-like aggregate structures. In humid atmospheric environments, these soot aggregates tend to acquire a water coating, which introduces further complexity to the problem of determining the optical properties of the aggregates. The hygroscopic growth of soot aggregates is important for the aging of these absorbing aerosols, which can significantly influence the optical properties of these kinds of soot particles. In this paper, according to the specific volume fractions of soot core in the water coated soot particle, the monomers of fractal soot aggregates are modeled as semi-external mixtures (physical contact) with constant radius of soot core and variable size of water coating. The single scattering properties of these hygroscopic soot particles, such as phase function, the cross sections of extinction, absorption and scatting, single scattering albedo (SSA), and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The morphological effects are compared with different monomer numbers and fractal dimension of the soot aggregates, as well as different size of water coating for these spherical monomers. The results have shown that the extinction and absorption cross sections are decreased for the soot aggregates with more thick water coating on monomers, but the single scattering albedo is increased for the larger water coating. It is found that the SSA of aged soot aggregates with hygroscopic grown are remarkably (~50% for volume fraction of soot aggregates is 0.5) larger than fresh soot particles without the consideration of water coating, due to the size of water coating and the

  15. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  16. [Specific parameters for the calculation of dose after aerosol inhalation of transuranium elements].

    PubMed

    Ramounet-Le Gall, B; Fritsch, P; Abram, M C; Rateau, G; Grillon, G; Guillet, K; Baude, S; Bérard, P; Ansoborlo, E; Delforge, J

    2002-07-01

    A review on specific parameter measurements to calculate doses per unit of incorporation according to recommendations of the International Commission of Radiological Protection has been performed for inhaled actinide oxides. Alpha activity distribution of the particles can be obtained by autoradiography analysis using aerosol sampling filters at the work places. This allows us to characterize granulometric parameters of "pure" actinide oxides, but complementary analysis by scanning electron microscopy is needed for complex aerosols. Dissolution parameters with their standard deviation are obtained after rat inhalation exposure, taking into account both mechanical lung clearance and actinide transfer to the blood estimated from bone retention. In vitro experiments suggest that the slow dissolution rate might decrease as a function of time following exposure. Dose calculation software packages have been developed to take into account granulometry and dissolution parameters as well as specific physiological parameters of exposed individuals. In the case of poorly soluble actinide oxides, granulometry and physiology appear as the main parameters controlling dose value, whereas dissolution only alters dose distribution. Validation of these software packages are in progress.

  17. Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Collins, Douglas B.; Bertram, Timothy H.; Sultana, Camille M.; Lee, Christopher; Axson, Jessica L.; Prather, Kimberly A.

    2016-09-01

    After many field studies, the establishment of connections between marine microbiological processes, sea spray aerosol (SSA) composition, and cloud condensation nuclei (CCN) has remained an elusive challenge. In this study, we induced algae blooms to probe how complex changes in seawater composition impact the ability of nascent SSA to act as CCN, quantified by using the apparent hygroscopicity parameter (κapp). Throughout all blooms, κapp ranged between 0.7 and 1.4 (average 0.95 ± 0.15), consistent with laboratory investigations using algae-produced organic matter, but differing from climate model parameterizations and in situ SSA generation studies. The size distribution of nascent SSA dictates that changes in κapp associated with biological processing induce less than 3% change in expected CCN concentrations for typical marine cloud supersaturations. The insignificant effect of hygroscopicity on CCN concentrations suggests that the SSA production flux and/or secondary aerosol chemistry may be more important factors linking ocean biogeochemistry and marine clouds.

  18. Updating CMAQ secondary organic aerosol properties relevant for aerosol water interactions

    EPA Science Inventory

    Properties of secondary organic aerosol (SOA) compounds in CMAQ are updated with state-of-the-science estimates from structure activity relationships to provide consistency among volatility, molecular weight, degree of oxygenation, and solubility/hygroscopicity. These updated pro...

  19. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-12-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles.

  20. Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem.

    PubMed

    Chemyakin, Eduard; Burton, Sharon; Kolgotin, Alexei; Müller, Detlef; Hostetler, Chris; Ferrare, Richard

    2016-03-20

    We present an investigation of some important mathematical and numerical features related to the retrieval of microphysical parameters [complex refractive index, single-scattering albedo, effective radius, total number, surface area, and volume concentrations] of ambient aerosol particles using multiwavelength Raman or high-spectral-resolution lidar. Using simple examples, we prove the non-uniqueness of an inverse solution to be the major source of the retrieval difficulties. Some theoretically possible ways of partially compensating for these difficulties are offered. For instance, an increase in the variety of input data via combination of lidar and certain passive remote sensing instruments will be helpful to reduce the error of estimation of the complex refractive index. We also demonstrate a significant interference between Aitken and accumulation aerosol modes in our inversion algorithm, and confirm that the solutions can be better constrained by limiting the particle radii. Applying a combination of an analytical approach and numerical simulations, we explain the statistical behavior of the microphysical size parameters. We reveal and clarify why the total surface area concentration is consistent even in the presence of non-unique solution sets and is on average the most stable parameter to be estimated, as long as at least one extinction optical coefficient is employed. We find that for selected particle size distributions, the total surface area and volume concentrations can be quickly retrieved with fair precision using only single extinction coefficients in a simple arithmetical relationship.

  1. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  2. Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition.

    PubMed

    Vogel, Alexander L; Schneider, Johannes; Müller-Tautges, Christina; Phillips, Gavin J; Pöhlker, Mira L; Rose, Diana; Zuth, Christoph; Makkonen, Ulla; Hakola, Hannele; Crowley, John N; Andreae, Meinrat O; Pöschl, Ulrich; Hoffmann, Thorsten

    2016-10-06

    Aerosol hygroscopic properties were linked to its chemical composition by using complementary online mass spectrometric techniques in a comprehensive chemical characterization study at a rural mountaintop station in central Germany in August 2012. In particular, atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) provided measurements of organic acids, organosulfates, and nitrooxy-organosulfates in the particle phase at 1 min time resolution. Offline analysis of filter samples enabled us to determine the molecular composition of signals appearing in the online (-)APCI-MS spectra. Aerosol mass spectrometry (AMS) provided quantitative measurements of total submicrometer organics, nitrate, sulfate, and ammonium. Inorganic sulfate measurements were achieved by semionline ion chromatography and were compared to the AMS total sulfate mass. We found that up to 40% of the total sulfate mass fraction can be covalently bonded to organic molecules. This finding is supported by both on- and offline soft ionization techniques, which confirmed the presence of several organosulfates and nitrooxy-organosulfates in the particle phase. The chemical composition analysis was compared to hygroscopicity measurements derived from a cloud condensation nuclei counter. We observed that the hygroscopicity parameter (κ) that is derived from organic mass fractions determined by AMS measurements may overestimate the observed κ up to 0.2 if a high fraction of sulfate is bonded to organic molecules and little photochemical aging is exhibited.

  3. Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Su, H.; Wang, X.; Ma, N.; Wiedensohler, A.; Poschl, U.; Cheng, Y.

    2015-05-01

    Knowledge about the chemical composition of aerosol particles is essential to understand their formation and evolution in the atmosphere. Due to analytical limitations, however, relatively little information is available for sub-10 nm particles. We present the design of a nano-cloud condensation nuclei counter (nano-CCNC) for measuring size-resolved hygroscopicity and inferring chemical composition of sub-10 nm aerosol particles. We extend the use of counting efficiency spectra from a water-based condensation particle counter (CPC) and link it to the analysis of CCN activation spectra, which provides a theoretical basis for the application of a scanning supersaturation CPC (SS-CPC) as a nano-CCNC. Measurement procedures and data analysis methods are demonstrated through laboratory experiments with monodisperse particles of diameter down to 2.5 nm, where sodium chloride, ammonium sulfate, sucrose and tungsten oxide can be easily discriminated by different characteristic supersaturations of water droplet formation. A near-linear relationship between hygroscopicity parameter κ and organic mass fraction is also found for sucrose-ammonium sulfate mixtures. The design is not limited to the water CPC, but also applies to CPCs with other working fluids (e.g. butanol, perfluorotributylamine). We suggest that a combination of SS-CPCs with multiple working fluids may provide further insight into the chemical composition of nanoparticles and the role of organic and inorganic compounds in the initial steps of atmospheric new particle formation and growth.

  4. Microphysical aerosol parameters of spheroidal particles via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine

    2015-04-01

    One of the main topics in understanding the aerosol impact on climate requires the investigation of the spatial and temporal variability of microphysical properties of particles, e.g., the complex refractive index, the effective radius, the volume and surface-area concentration, and the single-scattering albedo. Remote sensing is a technique used to monitor aerosols in global coverage and fill in the observational gap. This research topic involves using multi-wavelength Raman lidar systems to extract the microphysical properties of aerosol particles, along with depolarization signals to account for the non-sphericity of the latter. Given, the optical parameters (measured by a lidar), the kernel functions, which summarize the size, shape and composition of particles, we solve for the size distribution of the particles modeled by a Fredholm integral system and further calculate the refractive index. This model works well for spherical particles (e.g. smoke); the kernel functions are derived from relatively simplified formulas (Mie scattering theory) and research has led to successful retrievals for particles which at least resemble a spherical geometry (small depolarization ratio). Obviously, more complicated atmospheric structures (e.g dust) require employment of non-spherical kernels and/or more complicated models which are investigated in this paper. The new model is now a two-dimensional one including the aspect ratio of spheroidal particles. The spheroidal kernel functions are able to be calculated via T-Matrix; a technique used for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped particles. In order to speed up the process and massively perform simulation tests, we created a software interface using different regularization methods and parameter choice rules. The following methods have been used: Truncated singular value decomposition and Pade iteration with the discrepancy principle, and Tikhonov regularization with the L

  5. The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols

    SciTech Connect

    Wang, J.; Cubison, M. J.; Aiken, A. C.; Jimenez, J. L.; Collins, D. R.

    2010-05-01

    Aerosol microphysics, chemical composition, and CCN concentrations were measured at the T0 urban supersite in Mexico City during Megacity Initiative: Local and Global Research Observations (MILAGRO) in March 2006. The aerosol size distribution and composition often showed strong diurnal variation associated with traffic emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. CCN concentrations (N{sub CCN}) are derived using Kohler theory from the measured aerosol size distribution and various simplified aerosol mixing state and chemical composition, and are compared to concurrent measurements at five supersaturations ranging from 0.11% to 0.35%. The influence of assumed mixing state on calculated N{sub CCN} is examined using both aerosols observed during MILAGRO and representative aerosol types. The results indicate that while ambient aerosols often consist of particles with a wide range of compositions at a given size, N{sub CCN} may be derived within {approx}20% assuming an internal mixture (i.e., particles at a given size are mixtures of all participating species, and have the identical composition) if great majority of particles has an overall {kappa} (hygroscopicity parameter) value greater than 0.1. For a non-hygroscopic particle with a diameter of 100 nm, a 3 nm coating of sulfate or nitrate is sufficient to increase its {kappa} from 0 to 0.1. The measurements during MILAGRO suggest that the mixing of non-hygroscopic primary organic aerosol (POA) and black carbon (BC) particles with photochemically produced hygroscopic species and thereby the increase of their {kappa} to 0.1 take place in a few hours during daytime. This rapid process suggests that during daytime, a few tens of kilometers away for POA and BC sources, N{sub CCN} may be derived with sufficient accuracy by assuming an internal mixture, and using bulk chemical composition. The rapid mixing also indicates that, at least for very active

  6. On the Water Uptake and CCN Activation of Tropospheric Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rastak, Narges; Pajunoja, Aki; Acosta Navarro, Juan-Camilo; Leong, Yu Jun; Cerully, Kate M.; Nenes, Athanasios; Kirkevåg, Alf; Topping, David; Virtanen, Annele; Riipinen, Ilona

    2016-04-01

    Aerosol particles introduce high uncertainties to radiative climate forcing. If exposed to a given relative humidity (RH), aerosol particles containing soluble material can absorb water and grow in size (hygroscopic growth). If RH is increased further beyond supersaturation (RH >100%) the particles can act as cloud condensation nuclei (CCN). Aerosol particles interactions with water vapour determine to a large extent their influence on climate. Organic aerosols (OA) contribute a large fraction (20-90%) of atmospheric submicron particulate mass, on the other hand they often consist of thousands of compounds with different properties. One of these properties is solubility, which affects the hygroscopic growth and cloud condensation nucleus (CCN) activation of the organic particles. We investigate the hygroscopic behaviour of complex organic aerosols accounting for the distribution of solubilities present in these mixtures. We use the SPARC method to estimate the solubility distributions of isoprene (IP) and monoterpene (MT) SOA based on their chemical composition, as predicted by the Master Chemical Mechanism (MCM). Combining these solubility distributions with the adsorption theory along with the non-ideal behaviour of organic mixtures, we predict the expected hygroscopic growth factors (HGFs), CCN activation behaviour and the related hygroscopicity parameters kappa for these mixtures. The predictions are compared to laboratory measurements as well as field data from MT- and IP-dominated measurement sites. The predicted solubility distributions do a good job in explaining the water uptake of these two mixture types at high relative humidities (RH around 90%), as well as their CCN activation - including the potential differences between the kappa values derived from HGF vs. CCN data. At lower relative humidities, however, the observed water uptake is higher than predicted on solubility alone, particularly for the MT-derived SOA. The data from the low RHs are further

  7. On the implications of aerosol liquid water and phase ...

    EPA Pesticide Factsheets

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM ∕ OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM ∕ OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH  >  SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM ∕ OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were hig

  8. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  9. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  10. Relationship between column aerosol optical properties and surface aerosol gravimetric concentrations during the Distributed Regional Aerosol Gridded Observation Network - Northeast ASIA 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Seo, S.; Choi, M.; Kim, W. V.; Holben, B. N.; Lee, S.; Kim, J.

    2012-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. This study aims to identify the important parameters that affecting the relationship between those variables during the DRAGON - northeast Asia 2012 campaign. Column aerosol optical properties from ten Cimel sun photometers at DRAGON sites in Seoul, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOCI (Geostationary Ocean Color Imager) and particulate matter (PM10) sampling from 40 NIER (National Institute of Environmental Research of South Korea) measurement sites in Seoul during the period of 1st March - 31th May 2012 were employed in this study. The key parameters in relationship between aerosol optical depth (AOD) and PM are reported to be aerosol vertical profile and hygroscopicity of the aerosols. The meteorological conditions including relative humidity, surface temperature, and wind speed that could affect those parameters were investigated.

  11. Influence of the external mixing state of atmospheric aerosol on derived CCN number concentrations

    NASA Astrophysics Data System (ADS)

    Wex, H.; McFiggans, G.; Henning, S.; Stratmann, F.

    2010-05-01

    We derived the range of particle hygroscopicities ($\\kappa$) that occurs in the atmosphere, based on literature data of measured hygroscopic growth or based on chemical composition. The derived $\\kappa$-values show that the atmospheric aerosol often is an external mixture with respect to hygroscopicity. Mean $\\kappa$ were derived for urban, rural, and marine aerosols for the different hygroscopic modes. Using these $\\kappa$ and exemplary particle number size distributions for the different aerosols, the number concentration of cloud condensation nuclei (NCCN) was derived for two cases, (1) accounting for the less hygroscopic fraction of particles and (2) assuming all particles to have $\\kappa$ of the more hygroscopic mode. NCCN derived from measured particle hygroscopicity is overestimated for case (2). Overestimation of NCCN is largest for fresh continental aerosol and less pronounced for marine aerosol. With $\\kappa$ derived from bulk aerosol composition data, only the hygroscopicity of more soluble aerosol particles is captured. Bulk or even size-resolved composition data will be insufficient to predict NCCN under many conditions unless independent information about particle mixing state is available.

  12. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  13. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    NASA Astrophysics Data System (ADS)

    Pye, Havala O. T.; Murphy, Benjamin N.; Xu, Lu; Ng, Nga L.; Carlton, Annmarie G.; Guo, Hongyu; Weber, Rodney; Vasilakos, Petros; Wyat Appel, K.; Hapsari Budisulistiorini, Sri; Surratt, Jason D.; Nenes, Athanasios; Hu, Weiwei; Jimenez, Jose L.; Isaacman-VanWertz, Gabriel; Misztal, Pawel K.; Goldstein, Allen H.

    2017-01-01

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM / OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM / OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM / OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model-measurement gap. When taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from

  14. Simultaneous Retrieval of Aerosol and Marine Parameters in Coastal Areas Using a Coupled Atmosphere-Ocean Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Fan, Yongzhen; Li, Wei; Stamnes, Knut; Stamnes, Jakob J.; Sorensen, Kai

    2015-12-01

    Simultaneous retrieval of aerosol and marine parameters using inverse techniques based on a coupled atmosphere-ocean radiative transfer model (CRTM) and optimal estimation can yield considerably improved retrieval accuracy based on radiances measured by MERIS, MODIS, and future instruments like OLCI compared with traditional methods. As an example, we discuss simultaneous retrieval in a Norwegian coastal environment from MERIS and MODIS data using a one-step nonlinear optimal estimation method instead of the traditional two-step look up table approach. To increase retrieval speed without loss of accuracy we replace the forward CRTM by a radial basis function neural network. Five parameters are obtained from the retrieval: aerosol optical depth, aerosol bimodal fraction, chlorophyll concentration, absorption by colored dissolved organic matter, and backscattering coefficient. The water leaving radiance is provided as a by-product. We demonstrate the accuracy of this simultaneous retrieval approach through a comparison with match-ups from a Norwegian coastal area.

  15. Aerosol light-scattering enhancement due to water uptake during TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-02-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility in the framework of the Two-Column Aerosol Project (TCAP) deployed at Cape Cod, Massachusetts, for a~one year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0-180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically-influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically-influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air-masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine

  16. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-07-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if

  17. Crop Burning in the North and Northwestern Parts in India and Its Impact on Air Quality and Aerosol Parameters

    NASA Astrophysics Data System (ADS)

    Chauhan, A.

    2015-12-01

    Crop burning in the North and Northwestern parts of India started sometime in 1986 when the farmers started using mechanized forming. During October-November and April-May crop residues are burnt which is a serious health threat to people living in the areas and also it impacts climate of the northern parts of India including Himalayan region. Detailed analysis of satellite data, MODIS, AIRS and OMI AURA have been carried out to study aerosol and meteorological parameters near the source of biomass burning and also at far region. During crop burning period, pronounced changes in the aerosol and meteorological parameters are observed at different pressure levels. The emissions from the crop burning are spread in the Indo-Gangetic plains from west-east, over the Himalayan region and over the central parts of India depending upon the wind direction and wind speed. The air quality changes anomalously affecting the visibility and aerosol parameters. The emissions from crop burning mixes with the local emissions (vehicular and industrial sources) affecting the trace gas concentrations and aerosol optical parameters as a result dense haze fog and smog are observed during burning period. Long range transport of emissions from crop burning over India and its various climatic and health consequences will be presented.

  18. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  19. Direct radiative effect by multicomponent aerosol over China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  20. Assessment of the Moderate-Resolution Imaging Spectroradiometer algorithm for retrieval of aerosol parameters over the ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Kexin; Li, Wei; Stamnes, Knut; Eide, Hans; Spurr, Robert; Tsay, Si-Chee

    2007-03-01

    The Moderate Resolution Imaging Spectroradiometer aerosol algorithm over the ocean derives spectral aerosol optical depth and aerosol size parameters from satellite measured radiances at the top of the atmosphere (TOA). It is based on the adding of apparent optical properties (AOPs): TOA reflectance is approximated as a linear combination of reflectances resulting from a small particle mode and a large particle mode. The weighting parameter η is defined as the fraction of the optical depth at 550 nm due to the small mode. The AOP approach is correct only in the single scattering limit. For a physically correct TOA reflectance simulation, we create linear combinations of the inherent optical properties (IOPs) of small and large particle modes, in which the weighting parameter f is defined as the fraction of the number density attributed to the small particle mode. We use these IOPs as inputs to an accurate multiple scattering radiative transfer model. We find that reflectance errors incurred with the AOP method are as high as 30% for an aerosol optical depth of 2 at 550 nm. The retrieved optical depth has a relative error of up to 8%, and the retrieved fraction η has an absolute error of ˜6%. We show that the use of accurate radiative transfer simulations and a bimodal fraction f yields accurate values for the retrieved optical depth and the fraction f.

  1. Aerosol, surface, and cloud optical parameters derived from airborne spectral actinic flux: measurement comparison with other methods

    NASA Astrophysics Data System (ADS)

    Stark, H.; Bierwirth, E.; Schmidt, S.; Kindel, B. C.; Pilewskie, P.; Lack, D. A.; Madronich, S.; Parrish, D. D.

    2009-12-01

    Optical parameters of aerosols, surfaces, and clouds are essential for an accurate description of Earth’s radiative balance. We will present values for such parameters derived from spectral actinic flux measured on board the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in April 2008. We will compare these measurements to results obtained from other instruments on board the same aircraft, such as the Solar Spectral Flux Radiometer (SSFR) for irradiance measurements and aerosol extinction and absorption measurements by cavity ring-down and Particle Soot Absorption Photometer (PSAP). Actinic flux is sensitive to these parameters and can be used to measure them directly in the atmosphere without in-situ sampling methods required. We will describe the specifics of the actinic flux measurements, show advantages and disadvantages of this measurement technique, and compare results with other techniques. Furthermore, we will compare our measurements with model calculations from radiative transfer models such as the Tropospheric Ultraviolet and Visible (TUV) radiation model, the widely used library of radiative transfer (libradtran) model, and a Monte-Carlo radiation model (GRIMALDI). Also, we will investigate satellite measurements to constrain the radiation measurements to general radiation conditions in the arctic and to compare the results to aerosol optical depth retrievals. In particular, we will show results for surface albedo of the Arctic Ocean ice surface, extinction and absorption of Arctic haze layers, and optical thickness and albedo measurements of clouds.

  2. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    NASA Astrophysics Data System (ADS)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  3. Simultaneous Measurements of Individual Ambient Particles Size, Composition, Effective Density, and Hygroscopicity

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Han, J.; Oatis, Susan

    2008-03-01

    The interaction between atmospheric particles and water vapor impacts directly and significantly the effect that these particles exert on the atmosphere. The hygroscopicity of individual particles, which is a quantitative measure of their response to changes in relative humidity, is related to their internal compositions. To properly include atmospheric aerosols in any model requires knowledge of the relationship between particle size, composition and hygroscopicity. Here we demonstrate the capability to conduct in real-time the simultaneous measurements of individual ambient particle hygroscopic growth factors, densities and compositions using a hydrated tandem differential mobility analyzer that is coupled to an ultra-sensitive single particle mass spectrometer. We use as an example the class of particles that are composed of sulfate mixed with oxygenated organics to illustrate how such multidimensional single particle characterization can be used to yield quantitative information about the composition of individual particles. We show that the data provide the relative concentrations of organics and sulfates, the density of the two fractions and particle hygroscopicity.

  4. Long-term visibility data in the UK - how does visibility vary with meteorological and pollutant parameters?

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Bloss, William J.; Pope, Francis D.

    2016-04-01

    Poor visibility can be an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to accidents particularly during winter when fogs are prevalent. The present quantitative analysis attempts to explain the influence of aerosol concentration and composition, and meteorology on long-term UK visibility. We use visibility data from eight UK meteorological stations which have been running since the 1950s. The site locations include urban, rural and marine environments. Overall, most stations show a long term trend of visibility increase, which is indicative of reductions in aerosol pollution, especially in urban areas. Additionally, results at all sites show a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosols to scatter radiation and hence impact upon visibility. The dependence of visibility on other meteorological parameters (e.g. relative humidity, air temperature, wind speed & direction) is also investigated. To explain the long term visibility trends and their dependence on meteorological conditions, a light extinction model was constructed incorporating the concentrations and composition of historic aerosol. The lack of historic aerosol size distributions and aerosol composition data, which determine hygroscopicity and refractive index, leads to an under-constrained model. Aerosol measurements from the last 10 years are used to constrain these model parameters, and hence their historical variation can be estimated; sensitivity analyses are used to estimate errors for the time period before regular aerosol measurements are available. A good agreement is observed between modelled and measured visibility. This work has generated a unique 60 year data set with which to understand how aerosol concentration and composition has varied over the UK. The model is applicable and easily transferrable to other data sets

  5. Aerosol and Cloud-Nucleating Particle Observations during an Atmospheric River Event

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; McCluskey, C. S.; Petters, M.; Suski, K. J.; Levin, E. J.; Hill, T. C. J.; Atwood, S. A.; Schill, G. P.; Rocci, K.; Boose, Y.; Martin, A.; Cornwell, G.; Al-Mashat, H.; Moore, K.; Prather, K. A.; Rothfuss, N.; Taylor, H.; Leung, L. R.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; Creamean, J.; White, A. B.; Kreidenweis, S. M.

    2015-12-01

    The multi-agency CalWater 2015 project occurred over North Central CA and the Eastern Pacific during January to March 2015 (Spackman et al., this session). The goals of the campaign were to document the structure of atmospheric rivers (ARs) that deliver much of the water vapor associated with major winter storms along the U.S. West Coast and to investigate the modulating effect of aerosols on precipitation. Aerosol sources that may influence orographic cloud properties for air lifted over the mountains in California in winter include pollution, biomass burning, soil dusts and marine aerosols, but their roles will also be influenced by transport, vertical stratification, and scavenging processes. We present results from a comprehensive study of aerosol distributions, compositions, and cloud nucleating properties during an intense winter storm during February 2015, including data from an NSF-supported measurement site at Bodega Bay, from the DOE-ARM Cloud Aerosol Precipitation Experiment that included sampling on the NOAA RV Ron Brown offshore and the G-1 aircraft over ocean and land, and with context provided by other NOAA aircraft and remote sensing facilities. With a special focus on the coastal site, we discuss changes in aerosol distributions, aerosol hygroscopicity, and number concentrations of fluorescent particles, cloud condensation nuclei (CCN), and ice nucleating particles (INPs) during the AR event. We compare with periods preceding and following the event. For example, total aerosol number and surface area concentrations at below 0.5 μm diameter decreased from typical values of a few thousand cm-3 and 100 μm2 cm-3, respectively, to a few hundred cm-3 and 10 μm2cm-3 at Bodega Bay during the AR event. CCN concentrations were similarly lower, but hygroscopicity parameter (kappa) increased from typical values of 0.2 to values > 0.5 during the AR.INP and fluorescent particle number concentrations were generally lower during the AR event than at any other

  6. Hygroscopic growth and deliquescence of NaCl nanoparticles coated with surfactant AOT.

    PubMed

    Alshawa, Ahmad; Dopfer, Otto; Harmon, Christopher W; Nizkorodov, Sergey A; Underwood, Joelle S

    2009-07-02

    Aerosolized nanoparticles of NaCl coated with variable amounts of surfactant AOT were generated by electrospraying AOT/NaCl aqueous solutions, followed by neutralizing and drying the resulting particles. A tandem differential mobility analyzer was used to select a narrow size distribution of particles with mobility equivalent diameters below 20 nm and monitor their hygroscopic growth as a function of relative humidity. Effects of the particle size and relative amount of surfactant on the hygroscopic growth of NaCl were studied. For pure NaCl nanoparticles, the deliquescence relative humidity (DRH) increased as the particle size was decreased, in full agreement with previous measurements. Below the DRH the NaCl nanoparticles had an equivalent of one-four monolayers of water adsorbed on the surface. The addition of a sub-monolayer AOT coating reduced the DRH and suppressed the hygroscopic growth of the NaCl core. At AOT coverage levels exceeding one monolayer, a clear deliquescence transition was no longer discernible. The Zdanovskii-Stokes-Robinson (ZSR) model failed to predict the observed growth factors of mixed AOT/NaCl nanoparticles reflecting a large contribution of the interfacial interactions between NaCl and AOT to the total free energy of the particles. There were indications that AOT/NaCl nanoparticles prepared by the electrospray aerosol source were enhanced in the relative mass fraction of AOT in comparison with the solution from which they were electrosprayed.

  7. The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric relevant particles.

    PubMed

    Ma, Qingxin; Liu, Yongchun; He, Hong

    2010-04-01

    The hygroscopic behavior of atmospheric aerosols has a significant effect on the global climate change. In this study, a physisorption analyzer was used to measure the water adsorption capacity of Al(2)O(3), NaCl, NH(4)NO(3), and (NH(4))(2)SO(4) particles at 273.6 K. Qualitative and quantitative information about water adsorption on these particles was obtained with changing the temperature and/or relative humidity (RH). Uptake of water on Al(2)O(3) showed a type-II BET adsorption isotherm with the monolayer formed at approximately 18% relative humidity (RH). The hygroscopic properties of NaCl, (NH(4))(2)SO(4), and NH(4)NO(3), including the deliquescence relative humidities (DRH), the temperature dependence of the DRH for NH(4)NO(3), and the growth factors of NaCl and (NH(4))(2)SO(4) were determined. All these results were in good agreement with the results obtained by other methods and/or theoretical prediction with a deviation less than 2%. For NaCl, the water adsorption amount increase rate exhibits three stages (<30% RH, approximately 30%-65% RH, and >65% RH) in the predeliquescence process and monolayer thin film water was formed at about 30% RH. It demonstrated that this instrument was practicable for studying the hygroscopic behavior of both soluble and insoluble but wettable atmospheric nonviolate aerosol particles.

  8. Oxidation of ambient biogenic secondary organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Wong, J. P. S.; Lee, A. K. Y.; Slowik, J. G.; Cziczo, D. J.; Leaitch, W. R.; Macdonald, A.; Abbatt, J. P. D.

    2011-11-01

    Changes in the hygroscopicity of ambient biogenic secondary organic aerosols (SOA) due to controlled OH oxidation were investigated at a remote forested site at Whistler Mountain, British Columbia during July of 2010. Coupled photo-oxidation and cloud condensation nuclei (CCN) experiments were conducted on: i) ambient particles exposed to high levels of gas-phase OH, and ii) the water-soluble fraction of ambient particles oxidized by aqueous-phase OH. An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition and degree of oxidation (O:C ratio) of the organic component of ambient aerosol due to OH oxidation. The CCN activity of size-selected particles was measured to determine the hygroscopicity parameter ($\\kappa$org,CCN) for particles of various degrees of oxygenation. In both cases, the CCN activity of the oxidized material was higher than that of the ambient particles. In general, $\\kappa$org,CCN of the aerosol increases with its O:C ratio, in agreement with previous laboratory measurements.

  9. 21 CFR 884.4260 - Hygroscopic Laminaria cervical dilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hygroscopic Laminaria cervical dilator. 884.4260... Devices § 884.4260 Hygroscopic Laminaria cervical dilator. (a) Identification. A hygroscopic Laminaria cervical dilator is a device designed to dilate (stretch open) the cervical os by cervical insertion of...

  10. 21 CFR 884.4260 - Hygroscopic Laminaria cervical dilator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hygroscopic Laminaria cervical dilator. 884.4260 Section 884.4260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Devices § 884.4260 Hygroscopic Laminaria cervical dilator. (a) Identification. A hygroscopic...

  11. 21 CFR 884.4260 - Hygroscopic Laminaria cervical dilator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hygroscopic Laminaria cervical dilator. 884.4260 Section 884.4260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Devices § 884.4260 Hygroscopic Laminaria cervical dilator. (a) Identification. A hygroscopic...

  12. 21 CFR 884.4260 - Hygroscopic Laminaria cervical dilator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hygroscopic Laminaria cervical dilator. 884.4260 Section 884.4260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Devices § 884.4260 Hygroscopic Laminaria cervical dilator. (a) Identification. A hygroscopic...

  13. 21 CFR 884.4260 - Hygroscopic Laminaria cervical dilator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hygroscopic Laminaria cervical dilator. 884.4260 Section 884.4260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Devices § 884.4260 Hygroscopic Laminaria cervical dilator. (a) Identification. A hygroscopic...

  14. Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Baltensperger, U.; Giebl, H.; Hitzenberger, R.; Petzold, A.; Wilson, C. W.

    2003-06-01

    Hygroscopic properties of combustion particles were measured online with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) during PartEmis jet engine combustor experiments. The combustor was operated at old and modern cruise conditions with fuel sulfur contents (FSC) of 50, 410 and 1270 μg g-1, and hygroscopic growth factors (HGF) of particles with different dry diameters were investigated at relative humidities RH <= 95%. HGFs increased strongly with increasing FSC (HGF[95% RH, 50 nm, modern cruise] = 1.01 and 1.16 for low and high FSC, respectively), and decreased with increasing particle size at fixed FSC, whereas no significant difference was detected between old and modern cruise. HGFs agreed well with a two-parameter theoretical model which provided an estimate of the sulfuric acid content of dry particles, indicating a nearly linear dependence on FSC.

  15. Laboratory study on the hygroscopic behavior of external and internal C2-C4 dicarboxylic acid-NaCl mixtures.

    PubMed

    Ma, Qingxin; Ma, Jinzhu; Liu, Chang; Lai, Chengyue; He, Hong

    2013-09-17

    Atmospheric aerosol is usually found to be a mixture of various inorganic and organic components in field measurements, whereas the effect of this mixing state on the hygroscopicity of aerosol particles has remained unknown. In this study, the hygroscopic behavior of mixtures of C2-C4 dicarboxylic acids and NaCl was investigated. For both externally and internally mixed malonic acid-NaCl and succinic acid-NaCl particles, correlation between water content and chemical composition was observed and the water content of these mixtures at relative humidity (RH) above 80% can be well predicted by the Zdanovskii-Stokes-Robinson (ZSR) method. In contrast, a nonlinear relation between the total water content of the mixtures and the water content of each chemical composition separately was found for oxalic acid-NaCl mixtures. Compared to the values predicted by the ZSR method, the dissolution of oxalic acid in external mixtures resulted in an increase in the total water content, whereas the formation of less hygroscopic disodium oxalate in internal mixtures led to a significant decrease in the total water content. Furthermore, we found that the hygroscopicity of the sodium dicarboxylate plays a critical role in determining the aqueous chemistry of dicarboxylic acid-NaCl mixtures during the humidifying and dehumidifying process. It was also found that the hydration of oxalic acid and the deliquescence of NaCl did not change in external oxalic acid-NaCl mixtures. The deliquescence relative humidity (DRHs) for both malonic acid and NaCl decreased in both external and internal mixtures. These results could help in understanding the conversion processes of dicarboxylic acids to dicarboxylate salts, as well as the substitution of Cl by oxalate in the atmosphere. It was demonstrated that the effect of coexisting components on the hygroscopic behavior of mixed aerosols should not be neglected.

  16. Transformation from hydrophobic to hygroscopic diesel soot particles by photochemical aging

    NASA Astrophysics Data System (ADS)

    Tritscher, T.; Juranyi, Z.; Martin, M.; Chirico, R.; Heringa, M.; Gysel, M.; Sierau, B.; Decarlo, P. F.; Dommen, J.; Prevot, A. S.; Weingartner, E.; Baltensperger, U.

    2010-12-01

    Combustion emissions are a complex mixture of black carbon (BC), organics, and other compounds in the gas and particle phase. In global climate modeling BC is categorized in hydrophobic and hydrophilic, but the fraction of particles in each category is quite difficult to quantify. A particle is called hydrophobic, if it is non-wettable and therefore cannot act as cloud condensation nuclei (CCN). Hydrophilic particles are hygroscopic, if they can take up water at elevated RH. The hygroscopicity and the CCN activation of diesel exhaust particles were measured during experiments at the PSI smog chamber with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) at 95% relative humidity (RH), which measures diameter growth factors (GF), the ratio of the wet (d(RH)) and the dry diameter (d0), and with a Cloud Condensation Nuclei Counter (CCNC) at RH > 100%. Diesel exhaust from different passenger cars was introduced via heated injection system into the chamber. Fresh soot (BC and primary organic aerosol (POA)) is known to form nm-size fractal aggregates. These primary soot particles were coated with secondary organic aerosol (SOA) mass after lights were turned on. The figure conceptually illustrates the observed findings. Fresh soot particles are hydrophobic as they do not activate as cloud droplets even at high supersaturations like non-hygroscopic but wettable particles do. SOA coating appears on the soot aggregates after photochemical aging was started. Slightly aged particles were found to be CCN-active and thus they are hydrophilic. However, the GF of the H-TDMA was <1, indicating a shrinking of these particles. This restructuring was confirmed with a pre-humidifier, which makes the particles compact and less fractal in front of the H-TDMA. Continued aging of diesel exhaust leads to CCN-active particles with a GF >1, indicating the hygroscopicity of these particles. Our measurements show that photochemical aging with SOA formation can change a hydrophobic

  17. Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles

    NASA Astrophysics Data System (ADS)

    Meyer, N. K.; Duplissy, J.; Gysel, M.; Metzger, A.; Dommen, J.; Weingartner, E.; Alfarra, M. R.; Prevot, A. S. H.; Fletcher, C.; Good, N.; McFiggans, G.; Jonsson, Â. M.; Hallquist, M.; Baltensperger, U.; Ristovski, Z. D.

    2009-01-01

    The volatile and hygroscopic properties of ammonium sulphate seeded and unseeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility - hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived

  18. Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China.

    PubMed

    Wu, Zhijun; Zheng, Jing; Wang, Yu; Shang, Dongjie; Du, Zhoufei; Zhang, Yuanhang; Hu, Min

    2017-02-01

    Biomass burning emits large amounts of both trace gases and particles into the atmosphere. It plays a profound role in regional air quality and climate change. In the present study, an intensive campaign was carried out at an urban site in Beijing, China, in June 2014, which covered the winter wheat harvest season over the North China Plain (NCP). Meanwhile, two evident biomass-burning events were observed. A clear burst in ultrafine particles (below 100nm in diameter, PM1) and subsequent particle growth took place during the events. With the growth of the ultrafine particles, the organic fraction of PM1 increased significantly. The ratio of oxygen to carbon (O:C), which had an average value of 0.23±0.04, did not show an obvious enhancement, indicating that a significant chemical aging process of the biomass-burning aerosols was not observed during the course of events. This finding might have been due to the fact that the biomass-burning events occurred in the late afternoon and grew during the nighttime, which is associated with a low atmospheric oxidation capacity. On average, organics and black carbon (BC) were dominant in the biomass-burning aerosols, accounting for 60±10% and 18±3% of PM1. The high organic and BC fractions led to a significant suppression of particle hygroscopicity. Comparisons among hygroscopicity tandem differential mobility analyzer (HTDMA)-derived, cloud condensation nuclei counter (CCNc)-derived, and aerosol mass spectrometer-based hygroscopicity parameter (κ) values were consistent. The mean κ values of biomass-burning aerosols derived from both HTDMA and CCNc measurements were approximately 0.1, regardless of the particle size, indicating that the biomass-burning aerosols were less active. The burst in particle count during the biomass-burning events resulted in an increased number of cloud condensation nuclei (CCN) at supersaturation (SS)=0.2-0.8%.

  19. Parameters influencing the aerosol capture performance of the Submerged-Bed Scrubber

    SciTech Connect

    Ruecker, C.M.; Scott, P.A.

    1987-04-01

    The Submerged-Bed Scrubber (SBS) is a novel air cleaning device that has been investigated by Pacific Northwest Laboratory (PNL) for scrubbing off gases from liquid-fed ceramic melters used to vitrify high-level waste (HLW). The concept for the SBS was originally conceived at Hanford for emergency venting of a reactor containment building. The SBS was adapted for use as a quenching scrubber at PNL because it can cool the hot melter off gas as well as remove over 90% of the airborne particles, thus meeting the minimum particulate decontamination factor (DF) of 10 required of a primary scrubber. The experiments in this study showed that the submicron aerosol DF for the SBS can exceed 100 under certain conditions. A conventional device, the ejector-venturi scrubber (EVS), has been previously used in this application. The EVS also adequately cools the hot gases from the melter while exhibiting aerosol removal DFs in the range of 5 to 30. In addition to achieving higher DFs than the EVS, however, the SBS has the advantage of being a passive system, better suited to the remote environment of an HLW processing system. The objective of this study was to characterize the performance of the SBS and to improve the aerosol capture efficiency by modifying the operating procedure or the design. A partial factorial experimental matrix was completed to determine the main effects of aerosol solubility, inlet off-gas temperature, inlet off-gas flow rate, steam-to-air ratio, bed diameter and packing diameter on the particulate removal efficiency of the SBS. Several additional experiments were conducted to measure the influence of the inlet aerosol concentration and scrubbing-water concentration on aerosol-removal performance. 33 refs., 17 figs., 14 tabs.

  20. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  1. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  2. Long-term measurements of aerosol optical parameters in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Paraskevopoulou, Despoina; Liakakou, Eleni; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2015-04-01

    Aerosol chemical composition was studied in conjunction with its optical properties in the area of Athens Greece. For this purpose, sampling of fine aerosol fraction (PM2,5) took place on a daily basis from August 2010 to April 2013 at an urban background location. The samples are subsequently analyzed for their content in organic (OC) and elemental carbon (EC), major ions and trace metals, resulting in the exercise of chemical mass closure. In parallel, the optical properties of aerosols are recorded using a nephelometer and a particle soot absorption photometer (PSAP), leading to the calculation of scattering (σscat) and absorption (σabs) coefficients, respectively; while single scattering albedo (SSA) and mass scattering and absorption efficiencies are thereinafter calculated. Daily σscat values provide an average of 30.1±3.9 Μm-1 while, the average of σabs is 5.2±1.4 Μm-1. The seasonal cycle of σscat presents maximum during summer and in November, due to long-range transport of aerosol from continental Europe and dust transfer from Africa, respectively. The estimated mass absorption efficiency of EC is estimated to be 8.3±0.2 m2 g-1 for the whole studied period, while the corresponding estimated mass scattering efficiency of PM2.5 is 1.7±0.1 m2 g-1 and does not affected by the presence of dust. The average SSA equals to 0.87±0.11 for the three-year period. On a seasonal basis, SSA presents maximum values during summer that is consistent with the reduction of EC - the main absorbing specie. Finally, the reconstruction of scattering coefficients was performed taking into consideration the measured chemistry of fine aerosol.

  3. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  4. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  5. CCN activity of Amazonian aerosols during GoAmazon 2014/5

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Wang, J.; de Sá, S. S.; Palm, B. B.; Barbosa, H. M.; Pöhlker, M. L.; Alexander, M. L. L.; Carbone, S.; Campuzano Jost, P.; Day, D. A.; Hu, W.; Kuang, C.; Manzi, A. O.; Ng, N. L.; Pöhlker, C.; Sedlacek, A. J., III; Senum, G.; Souza, R. A. F. D.; Springston, S. R.; Watson, T. B.; Poeschl, U.; Andreae, M. O.; Artaxo, P.; Jimenez, J. L.; Martin, S. T.

    2015-12-01

    During the Green Ocean Amazon (GoAmazon) 2014/5 campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 70-km downwind of the city of Manaus (pop. 2 million) from March 12, 2014 to March 3, 2015. Air masses arriving at the T3 site ranged from near natural conditions to strongly impacted by urban pollution and/or biomass burning. Particle hygroscopicity and chemical mixing state were derived from the size resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol was then calculated from the particle hygroscopicity and composition concurrently measured by an Aerosol Mass Spectrometer (AMS) or an Aerosol Chemical Speciation Monitor (ACSM). On average, particle hygroscopicity increased with increasing particle diameter, mainly due to an increasing sulfate volume fraction. The diel variations of particle hygroscopicity, mixing state, and organic hygroscopicity were strongly influenced by a combination of emissions, photochemical oxidation, and the development of boundary layer. The diel variations are examined for different air masses during both wet and dry seasons. The impact of urban pollution and biomass burning on both organic and particle hygroscopicities will be presented. The organic hygroscopicity is investigated against its sources and the oxidation levels (e.g., O:C atomic ratio) for improved understanding of its variations and parameterizations in global models.

  6. Estimation of atmospheric aerosol composition from ground-based remote sensing measurements of Sun-sky radiometer

    NASA Astrophysics Data System (ADS)

    Xie, Y. S.; Li, Z. Q.; Zhang, Y. X.; Zhang, Y.; Li, D. H.; Li, K. T.; Xu, H.; Zhang, Y.; Wang, Y. Q.; Chen, X. F.; Schauer, J. J.; Bergin, M.

    2017-01-01

    Remote sensing provides aerosol loading information, but to address climate and air quality model validation, there are additional needs to acquire aerosol composition information. In this study, a comprehensive aerosol composition model is established to quantify black carbon (BC), brown carbon (BrC), mineral dust (DU), particulate organic matters, ammonium sulfate like (AS), sea salt, and aerosol water uptake. We develop forward modeling of aerosol components, including microphysical parameters (real and imaginary refractive indices, volume fraction ratio of fine to coarse mode, and sphericity) and hygroscopic growth models, and propose an optimization scheme to estimate the components. The uncertainties caused by input parameters are also assessed. Sun-sky radiometer measurements and meteorological data obtained during a campaign in Huairou, Beijing, are processed to estimate aerosol components, which are further compared with synchronous in situ chemical measurements. The results show generally good consistencies between remotely estimated and measured components (e.g., correlation coefficients for BC, BrC, AS, and PM2.5 lie in about 0.8-0.9). The comparisons between modeled and observed microphysical parameters also show good agreements, with the exception of sphericity, which is likely caused by high uncertainties of this parameter. Sensitivity studies show that BC and BrC are highly sensitive to imaginary refractive index, while DU is strongly correlated to both volume size and sphericity. The performance of composition retrieval is expected to be improved when the sphericity uncertainty is significantly reduced.

  7. Hygroscopic chemicals and the formation of advection warm fog: A numerical simulation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1978-01-01

    The formation of advection fog is closely associated with the characteristics of the aerosol particles, including the chemical composition, mass of the nuclei, particle size, and concentration. Both macrophysical and microphysical processes are considered. In the macrophysical model, the evolution of wind components, water vapor content, liquid water content and potential temperature under the influences of vertical turbulent diffusion, turbulent momentum, and turbulent energy transfers are taken into account. In the microphysical model, the supersaturation effect is incorporated with the surface tension and hygroscopic material solution.

  8. In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes

    NASA Astrophysics Data System (ADS)

    Perring, Anne E.; Schwarz, Joshua P.; Markovic, Milos Z.; Fahey, David W.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Palm, Brett D.; Wisthaler, Armin; Mikoviny, Tomas; Diskin, Glenn; Sachse, Glen; Ziemba, Luke; Anderson, Bruce; Shingler, Taylor; Crosbie, Ewan; Sorooshian, Armin; Yokelson, Robert; Gao, Ru-Shan

    2017-01-01

    Water uptake by black carbon (BC)-containing aerosol was quantified in North American wildfire plumes of varying age (1 to 40 h old) sampled during the SEAC4RS mission (2013). A Humidified Dual SP2 (HD-SP2) is used to optically size BC-containing particles under dry and humid conditions from which we extract the hygroscopicity parameter, κ, of materials internally mixed with BC. Instrumental variability and the uncertainty of the technique are briefly discussed. An ensemble average κ of 0.04 is found for the set of plumes sampled, consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. The temporal evolution of κ in the Yosemite Rim Fire plume is explored to constrain the rate of conversion of BC-containing aerosol from hydrophobic to more hydrophilic modes in these emissions. A BC-specific κ increase of 0.06 over 40 h is found, fit well with an exponential curve corresponding to a transition from a κ of 0 to a κ of 0.09 with an e-folding time of 29 h. Although only a few percent of wildfire particles contain BC, a similar κ increase is estimated for bulk aerosol and the measured aerosol composition is used to infer that the observed κ change is driven by a combination of incorporation of ammonium sulfate and oxidation of existing organic materials. Finally, a substantial fraction of wildfire-generated BC-containing aerosol is calculated to be active as cloud condensation nuclei shortly after emission likely indicating efficient wet removal. These results can constrain model treatment of BC from wildfire sources.

  9. Characterization of Aerosols and Atmospheric Parameters From Space-Borne and Surface-Based Remote Sensing

    DTIC Science & Technology

    2016-06-07

    Ocean color and temperature exhibit strong gradients. White capping and sun glint (which are highly wind speed dependent) cause further ocean color...aircraft altitude causing spectral brightness shift due to changes in aerosol and molecular scattering, and repeat the sequence. The method for remote...sensing of smoke or sulfates over vegetated (dark) regions by Kaufman et al. (1997) is extended to include dust over the desert ( bright surface). Now

  10. Hygroscopic properties of magnetic recording tape

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1976-01-01

    Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.

  11. Does the long-range transport of African mineral dust across the Atlantic enhance their hygroscopicity?

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Caquineau, Sandrine; Desboeufs, Karine; Laurent, Benoit; Quiñones Rosado, Mariana; Vallejo, Pamela; Mayol-Bracero, Olga; Formenti, Paola

    2015-04-01

    Influence of mineral dust on radiation balance is largely dependent on their ability to interact with water. While fresh mineral dusts are highly hydrophobic, various transformation processes (coagulation, heterogeneous chemical reaction) can modify the dust physical and chemical properties during long-range transport, which, in turn, can change the dust hygroscopic properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of dust hygroscopic properties, and their temporal evolution during long-range transport. We present the first direct surface measurements of the hygroscopicity of Saharan dust after long-range transport over the Atlantic Ocean, their relationship with chemical composition, their influence on particle size and shape and implications for optical properties. Particles were collected during the DUST Aging and TransporT from Africa to the Caribbean (Dust-AttaCk) campaign at the Cape San Juan Puerto Rico station in June-July 2012. Environmental scanning electron microscopy (ESEM) was used to analyze the size, shape, chemical composition and hygroscopic properties of individual particles. At different levels of concentrations in summertime, the coarse mode of atmospheric aerosols in Puerto Rico is dominated by Saharan mineral dust. Most of aged dust particles survived atmospheric transport intact with no observed internal mixture with other species and did not show hygroscopic growth up to 94% relative humidity. This is certainly due to the fact that in summertime dust is mostly transported above the marine boundary layer. A minor portion of mineral dust (approximately 19-28% by number) were involved in atmospheric heterogeneous reactions with acidic gases (likely SO2 and HCl) and sea salt aggregation. While sulfate- and chloride-coated dust remained extremely hydrophobic, dust particles in internal mixing with NaCl underwent profound changes in their hygroscopicity, therefore in size and shape. We

  12. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective

    NASA Astrophysics Data System (ADS)

    Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; Honzak, L.; Jiménez-Guerrero, P.; Knote, C.; Langer, M.; Makar, P. A.; Pirovano, G.; Pérez, J. L.; San José, R.; Syrakov, D.; Tuccella, P.; Werhahn, J.; Wolke, R.; Žabkar, R.; Zhang, J.; Galmarini, S.

    2015-08-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model intercomparison, we used the bulk mass profiles of aerosol chemical species sampled over the locations of AERONET stations across Europe and North America to calculate the aerosol optical properties under a range of common assumptions for all models. Several simulations with parameters perturbed within a range of observed values are carried out for July 2010 and compared in order to infer the assumptions that have the largest impact on the calculated aerosol optical properties. We calculate that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. The uncertainty introduced by the choice of mixing state choice on the calculation of the asymmetry parameter is the order of 10%. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. It is thus recommended to focus further research on a more accurate representation of the aerosol mixing state in models, in order to have a less uncertain simulation of the related optical properties.

  13. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    (RH) at a certain RH divided by sp at a dry value, was used to evaluate the aerosol hygroscopicity. Different empirical fits were evaluated using the f(RH) data. The widely used gamma model was found inappropriate, as it overestimates f(RH) for RH<75%. Abetter empirical fit with two power-law curve-fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass (OMC) and the species that are affected by RH and f(RH) was also studied and categorized between the sites. A second experiment is reported where the first two elements of the scattering matrix of laboratory generated particles were studied under different humidity conditions. The non-spherical particles generated were ammonium sulfate, sodium chloride, and ammonium nitrate. The optical measurements were performed with a polarized imaging nephelometer (PI-Neph) installed in series with the humidifier dryer apparatus. The inorganic salts experienced low (80%) RH levels so that the observations could contrast the differences when the salts were crystallized (low RH) and when the particles turned to aqueous solutions after deliquesence (high RH). The measurements with the PI-Neph produce the aerosol phase function and the polarized phase function in a range of angles that go from 3 to 177. The results showed significant changes in the phase function and polarized phase function due to the hygroscopic growth. Although the inorganic salts used inthe experiments were non-spherical, the dry measurements were successfully reproduced with the Mie theory using literature values for the dry index of refraction. Moreover, the changes in the particle size distribution and index of refraction were evaluated through classic thermodynamic equilibrium theory producing comparable results with the simulations performed with Mie formalism. The final experiment consisted in the measurements of phase function and degree of linear polarization of ambient aerosols

  14. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-02-14

    The purpose of this study was to systematically design pure antibiotic drug dry powder inhalers (DPIs) for targeted antibiotic pulmonary delivery in the treatment of pulmonary infections and comprehensively correlate the physicochemical properties in the solid-state and spray-drying conditions effects on aerosol dispersion performance as dry powder inhalers (DPIs). The two rationally chosen model antibiotic drugs, tobramycin (TOB) and azithromycin (AZI), represent two different antibiotic drug classes of aminoglycosides and macrolides, respectively. The particle size distributions were narrow, unimodal, and in the microparticulate/nanoparticulate size range. The SD particles possessed relatively spherical particle morphology, smooth surface morphology, low residual water content, and the absence of long-range molecular order. The emitted dose (ED%), fine particle fraction (FPF%) and respirable fraction (RF%) were all excellent. The MMAD values were in the inhalable range (<10 μm) with smaller MMAD values for SD AZI powders in contrast to SD TOB powders. Positive linear correlations were observed between the aerosol dispersion performance parameter of FPF with increasing spray-drying pump rates and also with the difference between thermal parameters expressed as Tg-To (i.e. the difference between the glass transition temperature and outlet temperature) for SD AZI powders. The aerosol dispersion performance for SD TOB appeared to be influenced by its high water vapor sorption behavior (hygroscopicity) and pump rates or To. Aerosol dispersion performance of SD powders were distinct for both antibiotic drug aerosol systems and also between different pump rates for each system.

  15. Aerosol activation: parameterised versus explicit calculation for global models

    NASA Astrophysics Data System (ADS)

    Tost, H.; Pringle, K.; Metzger, S.; Lelieveld, J.

    2009-04-01

    A key process in studies of the aerosol indirect effects on clouds is the activation of particles into droplets at 100% relative humidity. To model this process in cloud, meteorological and climate models is a difficult undertaking because of the wide range of scales involved. The chemical composition of the atmospheric aerosol, originating from both air pollution and natural sources, substantially impacts the aerosol water uptake and growth due to its hygroscopicity. In this study a comparison of aerosol activation, using state-of-the-art aerosol activation parameterisations, and explicit activation due to hygroscopic growth is performed.For that purpose we apply the GMXe aerosol model - treating both dynamic and thermodynamic aerosol properties - within the EMAC (ECHAM5/MESSy Atmospheric chemistry, an atmospheric chemistry general circulation) model. This new aerosol model can explicitely calculate the water uptake of aerosols due to hygroscopicity, allowing the growth of aerosol particles into the regimes of cloud droplets in case of sufficient water vapour availability. Global model simulations using both activation schemes will be presented and compared, elucidating the advantages of each approach.

  16. Aerosol optical and microphysical properties from POLDER-PARASOL multi-angle photo-polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, O.; Litvinov, P.; Butz, A.

    2010-12-01

    The large uncertainty on the aerosol effects on clouds and climate is reflected in considerable discrepancies between different model simulations of the radiative forcing caused by these effects. Also, there exist even larger differences between values for radiative forcing calculated by models and those estimated from satellites (and model calculations constrained by satellite measurements). Relationships between aerosols and clouds derived from satellite measurements are subject to a number of important limitations. First of all, with current satellite aerosol products it is hard to determine which fraction of the aerosols is anthropogenic and which fraction is natural. Often the rather crude assumption is used that the fine mode contribution is fully anthropogenic. Furthermore, most aerosol types are strongly hygroscopic, which means that in an environment with high relative humidity (in the surrounding of clouds) the particle size increases considerably leading, in turn, to an increase in optical thickness. This effect may be misinterpreted as an apparent relation between aerosol concentration and cloud cover. Also, meteorology effects can be misinterpreted as apparent aerosol-cloud relationships. Accurate information on aerosol size and refractive index (related to chemical composition of aerosols and absorption) is needed to distinguish between natural and anthropogenic aerosols and to distinguish between aerosol effects on cloud formation and apparent relationships due to humidity and meteorology effects. Multi-angle photopolarimetric measurements have the potential to provide the necessary information on these aerosol properties. The POLDER instrument onboard the PARASOL micro-satellite is the only instrument currently in space that performs multi-angle photopolarimetric measurements. To fully exploit the information contained in these measurements a new type of retrieval algorithm is needed that retrieves detailed information on aerosol microphysical and

  17. Case study of the ABL height and optical parameters of the atmospheric aerosols over Sofia

    NASA Astrophysics Data System (ADS)

    Evgenieva, Tsvetina; Kolev, Nikolay; Savov, Plamen; Kaleyna, Petya; Petkov, Doino; Danchovski, Ventsislav; Ivanov, Danko; Donev, Evgeni

    2016-01-01

    A study of the atmospheric boundary layer (ABL) height and its relation to the variations in the aerosol optical depth (AOD), Ångström coefficients, water vapor column (WVC) and total ozone column (TOC) was carried out in June 2011 and June 2012 at three sites in the city of Sofia (Institute of Electronics, Astronomical Observatory in the Borisova Gradina Park and National Institute of Geophysics, Geodesy and Geography). A ceilometer CHM15k, a sun photometer Microtops II, an ozonometer Microtops II and an automatic meteorological station were used during the experiments. Measurements of the AOD, WVC and TOC were done during the development of the ABL (followed by the ceilometer). In order to access microphysical properties of the aerosols, the Ångström coefficients α and β were retrieved from the spectral AOD data by the Volz method from three wavelength pairs 500/1020nm, 500/675nm and 380/1020nm. Comparison was done between the results obtained. Daily behavior of the AOD, Ångström exponent α and turbidity coefficient β, WVC and TOC are presented. Different types of AOD and WVC behavior were observed. The AOD had maximum values 1-2 h before ABL to reach its maximum height for the day. No significant correlation is found between TOC daily behavior and that of the AOD and WVC.

  18. Sources and evolution of cloud-active aerosol in California's Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Corrigan, C.; Noblitt, S.; Creamean, J.; Collins, D. B.; Cahill, J. F.; Prather, K. A.; Collett, J. L.; Henry, C.

    2011-12-01

    To assess the sources of cloud-active aerosol and their influence on the hydrological cycle in California, the CalWater Experiment took place in winter 2011 in the foothills of the Sierra Nevada Mountains. During this experiment, we coupled the capabilities of demonstrated miniaturized instrumentation - cloud condensation nuclei (CCN), water condensation nuclei (WCN) and microchip capillary electrophoresis (MCE) - to provide direct chemical measurements of cloud active aerosols. Ion concentrations of CCN droplets attribute the anthropogenic, marine and secondary organic contributions to cloud-active aerosols. Detailed spectra from an Aerosol-Time-of-Flight Mass Spectrometer provide additional information on the sources of aerosol. Storm fronts and changes in atmospheric boundary layer brought aerosol and anions associated with Central Valley pollution to the field site with CCN concentrations reaching several thousand cm-3. Hygroscopicity parameters indicate aging of the organic fraction during aerosol transport from the Central Valley to the mountains. Otherwise, CCN concentrations were low when high pressure systems prevented boundary layer development and intrusion of the Central Valley pollution to the site. MCE results show that nitrates and sulfates comprise most of the fraction of the aerosol anion mass (PM1). During the passage of storm fronts, which transported pollution from the Central Valley upslope, nitrate concentrations peaked at several μ g m-3. Low supersaturation CCN concentrations coincide with increases in aerosol nitrate, which suggests that nitrate has a role in cloud formation of giant CCN and, furthermore, in precipitation processes in the Sierra Nevada. CCN spectra show large variations depending on the aerosol sources and sometimes exhibit bi-modal distributions with minima at 0.3% Sc -- similar to the so-called 'Hoppel minima' associated to number size distributions. During these bi-modal events, sulfate also increases supporting the

  19. Surface organic monolayers control the hygroscopic growth of submicrometer particles at high relative humidity.

    PubMed

    Ruehl, Christopher R; Wilson, Kevin R

    2014-06-05

    Although many organic molecules commonly found in the atmosphere are known to be surface-active in macroscopic aqueous solutions, the impact of surface partitioning of organic molecules to a microscopic aqueous droplet interface remains unclear. Here we measure the droplet size formed, at a relative humidity (∼99.9%) just below saturation, on submicrometer particles containing an ammonium sulfate core and an organic layer of a model compound of varying thickness. The 12 model organic compounds are a series of dicarboxylic acids (C3 to C10), cis-pinonic, oleic, lauric, and myristic acids, which represent a broad range in solubility from miscible (malonic acid) to insoluble. The variation in droplet size with increasing organic aerosol fraction cannot be explained by assuming the organic material is dissolved in the bulk droplet. Instead, the wet droplet diameters exhibit a complex and nonlinear dependence on organic aerosol volume fraction, leading to hygroscopic growth that is in some cases smaller and in others larger than that predicted by bulk solubility alone. For palmitic and stearic acid, small droplets at or below the detection limit of the instrument are observed, indicating significant kinetic limitations for water uptake, which are consistent with mass accommodation coefficients on the order of 10(-4). A model based on the two-dimensional van der Waals equation of state is used to explain the complex droplet growth with organic aerosol fraction and dry diameter. The model suggests that mono- and dicarboxylic acids with limited water solubility partition to the droplet surface and reduce surface tension only after a two-dimensional condensed monolayer is formed. Two relatively soluble compounds, malonic and glutaric acid, also appear to form surface phases, which increase hygroscopicity. There is a clear alternation in the threshold for droplet growth observed for odd and even carbon number diacids, which is explained in the model by differences in the

  20. Adsorptive uptake of water by semisolid secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Lambe, Andrew T.; Hakala, Jani; Rastak, Narges; Cummings, Molly J.; Brogan, James F.; Hao, Liqing; Paramonov, Mikhail; Hong, Juan; Prisle, Nønne L.; Malila, Jussi; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Laaksonen, Ari; Kulmala, Markku; Massoli, Paola; Onasch, Timothy B.; Donahue, Neil M.; Riipinen, Ilona; Davidovits, Paul; Worsnop, Douglas R.; Petäjä, Tuukka; Virtanen, Annele

    2015-04-01

    Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcing—highlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.

  1. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  2. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging

  3. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    DOE PAGES

    Thalman, R.; Thalman, R.; Wang, J.; ...

    2015-03-06

    Multiphase OH and O₃ oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O₃ can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O₃ is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O₃ exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O₃ exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions

  4. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; ...

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore » OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions

  5. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    SciTech Connect

    Thalman, R.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O₃ oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O₃ can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH and O₃ is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O₃ exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O₃ exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  6. Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): Implications for remote sensing applications

    NASA Astrophysics Data System (ADS)

    D'Angelo, Luca; Rovelli, Grazia; Casati, Marco; Sangiorgi, Giorgia; Perrone, Maria Grazia; Bolzacchini, Ezio; Ferrero, Luca

    2016-07-01

    Atmospheric aerosols deliquescence and crystallization relative humidity (DRH and CRH) are rarely measured compared to the worldwide number of hygroscopicity measurements; this feature comes from the lack of an efficient method able to capture the whole complexity of chemical composition of aerosols. Despite this, the knowledge of both DRH and CRH are crucial for a correct parameterization of the aerosol hygroscopic growth used in different applications, among which the remote sensing is very important. In this paper, a newly developed technique (direct current conductance method) was applied in an aerosol chamber to Milan PM2.5 samples, to identify aerosol DRH and CRH both during winter and summer. These results were compared with those independently obtained by gravimetric measurements conducted in the chamber using a microbalance. Microbalance data allowed also the determination of the mass hygroscopic growth factor on the collected PM2.5 samples. Results evidenced first a good agreement between the two methods (RMSE = 2.7% and 2.3% for DRH and CRH, respectively). Collected data evidenced the hysteresis behavior of ambient particles and variability in both DRH and CRH between the two seasons. Summer samples showed higher DRH and CRH (on average 71.4 ± 1.0% RH and 62.6 ± 1.2% RH, respectively) than the winter ones (on average 55.2 ± 0.7% RH and 46.9 ± 0.6% RH). This behavior was related to the higher content of sulfates during the summer season. Conversely, the mass hygroscopic growth factor at 90% RH was higher for winter samples (2.76 ± 0.06) with respect to the summer ones (1.91 ± 0.11). Since hysteresis behavior affects optical properties of aerosols, when RH conditions are within the loop, the hygroscopic growth factor could be assigned in a wrong way. Thus, the growth factor was calculated within the hysteresis loop for both upper and lower branches: results showed that difference in hygroscopic growth factor could reach up the 24%.

  7. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A.; Alharbi, B.; Tapper, N.

    2011-04-01

    On 10th March 2009 a widespread and severe dust storm event that lasted several hours struck Riyadh, and represented one of the most intense dust storms experienced in Saudi Arabia in the last two decades. This short-lived storm caused widespread and heavy dust deposition, zero visibility and total airport shutdown, as well as extensive damage to buildings, vehicles, power poles and trees across the city of Riyadh. Changes in Meteorological parameters, aerosol optical depth (AOD), Angstrom exponent α, infrared (IR) sky temperature and atmospheric emissivity were investigated before, during, and after the storm. The analysis showed significant changes in all of the above parameters due to this event. Shortly after the storm arrived, air pressure rapidly increased by 4 hPa, temperature decreased by 6 °C, relative humidly increased from 10% to 30%, the wind direction became northerly and the wind speed increased to a maximum of 30 m s -1. AOD at 550 nm increased from 0.396 to 1.71. The Angstrom exponent α rapidly decreased from 0.192 to -0.078. The mean AOD at 550 nm on the day of the storm was 0.953 higher than during the previous clear day, while α was -0.049 in comparison with 0.323 during the previous day. Theoretical simulations using SMART software showed remarkable changes in both spectral and broadband solar radiation components. The global and direct radiation components decreased by 42% and 68%, respectively, and the diffuse components increased by 44% in comparison with the previous clear day. IR sky temperatures and sky emissivity increased by 24 °C and 0.3, respectively, 2 h after the arrival of the storm. The effect of aerosol loading by the storm on IR atmospheric emission was investigated using MODTRAN software. It was found that the effect of aerosols caused an increase of the atmospheric emission in the atmospheric window (8-14 μm) such that the window emissions resembled those of a blackbody and the atmospheric window was almost closed.

  8. Relationship between CCN activation properties and oxidation level of aerosol organics observed during recent field studies

    NASA Astrophysics Data System (ADS)

    Mei, F.; Zhang, Q.; Xu, J.; Setyan, A.; Hayes, P. L.; Ortega, A. M.; Allan, J. D.; Taylor, J.; Jimenez, J.; Wang, J.

    2011-12-01

    Organic compounds are an important component of atmospheric aerosol, and can contribute upward of ~90% of total fine aerosol mass. Atmospheric aerosols often consist of hundreds of organic species, and their hygroscopicities are not well understood. This incomplete understanding limits our ability to accurately simulate aerosol cloud condensation nuclei (CCN) spectrum and therefore the aerosol indirect effects, which remain the most uncertain components in forcing of climate change over the industrial period. In this study, the hygroscopicity of aerosol organics characterized during three recent field campaigns, CalNex-LA (Pasadena, California), CARES (Cool, CA), and Aerosol lifecycle IOP (Upton, NY), is presented. Hygroscopicity of aerosol particles, which were mixtures of both inorganic and organic species, is first determined from the size-resolved activation efficiency spectrum. Based on measured aerosol chemical composition, the hygroscopicity of organics is then derived from the particle hygroscopicity by subtracting the contribution of inorganic species, whose hygroscopicities are well understood. During the three field studies, organic aerosols were characterized within a number of representative air masses, including urban plumes and those dominated by biogenic emissions. Aerosol organics measured by HR-ToF-AMS exhibit various degrees of photochemical aging, with the atomic O:C ratio ranges from ~0.35 to ~0.65. The hygroscopicity of organics is well correlated with its O:C ratio, increasing from 0.07 at the O:C ratio of 0.35 to 0.16 at the O:C ratio of 0.65. This suggests that to the first order, a simple, semi-empirical parameterization of organic aerosol hygroscopicity based on oxidation level can be developed for global models. While the measurements show that aerosol organics can substantially influence the droplet growth kinetics by modifying particle critical supersaturation, size-classified organic particles exhibit essentially identical growth

  9. Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Tedeschi, G.; Van Eijk, A. M. J.; Piazzola, J.

    2013-10-01

    The vertical and horizontal transport of aerosols generated over the surf zone is discussed. Experimental data were collected during the second campaign of the Surf Zone Aerosol Experiment that took place in Duck NC (USA) in November 2007. The Empirical Orthogonal Function (EOF) method was used to analyze the vertical concentration gradients, and allowed separating the surf aerosols from aerosols advected from elsewhere. The numerical Marine Aerosol Concentration Model (MACMod) supported the analysis by confirming that the concentration gradients are more pronounced under stable conditions and that aerosol plumes are then more confined to the surface. The model also confirmed the experimental observations made during two boat runs along the offshore wind vector that surf-generated aerosols are efficiently advected out to sea over several tens of kilometers.

  10. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles Basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-02-01

    dominated by organics. Particulate NH4NO3 and (NH4)2SO4 appear to be NH3-limited in regimes I and II, but a significant excess of particulate NH4+ in the hot, dry regime III suggests less marine SO42- and the presence of organic amines. Positive Matrix Factorization (PMF) analysis of C-ToF-AMS data resolved three factors, corresponding to a hydrocarbon-like OA (HOA), semivolatile OOA (SV-OOA), and low-volatility OOA (LV-OOA). HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Filter analysis revealed a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio), as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Water uptake characteristics indicate that hygroscopicity is largely controlled by organic mass fraction (OMF). The hygroscopicity parameter κ averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation (Dd). Finally, PACO will provide context for results forthcoming from the CalNex field campaign, which involved ground sampling in Pasadena during the spring and summer of 2010.

  11. Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles

    NASA Astrophysics Data System (ADS)

    Meyer, N. K.; Duplissy, J.; Gysel, M.; Metzger, A.; Dommen, J.; Weingartner, E.; Alfarra, M. R.; Fletcher, C.; Good, N.; McFiggans, G.; Jonsson, Ã. M.; Hallquist, M.; Baltensperger, U.; Ristovski, Z. D.

    2008-05-01

    The volatile and hygroscopic properties of ammonium sulphate seeded and un-seeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility - hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived

  12. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of

  13. Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities.

    PubMed

    Chan, Man Nin; Kreidenweis, Sonia M; Chan, Chak K

    2008-05-15

    The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.

  14. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-03-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

  15. Cloud and Aerosol Characterization During CAEsAR 2014

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Tesche, M.; Krejci, R.; Baumgardner, D.; Walther, A.; Rosati, B.; Widequist, U.; Tunved, P.; O'Connor, E.; Ström, J.

    2015-12-01

    The Cloud and Aerosol Experiment at Åre (CAEsAR 2014) campaign took place from June to October 2014 at Mt. Åreskutan, Sweden, a remote mountain site in Northern Sweden. The campaign was designed to study the physical and chemical properties of clouds and aerosols under orographic forcing. A unique and comprehensive set-up allowed an in-situ characterization of both constituents at a mountain top station at 1200 m a.s.l. including instruments to measure cloud droplet size distribution, meteorological parameters, cloud residual properties (using a counterflow virtual impactor inlet), cloud water composition and various aerosol chemical and microphysical properties (e.g. size, optical and hygroscopic properties). At the same time, a remote sensing site was installed below the mountain site at 420 m a.s.l. in the immediate vicinity (< 3 km horizontally), with vertical profiling from an aerosol lidar, winds and turbulence from a scanning Doppler lidar, a Sun photometer measuring aerosol columnar optical properties, and a precipitation sampler taking rain water for chemical analysis. In addition, regular radiosoundings were performed from the valley. Here, we present the results of this intensive campaign which includes approx. 900 hours of in-cloud sampling. Various unique cloud features were frequently observed such as dynamically-driven droplet growth, bimodal droplet distributions, and the activation of particles down to approx. 20 nm in dry particle diameter. During the campaign, a forest fire smoke plume was transported over the site with measureable impacts on the cloud properties. This data will be used to constrain cloud and aerosol models, as well as to validate satellite retrievals. A first comparison to VIIRS and MODIS satellite retrievals will also be shown.

  16. Influence of Slightly Soluble Organics on Aerosol Activation

    SciTech Connect

    Abdul-Razzak, Hayder; Ghan, Steven J.

    2005-03-22

    This paper examines the effects of slightly soluble organics on aerosol activation in a parcel of air rising adiabatically. Slightly soluble organics can affect aerosol activation by three mechanisms: lowering surface tension, altering the bulk hygroscopicity, and delaying the growth of particles due to their lower solubilities. Here, we address the third mechanism by simulating the activation process of aerosol particles modeled using a single lognormal size distribution and consisting of an internal uniform chemical mixture of adipic acid (representing slightly soluble organics having extremely low solubility) and ammonium sulfate. The simulations were carried out using measured solubility of adipic acid spanning a wide range of physical and dynamical parameters. The same conditions were re-simulated but assuming fully soluble aerosols. Results of the simulations show that although that the low solubility of the adipic acid alters Köhler curves and increases critical supersaturation of the smaller particles (Köhler curves of the larger particles are not effected since these particles are completely dissolved at the initial supersaturation of zero), it has minimal to no effect on the parcel’s supersaturation except for particles consisting of more than 95% adipic acid. Accordingly, since aerosols in realistic atmospheric conditions do not contain more than 90% organics, we conclude that it is not necessary to retune the parameterization of aerosol activation previously developed and modified to address the other two mechanisms. The slightly soluble organics can thus be assumed to be fully soluble for the purpose of predicting the fraction of activation and the maximum supersaturation with negligible error.

  17. Investigations of Physicochemical Properties of Size-Resolved, Subsaturated, Atmospheric Aerosol Particles: Instrument Development, Field Measurements, and Data Analysis

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor

    Aerosol particle properties and their impact on air quality, clouds, and the hydrologic cycle remain a critically important factor for the understanding of our atmosphere. Particle hygroscopic growth leads to impacts on direct and indirect radiative forcing properties, the likelihood for particles to act as cloud condensation nuclei, and aerosol-cloud interactions. Current instruments measuring hygroscopic growth have a number of limitations, lacking either the ability to measure size-resolved particles or process samples at a fast enough resolution to be suitable for airborne deployment. Advanced in-situ airborne particle retrieval and measurements of aerosol hygroscopic growth and scattering properties are analyzed and discussed. To improve the analysis of cloud nuclei particles, an updated counterflow virtual impact inlet was characterized and deployed during the 2011 E-PEACE field campaign. Theoretical and laboratory based cut size diameters were determined and validated against data collected from an airborne platform. In pursuit of higher quality aerosol particle hygroscopicity measurements, a newer instrument, the differential aerosol sizing and hygroscopicity probe (DASH-SP) has been developed in the recent past and only flown on a handful of campaigns. It has been proven to provide quality, rapid, size-resolved hygroscopic growth factor data, but was further improved into a smaller form factor making it easier for deployment on airborne platforms. It was flown during the 2013 SEAC4RS field campaign and the data was analyzed to composite air mass based hygroscopicity and refractive index (real portion only) statistics. Additionally, a comparison of bulk and size-resolved hygroscopic growth measurements was conducted. Significant findings include a potential particle size bias on bulk scattering measurements as well as a narrow range of ambient real portion of refractive index values. An investigation into the first reported ambient hygroscopicity

  18. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  19. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    NASA Astrophysics Data System (ADS)

    Wittbom, C.; Eriksson, A. C.; Rissler, J.; Carlsson, J. E.; Roldin, P.; Nordin, E. Z.; Nilsson, P. T.; Swietlicki, E.; Pagels, J. H.; Svenningsson, B.

    2014-09-01

    Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤2%, i.e. the BC core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatility organic compounds (IVOCs) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (e.g. primary or secondary organic aerosol), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input

  20. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  1. The dependence of aerosol light-scattering on RH over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hegg, D. A.; Covert, D. S.; Crahan, K.; Jonssen, H.

    2002-04-01

    Measurements of the relative humidity dependence of aerosol light scattering are reported from three experimental venues over the Pacific Ocean. The measurement platform utilized was the CIRPAS Twin Otter aircraft. Results are compared with previous measurements at other locales and with theoretical models. The relatively low values of hygroscopicity obtained in marine air are consistent with a substantial organic component to the aerosol.

  2. Atmospheric aerosols parameters behavior and its association with meteorological activities variables over western Indian tropical semi-urban site i.e., Udaipur

    NASA Astrophysics Data System (ADS)

    Vyas, B. M.; Saxenna, Abhishek; Panwar, Chhagan

    2016-05-01

    The present study has been focused to the identify the role of meteorological processes on changing the monthly variation of AOD at 550nm, Angstrom Exponent Coefficient (AEC, 440/670nm) and Cloud Effective Radius (CER, μm) measured during January, 2005 to December 2013 over western Indian location i.e., Udaipur (24.6° N, 73.7° E, 560 m amsl). The monthly variation of AOD 550nm, AEC and during entire study period have shown the strong combined influence of different local surface meteorological parameters in varying amplitude with different nature. The higher values of wind speed, ambient surface temperature, planetary boundary layer, and favorable wind direction coming from desert and oceanic region (W and SW) may be recognize as some of possible factor to exhibit the higher aerosols loading of bigger aerosol size particles in pre-monsoon. These meteorological factors seem also to be plausible responsible factors for drastically reducing the cloud effective radius in pre-monsoon season. In contrary to this, in winter, lower atmospheric aerosols burden and more abundance of fine size particles along with increasing the CER sizes also seem to be influenced and governed by the adverse nature of meteorological conditions such lowering the PBL, T, WS as well as with air pollutants transportation by wind from the N and NE region, of high aerosols loading of fine size particles as anthropogenic aerosols located far away to the observing site.

  3. Laboratory investigations of mixed organic/inorganic particles: Ice nucleation and optical hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Beaver, Melinda R.

    The interactions of ambient aerosol particles with the atmosphere influence global climate and local visibility. Many of these atmospheric interactions are determined by the chemical composition of the aerosol particles. Ice nucleation in the upper troposphere is influenced and modified by the presence of anthropogenic aerosol particles. Also, interactions between particles and solar radiation are influenced by hygroscopic growth upon humidification. This thesis contains laboratory investigations into the role organic compounds play in ice nucleation and optical hygroscopic growth. Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C 3 and C9) on ice nucleation in sulfuric acid aerosols. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Light extinction by atmospheric particles is strongly dependent on the size, chemical composition, and water content of the aerosol. Since light extinction by particles directly impacts climate and visibility, measurements of

  4. Quantifying the Hygroscopic Growth of Individual Submicrometer Particles with Atomic Force Microscopy.

    PubMed

    Morris, Holly S; Estillore, Armando D; Laskina, Olga; Grassian, Vicki H; Tivanski, Alexei V

    2016-04-05

    The water uptake behavior of atmospheric aerosol dictates their climate effects. In many studies, aerosol particles are deposited onto solid substrates to measure water uptake; however, the effects of the substrate are not well understood. Furthermore, in some cases, methods used to analyze and quantify water uptake of substrate deposited particles use a two-dimensional (2D) analysis to monitor growth by following changes in the particle diameter with relative humidity (RH). However, this 2D analysis assumes that the droplet grows equally in all directions. If particle growth is not isotropic in height and diameter, this assumption can cause inaccuracies when quantifying hygroscopic growth factors (GFs), where GF for a for a spherical particle is defined as the ratio of the particle diameter at a particular relative humidity divided by the dry particle diameter (typically about 5% RH). However, as shown here, anisotropic growth can occur in some cases. In these cases, a three-dimensional (3D) analysis of the growth is needed. This study introduces a way to quantify the hygroscopic growth of substrate deposited particles composed of model systems relevant to atmospheric aerosols using atomic force microscopy (AFM), which gives information on both the particle height and area and thus a three-dimensional view of each particle. In this study, we compare GFs of submicrometer sized particles composed of single component sodium chloride (NaCl) and malonic acid (MA), as well as binary mixtures of NaCl and MA, and NaCl and nonanoic acid (NA) determined by AFM using area (2D) equivalent diameters, similar to conventional microscopy methods, to GFs determined using volume (3D) equivalent diameter. We also compare these values to GFs determined by a hygroscopic tandem differential mobility analyzer (HTDMA; substrate free, 3D method). It was found that utilizing volume equivalent diameter for quantifying GFs with AFM agreed well with those determined by substrate-free HTDMA

  5. Activation of "synthetic ambient" aerosols - Relation to chemical composition of particles <100 nm

    NASA Astrophysics Data System (ADS)

    Burkart, J.; Hitzenberger, R.; Reischl, G.; Bauer, H.; Leder, K.; Puxbaum, H.

    2012-07-01

    Cloud condensation nuclei (CCN) are an important fraction of atmospheric aerosols because of their role in cloud formation. Experimental studies focus either on direct field measurements of complex ambient aerosols or laboratory investigations on well defined aerosols produced from single substances or substance mixtures. In this study, we focussed on the ultrafine aerosol because in terms of number concentration, the majority of the CCN are expected to have sizes in this range. A field study was performed from July 2007 to October 2008 to investigate the activation behaviour of the atmospheric aerosol in Vienna (Burkart et al., 2011). Filter samples of the aerosol <0.1 μm aerodynamic equivalent diameter were collected, elutriated and used to generate "synthetic ambient" aerosol in a nebulizer. Chemical analyses of the ultrafine water soluble material were also performed. The CCN properties of the "synthetic ambient" aerosol were obtained using the University of Vienna CCN counter (Giebl et al., 2002; Dusek et al., 2006b) at a nominal supersaturation (SS) of 0.5%. Activation diameters dact ranged from 54.5 nm to 66 nm, were larger than dact of typical single inorganic salts and showed no seasonal pattern in contrast to the fraction of water soluble organic carbon (WSOC), which ranged from 44% in spring to 15% in winter. The average hygroscopicity parameter κ (Petters and Kreidenweis, 2007) obtained from the activation curves ranged from 0.20 to 0.30 (average 0.24), which was significantly lower than κchem calculated from the chemical composition (0.43 ± 0.07).

  6. Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor; Sorooshian, Armin; Ortega, Amber; Crosbie, Ewan; Wonaschütz, Anna; Perring, Anne E.; Beyersdorf, Andreas; Ziemba, Luke; Jimenez, Jose L.; Campuzano-Jost, Pedro; Mikoviny, Tomas; Wisthaler, Armin; Russell, Lynn M.

    2016-11-01

    This study reports a detailed set of ambient observations of optical/physical shrinking of particles from exposure to water vapor with consistency across different instruments and regions. Data have been utilized from (i) a shipboard humidified tandem differential mobility analyzer during the Eastern Pacific Emitted Aerosol Cloud Experiment in 2011, (ii) multiple instruments on the NASA DC-8 research aircraft during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys in 2013, and (iii) the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe during ambient measurements in Tucson, Arizona, during summer 2014 and winter 2015. Hygroscopic growth factor (ratio of humidified-to-dry diameter, GF = Dp,wet/Dp,dry) and f(RH) (ratio of humidified-to-dry scattering coefficients) values below 1 were observed across the range of relative humidity (RH) investigated (75-95%). A commonality of observations of GF and f(RH) below 1 in these experiments was the presence of particles enriched with carbonaceous matter, especially from biomass burning. Evidence of externally mixed aerosol, and thus multiple GFs with at least one GF < 1, was observed concurrently with f(RH) < 1 during smoke periods. Possible mechanisms responsible for observed shrinkage are discussed and include particle restructuring, volatilization effects, and refractive index modifications due to aqueous processing resulting in optical size modification. To further investigate ambient observations of GFs and f(RH) values less than 1, it is recommended to add an optional prehumidification bypass module to hygroscopicity instruments, to preemptively collapse particles prior to controlled RH measurements.

  7. Aerosol-cloud interactions studied with the chemistry-climate model EMAC

    NASA Astrophysics Data System (ADS)

    Chang, D. Y.; Tost, H.; Steil, B.; Lelieveld, J.

    2014-08-01

    This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties and estimate cloud radiative effects induced by aerosols. We have tested two prognostic cloud droplet nucleation parameterizations, i.e., the standard STN (osmotic coefficient model) and hybrid (HYB, replacing the osmotic coefficient by the κ hygroscopicity parameter) schemes to calculate aerosol hygroscopicity and critical supersaturation, and consider aerosol-cloud feedbacks with a focus on warm clouds. Both prognostic schemes (STN and HYB) account for aerosol number, size and composition effects on droplet nucleation, and are tested in combination with two different cloud cover parameterizations, i.e., a relative humidity threshold and a statistical cloud cover scheme (RH-CLC and ST-CLC). The use of either STN and HYB leads to very different cloud radiative effects, particularly over the continents. The STN scheme predicts highly effective CCN activation in warm clouds and hazes/fogs near the surface. The enhanced CCN activity increases the cloud albedo effect of aerosols and cools the Earth's surface. The cooler surface enhances the hydrostatic stability of the lower continental troposphere and thereby reduces convection and convective precipitation. In contrast, the HYB simulations calculate lower, more realistic CCN activation and consequent cloud albedo effect, leading to relatively stronger convection and high cloud formation. The enhanced high clouds increase greenhouse warming and moderate the cooling effect of the low clouds. With respect to the cloud radiative effects, the statistical ST-CLC scheme shows much higher sensitivity to aerosol-cloud coupling for all continental regions than the RH-CLC threshold scheme, most pronounced for low clouds but also for high clouds. Simulations of the short wave cloud radiative effect at the top of the atmosphere in ST-CLC are a factor of 2-8 more sensitive to aerosol coupling than the RH-CLC configurations. The long wave

  8. Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles

    SciTech Connect

    Sullivan, Ryan; Moore, Meagan J.; Petters, Markus D.; Kreidenweis, Sonia M.; Qafoku, Odeta; Laskin, Alexander; Roberts, Greg C.; Prather, Kimberly A.

    2010-07-28

    Atmospheric mineral dust particles represent a major component of tropospheric aerosol mass and provide a reactive surface for heterogeneous reactions with trace atmospheric gases (Dentener et al. 1996).Heterogeneous processes alter the chemical balance of the atmosphere and also modify the physicochemical properties of mineral dust particles (Bauer et al. 2004). Organic and inorganic vapors can react with or partition to dust particles and alter their chemical composition (Al-Hosney et al. 2005; Laskin et al. 2005a, 2005b; Liu et al. 2008; Sullivan et al. 2007, 2009a; Sullivan and Prather 2007; Usher et al. 2003). Calcite (CaCO3) is one of the most reactive components of mineral dust, readily reacting with acidic gases. The fraction of CaCO3 in total dust mineralogy displays large variations between desert regions and other regions of the world as well as between individual mineral particles (Claquin et al. 1999; Jeong 2008; Laskin et al. 2005b; Sullivan et al. 2007). Through reactions with acidic gases CaCO3 can be converted to soluble hygroscopic products including CaCl2 and Ca(NO3)2, and sparingly soluble, non-hygroscopic products including CaSO4 and CaC2O4 (Krueger et al. 2004; Liu et al. 2008; Sullivan et al. 2009a, 2009b).

  9. Structural and hygroscopic changes of soot during heterogeneous reaction with O(3).

    PubMed

    Liu, Yongchun; Liu, Chang; Ma, Jinzhu; Ma, Qingxin; He, Hong

    2010-09-28

    Soot aerosols are ubiquitous in the atmosphere and play an important role in global and regional radiative balance and climate. Their environmental impact, however, greatly depends on their structure, composition, particle size, and morphology. In this study, the structural changes of a model soot (Printex U) during a heterogeneous reaction with 80 ppm O(3) at 298 K were investigated using in situ Raman spectroscopy, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and transmission electron microscopy (TEM). Hygroscopic changes due to heterogeneous reaction with O(3) were also studied by water sorption analyzer. The consumption of amorphous carbon (D3 band) and disordered graphitic lattice (D4 band) of soot by ozonization was confirmed by the decrease in the full widths at half maximum and their relative integrated intensities (percentages of integrated areas). Oxygen containing surface species including ketone, lactone, and anhydride were also observed in Raman and IR spectra of ozonized soot. The ozonized soot showed more compacted aggregates with a smaller average diameter of primary particles (29.9 +/- 7.7 nm) and a larger fractal dimension (1.81 +/- 0.08) when compared with fresh soot (36.9 +/- 9.4 nm, and 1.61 +/- 0.10). The ozonization reaction leads to an enhancement of hygroscopicity of soot due to the decrease in particle diameter and the formation of oxygen containing surface species.

  10. Comparison of Hygroscopicity, Volatility, and Mixing State of Submicrometer Particles between Cruises over the Arctic Ocean and the Pacific Ocean.

    PubMed

    Kim, Gibaek; Cho, Hee-Joo; Seo, Arom; Kim, Dohyung; Gim, Yeontae; Lee, Bang Yong; Yoon, Young Jun; Park, Kihong

    2015-10-20

    Ship-borne measurements of ambient aerosols were conducted during an 11 937 km cruise over the Arctic Ocean (cruise 1) and the Pacific Ocean (cruise 2). A frequent nucleation event was observed during cruise 1 under marine influence, and the abundant organic matter resulting from the strong biological activity in the ocean could contribute to the formation of new particles and their growth to a detectable size. Concentrations of particle mass and black carbon increased with increasing continental influence from polluted areas. During cruise 1, multiple peaks of hygroscopic growth factor (HGF) of 1.1-1.2, 1.4, and 1.6 were found, and higher amounts of volatile organic species existed in the particles compared to that during cruise 2, which is consistent with the greater availability of volatile organic species caused by the strong oceanic biological activity (cruise 1). Internal mixtures of volatile and nonhygroscopic organic species, nonvolatile and less-hygroscopic organic species, and nonvolatile and hygroscopic nss-sulfate with varying fractions can be assumed to constitute the submicrometer particles. On the basis of elemental composition and morphology, the submicrometer particles were classified into C-rich mixture, S-rich mixture, C/S-rich mixture, Na-rich mixture, C/P-rich mixture, and mineral-rich mixture. Consistently, the fraction of biological particles (i.e., P-containing particles) increased when the ship traveled along a strongly biologically active area.

  11. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    PubMed

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  12. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    SciTech Connect

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  13. Hygroscopic and phase transition properties of alkyl aminium sulfates at low relative humidities.

    PubMed

    Chu, Yangxi; Sauerwein, Meike; Chan, Chak K

    2015-08-14

    Alkyl aminium sulfates (AASs) can affect the physicochemical properties of atmospheric aerosols such as hygroscopicity. Previous laboratory experiments have shown that the water content in AAS bulk solutions is higher than in aqueous ammonium sulfate solution in the range of 60-95% relative humidity (RH). Furthermore, amine was found to evaporate from the solution during the preparation of AASs from the parent amine and sulfuric acid solutions. Here we report the hygroscopicities of deposited particles of four AASs at different aminium-to-sulfate molar ratios (A/Ss) in the range of <3-90% RH using air-flow cells coupled with in situ micro-Raman spectroscopy. Normalized integrated areas of O-H stretching peaks in the Raman spectra were converted to water-to-solute molar ratios (WSRs) at various RH values. Evaporation of amine was also observed in most cases and the exact A/Ss of sample particles or solutions were determined by ion chromatography. Mono-methylaminium sulfate (MMAS) and mono-ethylaminium sulfate (MEAS) particles were stable at A/S = 2.0, but di-methylaminium sulfate (DMAS) and tri-methylaminium sulfate (TMAS) suffered from DMA and TMA evaporation and eventually equilibrated to the A/S of 1.5 and 1.0, respectively. At these stable compositions MMAS and MEAS exhibited phase transitions in the super-saturation region, while DMAS and TMAS showed a continuous and reversible water uptake. Besides, an approach to estimate the hygroscopicities of DMAS and TMAS particles at an initial A/S larger than that of the stable compositions was presented. In the range of 60-95% RH, the WSRs of all the studied AAS particles were consistent with a previous study based on experimental values and the extended Zdanovskii-Stokes-Robinson equation. In general, all the studied AASs were more hygroscopic than their corresponding ammonium counterparts within the studied RH range and evaporation of amine needs to be corrected in studying unstable AAS particles.

  14. Hygroscopic weight gain of pollen grains from Juniperus species

    NASA Astrophysics Data System (ADS)

    Bunderson, Landon D.; Levetin, Estelle

    2015-05-01

    Juniperus pollen is highly allergenic and is produced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations adjacent to the trees, and since it can be transported hundreds of kilometers by the wind, it also affects people who are far from the source. Predicting and tracking long-distance transport of pollen is difficult and complex. One parameter that has been understudied is the hygroscopic weight gain of pollen. It is believed that juniper pollen gains weight as humidity increases which could affect settling rate of pollen and thus affect pollen transport. This study was undertaken to examine how changes in relative humidity affect pollen weight, diameter, and settling rate. Juniperus ashei, Juniperus monosperma, and Juniperus pinchotii pollen were applied to greased microscope slides and placed in incubation chambers under a range of temperature and humidity levels. Pollen on slides were weighed using an analytical balance at 2- and 6-h intervals. The size of the pollen was also measured in order to calculate settling rate using Stokes' Law. All pollen types gained weight as humidity increased. The greatest settling rate increase was exhibited by J. pinchotii which increased by 24 %.

  15. Hygroscopic weight gain of pollen grains from Juniperus species.

    PubMed

    Bunderson, Landon D; Levetin, Estelle

    2015-05-01

    Juniperus pollen is highly allergenic and is produced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations adjacent to the trees, and since it can be transported hundreds of kilometers by the wind, it also affects people who are far from the source. Predicting and tracking long-distance transport of pollen is difficult and complex. One parameter that has been understudied is the hygroscopic weight gain of pollen. It is believed that juniper pollen gains weight as humidity increases which could affect settling rate of pollen and thus affect pollen transport. This study was undertaken to examine how changes in relative humidity affect pollen weight, diameter, and settling rate. Juniperus ashei, Juniperus monosperma, and Juniperus pinchotii pollen were applied to greased microscope slides and placed in incubation chambers under a range of temperature and humidity levels. Pollen on slides were weighed using an analytical balance at 2- and 6-h intervals. The size of the pollen was also measured in order to calculate settling rate using Stokes' Law. All pollen types gained weight as humidity increased. The greatest settling rate increase was exhibited by J. pinchotii which increased by 24 %.

  16. Linking surface in-situ measurements to columnar aerosol optical properties at Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Ehn, M.; Hong, J.; Krejci, R.; Laborde, M.; de Leeuw, G.; Petäjä, T.; Pfüller, A.; Rosati, B.; Tesche, M.; Väänänen, R.

    2014-12-01

    Ambient optical properties of aerosols strongly depend on the particles' hygroscopicity and the relative humidity (RH) of the surrounding air. The key parameter to describe the influence of RH on the particle light scattering is the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Knowledge of this hygroscopicity effect is of crucial importance for climate forcing calculations and is needed for the comparison or validation of remote sensing with in-situ measurements. We will present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station in Hyytiälä, Finland, which was part of the EU-FP7 project PEGASOS (Pan-European Gas-Aerosols-climate interaction Study). Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground by a humidified nephelometer was found to be significantly lower (1.53 ± 0.24 at RH=85% and wavelength λ=450 nm) than observed at other European sites (Zieger et al., 2013). One reason is the high organic mass fraction of the boreal aerosol as measured by an aerosol chemical speciation monitor (ACSM). A closure study using Mie theory showed the consistency of the ground based in-situ measurements. Our measurements allowed to determine the ambient particle light extinction coefficient. Together with intensive aircraft measurements (lasting one month) of the particle number size distribution and ambient humidity, different columnar values were determined and compared to direct measurements and inversions of the AERONET Sun photometer (e.g., the columnar aerosol volume size distribution). The aerosol optical depth strongly correlated (R2≈0.9 for λ=440 nm to R2≈0.6 for λ=1020 nm) with the in situ derived values, but was significantly lower compared to the direct measurements of the Sun photometer (slope ≈0.5). This was explained by the loss of

  17. Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-08-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead, they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR (Fourier transform infrared) spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance and, therefore, particles prepared in this study should mimic atmospheric mixed-phase aerosol particles. Some results of this study tend to be in agreement with previous microscopy experiments, but others, such as phase separation properties of 1,2,6-hexanetriol, do not agree with previous work. Because the particles studied in this experiment are of a smaller size than those used in microscopy studies, the discrepancies found could be a size-related effect.

  18. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    NASA Astrophysics Data System (ADS)

    Wittbom, C.; Pagels, J. H.; Rissler, J.; Eriksson, A. C.; Carlsson, J. E.; Roldin, P.; Nordin, E. Z.; Nilsson, P. T.; Swietlicki, E.; Svenningsson, B.

    2014-04-01

    Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV-radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤ 2%, i.e. the black carbon core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatile organic compounds (IVOC) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (POA or SOA), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input parameters describing the

  19. Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Rastak, N.; Pandis, S. N.

    2015-06-01

    We present a theoretical study investigating the cloud activation of multicomponent organic particles. We modeled these complex mixtures using solubility distributions (analogous to volatility distributions in the VBS, i.e., volatility basis set, approach), describing the mixture as a set of surrogate compounds with varying water solubilities in a given range. We conducted Köhler theory calculations for 144 different mixtures with varying solubility range, number of components, assumption about the organic mixture thermodynamics and the shape of the solubility distribution, yielding approximately 6000 unique cloud condensation nucleus (CCN)-activation points. The results from these comprehensive calculations were compared to three simplifying assumptions about organic aerosol solubility: (1) complete dissolution at the point of activation; (2) combining the aerosol solubility with the molar mass and density into a single effective hygroscopicity parameter κ; and (3) assuming a fixed water-soluble fraction ϵeff. The complete dissolution was able to reproduce the activation points with a reasonable accuracy only when the majority (70-80%) of the material was dissolved at the point of activation. The single-parameter representations of complex mixture solubility were confirmed to be powerful semi-empirical tools for representing the CCN activation of organic aerosol, predicting the activation diameter within 10% in most of the studied supersaturations. Depending mostly on the condensed-phase interactions between the organic molecules, material with solubilities larger than about 0.1-100 g L-1 could be treated as soluble in the CCN activation process over atmospherically relevant particle dry diameters and supersaturations. Our results indicate that understanding the details of the solubility distribution in the range of 0.1-100 g L-1 is thus critical for capturing the CCN activation, while resolution outside this solubility range will probably not add

  20. Hygrosopicity measurements of aerosol particles in the San Joaquin Valley, CA, Baltimore, MD, and Golden, CO

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel; Beyersdorf, A. J.; Ziemba, L. D.; Berkoff, T.; Zhang, Q.; Delgado, R.; Hennigan, C. J.; Thornhill, K. L.; Young, D. E.; Parworth, C.; Kim, H.; Hoff, R. M.

    2016-06-01

    Aerosol hygroscopicity was investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (σscat) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (10 January to 6 February 2013), Baltimore, MD (3-30 July 2013), and Golden, CO (12 July to 10 August 2014). Observations in Porterville and Golden were part of the NASA-sponsored Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality project. The measured σscat under varying RH in the three sites was combined with ground aerosol extinction, PM2.5 mass concentrations, and particle composition measurements and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of σscat(RH) at a certain RH divided by σscat at a dry value, was used to evaluate the aerosol hygroscopicity. Particles in Porterville showed low average f(RH = 80%) (1.42) which was attributed to the high carbonaceous loading in the region where residential biomass burning and traffic emissions contribute heavily to air pollution. In Baltimore, the high average f(RH = 80%) (2.06) was attributed to the large contribution of SO42- in the region. The lowest water uptake was observed in Golden, with an average f(RH = 80%) = 1.24 where organic carbon dominated the particle loading. Different empirical fits were evaluated using the f(RH) data. The widely used Kasten (gamma) model was found least satisfactory, as it overestimates f(RH) for RH < 75%. A better empirical fit with two power law curve fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass and the species that are affected by RH and f(RH) was also studied and categorized.

  1. Performance of combination drug and hygroscopic excipient submicrometer particles from a softmist inhaler in a characteristic model of the airways.

    PubMed

    Longest, P Worth; Tian, Geng; Li, Xiang; Son, Yoen-Ju; Hindle, Michael

    2012-12-01

    Excipient enhanced growth (EEG) of inhaled submicrometer pharmaceutical aerosols is a recently proposed method intended to significantly reduce extrathoracic deposition and improve lung delivery. The objective of this study was to evaluate the size increase of combination drug and hygroscopic excipient particles in a characteristic model of the airways during inhalation using both in vitro experiments and computational fluid dynamic (CFD) simulations. The airway model included a characteristic mouth-throat (MT) and upper tracheobronchial (TB) region through the third bifurcation and was enclosed in a chamber geometry used to simulate the thermodynamic conditions of the lungs. Both in vitro results and CFD simulations were in close agreement and indicated that EEG delivery of combination submicrometer particles could nearly eliminate MT deposition for inhaled pharmaceutical aerosols. Compared with current inhalers, the proposed delivery approach represents a 1-2 order of magnitude reduction in MT deposition. Transient inhalation was found to influence the final size of the aerosol based on changes in residence times and relative humidity values. Aerosol sizes following EEG when exiting the chamber (2.75-4.61 μm) for all cases of initial submicrometer combination particles were equivalent to or larger than many conventional pharmaceutical aerosols that frequently have MMADs in the range of 2-3 μm.

  2. Water uptake by organic aerosol and its influence on gas/particle partitioning of secondary organic aerosol in the United States

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu H.; Mahmud, Abdullah; Barsanti, Kelley C.; Asher, William E.; Pankow, James F.; Kleeman, Michael J.

    2016-03-01

    Organic aerosol (OA) is at least partly hygroscopic, i.e., water partitions into the organic phase to a degree determined by the relative humidity (RH), the organic chemical composition, and the particle size. This organic-phase water increases the aerosol mass and provides a larger absorbing matrix while decreasing its mean molecular weight, which can encourage additional condensation of semi-volatile organic compounds. Most regional and global atmospheric models account for water uptake by inorganic salts but do not explicitly account for organic-phase water and its subsequent impact on gas/particle partitioning of semi-volatile OA. In this work, we incorporated the organic-phase water model described by Pankow et al. (2015) into the UCD/CIT air quality model to simulate water uptake by OA and assessed its influence on total OA mass concentrations. The model was run for one summer month over two distinct regions: South Coast Air Basin (SoCAB) surrounding Los Angeles, California and the eastern United States (US). In SoCAB where the OA was dominated by non-hygroscopic primary OA (POA), there was very little organic-phase water uptake (0.1-0.2 μg m-3) and consequently very little enhancement (or growth) in total OA concentrations (OA + organic-phase water): a 3% increase in total OA mass was predicted for a 0.1 increase in relative humidity. In contrast, in the eastern US where secondary OA (SOA) from biogenic sources dominated the OA, substantial organic-phase water uptake and enhancement in total OA concentrations was predicted, even in urban locations. On average, the model predicted a 20% growth in total OA mass for a 0.1 increase in relative humidity; the growth was equivalent to a 250 nm particle with a hygroscopicity parameter (κ) of 0.15. Further, for the same relative humidity, the exact extent of organic-phase water uptake and total OA enhancement was found to be dependent on the particle mixing state. When the source-oriented mixing state of aerosols

  3. [Surgical hygroscopic bandages for amputations, secreting wounds and diabetes foot].

    PubMed

    Topolav, J; Kirov, G; Markov, G; Girov, K; Nedkov, P; Georgieva, A

    2010-01-01

    The authors adopt in clinical practice using of sterile hygroscopic wound dressings 'pampers type'. They use these dressings in 113 patients. The appropriate patients are these with limbs amputations, diabetic foot, suppurative and plenty secreting deep wounds, atonite and decubital wounds. The dressings are sterilised using paraformaldehyde sterilization which do not injure the synthetic materials. The hygroscopic dressings are non- allergic and are well tolerated by the patients. Using these dressings facilitate the medical team work and help to reduce the contamination of the hospital linen and the patients coverlet. They help for accelerating the wound healing process. They are also economic effective by reducing the amount of used dressing material.

  4. Effect of Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide on Clinical Periodontal Parameters, Markers of Systemic Inflammation, and Morphology of Gingival Tissues in Patients with Periodontitis

    PubMed Central

    Žekonis, Gediminas; Žekonis, Jonas; Gleiznys, Alvydas; Noreikienė, Viktorija; Balnytė, Ingrida; Šadzevičienė, Renata; Narbutaitė, Julija

    2016-01-01

    Background Various studies have shown that non-surgical periodontal treatment is correlated with reduction in clinical parameters and plasma levels of inflammatory markers. The aim of this study was to evaluate the effect of long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide as maintenance therapy followed by non-surgical periodontal treatment on clinical parameters, plasma levels of inflammatory markers, and morphological changes in gingival tissues of patients with periodontitis. Material/Methods In total, 43 patients with chronic periodontitis were randomly allocated to long-term maintenance therapy. The patients’ periodontal status was assessed using clinical parameters of approximal plaque index, modified gingival index, bleeding index, pocket probing depth, and plasma levels of inflammatory markers (high-sensitivity C-reactive protein and white blood cell count) at baseline and after 1, 2, and 3 years. The morphological status of gingival tissues (immediately after supragingival irrigation) was assessed microscopically. Results Complete data were obtained on 34 patients. A highly statistically significant and consistent reduction was observed in all long-term clinical parameters and plasma levels of inflammatory markers. Morphological data showed abundant spherical bubbles in gingival tissues. Conclusions 1. The present study showed that non-surgical periodontal treatment with long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide improved clinical periodontal status and plasma levels of inflammatory markers and may be a promising method in periodontology. 2. We found that supragingival irrigation with aerosolized 0.5% hydrogen peroxide created large numbers of spherical bubbles in gingival tissues. PMID:27743448

  5. Effects of 28 days silicon dioxide aerosol exposure on respiratory parameters, blood biochemical variables and lung histopathology in rats.

    PubMed

    Deb, Utsab; Lomash, Vinay; Raghuvanshi, Suchita; Pant, S C; Vijayaraghavan, R

    2012-11-01

    Inhalation toxicity of silicon dioxide aerosol (150, 300 mg/m(3)) daily over a period of 28 days was carried out in rats. The changes in respiratory variables during the period of exposure were monitored using a computer programme that recognizes the modifications of the breathing pattern. Exposure to the aerosol caused a time dependent decrease in tidal volume, with an increase in respiratory frequency compared to the control. Biochemical variables and histopathological observation were noted at 28th day following the start of exposure. Biochemical markers of silica induced lung injury like plasma alkaline phosphatase, lactate dehydrogenase and angiotensine converting enzyme activities increased in a concentration dependent manner compared to control. Increase in the plasma enzymatic activities indicates endothelial lung damage, increased lung membrane permeability. Histopathological observation of the lungs confirmed concentration dependent granulomatous inflammation, fibrosis and proteinacious degeneration. Aggregates of mononuclear cells with entrapped silica particles circumscribed by fibroblast were observed in 300 mg/m(3) silica aerosol exposed group at higher magnification. Decrease in tidal volume and increase in respiratory frequency might be due to the thickening of the alveolar wall leading to a decreased alveolar volume and lowered elasticity of the lung tissue. The trends in histological and biochemical data are in conformity with the respiratory data in the present study. This study reports for the first time, the changes in respiratory variables during silica aerosol exposure over a period of 28 days.

  6. Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    NASA Astrophysics Data System (ADS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Blake, Donald R.; Jonsson, Haflidi H.; Lagrosas, Nofel D.; Xian, Peng; Reid, Elizabeth A.; Sessions, Walter R.; Simpas, James B.

    2017-01-01

    Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %.

  7. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-08-01

    mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode dominated by organics. Particulate NH4NO3 and (NH4)2SO4 appear to be NH3-limited in regimes I and II, but a significant excess of particulate NH4+ in the hot, dry regime III suggests less SO42- and the presence of either organic amines or NH4+-associated organic acids. C-ToF-AMS data were analyzed by Positive Matrix Factorization (PMF), which resolved three factors, corresponding to a hydrocarbon-like OA (HOA), semivolatile OOA (SV-OOA), and low-volatility OOA (LV-OOA). HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Periods characterized by high SV-OOA and LV-OOA were analyzed by filter analysis, revealing a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio), as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Aerosol composition was related to water uptake characteristics, and it is concluded that hygroscopicity is largely controlled by organic mass fraction (OMF). The hygroscopicity parameter κ averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation (Dd). An experiment-averaged κorg of 0.14 was calculated, indicating that the highly-oxidized organic fraction of aerosol in Los Angeles is appreciably

  8. Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior

    SciTech Connect

    Ansari, A.S.; Pandis, S.N.

    2000-01-01

    The hygroscopic nature of atmospheric aerosol has generally been associated with its inorganic fraction. In this study, a group contribution method is used to predict the water absorption of secondary organic aerosol (SOA). Compared against growth measurements of mixed inorganic-organic particles, this method appears to provide a first-order approximation in predicting SOA water absorption. The growth of common SOA species is predicted to be significantly less than common atmospheric inorganic salts such as (NH{sub 4}){sub 2}SO{sub 4} and NaCl. Using this group contribution method as a tool in predicting SOA water absorption, an integrated modeling approach is developed combining available SOA and inorganic aerosol models to predict overall aerosol behavior. The effect of SOA on water absorption and nitrate partitioning between the gas and aerosol phases is determined. On average, it appears that SOA accounts for approximately 7% of total aerosol water and increases aerosol nitrate concentrations by approximately 10%. At high relative humidity and low SOA mass fractions, the role of SOA in nitrate partitioning and its contribution to total aerosol water is negligible. However, the water absorption of SOA appears to be less sensitive to changes in relative humidity than that of inorganic species, and thus at low relative humidity and high SOA mass fraction concentrations, SOA is predicted to account for approximately 20% of total aerosol water and a 50% increase in aerosol nitrate concentrations. These findings could improve the results of modeling studies where aerosol nitrate has often been underpredicted.

  9. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  10. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    model. Furthermore, SA formation is greatly reduced during the winter months due to the lack of naturally produced organic VOC's. Because of these reasons, it was felt that neglecting SOA within the model was the best course of action. The actual parameterization uses a prescribed source map to add aerosol to the model at two vertical levels that surround an arbitrary height decided by the user. To best represent the real-world, the WRF Chemistry model was run using the National Emissions Inventory (NEI2005) to represent anthropogenic emissions and the Model Emissions of Gases and Aerosols from Nature (MEGAN) to represent natural contributions to aerosol. WRF Chemistry was run for one hour, after which the aerosol output along with the hygroscopicity parameter (κ) were saved into a data file that had the capacity to be interpolated to an arbitrary grid used in RAMS. The comparison of this parameterization to observations collected at Mesa Verde National Park (MVNP) during the Inhibition of Snowfall from Pollution Aerosol (ISPA-III) field campaign yielded promising results. The model was able to simulate the variability in near surface aerosol concentration with reasonable accuracy, though with a general low bias. Furthermore, this model compared much better to the observations than did the WRF Chemistry model using a fraction of the computational expense. This emissions scheme was able to show reasonable solutions regarding the aerosol concentrations and can therefore be used to provide an estimate of the seasonal impact of increased CCN on water resources in Western Colorado with relatively low computational expense.

  11. Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Hu, Weiwei; Leong, Yu J.; Taylor, Nathan F.; Miettinen, Pasi; Palm, Brett B.; Mikkonen, Santtu; Collins, Don R.; Jimenez, Jose L.; Virtanen, Annele

    2016-09-01

    During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmospheric aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O : C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ˜ 50 % RH in the sampling inlets. While the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.

  12. Water uptake impedance of glassy organic aerosols

    NASA Astrophysics Data System (ADS)

    Peter, T.; Zobrist, B.; Krieger, U. K.; Luo, B. P.; Soonsin, V.; Marcolli, C.; Koop, T.

    2009-04-01

    . The particle was then investigated in a second humidifying cycle. This time, the particle started to take up water already at ~40-45% RH. At higher RH (>55%), the particles turned liquid again, agreeing well with the previous cycle. The Differential Scanning Calorimeter (DSC) experiments of Zobrist et al. (2008) show that a sucrose particle is in a glassy state below 30% at 291 K. Thus we conclude from the DSC result together with the perfect sphericity of the particle at low RH that it was in a glassy state when the second humidifying cycle was started. This indicates that a glass-to-liquid transition can occur in particles with atmospherically compositions and sizes, without requiring a change in temperature. Furthermore, it is evident that the glass curve estimated with the DSC by Zobrist et al. provides only a lower limit, and that water uptake is further delayed in the temperature/humidity range just above glass point. This indicates that the water diffusion coefficient, D(cH2O), is the key parameter in these experiments. Similar hygroscopicity cycles with sucrose particles have also been performed at 254 K and 272 K, confirming the above conclusions. - In a second set of experiments, we tried to quantify D(cH2O) at low RH for glassy sucrose particles. This time the hygroscopicity cycle was stopped at roughly 10% RH below the water uptake observed in the previous experiments and thus RH was kept constant at roughly 35% for a few days. It was found that the radius of the particle very slowly increased although RH and the temperature were kept constant (T = 272 K). Preliminary estimates suggest D(cH2O) ~ 10**-19…10**-20 m2/s at these conditions, indicating that a glassy particle with a radius of 50 nm would need roughly 8 to 80 hours to turn into a liquid. This is a timescale important for atmospheric considerations. The microphysical model confirms the results of EDB experiments, revealing a significant impedance of the water uptake by organic aerosol particles

  13. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  14. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  15. Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Vasilescu, Jeni

    2015-04-01

    Aerosols can influence the microphysical and macrophysical properties of clouds and hence impact the energy balance, precipitation and the hydrological cycle. They have different scattering and absorption properties depending on their origin, therefore measured optical properties can be used to retrieve their physical properties, as well as to estimate their chemical composition. Due to the measurement limitations (spectral, uncertainties, range) and high variability of the aerosol properties with environmental conditions (including mixing during transport), the identification of the aerosol type from lidar data is still not solved. However, ground, airborne and space-based lidars provide more and more observations to be exploited. Since 2000, EARLINET collected more than 20,000 aerosol vertical profiles under various meteorological conditions, concerning local or long-range transport of aerosols in the free troposphere. This paper describes the basic algorithm for aerosol typing from optical data using the benefits of artificial neural networks. A relevant database was built to provide sufficient training cases for the neural network, consisting of synthetic and measured aerosol properties. Synthetic aerosols were simulated starting from the microphysical properties of basic components, internally mixed in various proportions. The algorithm combines the GADS database (Global Aerosol DataSet) to OPAC model (Optical Properties of Aerosol and Clouds) and T-Matrix code in order to compute, in an iterative way, the intensive optical properties of each aerosol type. Both pure and mixed aerosol types were considered, as well as their particular non-sphericity and hygroscopicity. Real aerosol cases were picked up from the ESA-CALIPSO database, as well as EARLINET datasets. Specific selection criteria were applied to identify cases with accurate optical data and validated sources. Cross-check of the synthetic versus measured aerosol intensive parameters was performed in

  16. Remote continental aerosol characteristics in the Rocky Mountains of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Levin, Ezra J. T.

    number concentrations were correlated with the frequency of events typical of new particle formation. Measured sub-micron organic mass fractions were between 70 -- 90% during the summer months, when new particle formation events were most frequent, suggesting the importance of organic species in the nucleation or growth process, or both. Aerosol composition derived from hygroscopicity measurements indicate organic mass fractions of 50 - 60% for particles with diameters larger than 0.15 mum during the winter. The composition of smaller diameter particles appeared to be organic dominated year-round. High organic mass fractions led to low values of aerosol hygroscopicity, described using the kappa parameter. Over the entire year-long BEACHON study, kappa had an average value of 0.16 +/- 0.08, similar to values determined during biologically active periods in tropical and boreal forests, and lower than the commonly assumed value of kappacontinental = 0.3. There was also an observed increase in kappa with size, due to external mixing of the fine mode aerosol. Incorrect representations of kappa or its size dependence led to erroneous values of calculated CCN concentrations, especially for supersaturation values less than 0.3%. At higher supersaturations, most of the measured variability in CCN concentrations was captured by changes in total measured aerosol number concentrations. While data from the three measurement sites were generally well correlated, indicating similarities in seasonal cycles and in total number concentrations, there were some variations between measurements made at different sites and during different years that may be partly due to the effects of local emissions. The averaged data provide reasonable, observationally-based parameters for modeling of aerosol number size distributions and corresponding CCN concentrations. Field observations clearly indicated the episodic influence of wildfire smoke on particle number concentrations and compositions. However

  17. The Influence of topography on formation characteristics of hygroscopic and condensate water in Shapotou

    NASA Astrophysics Data System (ADS)

    Pan, Yanxia; Li, Xinrong; Hui, Rong; Zhao, Yang

    2016-04-01

    The formation characteristics of hygroscopic and condensate water for different topographic positions were observed using the PVC pipes manual weighing and CPM method in the typical mobile dunes fixed by straw checkerboard barriers in Shapotou. The results indicated that the formation amounts and duration of hygroscopic and condensate water show moderate spatial heterogeneity at the influence of topography. The formation amounts of hygroscopic and condensate water at different aspects conform to the classical convection model, in which the hygroscopic and condensate water amounts are highest at hollow, and windward aspect gets more water than leeward aspect, the hygroscopic and condensate water amounts at different aspects are expressed as: hollow>Western-faced aspect>Northern-faced aspect>hilltop>Southern-faced aspect>Eastern-faced aspect. The hygroscopic and condensate water amounts at different slope positions for every aspect are as follows: the foot of slope>middle slope>hilltop. A negatively linear correlation is got between slope angles and hygroscopic and condensate water amounts, hygroscopic and condensate water amounts decrease gradually along with the increase of slope angles, the amounts of hygroscopic and condensate water at the vertical aspect are only half of horizontal aspect, which indicated topography were important influence factors for the formation of the hygroscopic and condensate water in arid area.

  18. A case study of Asian dust storm particles: chemical composition, reactivity to SO2 and hygroscopic properties.

    PubMed

    Ma, Qingxin; Liu, Yongchun; Liu, Chang; Ma, Jinzhu; He, Hong

    2012-01-01

    Mineral dust comprises a great fraction of the global aerosol loading, but remains the largest uncertainty in predictions of the future climate due to its complexity in composition and physico-chemical properties. In this work, a case study characterizing Asian dust storm particles was conducted by multiple analysis methods, including SEM-EDS, XPS, FT-IR, BET, TPD/mass and Knudsen cell/mass. The morphology, elemental fraction, source distribution, true uptake coefficient for SO2, and hygroscopic behavior were studied. The major components of Asian dust storm particles are aluminosilicate, SiO2 and CaCO3, with organic compounds and inorganic nitrate coated on the surface. It has a low reactivity towards SO2 with a true uptake coefficient, 5.767 x 10(-6), which limits the conversion of SO2 to sulfate during dust storm periods. The low reactivity also means that the heterogeneous reactions of SO2 in both dry and humid air conditions have little effect on the hygroscopic behavior of the dust particles.

  19. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model

  20. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  1. Ab initio study of the hygroscopic properties of borate crystals

    NASA Astrophysics Data System (ADS)

    Lin, Zheshuai; Xu, L. F.; Li, R. K.; Wang, Zhizhong; Chen, Chuangtian; Lee, Ming-Hsien; Wang, E. G.; Wang, Ding-Sheng

    2004-12-01

    The hygroscopic properties of the borate crystals LiB3O5 , CsB3O5 , and CsLiB6O10 are studied by density-functional theory. It is found that the absorption energy and the diffusion mechanism of water molecules differ significantly for the three crystals. The deliquescent properties of borate crystals are determined mainly by the stress induced by water absorption. Our calculations are in good agreement with experimental observations.

  2. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  3. Aerosol Properties over the Eastern North Pacific based on Measurements from the MAGIC Field Campaign

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.; Senum, G.; Springston, S. R.; Kuang, C.

    2015-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-section Intercomparison) transect, the predominant cloud regime changes from stratocumulus near the California coast to trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in models. The goal of MAGIC was to acquire statistic of this transition and thus improve its representation in models by making repeated transects through this region and measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spirit as it ran its regular route between Los Angeles and Honolulu. AMF2 consists of three 20-foot SeaTainers and includes three radars and other instruments to measure properties of clouds and precipitation; the Aerosol Observing System (AOS), which has a suite of instruments to measure properties of aerosols; and other instruments to measure radiation, meteorological quantities, and sea surface temperature. Two technicians accompanied the AMF2, and scientists rode the ship as observers. MAGIC made nearly 20 round trips between Los Angeles and Honolulu (and thus nearly 40 excursions through the stratocumulus-to-cumulus transition) and spent 200 days at sea, collecting an unprecedented data set. Aerosol properties measured with the AOS include number concentration and size distribution, CCN activity, hygroscopic growth, and light-scattering and absorption. Additionally, more than one hundred filter samples were collected. Aerosol properties and their spatial and temporal behavior are discussed

  4. Intercomparison of observations and model aerosol parameters during two Saharan dust events over the southern United Kingdom

    NASA Astrophysics Data System (ADS)

    Buxmann, Joelle; Adam, Mariana; Ordonez, Carlos; Tilbee, Marie; Smyth, Tim; Claxton, Bernard; Sugier, Jacqueline; Agnew, Paul

    2015-04-01

    Saharan desert dust lifted by convection over the hot desert surface can reach high altitudes and be transported over great distances. In the UK, Saharan dust episodes occur several times a year, usually during the spring. Dust lifted by cyclonic circulation is often blown into the Atlantic and transported to the UK. This can result in a rapid degradation of air quality due to the increase in the levels of particulate matter (PM). The ability to model the transport and deposition of dust remains an important challenge in order to characterize different pollution events. We present a comparison of observed Aerosol Optical Depth (AOD) with modelled AOD from the Met Office Air Quality Unified Model (AQUM), performed for two dust events in March 2014 (at 380nm, 440nm, 870nm and 1020nm). The observations are derived from five sun photometers located in the southern UK at Exeter, Cardington, Bayfordbury, Chilbolton, and Plymouth. Correlations are investigated between model column integrated PM2.5 and PM10, and observed fine and coarse mode AOD from AERONET. Vertical profiles of attenuated backscatter and extinction from the Jenoptik Nimbus ceilometers part of the Met Office Laser Cloud Base Recorder (LCBR) network are investigated as well (see also session AS3.17/GI2.2 Lidar and Applications). The Met Office air quality model AQUM is an on-line meteorology, chemistry and aerosol modelling system. It runs at a resolution of 12km over a domain covering the UK and north-western Europe. Atmospheric composition modelling employs two-way coupling between aerosol and chemistry evolution, with explicit modelling of sulphate, nitrate, black carbon, organic carbon, biomass burning and wind-blown mineral dust aerosol components. Both the model and observations show an increase in AOD during the first period from 12 -13 March 2014. For example AOD levels of up to 0.52 for the 380nm channel were recorded by the sun photometer in Exeter. This is relatively high compared to average

  5. Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration

    NASA Astrophysics Data System (ADS)

    Pöhlker, Christopher; Saturno, Jorge; Krüger, Mira L.; Förster, Jan-David; Weigand, Markus; Wiedemann, Kenia T.; Bechtel, Michael; Artaxo, Paulo; Andreae, Meinrat O.

    2014-05-01

    The phase and mixing state of atmospheric aerosols is a central determinant of their properties and thus their role in atmospheric cycling and climate. Particularly, the hygroscopic response of aerosol particles to relative humidity (RH) variation is a key aspect of their atmospheric life cycle and impacts. Here we applied X-ray microspectroscopy under variable RH conditions to internally mixed aerosol particles from the Amazonian rain forest collected during periods with anthropogenic pollution. Upon hydration, we observed substantial and reproducible changes in particle microstructure, which appear as mainly driven by efflorescence and recrystallization of sulfate salts. Multiple solid and liquid phases were found to coexist, especially in intermediate humidity regimes. We show that X-ray microspectroscopy under variable RH is a valuable technique to analyze the hygroscopic response of individual ambient aerosol particles. Our initial results underline that RH changes can trigger strong particle restructuring, in agreement with previous studies on artificial aerosols.

  6. In Situ Aerosol-Size Distributions and Clear-Column Radiative Closure During ACE-2

    NASA Technical Reports Server (NTRS)

    Collins, R.; Jonsson, H. H.; Seinfeld, J. H.; Flagan, R. C.; Gasso, S.; Hegg, D. A.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Oestroem, E.

    1999-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol-size distributions were measured on board the CIRPAS Pelican aircraft through the use of a Differential Mobility Analyzer (DMA) and 2 Optical Particle Counters (OPCs). During the campaign, the boundary-layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free-tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on 4 missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol-size distributions and those measured directly by an airborne 14-wavelength sunphotometer and 3 nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size-distribution-based calculations. Simultaneous comparison with such a wide range of directly-measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly-measured optical properties varied for different measurements and for different cases. Averaged over the 4 case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotometer by 2.5% in the clean boundary layer, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and non-dusty conditions, respectively. Likewise

  7. In Situ Aerosol Size Distributions and Clear Column Radiative Closure During ACE-2

    NASA Technical Reports Server (NTRS)

    Collins, D. R.; Johnson, H. H.; Seinfeld, J. H.; Flagan, R. C.; Gasso, S.; Hegg, D. A.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Oestroem, E.; Noone, K. J.; Russell, L. M.; Putaud, J. P.

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol size distributions were measured on board the CIRPAS Pelican aircraft through the use of a DMA and two OPCS. During the campaign, the boundary layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on four missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol size distributions and those measured directly by an airborne 14-wavelength sunphotometer and three nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size distribution based calculations. Simultaneous comparison with such a wide range of directly measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly measured optical properties varied for different measurements and for different cases. Averaged over the four case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotomoter by 2.5% in the clean boundary later, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and nondusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured

  8. In vivo measurement of Pu dissolution parameters of MOX aerosols and related uncertainties in the values of the dose per unit intake.

    PubMed

    Ramounet-Le Gall, B; Rateau, G; Abram, M C; Grillon, G; Ansoborlo, E; Bérard, P; Delforge, J; Fritsch, P

    2003-01-01

    The aim of this study was to compare dissolution parameter values for Pu from industrial MOX with different Pu contents. For this purpose, preliminary results obtained after inhalation exposure of rats to MOX containing 2.5% Pu are reported and compared to those obtained previously with MOX containing 5% Pu. Dissolution parameter values appear to increase when the amount of Pu decreases. Rapid fractions, f(r), of 4 x 10(-3) (s.d. = 2 x 10(-3)) and 1 x 10(-3) (s.d. = 6 x 10(-4)) and slow dissolution rates, s(s) of 2 x 10(-4) d(-1) (standard deviation, sigma = 5 x 10(-5)) and 5 x 10(-5) d(-1) (sigma = 1 x 10(-5)) were derived for MOX containing 2.5 and 5% of Pu, respectively. Simulations were performed to assess uncertainties on dose due to experimental errors. The relative standard deviations of the dose per unit intake (DPUI) due to f(r) (4-8%), are far less than those due to s(s) (about 20%), which is the main parameter altering the dose. Although quite different dissolution parameter values were derived, similar DPUIs were obtained for MOX aerosols containing 2.5 and 5% Pu which appear close to that for default Type S values.

  9. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  10. Evolution of Organic Aerosols in the Atmosphere.

    SciTech Connect

    Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Qi; Kroll, Jesse H.; DeCarlo, Peter F.; Allan, James D.; Coe, H.; Ng, N. L.; Aiken, Allison; Docherty, Kenneth S.; Ulbrich, Ingrid M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, Jason M.; Collins, Donald R.; Cubison, Michael J.; Dunlea, E. J.; Huffman, John A.; Onasch, Timothy B.; Alfarra, M. R.; Williams, Paul I.; Bower, K.; Kondo, Yutaka; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, Robert; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, Joel; Sueper, D.; Jayne, J