Science.gov

Sample records for aerosol indirect forcing

  1. Evaluation of aerosol indirect radiative forcing in MIRAGE

    NASA Astrophysics Data System (ADS)

    Ghan, Steven; Easter, Richard; Hudson, James; BréOn, Francois-Marie

    2001-03-01

    We evaluate aerosol indirect radiative forcing simulated by the Model for Integrated Research on Atmospheric Global Exchange (MIRAGE). Although explicit measurements of aerosol indirect radiative forcing do not exist, measurements of many of the links between aerosols and indirect radiative forcing are available and can be used for evaluation. These links include the cloud condensation nuclei concentration, the ratio of droplet number to aerosol number, the droplet number concentration, the column droplet number, the column cloud water, the droplet effective radius, the cloud optical depth, the correlation between cloud albedo and droplet effective radius, and the cloud radiative forcing. The CCN concentration simulated by MIRAGE agrees with measurements for supersaturations larger than 0.1% but not for smaller supersaturations. Simulated droplet number concentrations are too low in most but not all locations with available measurements, even when normalized by aerosol number. MIRAGE correctly simulates the higher droplet numbers and smaller droplet sizes over continents and in the Northern Hemisphere. Biases in column cloud water, cloud optical depth, and shortwave cloud radiative forcing are evident in the Intertropical Convergence Zone and in the subtropical oceans. MIRAGE correctly simulates a negative correlation between cloud albedo and droplet size over remote oceans for cloud optical depths greater than 15 and a positive correlation for cloud optical depths less than 15 but fails to simulate a negative correlation over land.

  2. Evaluation of Aerosol Indirect Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.; Hudson, J D.; Breon, Francois

    2001-04-01

    We evaluate aerosol indirect radiative forcing simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). Although explicit measurements of aerosol indirect radiative forcing do not exist, measurements of many of the links between aerosols and indirect radiative forcing are available and can be used for evaluation. These links include the cloud condensation nuclei concentration, the ratio of droplet number to aerosol number, the droplet number concentration, the column droplet number, the column cloud water, the droplet effective radius, the cloud optical depth, the correlation between cloud albedo and droplet effective radius, and the cloud radiative forcing. The CCN concentration simulated by MIRAGE agrees with measurements for supersaturations larger than 0.1%, but not for smaller supersaturations. Simulated droplet number concentrations are too low in most, but not all, locations with available measurements, even when normalized by aerosol number. MIRA GE correctly simulates the higher droplet numbers and smaller droplet sizes over continents and in the Northern Hemisphere. Biases in column cloud water, cloud optical depth, and shortwave cloud radiative forcing are evident in the Intertropical Convergence Zone and in the subtropical oceans. MIRAGE correctly simulates a negative correlation between cloud albedo and droplet size over remote oceans for cloud optical depths greater than 15 and a positive correlation for cloud optical depths less than 15, but fails to simulate a negative correlation over land.

  3. Aerosol Indirect Forcing Dictated by Warm Low-Cloud

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Chen, Y. C.; Stephens, G. L.

    2014-12-01

    Aerosol indirect forcing is one of the largest sources of uncertainty in estimating the extent of global warming. Increased aerosol levels can enhance the solar reflection from warm liquid clouds countering greenhouse gas warming. However, very little is actually known about the strength of the indirect effects for mixed-phase stratiform clouds as well as other cloud types such as cumulus, altocumulus, nimbostratus, deep convection, and cirrus. These mixed-phase cloud types are ubiquitous and typically overlooked in satellite estimates of the indirect forcing. In this study we assess the responses of each major cloud type to changes in aerosol loading and provide an estimate of their contribution to the global mean indirect forcing. Satellite data is collected from several co-located sensors in the A-train for the period starting in January of 2007 - 2010. Cloud layers are classified according to the 2B-CLDCLASS-LIDAR CloudSat product. Radiative fluxes are obtained from CERES (Clouds and the Earth's Radiant Energy System) and examined as a function of the aerosol loading obtained from MODIS (MODerate resolution Imaging Spectroradiometer) data. For low-level cloud regimes (e.g., stratus, stratocumulus, cumulus) we show that the longwave contribution to the net indirect effect is insignificant and dominated by changes in reflected shortwave radiation which also becomes insignificant as cloud top temperature decreases below 0°C. An increase in the aerosol loading in mixed-phase stratocumulus leads to more ice and precipitation that depletes cloud water and limits cloud brightening. For the more convective type clouds (e.g., altocumulus, nimbostratus, deep convection), increased aerosol loading can invigorate deep convection and promote deeper clouds with higher cloud albedo (cooling effect) and cloud tops that emit less longwave radiation to space (warming effect). As a consequence, the shortwave and longwave indirect radiative effects tend to cancel for the

  4. Satellite methods underestimate indirect climate forcing by aerosols

    PubMed Central

    Penner, Joyce E.; Xu, Li; Wang, Minghuai

    2011-01-01

    Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for ln(Nc) versus ln(AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using ln(Nc) versus ln(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using ln(Nc) versus ln(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%. PMID:21808047

  5. Indirect radiative forcing by ion-mediated nucleation of aerosol

    SciTech Connect

    Yu, Fangqun; Luo, Gan; Liu, Xiaohong; Easter, Richard C.; Ma, Xiaoyan; Ghan, Steven J.

    2012-12-03

    A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement for the first time a physically based treatment of IMN into the Community Atmosphere Model version 5. Our simulations show that, compared to globally averaged results based on binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~ 3, CCN burden by ~ 10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~ 18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing by 3.67 W/m2 (more negative) and longwave cloud forcing by 1.78 W/m2 (more positive), resulting in a -1.9 W/m2 net change in cloud radiative forcing associated with IMN. The significant impacts of ionization on global aerosol formation, CCN abundance, and cloud radiative forcing may provide an important physical mechanism linking the global energy balance to various processes affecting atmospheric ionization, which should be properly represented in climate models.

  6. Limits to the Indirect Aerosol Forcing in Stratocumulus

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew; Toon, O.; Stevens, D.; Coakley, J., Jr.

    2003-01-01

    The indirect radiative forcing of aerosols is poorly constrained by the observational data underlying the simple cloud parameterizations in GCMs. signal of cloud response to increased aerosol concentrations from meteorological noise. Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ measurements showing no average change in cloud water relative to the surrounding clouds. Both results contradict the expectation of cloud water increasing in polluted clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. The simulations also show that increases in cloud water from suppressing drizzle by increased droplet concentrations are favored at night or at extremely low droplet concentrations. At typical droplet concentrations we find that the Twomey effect on cloud albedo is amplified very little by the secondary indirect effect of drizzle suppression, largely because the absorption of solar radiation by cloud water reduces boundary-layer mixing in the daytime and thereby restricts any possible increase in cloud water from drizzle suppression. The cloud and boundary layer respond to radiative heating variations on a time scale of hours, and on longer time scales respond to imbalances between large-scale horizontal advection and the entrainment of inversion air. We analyze the co-varying response of cloud water, cloud thickness, width of droplet size distributions, and dispersion of the optical depth, as well as the overall response of cloud albedo, to changes in droplet concentrations. We also dissect the underlying physical mechanisms through sensitivity studies. Ship tracks represent an ideal natural laboratory to extricate the

  7. Sensitivity of Homogeneous Freezing to Aerosol Perturbation and Implication for Aerosol Indirect Forcing through Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Liu, X.; Shi, X.; Zhang, K.

    2014-12-01

    The susceptibility of cloud properties to aerosol perturbation is critical for the aerosol-cloud-climate interactions. Burdens of aerosols such as sulfate have substantially increased from preindustrial time to present-day. However, it is still not clear whether the number of ice crystals (Ni) resulting from homogeneous freezing of sulfate solution droplets is sensitive to the change in sulfate number concentration (Na) in the upper troposphere. Some cloud parcel modeling studies show that Ni is insensitive to Na (Kärcher and Lohmann, 2002; Kay and Wood, 2008), while others show moderate sensitivity of Ni to Na (Liu and Penner, 2005; Barahona and Nenes, 2008). The poorly understood cirrus cloud processes lead to large uncertainties in ice nucleation parameterizations in global climate models, with implications for climate change studies. In this study, we examine the sensitivity of Ni from homogeneous freezing to Na with a cloud parcel model running at different input aerosol and cloud conditions and under different model assumptions. By these sensitivity tests, we are able to reconcile the contrasting results from previous studies on the sensitivity of Ni to Na. Furthermore, the implications of these results on aerosol indirect forcing through ice clouds are quantified by comparing three ice nucleation parameterizations (Liu and Penner, 2005; Barahona and Nenes, 2008; Kärcher and Lohmann, 2002) implemented in the Community Atmospheric Model version 5 (CAM5). The global and annual mean longwave aerosol indirect forcing through cirrus clouds ranges from -0.03 (Kärcher and Lohmann, 2002) to ~0.3 W m-2 (Liu and Penner, 2005; Barahona and Nenes, 2008). Future studies should quantify the occurrence frequency of homogeneous nucleation in the upper troposphere and the relative contribution between homogeneous versus heterogeneous freezing to Ni in cirrus clouds to further narrow down the aerosol indirect forcing through cirrus clouds.

  8. Reply to Quaas et al.: Can satellites be used to estimate indirect climate forcing by aerosols?

    SciTech Connect

    Penner, J. E.; Zhou, Cheng; Xu, Li; Wang, Minghuai

    2011-11-15

    We welcome the comments by Quaas et al. (1). In our paper (2), we used a model to show that the methods used to estimate indirect aerosol forcing using satellite data, especially those based on relating the slope of present-day (PD) drop number (Nc) to aerosol optical depth (AOD), underestimate the forcing calculated when both PD and preindustrial (PI) data are available.

  9. Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection

    SciTech Connect

    Fan, Jiwen; Rosenfeld, Daniel; Ding, Yanni; Leung, Lai-Yung R.; Li, Zhanqing

    2012-05-10

    Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei (CCN) or ice nuclei (IN), constitute the largest uncertainty in climate forcing and projection. Previous IPCC reported aerosol indirect forcing is negative, which does not account for aerosol-convective cloud interactions because the complex processes involved are poorly understood and represented in climate models. Here we report that aerosol indirect effect on deep convective cloud systems can lead to enhanced regional convergence and a strong top-of atmosphere (TOA) warming. Aerosol invigoration effect on convection can result in a strong radiative warming in the atmosphere (+5.6 W m-2) due to strong night-time warming, a lofted latent heating, and a reduced diurnal temperature difference, all of which could remarkably impact regional circulation and modify weather systems. We further elucidated how aerosols change convective intensity, diabatic heating, and regional circulation under different environmental conditions and concluded that wind shear and cloud base temperature play key roles in determining the significance of aerosol invigoration effect for convective systems.

  10. The Impact of humidity above stratiform clouds on indirect aerosol climate forcing

    SciTech Connect

    Ackerman, A S; Kirkpatrick, M P; Stevens, D E; Toon, O B

    2004-12-20

    Some of the global warming effect of anthropogenic greenhouse gases is offset by increased solar reflection from clouds with smaller droplets that form on increased numbers of cloud condensation nuclei in polluted air. The global magnitude of the resulting indirect aerosol climate forcing is estimated to be comparable (and opposed) to the anthropogenic carbon dioxide forcing, but estimates are highly uncertain because of complexities in characterizing the physical process that determine global aerosol and cloud populations and their interactions. Beyond reflecting sunlight more effectively, smaller droplets are less efficient at producing precipitation, and decreased precipitation is expected to result in increased cloud water and cloud cover, further increasing the indirect forcing. Yet polluted marine boundary-layer clouds are not generally observed to hold more water. Here we use model simulations of stratocumulus clouds to show that suppression of precipitation from increased droplet concentrations leads to increased cloud water only when sufficient precipitation reaches the surface, a condition favored when the overlying air is moist. Otherwise, aerosol induced suppression of precipitation enhances entrainment of overlying dry air, thereby reducing cloud water and diminishing the indirect climate forcing.

  11. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing

    SciTech Connect

    Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.; Rasch, Philip J.; Yoon, Jin-Ho; Eaton, Brian

    2012-10-01

    The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorption on the distribution of clouds. A three-mode representation of the aerosol in version 5.1 of the Community Atmosphere Model (CAM5.1) yields global annual mean radiative forcing estimates for each of these forcing mechanisms that are within 0.1 W m–2 of estimates using a more complex seven-mode representation that distinguishes between fresh and aged black carbon and primary organic matter. Simulating fresh black carbon particles separately from internally mixed accumulation mode particles is found to be important only near fossil fuel sources. In addition to the usual large indirect effect on solar radiation, this study finds an unexpectedly large positive longwave indirect effect (because of enhanced cirrus produced by homogenous nucleation of ice crystals on anthropogenic sulfate), small shortwave and longwave semidirect effects, and a small direct effect (because of cancelation and interactions of direct effects of black carbon and sulfate). Differences between the threemode and seven-mode versions are significantly larger (up to 0.2 W m–2) when the hygroscopicity of primary organic matter is decreased from 0.1 to 0 and transfer of the primary carbonaceous aerosol to the accumulation mode in the seven-mode version requires more hygroscopic material coating the primary particles. Radiative forcing by cloudborne anthropogenic black carbon is only 20.07 W m–2.

  12. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P.

    2013-12-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate. Effect of uncertain volcanic sulphur emissions on the annual global mean cloud albedo effect and anthropogenic cloud albedo forcing. The grey and blue bars show the magnitude and the uncertainty range for the volcanic cloud albedo effect for present-day (PD) and pre-industrial (PI), respectively. In the central panel, the top red bar shows the magnitude of the anthropogenic cloud albedo forcing as estimated by IPCC based on a range of

  13. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G. W.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P. M.

    2012-08-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.

  14. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G. W.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P. M.

    2012-03-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. Here, we use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.

  15. GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii

    SciTech Connect

    Boucher, O.

    1995-05-01

    In a recent paper, satellite data radiances were analyzed to retrieve cloud droplet effective radii and significant interhemispheric differences for both maritime and continental clouds were reported. The mean cloud droplet radius in the Northern Hemisphere is smaller than in the Southern Hemisphere by about 0.7 {mu}m. This hemispheric contrast suggests the presence of an aerosol effect on cloud droplet size and is consistent with higher cloud condensation nuclei number concentration in the Northern Hemisphere due to anthropogenic production of aerosol precursors. In the present study, we constrain a climate model with the satellite retrievals and discuss the climate forcing that can be inferred from the observed distribution of cloud droplet radius. Based on two sets of experiments, this sensitivity study suggests that the indirect radiative forcing by anthropogenic aerosols could be about -0.6 or -1 W m{sup -2} averaged in the 0{degrees}-50{degrees}N latitude band. The uncertainty of these estimates is difficult to assess but is at least 50%. 30 refs., 3 figs., 1 tab.

  16. Sensitivity Study of The Sulfate Aerosol Indirect Radiative Forcing To The Dms Source Representation

    NASA Astrophysics Data System (ADS)

    Boucher, O.; Aumont, O.; Belviso, S.; Cosme, E.; Moulin, C.; Pham, M.

    We use a global sulfur cycle model (LMD-ZT) to study the sensitivity of the dimethyl- sulfide (DMS) atmospheric concentrations and sulfur cycle to the representation of the DMS oceanic source. We test four different distributions of the oceanic DMS concen- trations: the Kettle et al. DMS dataset, two datasets built from Seawifs measurements of the ocean color (but with different , and one distribution from a coupled oceanic bi- ological model. There is a convergence for 3 out of 4 DMS datasets to produce a global DMS flux of 18-20 TgS/yr. There are however significant disagreements on the spa- tial and seasonal distribution of the DMS flux. A comparison of the DMS atmospheric concentrations with observations will be presented. The sulfate aerosol indirect radia- tive forcing depends strongly on the concentration of pre-industrial aerosols, which itself depends on the DMS sea-air flux. The subsequent uncertainty on the aerosol in- direct radiative forcing and the implication for climate-chemistry interactions will be discussed.

  17. Simultaneous Measurements of direct, semi-direct and indirect aerosol forcing with Stacked Autonomous UAVs: A New Observing Platform

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Roberts, G.; Ramana, M. V.; Corrigan, C.; Nguyen, H.

    2006-12-01

    We report here first time demonstration with three autonomously flying Unmanned Aerial Vehicles (UAVs) of cloudy sky albedo, transmission atmospheric solar absorption, aerosol and cloud droplet concentrations and number densities. From these direct measurements we derive the direct, semi-direct and the first indirect aerosol forcing. The observing system consisted of 3 light weight UAVs, instrumented with miniaturized instruments (Roberts et al, 2006; Ramana et al, 2006; Corrigan et al 2006) for measuring aerosol concentrations and size distribution, cloud microphysical properties, black carbon concentration and broad band and narrow band solar fluxes. The airborne measurements were validated and augmented by the Atmospheric Brown Clouds Maldives Climate Observatory (ABC_MCO) in the island of Hanimaadhoo in the N. Indian Ocean (Corrigan et al, 2006; Ramana and Ramanathan 2006). The campaign was conducted during March and early April of 2006 when this region is subject to long range transport of pollution from S. Asia. In the stacked 3_UAV configuration, one flew in the boundary layer below clouds to characterize the aerosols feeding the clouds and the transmission of solar radiation by the absorbing aerosol layer and clouds above; the second inside the trade cumulus clouds to directly observe the fully nucleated cloud drop size and concentrations and total liquid water content; and the third above the cloud to determine the incoming solar and the reflected solar radiation. The 3-UAVs were programmed to sample the same region(or clouds) within seconds of each other, thus providing unique insights into how aerosols and boundary layer dynamics modulate the cloud microphysics and thus the albedo and solar absorption of cloudy skies in the planet. The period of observations also included a major dust-soot event which revealed a large increase in atmospheric solar absorption. We will present results on how 3- dimensional clouds with absorbing aerosols modulate

  18. Simulation of the Indirect Radiative Forcing of Climate Due to Aerosols by the Two-Way Coupled WRF-CMAQ over the Eastern United States

    EPA Science Inventory

    In this study, the shortwave cloud forcing (SWCF) and longwave cloud forcing (LWCF) are estimated with the newly developed two-way coupled WRF-CMAQ over the eastern United States. Preliminary indirect aerosol forcing has been successfully implemented in WRF-CMAQ. The comparisons...

  19. Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2007-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53 cm(sup -3) compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 micrometers. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth s Radiant Energy System to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -.9.9 plus or minus 4.3 W m(sup -2) for overcast conditions.

  20. The Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2006-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.

  1. New Results from Space and Field Observations on the Aerosol Direct and Indirect Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Remer, Lorraine; Tanre, Didier; Boucher, Olivier; Chin, Mian; Dubovik, Oleg; Holben, Brent

    2002-01-01

    New space observations from the MODIS instrument on board the Terra satellite and analysis of POLDER data flown on the ADEOS satellite, show in great details the spatial and seasonal variability of the global aerosol system. These spaceborne instruments distinguish fine aerosol from man-made regional pollution and biomass burning from mostly natural coarse dust and sea salt aerosol. E.g. fine regional pollution in and around the Indian sub-continent, Europe and North America; smoke from biomass burning in Southern Africa and Southern America; coarse dust from West Africa and mixed dust pollution and smoke from West and central Africa and East Asia. These regions were also studied extensively in focused field experiments and by the distributed AERONET network. The results generate the first climatologies of the aerosol system, are used to derive the aerosol radiative effects and to estimate the anthropogenic component. The measurements are also used to evaluate each other and constrain aerosol transport models.

  2. Model Intercomparison of Indirect Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Penner, J. E.; Quaas, J.; Storelvmo, T.; Takemura, T.; Boucher, O.; Guo, H.; Kirkevag, A.; Kristjansson, J. E.; Seland, O.

    2006-01-01

    Modeled differences in predicted effects are increasingly used to help quantify the uncertainty of these effects. Here, we examine modeled differences in the aerosol indirect effect in a series of experiments that help to quantify how and why model-predicted aerosol indirect forcing varies between models. The experiments start with an experiment in which aerosol concentrations, the parameterization of droplet concentrations and the autoconversion scheme are all specified and end with an experiment that examines the predicted aerosol indirect forcing when only aerosol sources are specified. Although there are large differences in the predicted liquid water path among the models, the predicted aerosol first indirect effect for the first experiment is rather similar, about -0.6 W/sq m to -0.7 W/sq m. Changes to the autoconversion scheme can lead to large changes in the liquid water path of the models and to the response of the liquid water path to changes in aerosols. Adding an autoconversion scheme that depends on the droplet concentration caused a larger (negative) change in net outgoing shortwave radiation compared to the 1st indirect effect, and the increase varied from only 22% to more than a factor of three. The change in net shortwave forcing in the models due to varying the autoconversion scheme depends on the liquid water content of the clouds as well as their predicted droplet concentrations, and both increases and decreases in the net shortwave forcing can occur when autoconversion schemes are changed. The parameterization of cloud fraction within models is not sensitive to the aerosol concentration, and, therefore, the response of the modeled cloud fraction within the present models appears to be smaller than that which would be associated with model "noise". The prediction of aerosol concentrations, given a fixed set of sources, leads to some of the largest differences in the predicted aerosol indirect radiative forcing among the models, with values of

  3. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  4. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  5. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  6. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    The role of aerosol forcing remains one of the largest uncertainties in estimating man's impact on the global climate system. One school of thought suggests that remote sensing by satellite sensors will provide the data necessary to narrow these uncertainties. While satellite measurements of direct aerosol forcing appear to be straightforward, satellite measurements of aerosol indirect forcing will be more complicated. Pioneering studies identified indirect aerosol forcing using AVHRR data in the biomass burning regions of Brazil. We have expanded this analysis with AVHRR to include an additional year of data and assimilated water vapor fields. The results show similar latitudinal dependence as reported by Kaufman and Fraser, but by using water vapor observations we conclude that latitude is not a proxy for water vapor and the strength of the indirect effect is not correlated to water vapor amounts. In addition to the AVHRR study we have identified indirect aerosol forcing in Brazil at much smaller spatial scales using the MODIS Airborne Simulator. The strength of the indirect effect appears to be related to cloud type and cloud dynamics. There is a suggestion that some of the cloud dynamics may be influenced by smoke destabilization of the atmospheric column. Finally, this study attempts to quantify remote sensing limitations due to the accuracy limits of the retrieval algorithms. We use a combination of numerical aerosol transport models, ground-based AERONET data and ISCCP cloud climatology to determine how much of the forcing occurs in regions too clean to determine from satellite retrievals.

  7. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGESBeta

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  8. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  9. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  10. Whole-atmosphere aerosol microphysics simulations of the Mt Pinatubo eruption: Part 2: Quantifying the direct and indirect (dynamical) radiative forcings

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Dhomse, Sandip; Carslaw, Ken; Chipperfield, Martyn; Lee, Lindsay; Emmerson, Kathryn; Abraham, Luke; Telford, Paul; Pyle, John; Braesicke, Peter; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin

    2016-04-01

    The Mt Pinatubo volcanic eruption in June 1991 injected between 10 and 20 Tg of sulphur dioxide into the tropical lower stratosphere. Following chemical conversion to sulphuric acid, the stratospheric aerosol layer thickened substantially causing a strong radiative, dynamical and chemical perturbation to the Earth's atmosphere with effects lasting several years. In this presentation we show results from model experiments to isolate the different ways the enhanced stratospheric aerosol from Pinatubo influenced the Earth's climate. The simulations are carried out in the UK Chemistry and Aerosol composition-climate model (UKCA) which extends the high-top (to 80km) version of the UK Met Office Unified Model (UM). The UM-UKCA model uses the GLOMAP-mode aerosol microphysics module coupled with a stratosphere-troposphere chemistry scheme including sulphur chemistry. By running no-feedback and standard integrations, we separate the main radiative forcings due to aerosol-radiation interactions (i.e. the direct forcings) from those induced by dynamical changes which alter meridional heat transport and distributions of aerosol, ozone and water vapour.

  11. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  12. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; Gettelman, A.; Morrison, H.; Lee, Y. H.; Shindell, D. T.; Partridge, D. G.; Stier, P.; Kipling, Z.; Fu, C.

    2015-09-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascend (ω500 < -25 hPa d-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  13. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; Gettelman, Andrew; Morrison, Hugh; Lee, Yunha; Shindell, Drew T.; Partridge, Daniel G.; Stier, Philip; Kipling, Zak; Fu, Congbin

    2016-03-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascent (ω500 < -25 hPa day-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  14. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  15. Assessing aerosol indirect effect through ice clouds in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Liu, Xiaohong; Yoon, Jin-Ho; Wang, Minghuai; Comstock, Jennifer M.; Barahona, Donifan; Kooperman, Gabriel

    2013-05-01

    Ice clouds play an important role in regulating the Earth's radiative budget and influencing the hydrological cycle. Aerosols can act as solution droplets or ice nuclei for ice crystal formation, thus affecting the physical properties of ice clouds. Because the related dynamical and microphysical processes happen at very small spatial and temporal scales, it is a great challenge to accurately represent them in global climate models. Consequently, the aerosol indirect effect through ice clouds (ice AIE) estimated by global climate models is associated with large uncertainties. In order to better understand these processes and improve ice cloud parameterization in the Community Atmospheric Model, version 5 (CAM5), we analyze in-situ measurements from various research campaigns, and use the derived statistical information to evaluate and constrain the model [1]. We also make use of new model capabilities (prescribed aerosols and nudging) to estimate the aerosol indirect effect through ice clouds, and quantify the uncertainties associated with ice nucleation processes. In this study, a new approach is applied to separate the impact of aerosols on warm and cold clouds by using the prescribed-aerosol capability in CAM5 [2]. This capability allows a single simulation to simultaneously include up to three aerosol fields: online calculated, as well as prescribed pre-industrial (PI) and present-day conditions (PD). In a set of sensitivity simulations, we use the same aerosol fields to drive droplet activation in warm clouds, and different (PD and PI) conditions for different components of the ice nucleation parameterization in pure ice clouds, so as to investigate various ice nucleation mechanisms in an isolated manner. We also applied nudging in our simulations, which helps to increase the signal-to-noise ratio in much shorter simulation period [3] and isolate the impact of aerosols on ice clouds from other factors, such as temperature and relative humidity change. The

  16. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  17. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  18. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. PMID:17842894

  19. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  20. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  1. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    NASA Technical Reports Server (NTRS)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  2. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  3. Why is the climate forcing of sulfate aerosols so uncertain?

    NASA Astrophysics Data System (ADS)

    Rongming, Hu; Planton, Serge; Déque, Michel; Marquet, Pascal; Braun, Alain

    2001-12-01

    Sulfate aerosol particles have strong scattering effect on the solar radiation transfer which results in increasing the planet albedo and, hence, tend to cool the earth-atmosphere system. Also, aerosols can act as the cloud condensation nuclei (CCN) which tend to increase the albedo of clouds and cool the global warming. The ARPEGE-Climat version 3 AGCM with FMR radiation scheme is used to estimate the direct and indirect radiative forcing of sulfate aerosols. For minimizing the uncertainties in assessing this kind of cooling effect, all kinds of factors are analyzed which have been mixed in the assessment process and may lead to the different results of the radiative forcing of aerosols. It is noticed that one of the uncertainties to assess the climate forcing of aerosols by GCM results from the different definition of radiative forcing that was used. In order to clarify this vague idea, the off-line case for considering no feedbacks and on-line case for including all the feedbacks have been used for assessment. The direct forcing of sulfate aerosols in off-line case is -0.57 W/ m2 and -0.38 W/ m2 for the clear sky and all sky respectively. The value of on-line case appears to be a little larger than that in off-line case chiefly due to the feedback of clouds. The indirect forcing of sulfate aerosols in off-line case is -1.4 W/ m2 and -1.0 W/ m2 in on-line case. The radiative forcing of sulfate aerosols has obvious regional characteristics. There is a larger negative radiative forcing over North America, Europe and East Asia. If the direct and indirect forcing are added together, it is enough to offset the positive radiative forcing induced by the greenhouse gases in these regions.

  4. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  5. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE PAGESBeta

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; et al

    2016-03-04

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascentmore » (ω500  <  −25 hPa day−1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day−1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  6. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Tsigaridis, K.; Feichter, J.

    2011-08-01

    Secondary organic aerosol (SOA) has been introduced into the global climate-aerosol model ECHAM5/HAM. The SOA module handles aerosols originating from both biogenic and anthropogenic sources. The model simulates the emission of precursor gases, their chemical conversion into condensable gases, the partitioning of semi-volatile condenable species into the gas and aerosol phases. As ECHAM5/HAM is a size-resolved model, a new method that permits the calculation of partitioning of semi-volatile species between different size classes is introduced. We compare results of modelled organic aerosol concentrations against measurements from extensive measurement networks in Europe and the United States, running the model with and without SOA. We also compare modelled aerosol optical depth against measurements from the AERONET network of grond stations. We find that SOA improves agreement between model and measurements in both organic aerosol mass and aerosol optical depth, but does not fully correct the low bias that is present in the model for both of these quantities. Although many models now include SOA, any overall estimate of the direct and indirect effects of these aerosols is still lacking. This paper makes a first step in that direction. The model is applied to estimate the direct and indirect effects of SOA under simulated year 2000 conditions. The modelled SOA spatial distribution indicates that SOA is likely to be an important source of free and upper tropospheric aerosol. We find a negative shortwave (SW) forcing from the direct effect, amounting to -0.31 Wm-2 on the global annual mean. In contrast, the model indicates a positive indirect effect of SOA of +0.23 Wm-2, arising from the enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink of small particles. In the longwave, model results are a direct effect of +0.02 Wm-2 and an indirect effect of -0.03 Wm-2.

  7. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  8. Evaluation of Global Anthropogenic Aerosol Indirect Effects in the GISS Model III

    NASA Astrophysics Data System (ADS)

    Chen, W.; Nenes, A.; Liao, H.; Adams, P. J.; Seinfeld, J. H.

    2008-12-01

    In this study the implementation of the aerosol indirect effect in the 23-layer Goddard Institute for Space Studies (GISS) Global Climate Middle Atmosphere Model III is described. Explicit dependence on cloud droplet number concentrations (Nc) is introduced in the calculations of cloud optical depths and autoconversion rates in liquid-phase stratiform clouds to account for both first and second indirect effects. To diagnose Nc, correlation with concentrations of aerosol soluble ions is developed separately for each model grid and in each month, to reflect seasonal and spatial variations in aerosol-cloud interactions. Based on estimates of pre-industrial, present-day (year 2000), and future (year 2100) concentrations of sulfate, nitrate, ammonium, sea salt, and organic aerosols from the fully coupled Caltech unified model, corresponding offline, monthly averaged Nc were derived and applied to equilibrium climate simulations. Modeled present-day global distributions of Nc, droplet size, cloud cover, and radiative balance are in good agreement with satellite-retrieved climatology. A global anthropogenic indirect forcing of -1.7 W m-2, with a decrease in mean droplet radius of 0.8 μm, and an increase in total liquid water path of 0.2 g cm-2, from pre-industrial to year 2000 is estimated. Future climate responses to aerosol direct and indirect effects are also analyzed and compared to previous studies that consider chemistry- aerosol-climate coupling, revealing the influences of this coupling on climate predictions.

  9. Seasonality of Forcing by Carbonaceous Aerosols

    NASA Astrophysics Data System (ADS)

    Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.

    2006-12-01

    Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol

  10. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    boomerang shape varies with season. For moderate aerosol loading (AOD<0.4), the effect on the droplet size for the "Mixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm season. It is likely associated with an increase in the emission of light absorbing aerosol like smoke (black carbon), mainly caused by coal-fired heating during the cold season in China. As expected, the sensitivity of CDR to AOD is much weaker for "Separated" cases, irrespective of warm or cold seasons, indicating no real aerosol indirect effect occurring in this case. In contrast, for heavy aerosol loading (AOD>0.4), an increasing CDR with AOD can be seen in "Mixed" scenario during the warm season. Conversely, a closer look at the responses of CDR during the cold season shows that CDR decreases with AOD, although the strength is not much large. Therefore, we argue that cloud droplet size decreases with aerosol loading during cold season, irrespective of moderate or heavy atmospheric pollution. Finally, we discuss the possible factors that may influence the aerosol indirect effects on warm clouds investigated here. For instance, aerosol-cloud interaction conundrum might be affected by aerosol humidification, which is the case for MODIS AOD during warm seasons. But this issue can be partly overcome by categorizing dataset into warm-season and cold-season subsets, representing different ambient humidity condition in the atmosphere. The different boomerang shapes observed during various seasons, particularly after transition zone due to droplet saturation effect, have great implications for climate forcing by aerosol in eastern China.

  11. Aerosol Indirect effect on Stratocumulus Organization

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Heus, T.; Kollias, P.

    2015-12-01

    Large-eddy simulations are used to investigate the role of aerosol loading on organized Stratocumulus. We prescribed the cloud droplet number concentration (Nc) and considered it as the proxy for different aerosol loading. While the presence of drizzle amplifies the mesoscale variability as is in Savic-Jovcic and Stevens (JAS, 2008), two noticeable findings are discussed here: First, the scale of marine boundary layer circulation appears to be independent of aerosol loading, suggesting a major role of the turbulence. The precise role of the turbulence in stratocumulus organization is studied by modifying the large scale fluctuations from the LES domain. Second, while it is commonly thought that the whole circulation needs to be represented for robust cloud development, we find that stratocumulus dynamics, including variables like w'w' and w'w'w', are remarkably robust even if large scales are ignored by simply reducing the domain sizes. The only variable that is sensitive to the change of the scale is the amount of cloudiness. Despite their smaller cloud thickness and inhomogeneous macroscopic structure for low Nc, individual drizzling clouds have sizes that are commensurate with circulation scale. We observe an Nc threshold below which stratocumulus is thin enough so that a little decrease of Nc would lead to great change of cloud fraction. The simulated cloud albedo is more sensitive to in-cloud liquid water content than to the amount of cloudiness since the former decreases at least three times faster than the latter due to drizzle. The main impact of drizzle evaporation is observed to keep the sub-cloud layer moist and as a result to extend the lifetime of stratocumulus by a couple of hours.

  12. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  13. Evidence for a Glaciation Aerosol Indirect Effect from Ship Tracks

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Suzuki, K.; Stephens, G. L.

    2013-12-01

    Ship tracks are a prominent manifestation of the aerosol indirect effect that provides a unique opportunity to study aerosol interactions in both warm and mixed-phase clouds. While ample evidence supports that an increase in aerosol concentration generally suppresses warm phase precipitation leading to longer cloud lifetime and more reflected sunlight (Albrecht, 1989) there is less understood about these effects in mixed-phase clouds. Lohmann, (2002) propose that an increase in IN (Ice Nuclei) may cause a glaciation indirect effect which results in more frequent glaciation of super-cooled droplets via the Bergeron process thereby increasing the amount of precipitation, which could decrease cloud cover, cloud longevity, and reflected sunlight. In this study, over 200 ship tracks are identified in mixed phase clouds using MODIS (MODerate resolution Imaging Spectroradiometer) imagery. Retrievals of the ice phase are obtained using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations). These measurements provide evidence that glaciation is more frequent in polluted clouds compared to the unpolluted clouds that lie adjacent to ship tracks. Larger ice fractions may result from the increased IN emitted from the ship or by other processes (e.g., immersion/contact freezing) that lead to faster ice multiplication in polluted clouds with smaller and more numerous supercooled droplets. Observations from the profiling radar on CloudSat show that aerosol suppresses warm phase precipitation but enhances the cold phase precipitation. For mixed-phase clouds, these differences roughly cancel resulting in small changes in precipitation between polluted and unpolluted clouds. When cloud tops are warm, aerosol decreases precipitation rates and cloud water paths due to the entrainment effect but the differences in cloud water amount are considerably smaller than those found in cold phase clouds. These results provide the first glance of ship tracks in mixed

  14. Evaluation of aerosol indirect radiative effects on climate in the EMAC model

    NASA Astrophysics Data System (ADS)

    Chang, Dong Yeong; Tost, Holger; Steil, Benedikt; Lelieveld, Jos

    2013-04-01

    Anthropogenic aerosol particles directly and indirectly influence cloud properties and the Earth's radiative energy budget. Several studies have estimated the effects on climate using global circulation models (GCMs), indicating large differences between different models and large uncertainty ranges. These are mostly attributed to different cloud microphysical process parameterizations and uncertainties in the representation of aerosols. Without detailed cloud microphysical processes, using empirical relations between aerosol number or mass and cloud droplet number potentially even large discrepancies may arise. In the present study, a mechanistic aerosol activation scheme, based on double moment cloud microphysics, is used to compute aerosol indirect radiative and cloud effects in the EMAC model. Aerosol activation is linked to the cloud droplet nucleation processes in warm clouds, accounting for the number, size, and chemical composition of particles under ambient meteorological conditions. This approach uses a combination of empirical and semi-empirical parameters to represent aerosol water uptake and hygroscopic growth into cloud droplets. To evaluate the performance of our approach satellite datasets are used; for example, total cloud fraction from MODIS data and cloud radiative forcing at the top of atmosphere from CERES EBAF data.

  15. A Physically-Based Estimate of Radiative Forcing by Anthropogenic Sulfate Aerosol

    SciTech Connect

    Ghan, Steven J.); Easter, Richard C.); Chapman, Elaine G.); Abdul-Razzak, Hayder; Zhang, Yang ); Leung, Ruby ); Laulainen, Nels S.); Saylor, Rick D.); Zaveri, Rahul A.)

    2001-04-01

    Estimates of direct and indirect radiative forcing by anthropogenic sulfate aerosols from an integrated global aerosol and climate modeling system are presented. A detailed global tropospheric chemistry and aerosol model that predicts concentrations of oxidants as well as aerosols and aerosol precursors, is coupled to a general circulation model that predicts both cloud water mass and cloud droplet number. Both number and mass of several externally-mixed aerosol size modes are predicted, with internal mixing assumed for the different aerosol components within each mode. Predicted aerosol species include sulfate, organic and black carbon, soil dust, and sea salt. The models use physically-based treatments of aerosol radiative properties (including dependence on relative humidity) and aerosol activation as cloud condensation nuclei. Parallel simulations with and without anthropogenic sulfate aerosol are performed for a global domain. The global and annual mean direct and indirect radiative forcing due to anthropogenic sulfate are estimated to be -0.3 to -0.5 and -1.5 to -3.0 W m-2, respectively. The radiative forcing is sensitive to the model's horizontal resolution, the use of predicted vs. analyzed relative humidity, the prediction vs. diagnosis of aerosol number and droplet number, and the parameterization of droplet collision/coalescence. About half of the indirect radiative forcing is due to changes in droplet radius and half to increased cloud liquid water.

  16. Global simulation of chemistry and radiative forcing of mineral aerosols

    SciTech Connect

    Zhang, Yang; Easter, R.C.; Ghan, S.J.; Leung, L.R.

    1996-12-31

    Mineral aerosols are increasingly gaining attention because of their roles in atmospheric chemistry and climate system. A global three-dimensional aerosol/chemistry model (GChM) coupled with a general circulation model (GCM) is used to simulate the sources/sinks, chemistry and radiative forcing of mineral aerosols. Regional and seasonal variations in distribution of mineral aerosols are predicted based on vegetation types, threshold wind velocities and soil moisture data. The role of mineral aerosols as a reactive surface available for heterogeneous uptake of gas-phase species in the global atmosphere is investigated along with their impact on the tropospheric sulfur cycle and the photochemical oxidant cycle. In particular, the heterogeneous surface reactions of SO{sub 2}, H{sub 2}SO{sub 4}, NO{sub 3}, N{sub 2}O{sub 5}, HNO{sub 3}, O{sub 3}, OH, HO{sub 2}, H{sub 2}O{sub 2} and CH{sub 3}O{sub 2} on mineral aerosols are simulated. The direct radiative forcing by mineral aerosols and the indirect forcing through influencing droplet number concentration are further estimated. The model simulation results are analyzed and compared against the available observational data.

  17. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    PubMed Central

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the “warming hole”. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed “warming hole” can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  18. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    NASA Astrophysics Data System (ADS)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. ``warming hole''). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the ``warming hole''. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed ``warming hole'' can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  19. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  20. Emulation of Cloud-Aerosol Indirect Radiative Effects (ECLAIRE)

    NASA Astrophysics Data System (ADS)

    Dunne, E. M.; Korhonen, H.; Kokkola, H.; Lee, L.; Romakkaniemi, S.

    2014-12-01

    Resolving sub-grid-scale interactions between clouds and aerosols is one of the biggest challenges facing climate models in the 21st century. By carefully selecting boundary conditions to represent grid boxes in larger-scale models, an emulator of a cloud-resolving model can be created and implemented in a regional or global model. Emulators can estimate the output of a model, based on a statistical analysis of outputs from simulations with known inputs. This method may reduce uncertainties in a range of cloud-scale processes, including calculations of aerosol indirect radiative effects, precipitation rates, and wet removal rates of aerosol. The Finnish Academy has recently funded the Emulation of Cloud-Aerosol Indirect Radiative Effects (ECLAIRE) project, whose aim is to construct emulators of cloud-scale processes from the WRF-Chem model and implement them into the ECHAM climate model. This poster will describe the goals and proposed methods of the project, together with any initial results.

  1. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric greenhouse gases and aerosols, and the estimation of the aerosol-induced direct longwave (LW) radiative forcing in the spectral region 5-20 mum at the Earth's surface (BOA; bottom of the atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions. These objectives were accomplished by conducting case studies on clear sky, smoky, and dusty conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer (DISORT) solver were employed for the study. The LW aerosol forcing is often not included in climate models because the aerosol effect on the LW is often assumed to be negligible. We lack knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly associated with small biomass burning smoke particles, is + 0.4 W/m2 which seems to be small, but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth's atmosphere since the preindustrial era of 1750 (+ 1.6 W/m 2). The LW radiative forcing due to coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as much as + 5.02 W/m2 at the surface and + 1.71 W/m2 at the TOA. All of these significant positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size and complex refractive indices of

  2. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  3. Simulated 2050 aviation radiative forcing from contrails and aerosols

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Gettelman, Andrew

    2016-06-01

    The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5) in the present (2006) and the future (through 2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m-2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as -160 mW m-2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  4. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  5. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  6. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  7. Corrigendum to "Impact of cloud-borne aerosol representation on aerosol direct and indirect effects" published in Atmos. Chem. Phys., 6, 4163-4174, 2006

    SciTech Connect

    Ghan, Steven J; Easter, Richard C

    2007-01-19

    Ghan and Easter (2006) (hereafter referred to as GE2006) used a global aerosol model to estimate the sensitivity of aerosol direct and indirect effects to a variety of simplified treatments of the cloud-borne aerosol. They found that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing However, we have recently found that in those experiments we had inadvertently turned off the first aerosol indirect effect. In the radiation module, the droplet effective radius was prescribed at 10 microns rather than related to the droplet number concentration. The second indirect effect, in which droplet number influences droplet collision and coalescence, was treated, so that the simulations produced an aerosol indirect effect, albeit one that is much smaller (about -0.2Wm-2 for anthropogenic sulfate) than other previous estimates.

  8. Simulation of Climate Forcing by Aerosols

    SciTech Connect

    Ghan, Steven J.; Bian, Xindi; Chapman, Elaine G.; Easter, Richard C.; Fann, George I.; Kothari, Suraj C.; Zaveri, Rahul A.; Zhang, Yang

    2004-05-03

    The largest source of uncertainty in estimates of the radiative forcing governing climate change is in the radiative forcing due to anthropogenic aerosols. Current estimates of the global mean of the aerosol radiative forcing range from –0.3 to –3.0 watts per square meter (Wm-2 ) which is opposite in sign and possibly comparable in magnitude to the +2 Wm-2 forcing due to increasing greenhouse gases. We have developed a global aerosol and climate modeling system that provides arguably the most detailed treatment of aerosols and their impact on the planetary radiation balance of any model, but our estimates of radiative forcing have been hindered by our lack of access to high performance computing resources. We propose to use the MSCF to conduct a series of simulations with and without emissions of a variety of aerosol particles and aerosol precursors. These extensive simulations will enable us to produce much more refined estimates of the impact of anthropogenic emissions on radiative forcing of climate change. To take full advantage of the parallelism available on the MSCF MPP1, we will apply the Global Array Toolkit to dynamically load balance the reactive chemistry component of our model. We will adapt our modifications of the serial NCAR Community Climate Model CCM2 to the parallel NCAR CCM3.10.

  9. Impact of Mixing State on Anthropogenic Aerosol Radiative Forcing and Associated Climate Response

    NASA Astrophysics Data System (ADS)

    Avramov, A.; Shin, H. J.; Wang, C.

    2014-12-01

    Atmospheric aerosols affect Earth's radiation balance directly by scattering and absorbing solar radiation and, indirectly, by changing the microphysical structure, lifetime and spatial extent of clouds. The aerosol mixing state to a large extent determines not only their optical properties (direct effect) but also their ability to serve as cloud condensation nuclei or ice nuclei (indirect effect). Results from previous research have highlighted the importance of the aerosol mixing assumptions in radiative forcing estimates in model simulations. Here we take a step further to analyze the differences in associated climate responses, using a multimodal, size- and mixing-dependent aerosol model (MARC) incorporated within the Community Earth System Model (CESM). The new model allows for a detailed representation of aerosol-radiation and aerosol-cloud interactions by including an improved treatment of aerosol mixing state and composition. First, we estimate and compare the magnitudes of direct and indirect forcing of anthropogenic aerosols under different mixing assumptions. We then carry out several century-long fully-coupled climate simulations designed to isolate the climate responses to direct and indirect forcings under the same aerosol mixing assumptions. In our analysis, we specifically focus on the following three climate response components: 1) cloud distribution and coverage; 2) precipitation amount and distribution; and 3) changes in circulation patterns.

  10. Observations of the first aerosol indirect effect in shallow cumuli

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

    2011-02-08

    Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

  11. Impact of aerosol indirect effect on surface temperature over East Asia

    PubMed Central

    Huang, Yan; Dickinson, Robert E.; Chameides, William L.

    2006-01-01

    A regional coupled climate–chemistry–aerosol model is developed to examine the impacts of anthropogenic aerosols on surface temperature and precipitation over East Asia. Besides their direct and indirect reduction of short-wave solar radiation, the increased cloudiness and cloud liquid water generate a substantial downward positive long-wave surface forcing; consequently, nighttime temperature in winter increases by +0.7°C, and the diurnal temperature range decreases by −0.7°C averaged over the industrialized parts of China. Confidence in the simulated results is limited by uncertainties in model cloud physics. However, they are broadly consistent with the observed diurnal temperature range decrease as reported in China, suggesting that changes in downward long-wave radiation at the surface are important in understanding temperature changes from aerosols. PMID:16537432

  12. On the reliability of geostationary satellite observations for diagnosing indirect aerosol effects

    NASA Astrophysics Data System (ADS)

    Merk, Daniel; Deneke, Hartwig; Pospichal, Bernhard; Seifert, Patric

    2015-10-01

    Aerosol indirect effects are poorly understand and constitute a highly uncertain anthropogenic forcing of climate change. The interaction of aerosols with clouds together with entrainment and turbulent mixing processes modulate cloud microphysics and radiative effects. In the current study we present preliminary results to diagnose indirect aerosol effects from the synergy of geostationary satellite observations, surface observations and MACC aerosol analysis. We examine if the sub-adiabatic factor - representative for entrainment - can be obtained from the combination of passive-satellite observations with ground-based cloud base height from a ceilometer network. Therefore the uncertainty of the sub-adiabatic factor due to its required input parameters, the cloud geometrical thickness and liquid water path, is explored. We use a two year dataset from SEVIRI and compare it to the LACROS supersite at Leipzig, Germany. We find that the comparison of satellite-retrieved cloud top heights shows a RMSD of 1100 m and the liquid water path of 75 gm-2, which are too large to provide a meaningful estimate of the instantaneous sub-adiabtic factor. Linking the cloud microphysical properties from passive satellites with aerosol properties obtained from MACC, we investigate the Twomey hypothesis, namely that smaller droplets and a higher cloud droplet number concentration result from higher aerosol load for a given liquid water path (positive change). A positive relative change is obtained for aerosol optical depth and the sulphate mass integrated from the surface to the cloud top. In contrast, a negative relative change is however found for sea salt.

  13. Impact of Cloud-Borne Aerosol Representation on Aerosol Direct and Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.

    2006-09-21

    Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for many variables of interest. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment.

  14. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  15. Observational constraints for climate forcing by biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Penner, J. E.; Zhou, C.; Prather, M. J.; Xu, L.

    2012-12-01

    Estimates of sources of aerosols from open biomass burning vary to a significant extent, and those for pre-industrial emissions are even more uncertain. Previously, we showed how the use of a global chemical transport model together with TOMS satellite data for aerosol index and black carbon (BC) concentrations in ice-cores can be used to constrain present-day (PD) (year 2000) and pre-industrial (PI) (year 1870) emissions. The total aerosol forcing (direct and warm cloud indirect) from these emissions was estimated to be -0.065 W m-2, although values as large as -0.21 W m-2 could not be excluded. Here, we further examine the consistency between our estimates of biomass burning sources and observations of the spectrally varying AAOD from AERONET. We present adjusted estimates that also include these observations.

  16. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  17. Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, T.; Wang, Minghuai; Penner, Joyce E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, A.; Feingold, G.; Hoose, Corinna; Kristjansson, J. E.; Liu, Xiaohong; Balkanski, Y.; Donner, Leo J.; Ginoux, P.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, Igor; Bauer, Susanne E.; Koch, D.; Grainger, Roy G.; Kirkevag, A.; Iversen, T.; Seland, O.; Easter, Richard C.; Ghan, Steven J.; Rasch, Philip J.; Morrison, H.; Lamarque, J. F.; Iacono, Michael J.; Kinne, Stefan; Schulz, M.

    2009-11-16

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated in the present study using three satellite datasets. The satellite datasets are taken as reference bearing in mind that cloud and aerosol retrievals include uncertainties. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities consistently in models and satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over oceans. The relationship between τa and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to rep¬resentation of the second aerosol indirect effect in terms of autoconversion. A positive re¬lationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly in most of them. In a discussion of the hypo¬theses proposed in the literature to explain the satellite-derived strong fcld – τa relation¬ship, we find that none is unequivocally confirmed by our results. Relationships similar to the ones found in satellite data between τa and cloud top tem¬perature and outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - τa relationship show a strong positive cor¬relation between τa and cloud fraction. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the short

  18. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect.

    PubMed

    Righi, Mattia; Klinger, Carolin; Eyring, Veronika; Hendricks, Johannes; Lauer, Axel; Petzold, Andreas

    2011-04-15

    Aerosol emissions from international shipping are recognized to have a large impact on the Earth's radiation budget, directly by scattering and absorbing solar radiation and indirectly by altering cloud properties. New regulations have recently been approved by the International Maritime Organization (IMO) aiming at progressive reductions of the maximum sulfur content allowed in marine fuels from current 4.5% by mass down to 0.5% in 2020, with more restrictive limits already applied in some coastal regions. In this context, we use a global bottom-up algorithm to calculate geographically resolved emission inventories of gaseous (NO(x), CO, SO(2)) and aerosol (black carbon, organic matter, sulfate) species for different kinds of low-sulfur fuels in shipping. We apply these inventories to study the resulting changes in radiative forcing, attributed to particles from shipping, with the global aerosol-climate model EMAC-MADE. The emission factors for the different fuels are based on measurements at a test bed of a large diesel engine. We consider both fossil fuel (marine gas oil) and biofuels (palm and soy bean oil) as a substitute for heavy fuel oil in the current (2006) fleet and compare their climate impact to that resulting from heavy fuel oil use. Our simulations suggest that ship-induced surface level concentrations of sulfate aerosol are strongly reduced, up to about 40-60% in the high-traffic regions. This clearly has positive consequences for pollution reduction in the vicinity of major harbors. Additionally, such reductions in the aerosol loading lead to a decrease of a factor of 3-4 in the indirect global aerosol effect induced by emissions from international shipping. PMID:21428387

  19. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGESBeta

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  20. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    SciTech Connect

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor; Gultepe, Ismail; Hubbe, John; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. Richard; Liu, Peter; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, Ann -Marie; Moffet, Ryan C.; Morrison, Hugh; Ovchinnikov, Mikhail; Ronfeld, Debbie; Shupe, Matthew D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matt; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41 stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.

  1. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  2. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

  3. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect

    Saide P. E.; Springston S.; Spak, S. N.; Carmichael, G. R.; Mena-Carrasco, M. A.; Yang, Q.; Howell, S.; Leon, D. C.; Snider, J. R.; Bandy, A. R.; Collett, J. L.; Benedict, K. B.; de Szoeke, S. P.; Hawkins, L. N.; Allen, G.; Crawford, I.; Crosier, J.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.

  4. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Spak, S. N.; Carmichael, G. R.; Mena-Carrasco, M. A.; Howell, S.; Leon, D. C.; Snider, J. R.; Bandy, A. R.; Collett, J. L.; Benedict, K. B.; de Szoeke, S. P.; Hawkins, L. N.; Allen, G.; Crawford, I.; Crosier, J.; Springston, S. R.

    2011-11-01

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

  5. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  6. Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect modelled by GEOS-Chem/APM

    NASA Astrophysics Data System (ADS)

    Yu, F.

    2013-05-01

    Atmospheric particles influence climate indirectly by acting as cloud condensation nuclei (CCN) that affect cloud properties (albedo, lifetime, etc.) and precipitation. The first aerosol indirect radiative forcing (FAIRF) (i.e., cloud albedo effect) constitutes the largest uncertainty among the various radiative forcings quantified by the latest IPCC assessment report (IPCC2007). In order to confidently interpret climate change over the past century and project future change, it is essential to reduce the FAIRF uncertainty. One of the large sources of the uncertainty is the poor knowledge of the number concentrations and spatial distributions of pre-industrial and present-day aerosols. All previous and recent FAIRF studies are based on global models with simplified chemistry and aerosol microphysics, which may lead to large uncertainties in predicted aerosol properties and FAIRF values. Here, we investigate the anthropogenic contribution to CCN and associated FAIRF using a state-of-the-art global chemical transport and aerosol model (GEOS-Chem/APM) that contains a number of advanced features (including size-resolved sectional particle microphysics, online comprehensive SOx-NOx-Ox-VOCs chemistry, consideration of nitrate and secondary organic aerosols, online aerosol-cloud-radiation calculation, usage of more accurate assimilated meteorology, etc.). As far as we know, this is the first time that a global model with full chemistry and size-resolved (sectional) particle microphysics is employed to study FAIRF. Key aerosol properties predicted by GEOS-Chem/APM for the present-day case have been evaluated against a large set of land-, ship-, aircraft-, and satellite- based aerosol measurements including total particle number concentrations, CCN concentrations, AODs, and vertical profiles of extinction coefficients. The GEOS-Chem/APM model, with its advanced features and ability to reproduce observed aerosol properties (including CCN) around the globe, is expected to

  7. Historical anthropogenic radiative forcing of changes in biogenic secondary aerosol

    NASA Astrophysics Data System (ADS)

    Acosta Navarro, Juan; D'Andrea, Stephen; Pierce, Jeffrey; Ekman, Annica; Struthers, Hamish; Zorita, Eduardo; Guenther, Alex; Arneth, Almut; Smolander, Sampo; Kaplan, Jed; Farina, Salvatore; Scott, Catherine; Rap, Alexandru; Farmer, Delphine; Spracklen, Domink; Riipinen, Ilona

    2016-04-01

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA. We found that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m².

  8. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  9. Direct and indirect radiative effects of aerosols using the coupled system of aerosol HAM module and the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Rabab; Irannejad, Parviz; Feichter, Johann; Akbari Bidokhti, Abbas Ali Ali

    2010-05-01

    The fully coupled aerosol-cloud and radiation WRF-HAM modeling system is presented. The aerosol HAM model is implemented within the chemistry version of WRF modeling system. HAM is based on a "pseudo-modal" approach for representation of the particle size distribution. Aerosols are grouped into four geometrical size classes and two types of mixed and insoluble particles. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. Microphysical processes including nucleation, condensation and coagulation of aerosol particles are considered using the microphysics M7 scheme. Horizontal transport of the aerosol particles is simulated using the advection scheme in WRF. Convective transport and vertical mixing of aerosol particles are also considered in the coupled system. A flux-resistance method is used for dry deposition of aerosol particles. Aerosol sizes and chemical compositions are used to determine the aerosol optical properties. Direct effects of aerosols on incoming shortwave radiation flux are simulated by transferring the aerosol optical parameters to the Goddard shortwave radiation scheme. Indirect effects of aerosols are simulated by using a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets. The first and second indirect effects, i.e. the interactions of clouds and incoming solar radiation are implemented in WRF-Chem by linking the simulated cloud droplet number with the Goddard shortwave radiation scheme and the Lin et al. microphysics scheme. The simulations are carried out for a 6-day period from 22 to 28 February 2006 in a domain with 30-km grid spacing, encompassing the south-western Asia, North Africa and some parts of Europe. The results show a negative radiative forcing over most parts of the domain, mainly due to the presence of mineral dust aerosols. The simulations are evaluated using the measured downward radiation in

  10. Corrigendum to "Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM" published in Atmos. Chem. Phys., 12, 5985-6007, 2012

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2013-07-01

    An error in the calculation of the emitted number of primary sulfate particles for a given mass of emitted elementary sulfur has recently been identified in HAM, i.e. the aerosol module utilised in the ECHAM-HAM aerosol climate model. Correcting for this error substantially alters the estimates of top-of-atmosphere radiative forcing due to aerosol indirect effects from global shipping emissions (year 2000) as presented in Peters et al. (2012). Here, we shortly present these new results.

  11. The Radiative Forcing from Biogenic Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Forster, P.; Spracklen, D. V.; Carslaw, K. S.; Arnold, S.; Rap, A.

    2012-12-01

    Vegetation emits biogenic volatile organic compounds (BVOCs), such as monoterpenes, isoprene and sesquiterpenes, into the atmosphere. Once emitted, BVOCs rapidly undergo reactions with the hydroxyl radical, ozone and the nitrate radical to yield a range of lower volatility oxidation products. These compounds are of sufficiently low volatility to partition into the aerosol phase, forming secondary organic aerosol (SOA). Increasingly, there are indications that organic compounds, specifically the oxidation products of terpenes, may contribute to the process of new particle formation as well as the growth of existing particles. The formation of SOA can influence the Earth's radiative balance by absorbing and scattering radiation (the direct effect) and by altering the properties of clouds (the indirect effect), via their action as cloud condensation nuclei (CCN). Biogenic SOA formed from the oxidation products of isoprene and monoterpenes has been shown to be CCN active under atmospherically relevant conditions, indicating that complex climate feedbacks may result from the emission of BVOCs. Using a global aerosol microphysics model (GLOMAP), and offline radiative transfer code, we simulate a present day aerosol indirect radiative forcing of between -0.07 and - 0.81 W.m-2, for the emission of BVOCs, due to a simulated increase in the number of particles able to act as CCN. The forcing obtained per emission is not spatially uniform, with monoterpenes in the southern hemisphere being most efficient at inducing a radiative change. We find a strong sensitivity to the treatment of concurrent anthropogenic emissions. In the present day, biogenic secondary organic material is more efficient at perturbing CCN number concentrations, but when anthropogenic emissions from 1750 are included in our simulations, the lower background aerosol concentration results in a more significant radiative response. The largest uncertainty in the forcing obtained however, comes from the

  12. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  13. Simulating contemporary and preindustrial atmospheric chemistry and aerosol radiative forcing in the Southeast Pacific (Invited)

    NASA Astrophysics Data System (ADS)

    Spak, S.; Mena-Carrasco, M.; Carmichael, G. R.

    2010-12-01

    Accurately quantifying the aerosol burden and resultant radiative impacts over the Southeast Pacific presents a critical challenge in constraining the region's upper ocean heat budget and sea surface temperatures. Recent observations and preliminary modeling studies have found consistent aerosol transport above the region's extensive stratoculumus, indicating the need to consider aerosol composition and direct radiative effects in addition to indirect effects on clouds. We simulate regional chemical transport of aerosols and trace gases during VOCALS REx, identifying contributions from coastal anthropogenic emissions, biogenic emissions, biomass burning, and long-range transport to aerosol mass and composition. We evaluate a new emissions inventory through comparison with in-situ observations. Spatial and temporal variability in transport from these varied emissions sources provide insights into land-ocean-atmosphere coupling. We will compare aerosol radiative forcing under present day and preindustrial emissions rates.

  14. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing

    SciTech Connect

    Ghan, Steven J.

    2013-10-09

    Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

  15. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-01

    Aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ɛ, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ɛ increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitional regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ɛ further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.

  16. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  17. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  18. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  19. Influence of urban aerosol pollution to radiative forcing

    NASA Astrophysics Data System (ADS)

    Nemuc, Anca; Stefan, Sabina; Talianu, Camelia L.

    2007-10-01

    Daily PM10 concentrations of samples collected at two sites, urban and rural from Romania have been used to estimate the aerosol direct radiative forcing. Using OPAC (Optical Properties of Aerosols and Cloud) model we determined the single scattering albedo, the aerosol optical depth and aerosol up-scatter fraction, aerosol's properties needed to estimate the magnitude and sign of direct aerosol radiative forcing. The surface albedo was assumed 0.2 for the urban site and 0.06 for the rural site for all wavelengths. For aerosol scale height we used 1km in winter and 2 km in the summer to calculate the optical depth of the boundary layer. Statistical analysis of the PM10 concentration for both sites show clear seasonal cycle with maxima in the winter. As a consequence of urban atmospheric pollution the radiative forcing for urban site appears strongly modified in comparison with rural site.

  20. Ground Based Remote Sensing of the First Aerosol Indirect Effect: An Update

    NASA Astrophysics Data System (ADS)

    Previdi, M.; Feingold, G.; Veron, D. E.; Eberhard, W. L.

    2003-12-01

    The first aerosol indirect effect can be defined as an increase in the shortwave albedo of clouds due to higher concentrations of atmospheric aerosol, whereby the aerosol acts as cloud condensation nuclei to produce increased cloud droplet concentrations and smaller, more reflective droplets. The current work is one step toward achieving a more complete understanding of the indirect effect, which will consequently allow for a better determination of how changes in cloud induced by aerosol may affect the radiation budget and thus the climate. We utilize a series of continuous ground-based measurements from the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) program to investigate the indirect effect. Days that exhibit ice-free, single layered, nonprecipitating clouds are analyzed, with the indirect effect quantified as the relative change in cloud droplet effective radius for a relative change in aerosol extinction (under conditions of equivalent cloud liquid water path). Several cases from the first six years of our analysis (1998-2003) are described here, and probable reasons for the differences in the cloud response to aerosol among the cases are discussed.

  1. Sulfate aerosol nucleation, primary emissions, and cloud radiative forcing in the aerosol- climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Quaas, J.; Kinne, S.; Rast, S.; Stier, P.; Feichter, J.

    2008-12-01

    Aerosol nucleation from the gas phase is a major source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei and consequently of cloud droplets. Nucleation can therefore act upon cloud radiative properties, cloud lifetimes, and precipitation rates via the first and second indirect aerosol effect. However, freshly nucleated particles measure a few nanometers in diameter, and need to grow to sizes of tens of nanometers in order to participate in atmospherically relevant processes. Depending on the availability of condensable molecules, this process may proceed on time scales between minutes to days. Concurrently, the aerosol particles that formed from the gas phase compete with aerosol particles emitted from the surface for condensable material. Therefore, cloud radiative properties, cloud lifetimes, and precipitation rates will depend to various degrees on aerosol nucleation rates and on the individual nucleation pathways. We have implemented a scheme describing the formation of new particles from the gas phase based on laboratory thermochemical data for neutral and charged nucleation of sulfuric acid and water into the aerosol-climate model ECHAM5-HAM. Here we discuss the role of new particle formation from the gas phase for cloud radiative properties and the contributions of the considered nucleation pathways as well as of particulate sulfate emissions. Our simulations show that sulfate aerosol nucleation plays an important role for cloud radiative forcing, in particular over the oceans and in the southern hemisphere. A comparison of the simulated cloud radiative forcing with satellite observations shows the best agreement when both neutral and charged nucleation proceed, with neutral nucleation playing a minor role in the current model version. In contrast, switching off nucleation leads to a systematic bias of the results away from the observations, indicating an important role of aerosol nucleation in the

  2. Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5

    SciTech Connect

    Kooperman, G. J.; Pritchard, M. S.; Ghan, Steven J.; Wang, Minghuai; Somerville, Richard C.; Russell, Lynn

    2012-12-11

    Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e. multi-scale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.54 ± 0.02 W/m2 and -1.63 ± 0.17 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world’s area in which a statistically significant aerosol indirect effect can be detected (68% and 25% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean aerosol indirect radiative forcing estimates of -0.80 W/m2 and -0.56 W/m2, respectively. The one-year nudged results compare well with previous estimates from three-year free-running simulations (-0.77 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional parameterizations.

  3. Characterization of Speciated Aerosol Direct Radiative Forcing Over California

    SciTech Connect

    Zhao, Chun; Leung, Lai-Yung R.; Easter, Richard C.; Hand, Jenny; Avise, J.

    2013-03-16

    A fully coupled meteorology-chemistry model (WRF-Chem) with added capability of diagnosing the spatial and seasonal distribution of radiative forcings for individual aerosol species over California is used to characterize the radiative forcing of speciated aerosols in California. Model simulations for the year of 2005 are evaluated with various observations including meteorological data from California Irrigation Management Information System (CIMIS), aerosol mass concentrations from US EPA Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE), and aerosol optical depth from AErosol RObotic NETwork (AERONET) and satellites. The model well captures the observed seasonal meteorological conditions over California. Overall, the simulation is able to reproduce the observed spatial and seasonal distribution of mass concentration of total PM2.5 and the relative contribution from individual aerosol species, except the model significantly underestimates the surface concentrations of organic matter (OM) and elemental carbon (EC), potentially due to uncertainty in the anthropogenic emissions of OM and EC and the outdated secondary organic aerosol mechanism used in the model. A sensitivity simulation with anthropogenic EC emission doubled significantly reduces the model low bias of EC. The simulation reveals high anthropogenic aerosol loading over the Central Valley and the Los Angeles metropolitan regions and high natural aerosol (dust) loading over southeastern California. The seasonality of aerosol surface concentration is mainly determined by vertical turbulent mixing, ventilation, and photochemical activity, with distinct characteristics for individual aerosol species and between urban and rural areas. The simulations show that anthropogenic aerosols dominate the aerosol optical depth (AOD). The ratio of AOD to AAOD (aerosol absorption optical depth) shows distinct seasonality with a winter maximum and a summer minimum

  4. The relationship between aerosol model uncertainty and radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Carslaw, Ken; Lee, Lindsay; Reddington, Carly

    2016-04-01

    There has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated aerosol-cloud forcing between pre-industrial and present day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the pre-industrial aerosol state. But the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are "equally acceptable" compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty, but this hides a range of very different aerosol models. These multiple so-called "equifinal" model variants predict a wide range of forcings. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  5. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  6. Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India

    NASA Technical Reports Server (NTRS)

    Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg

    2013-01-01

    Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic

  7. Aerosol Indirect Effects on Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Adams, A.; Toohey, D. W.; Anderson, J.; Shank, L.; Howell, S.; Clarke, A. D.; Wood, R.

    2009-12-01

    The southeast Pacific Ocean is covered by the world’s largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. Anthropogenic sources of aerosol particles such as smelters, power plants and urban pollution are expected to impact properties of the eastern portion of the stratocumulus deck. During the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field experiment, aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer, an aerosol mass spectrometer, and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and about forty individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud aerosol and droplet number concentration generally decreased from near shore to offshore. This applied for particles larger than 0.05 and 0.1 µm in diameter, but not for total particles larger than 0.01 µm diameter. This suggests pollution contributed aged accumulation-mode aerosols to the stratocumulus layer, but fresher nuclei-mode particles were generated from other sources as well. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Aerosol number concentration in the >0.05 and >0.1 µm size range was correlated with droplet number concentration, and anti-correlated with droplet effective radius. These variables were especially well correlated on individual flights with near constant liquid water content (LWC), but were also statistically significant for the data set as a whole. When data were stratified into different LWC

  8. Strategy to use the Terra Aerosol Information to Derive the Global Aerosol Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: - From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. - Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. - Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  9. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    SciTech Connect

    Koch, D

    2011-09-21

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  10. Estimating the Radiative Forcing of Carbonaceous Aerosols over California based on Satellite and Ground Observations

    SciTech Connect

    Xu, Yangyang; Bahadur, R.; Zhao, Chun; Leung, Lai-Yung R.

    2013-10-04

    Carbonaceous aerosols have the potential to impact climate both through directly absorbing incoming solar radiation, and by indirectly affecting the cloud layer. To quantify this impact recent modeling studies have made great efforts to simulate both the spatial and temporal distribution of carbonaceous aerosols and their associated radiative forcing. This study makes the first observationally constrained assessment of the direct radiative forcing of carbonaceous aerosols at a regional scale over California. By exploiting multiple observations (including ground sites and satellites), we constructed the distribution of aerosol optical depths and aerosol absorption optical depths over California for a ten-year period (2000-2010). The total solar absorption was then partitioned into contributions from elemental carbon (EC), organic carbon (OC) and dust aerosols using a newly developed scheme. Aerosol absorption optical depth due to carbonaceous aerosols (EC and OC) at 440 nm is 50%-200% larger than natural dust, with EC contributing the bulk (70%-90%). Observationally constrained EC absorption agrees reasonably well with estimates from regional transport models, but the model underestimates the OC AAOD by at least 50%. We estimate that the TOA warming from carbonaceous aerosols is 0.7 W/m2 and the TOA forcing due to OC is close to zero. The atmospheric heating of carbonaceous aerosols is 2.2-2.9 W/m2, of which EC contributed about 80-90%. The atmospheric heating due to OC is estimated to be 0.1 to 0.4 W/m2, larger than model simulations. The surface brightening due to EC reduction over the last two decades is estimated to be 1.5-3.5 W/m2.

  11. CLouds, and Aerosols Radiative Impacts and Forcing: Year 2016 (CLARIFY-2016)

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Bellouin, N.; Carslaw, K. S.; Coe, H.; Field, P.; Highwood, E. J.; Redemann, J.; Stier, P.; Wood, R.; Zuidema, P.

    2013-12-01

    Strongly absorbing biomass burning aerosols (BBAs) exist above highly reflectant stratocumulus clouds in the SE Atlantic with implications on the direct (e.g. Haywood et al., 2003), semi-direct (e.g. Johnson et al., 2006), and indirect effect of aerosols, implications on the remote sensing of cloud optical properties, development of clouds and feedback processes. Here, we present an analysis of modelled estimates of the direct effect using twelve models from the AEROCOM project (Myhre et al., 2013) to show that estimates of the direct effect in SE Atlantic range from strongly negative to strongly positive. Furthermore, we evaluate the performance of the HadGEM2 model and show it cannot replicate the extreme values of positive forcing inferred from high spectral resolution satellite retrievals. By examining patterns of deposition, we infer that the indirect effect from biomass burning aerosols is very limited in the model, but without detailed measurements we are unsure of the validity of this inference. We conclude that the SE Atlantic is therefore of key importance in determining the radiative forcing of biomass burning aerosols and provides a very stringent test for global climate models as they need to accurately represent the geographic distribution of the aerosol optical depth, the wavelength dependent aerosol single scattering albedo, the vertical profile of the aerosol, the geographic distribution of the cloud, the cloud fraction, the cloud liquid water content, the cloud droplet effective radii, and the vertical profile of the cloud. These results are used as scientific rationale to justify a new measurement campaign: CLouds and Aerosol Radiative Impacts and Forcing: Year-2016 (CLARIFY-2016). Haywood, J.M., Osborne, S.R. Francis, P.N., Keil, A., Formenti, P., Andreae, M.O., and Kaye, P.H., The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res., 108

  12. Direct and indirect methods for correcting the aerosol effect on remote sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier

    1994-01-01

    Aspects of aerosol studies and remote sensing are reviewed. Aerosol scatters solar radiation before it reaches the surface and scatters and absorbs it again after it is reflected from the surface and before it reaches the satellite sensor. The effect is spectrally and spatially dependent. Therefore atmospheric aerosol (dust, smoke and air pollution particles) has a significant effect on remote sensing. Correction for the aerosol effect was never achieved on an operational basis though several case studies were demonstrated. Correction can be done in a direct way by deriving the aerosol loading from the image itself and correcting for it using the appropriate radiative transfer model or by an indirect way, by defining remote sensing functions that are less dependent on the aerosol loading. To some degree this was already achieved in global remote sensing of vegetation where a composite of several days of NDVI (Normalized Difference Vegetation Index) measurements, choosing the maximal value, was used instead of a single cloud screened value. The Atmospheric Resistant Vegetation Index (ARVI) introduced recently for the NASA Earth Observing System EOS-MODIS is the most appropriate example of indirect correction, where the index is defined in such a way that the atmospheric effect in the blue spectral channel cancels to a large degree the atmospheric in the red channel in computations of a vegetation index. Atmospheric corrections can also use aerosol climatology and ground based instrumentation.

  13. Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements

    SciTech Connect

    Chuang, C; Penner, J E; Kawamoto, K

    2002-03-08

    Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

  14. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  15. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  16. Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Liu, Qian; Wang, Tijian; Yin, Changqin; Li, Shu; Xie, Min; Jiang, Fei; Mao, Huiting

    2013-11-01

    A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg m-3, 8 mg m-2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and -0.95 W m-2, respectively, leading to a net RF of -0.15 W m-2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC's indirect effect. Further, the net effect of BC might cause a decrease of precipitation of -7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC's indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC's direct effect, while changes in surface air temperature and precipitation might be influenced by BC's indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.

  17. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-02-01

    suppress both the in-cloud supersaturation and the formation of cloud condensation nuclei from sulphate. These effects can be accounted for only in models with sufficiently detailed aerosol microphysics and physics-based parameterizations of cloud activation. However, due to a strong negative direct effect, the simulated effective radiative forcing (total radiative) effect was -0.2 W m-2. The simulated radiative effects of the primary marine organic emissions were small, with a~direct effect of 0.03 W m-2 and an indirect effect of -0.07 W m-2.

  18. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-11-01

    suppress both the in-cloud supersaturation and the formation of cloud condensation nuclei from sulfate. These effects can be accounted for only in models with sufficiently detailed aerosol microphysics and physics-based parameterizations of cloud activation. However, due to a strong negative direct effect, the simulated effective radiative forcing (total radiative) effect was -0.2 W m-2. The simulated radiative effects of the primary marine organic emissions were small, with a direct effect of 0.03 W m-2 and an indirect effect of -0.07 W m-2.

  19. Attribution of the United States “warming hole”: Aerosol indirect effect andprecipitable water vapor

    EPA Science Inventory

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and /or ice nuclei, thereby modifying cloud optical properties. Observations show a striking cooling trend in summertime daily maximum temperature (Tmax) in the central and...

  20. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    SciTech Connect

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary

  1. The Impact of a Laki-style Eruption on Cloud Drops, Indirect Radiative Forcing and Air Quality

    NASA Astrophysics Data System (ADS)

    Carslaw, K.; Schmidt, A.; Mann, G.; Pringle, K. J.; Forster, P.; Wilson, M.; Thordarson, T.

    2010-12-01

    We assess the impact of 1783-1784 Laki eruption on changes in cloud drop number concentrations and the aerosol indirect (cloud) radiative forcing using an advanced global aerosol microphysics model. We further extend these simulations to quantify the impact of a modern-day Laki on air quality. Our results suggest that the first aerosol indirect effect is of similar magnitude as the direct forcing calculated in previous assessments of the Laki eruption, but has a different spatial pattern. We estimate that northern hemisphere mean cloud drop concentrations in low-level clouds increased by a factor 2.7 in the 3 months after the onset of the eruption, with peak changes exceeding a factor 10. The calculated northern hemisphere mean aerosol indirect effect peaks at -5.2 W/m2 in the month after the eruption and remains larger than -2 W/m2 for 6 months. From our understanding of anthropogenic aerosol effects on modern-day clouds, the calculated changes in cloud drop concentrations after Laki are likely to have caused substantial changes in pecipitation and cloud dynamics. Our results also show that a modern-day Laki-style volcanic air pollution event would be a severe health hazard, increasing excess mortality in Europe on a scale that is at least comparable with excess mortality due to seasonal flu. Investigating the potential impact of such an eruption is crucial in order to inform policy makers and society about the potential impact of such an event so that precautionary measures can be taken.

  2. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGESBeta

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitionalmore » regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.« less

  3. Surface-based observation of aerosol indirect effect in the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Nzeffe, Fonya; Joseph, Everette; Min, Qilong

    2008-11-01

    A method for assessing the aerosol indirect effect based on back trajectory analysis and cloud and aerosol properties derived from a combination of observations from the Multifilter Rotating Shadow Band Radiometer and microwave radiometer at a newly established atmospheric measurement field station in the Baltimore-Washington corridor is reported in this article. Six months of aerosol and cloud optical depth data are segregated according to air mass history based on back trajectory analysis. Under stagnant and polluted conditions where air flow across the region is predominantly from west-southwest, aerosol optical depth is on average three to four times greater than in air masses that advect rapidly from north and east. When sorted by mean cloud liquid water path, cloud-droplet effective radius in polluted air masses is on average 0.9 μm smaller than that observed under more pristine conditions. Analysis is presented to confirm the statistical significance of this result.

  4. Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-06-17

    Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  5. Do diurnal aerosol changes affect daily average radiative forcing?

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Berg, Larry K.; Michalsky, Joseph; Lantz, Kathy; Hodges, Gary

    2013-06-01

    diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  6. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.

  7. Anomalies of the Asian Monsoon Induced by Aerosol Forcings

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.

    2004-01-01

    Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  8. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  9. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  10. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  11. Aerosols-cloud-climate -interactions in the Norwegian Earth System Model (NorESM). Importance of biogenic particles for cloud properties and anthropogenic indirect effect.

    NASA Astrophysics Data System (ADS)

    Seland, Ø.; Iversen, T.; Kirkevâg, A.

    2012-04-01

    According to the 4th assessment report of IPCC, major sources of uncertainty in anthropogenic climate change projections are inaccurate model description and weak knowledge of aerosols and their interactions with radiation and clouds, as well as the cloud feedback to radiative forcing. One important aspect of the associated uncertainty is the natural atmosphere. Anthropogenic climate change is an increment caused by anthropogenic emissions relative to the properties of the climate system untouched by man. This is crucial for the direct and indirect effects of aerosols, since the amount, size and physical properties of natural background particles strongly influence the same properties of the anthropogenic aerosol components. In many climate models where CDNC is calculated explicitly, CDNC is constrained by prescribing a lower bound below which calculated values are not allowed. This is done in order to keep the aerosol in-direct effect within estimated values. The rationale for using such a lower bound is to keep the aerosol radiative forcing constrained by the forcing of green-house gases and 20th century climate.We hypothesize this lower bound can be removed or made less strict by including aerosols of biogenic origin. We will present results and sensitivity studies from simulations with the NorESM where we have added contributions from organic carbon of natural origin both from vegetation and oceanic sources. By including aerosols of biogenic origin we obtain close to the median indirect radiative forcing reported by IPCC AR4, as well as reproducing the temperature increase in the 20th century. NorESM is based on the Earth system model CCSM4.0 from NCAR, but is using CAM4-Oslo instead of CAM4 as atmosphere model and an updated version of MICOM from the Bergen Climate Model (BCM) instead of the ocean model POP2. The aerosol module includes sea-salt, dust, sulphate, black carbon (BC) and particulate organic matter (OM). Primary aerosol size-distributions are

  12. Global Distribution of Cloud Droplet Number Concentration, Autoconversion Rate, and Aerosol Indirect Effect Under Diabatic Droplet Activation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Sotiropoulou, Rafaella; Nenes, Athanasios

    2011-01-01

    This study presents a global assessment of the sensitivity of droplet number to diabatic activation (i.e., including effects from entrainment of dry air) and its first-order tendency on indirect forcing and autoconversion. Simulations were carried out with the NASA Global Modeling Initiative (GMI) atmospheric and transport model using climatological metereorological fields derived from the former NASA Data Assimilation Office (DAO), the NASA Finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II (GISS) GCM. Cloud droplet number concentration (CDNC) is calculated using a physically based prognostic parameterization that explicitly includes entrainment effects on droplet formation. Diabatic activation results in lower CDNC, compared to adiabatic treatment of the process. The largest decrease in CDNC (by up to 75 percent) was found in the tropics and in zones of moderate CCN concentration. This leads to a global mean effective radius increase between 0.2-0.5 micrometers (up to 3.5 micrometers over the tropics), a global mean autoconversion rate increase by a factor of 1.1 to 1.7 (up to a factor of 4 in the tropics), and a 0.2-0.4 W m(exp -2) decrease in indirect forcing. The spatial patterns of entrainment effects on droplet activation tend to reduce biases in effective radius (particularly in the tropics) when compared to satellite retrievals. Considering the diabatic nature of ambient clouds, entrainment effects on CDNC need to be considered in GCM studies of the aerosol indirect effect.

  13. Indirect Radiative Warming Effect in the Winter and Spring Arctic Associated with Aerosol Pollution from Mid-latitude Regions

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Garrett, Timothy

    2016-04-01

    Different from global cooling effects of aerosols and aerosol-cloud interactions, anthropogenic aerosols from mid-latitude are found to play an increased warming effect in the Arctic in later winter and early spring. Using four-year (2000-2003) observation of aerosol, cloud and radiation at North Slope of Alaska, it is found that the aerosols can increase cloud droplet effective radius 3 um for fixed liquid water path, and increase cloud thermal emissivity about 0.05-0.08. In other words, aerosols are associated with a warming of 1-1.6 degrees (3-5 W/m2) in the Arctic during late winter and early spring solely due to their first indirect effect. Further analysis indicates that total aerosol climate effects are even more significant (8-10 W/m2), with about 50% contribution from aerosol first indirect effect and another 50% contribution from complicated feedbacks. It also shows strong seasonal distribution of the aerosol indirect radiative effects, with warming effects in seasons other than in summer. However, only the significant warming effect in winter and spring passes through the significance test. The strong warming effect due to aerosol indirect effect could be further strengthened through following feedbacks involving the surface albedo (early ice melting).

  14. Understanding the direct and indirect effects of Biomass Burning Aerosols over Southeast-East Asia by employing McRAS-AC in the GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    Lee, D.; Oreopoulos, L.; Sud, Y. C.; Kim, K.; Lau, W. K.; Kang, I.

    2013-12-01

    Biomass burning (BB) aerosols can potentially be important players in the monsoon system since they may either slow down the hydrological cycle via surface dimming (Ramanathan et al., 2005), or strengthen it via atmospheric heating (the ';Elevated Heat Pump' hypothesis, Lau et al. 2006). Moreover previous studies have reported the possibility that aerosol interaction with cloud microphysics (indirect effect) may be operating in conjunction with the direct effect to bring about significant perturbations during the pre-monsoon season. In this study we focus on the massive BB aerosol production over Southeast Asia during this part of the year spring, which can be transported to southern China, and affect regional precipitation by direct/indirect effects on the early phase of the monsoon, as suggested by observations. For the investigation of combined aerosol effects, GCM experiments are designed using the GEOS-5 AGCM equipped with McRAS-AC double moment cloud microphysics, interactive GOCART aerosols model, advanced RRTMG radiative transfer package RRTMG with Monte Carlo Independent Column Approximation modes, and CFMIP Observation Simulator Package (COSP). Analysis of GEOS-5 integrations with and without biomass burning emission allows us to identify the responses of clouds and precipitation to aerosol rather than dynamics, and meteorological field. Furthermore, valuable addition would be the separation of the relative importance of direct versus indirect effects is examined in experiments where the by turning off aerosol direct effect is turned off. Ramanathan et al. 2005, Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle, PNAS Lau et al. 2006, Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dyn.

  15. Anthropogenic Aerosol Radiative Forcing in Asia Derived From Regional Models With Atmospheric and Aerosol Data Assimilation

    SciTech Connect

    Chung, Chul Eddy; Ramanathan, V.; Carmichael, Gregory; Kulkarni, S.; Tang, Youhua; Adhikary, Bhupesh; Leung, Lai-Yung R.; Qian, Yun

    2010-07-05

    A high-resolution estimate of monthly 3D aerosol solar heating rates and surface solar fluxes in Asia from 2001 to 2004 is described here. This product stems from an Asian aerosol assimilation project, in which a) the PNNL regional model bounded by the NCEP reanalyses was used to provide meteorology, b) MODIS and AERONET data were integrated for aerosol observations, c) the Iowa aerosol/chemistry model STEM-2K1 used the PNNL meteorology and assimilated aerosol observations, and d) 3D (X-Y-Z) aerosol simulations from the STEM-2K1 were used in the Scripps Monte-Carlo Aerosol Cloud Radiation (MACR) model to produce total and anthropogenic aerosol direct solar forcing for average cloudy skies. The MACR model and STEM both used the PNNL model resolution of 0.45º×0.4º in the horizontal and of 23 layers in the troposphere. The 2001–2004 averaged anthropogenic all-sky aerosol forcing is -1.3 Wm-2 (TOA), +7.3 Wm-2 (atmosphere) and -8.6 Wm-2 (surface) averaged in Asia (60-138°E & Eq. -45°N). In the absence of AERONET SSA assimilation, absorbing aerosol concentration (especially BC aerosol) is much smaller, giving -2.3 Wm-2 (TOA), +4.5 Wm-2 (atmosphere) and -6.8 Wm-2 (surface), averaged in Asia. In the vertical, monthly forcing is mainly concentrated below 600hPa with maxima around 800hPa. Seasonally, low-level forcing is far larger in dry season than in wet season in South Asia, whereas the wet season forcing exceeds the dry season forcing in East Asia. The anthropogenic forcing in the present study is similar to that in Chung et al.’s [2005] in overall magnitude but the former offers fine-scale features and simulated vertical profiles. The interannual variability of the computed anthropogenic forcing is significant and extremely large over major emission outflow areas. In view of this, the present study’s estimate is within the implicated range of the 1999 INDOEX result. However, NCAR/CCSM3

  16. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  17. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying

  18. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  19. Aerosol types and radiative forcing estimates over East Asia

    NASA Astrophysics Data System (ADS)

    Bhawar, Rohini L.; Lee, Woo-Seop; Rahul, P. R. C.

    2016-09-01

    Using the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data sets along with the CSIRO-MK 3.6.0 model simulations, we analyzed the aerosol optical depth (AOD) variability during March-May (MAM), June-August (JJA) along with their annual mean variability over East Asia for the period 2006-2012. The CALIPSO measurements correlated well with the MODIS measurements and the CSIRO-MK 3.6.0 model simulations over the spatial distribution patterns of the aerosols, but CALIPSO underestimated the magnitudes of the AOD. Maximum smoke aerosol loading is observed to occur during JJA, as a result of wind transport from Southern China while dust loading dominated during MAM via the transport from desert region. The vertical distribution profiles revealed that there is uniform distribution of smoke aerosols during both MAM and JJA, only differing at the altitude at which they peak; while the dust aerosols during MAM showed a significant distribution from the surface to 10 km altitude and JJA was marked with lower dust loading at the same altitudes. Both dust and smoke aerosols warm the atmosphere in MAM but due to the absorbing nature of smoke aerosols, they cause considerable cooling at the surface which is double when compared to the dust aerosols. The top of the atmosphere aerosol radiative forcing (ARF) due to smoke and dust aerosols is positive in MAM which indicates warming over East Asia. During MAM a consistent declining trend of the surface ARF due to smoke aerosols persisted over the last three decades as conspicuously evidenced from model analysis; the decline is ∼10 W/m2 from 1980 to 2012.

  20. Use of ARM Mobile Facility (AMF) Data to Study Aerosol Indirect Effects in China

    SciTech Connect

    Li, Zhanqing

    2012-12-19

    General goals: 1) Facilitating the deployment of the ARM Mobile Facility (AMF) and Ancillary Facility (AAF) in China in 2008, 2) Processing, retrieving, improving and analyzing observation data from ground-based, air-borne and space-borne instruments; 3) Conducting a series of studies to gain insights into the direct and indirect effects of these aerosols on radiation, clouds, and precipitation using both

  1. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2014-10-01

    and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a~largely overlooked and important anthropogenic aerosol effect on regional climates.

  2. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-07-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.32 ± 0.01 W m-2 to -0.07 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  3. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-03-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.07 ± 0.01 W m-2 to -0.32 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  4. Remote Sensing of Aerosol and their Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine A.

    1999-01-01

    Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the

  5. Evaluation of Aerosol Direct Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Laulainen, Nels S.; Easter, Richard C.; Wagener, Richard; Nemesure, Seth; Chapman, Elaine G.; Zhang, Yang; Leung, Lai-Yung R.

    2001-04-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements for the aerosol components that have been measured. The simulated frequency of relative humidity near 100% is about twice that of European Center for Medium-range Weather Forecasts analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for. Simulated optical depths are low over sites in Brazil during the biomass burning season and over sites in central Canada during the wildfire season, which can be attributed to limitations in the organic and black car bon emissions data used by MIRAGE. The simulated aerosol optical depths are mostly within a factor of two of satellite estimates, but MIRAGE simulates excessively high aerosol optical depths off the east coast of the US and China, and too little dust off the coast of West Africa and in the Arabian Sea. The simulated distribution of single-scatter albedo is consistent with the available in situ surface measurements. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements where available. The simulated spatial distribution of aerosol radiance is broadly consistent with estimates from satellite measurements, but with the same errors as the aerosol optical depth. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  6. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  7. Evaluation of aerosol direct radiative forcing in MIRAGE

    NASA Astrophysics Data System (ADS)

    Ghan, Steven; Laulainen, Nels; Easter, Richard; Wagener, Richard; Nemesure, Seth; Chapman, Elaine; Zhang, Yang; Leung, Ruby

    2001-03-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchange (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements, and the growth of aerosol extinction with relative humidity in MIRAGE simulations agrees with field measurements. The simulated frequency of relative humidity near 100% is about twice that of analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for, but simulated optical depths are too low over Brazil and central Canada. Simulated optical depths are mostly within a factor of 2 of satellite estimates, but are too high off the east coasts of the United States and China and too low off the coast of West Africa and in the Arabian Sea. The simulated single-scatter albedo is consistent with surface measurements. MIRAGE correctly simulates a larger Ångström exponent near regions with emissions of submicron particles and aerosol precursor gases, and a smaller exponent near regions with emissions of coarse particles. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  8. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2006-02-01

    Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination

  9. The Indian ocean experiment: aerosol forcing obtained from satellite data

    NASA Astrophysics Data System (ADS)

    Rajeev, K.; Ramanathan, V.

    The tropical Indian Ocean provides an ideal and unique natural laboratory to observe and understand the role of anthropogenic aerosols in climate forcing. Since 1996, an international team of American, European and Indian scientists have been collecting aerosol, chemical and radiation data from ships and surface stations, which culminated in a multi-platform field experiment conducted during January to March of 1999. A persistent haze layer that spread over most of the northern Indian Ocean during wintertime was discovered. The layer, a complex mix of organics, black carbon, sulfates, nitrates and other species, subjects the lower atmosphere to a strong radiative heating and a larger reduction in the solar heating of the ocean. We present here the regional distribution of aerosols and the resulting clear sky aerosol radiative forcing at top-of-atmosphere (TOA) observed over the Indian Ocean during the winter months of 1997, 1998 and 1999 based on the aerosol optical depth (AOD) estimated using NOAA14-AVHRR and the TOA radiation budget data from CERES on board TRMM. Using the ratio of surface to TOA clear sky aerosol radiative forcing observed during the same period over the Indian Ocean island of Kaashidhoo (Satheesh and Ramanathan, 2000), the clear sky aerosol radiative forcing at the surface and the atmosphere are discussed. The regional maps of AVHRR derived AOD show abnormally large aerosol concentration during the winter of 1999 which is about 1.5 to 2 times larger than the AOD during the corresponding period of 1997 and 1998. A large latitudinal gradient in AOD is observed during all the three years of observation, with maximum AOD in the northern hemisphere. The diurnal mean clear sky aerosol forcing at TOA in the northern hemisphere Indian Ocean is in the range of -4 to -16 Wm -2 and had large spatio-temporal variations while in the southern hemisphere Indian Ocean it is in the range of 0 to -6Wm -2. The importance of integrating in-situ data with satellite

  10. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100

    NASA Astrophysics Data System (ADS)

    Szopa, Sophie; Balkanski, Y.; Schulz, M.; Bekki, S.; Cugnet, D.; Fortems-Cheiney, A.; Turquety, S.; Cozic, A.; Déandreis, C.; Hauglustaine, D.; Idelkadi, A.; Lathière, J.; Lefevre, F.; Marchand, M.; Vuolo, R.; Yan, N.; Dufresne, J.-L.

    2013-05-01

    Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at -0.15 W m-2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m-2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with -0.34 and -0.28 W m-2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative

  11. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  12. Aerosol radiative forcing in the European Skynet Radiometers network

    NASA Astrophysics Data System (ADS)

    Estelles, V.; Campanelli, M.; Expósito, F. J.; Utrillas, M. P.; Díaz, J. P.; Martínez-Lozano, J. A.

    2012-04-01

    The influence of the atmospheric aerosols is one of the most important factors of the Earth climate system and, despite of our present understanding have increased in last years, they are still one of the largest unknown variables. In fact, recently, the total anthropogenic radiative effect on global scale was estimated to be +1.6 (-1.0 to +0.8) Wm-2, of which -0.5 (±0.4) Wm-2 are associated to the direct radiative forcing of the atmospheric aerosols. In order to reduce the current uncertainties of the direct aerosol forcing it is important to accurately determine the aerosol effect by combining modeling techniques with experimental radiation and aerosol measurements. To model the radiative effect of the aerosols, atmospheric radiative transfer models are applied, such as SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer), GAME (Global Atmospheric Model), MODTRAN (Moderate resolution atmospheric Transmission) and RSTAR. With these models, the direct aerosol radiative forcing at ground and top of atmosphere levels is estimated as the difference between the energy flux for an atmosphere with/without aerosols. To estimate the accuracy of the models, the modeled global, diffuse and direct solar radiation at ground level is compared with experimental measurements. To characterize the aerosol properties, sun-sky radiometric measurements at ground level are also needed, usually from systems such as Cimel CE318 or Prede POM. In last years, a good amount of such studies have been performed for different areas of the world. One of the most promising efforts comes from the AERONET (Aerosol Robotic Network). AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol database globally available. García et al. (2008) already validated the AERONET direct aerosol forcing methodology with solar radiation measurements from the SolRad-Net (Solar Radiation Network) and BSRN (Baseline Solar Ratiation Network) for

  13. A review of measurement-based assessment of aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2005-08-01

    Aerosols affect the Earth's energy budget ''directly'' by scattering and absorbing radiation and ''indirectly'' by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Here we assess the aerosol optical depth, direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical thickness (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21% is contributed by human activities, as determined by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOT of 0.23 over global land with an uncertainty of ~20% or ± 0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error) over global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and

  14. Seasonal variation of atmospheric aerosols and its impact on aerosol radiation forcing over Delhi

    NASA Astrophysics Data System (ADS)

    Singh, S.; Srivastava, M. K.; Bano, T.; Nath, S.; Tanwar, R. S.; Singh, R.

    Seasonal variability in suspended particulate matter concentration optical properties of aerosol and radiation flux have been studied for Delhi station India using long-term data that comprised of ground based and satellite-borne observations Ground based measurements were taken by a hand-held portable spectrometer MICROTOPS II Solar Light Co Inc USA operating at central wavelengths 340 500 675 870 and 1020 nms FWHM pm 2-10 nm The global radiation flux was measured using the CM-21 pyranometer Kipp and Zonen Germany for wavelength range 305-2800 nm The flux for 290-320 nm wavelength range was measured using UV-Biometer Solar Light Co Inc USA The seasonal change in radiative forcing due to seasonal variability in number density and character of the aerosols is done using Santa Barbara Discrete Ordinate Radiation Transfer model SBDART Since the chemical character of the dominating aerosols for different season was not readily available an estimation of the aerosol composition was done using Optical Properties of Aerosols and Cloud OPAC model The output of the OPAC model gives the required parameters for the estimation of radiation forcing by SBDART These include single scattering albedo and asymmetry parameter Initial results reveal three specific seasonal characteristics of aerosols pre-monsoon post monsoon and the winter excluding monsoon period when data is highly irregular due to predominantly cloudy conditions and heavy downpour During pre-monsoon high aerosol optical depth AOD and near zero often

  15. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  16. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-Phase II exercise

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela

    2014-05-01

    The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological

  17. Cloud-resolving modelling of aerosol indirect effects in idealised radiative-convective equilibrium with interactive and fixed sea surface temperature

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M. F.; Yang, C.-E.

    2013-04-01

    The study attempts to evaluate the aerosol indirect effects over tropical oceans in regions of deep convection applying a three-dimensional cloud-resolving model run over a doubly-periodic domain. The Tropics are modelled using a radiative-convective equilibrium idealisation when the radiation, turbulence, cloud microphysics and surface fluxes are explicitly represented while the effects of large-scale circulation are ignored. The aerosol effects are modelled by varying the number concentration of cloud condensation nuclei (CCN) at 1% supersaturation, which serves as a proxy for the aerosol amount in the environment, over a wide range, from pristine maritime (50 cm-3) to polluted (1000 cm-3) conditions. No direct effects of aerosol on radiation are included. Two sets of simulations have been run: fixed (non-interactive) sea surface temperature (SST) and interactive SST as predicted by a simple slab-ocean model responding to the surface radiative fluxes and surface enthalpy flux. Both sets of experiments agree on the tendency of increased aerosol concentrations to make the shortwave cloud forcing more negative and reduce the longwave cloud forcing in response to increasing CCN concentration. These, in turn, tend to cool the SST in interactive-SST case. It is interesting that the absolute change of the SST and most other bulk quantities depends only on relative change of CCN concentration; that is, same SST change can be the result of doubling CCN concentration regardless of clean or polluted conditions. It is found that the 10-fold increase of CCN concentration can cool the SST by as much as 1.5 K. This is quite comparable to 2.1-2.3 K SST warming obtained in a simulation for clean maritime conditions, but doubled CO2 concentration. Assuming the aerosol concentration has increased from preindustrial time by 30%, the radiative forcing due to indirect aerosol effects is estimated to be -0.3 W m-2. It is found that the indirect aerosol effect is dominated by the first

  18. Evaluation of cloud microphysical schemes on aerosol indirect effects from different scale models

    NASA Astrophysics Data System (ADS)

    Shiu, C. J.; Chen, Y. H.; Hashino, T.; Tsai, I. C.; Chen, W. T.; Chen, J. P.; Hsu, H. H.

    2014-12-01

    Quantification of aerosol indirect effects in climate modeling remain unresolved and of large uncertainties. The complicated aerosol-cloud-precipitation interactions in climate model are suggested to be quite sensitive to some tunable microphysical parameters such as the threshold radius associated with autoconversion of cloud droplets to rain droplets. More fundamental studies regarding to different microphysical processes used in various cloud microphysical schemes should be devoted, evaluated and investigated. In this study, we apply a synergy of different scale models with the same cloud and aerosol microphysical schemes (Chen and Liu, 2004; Cheng et al., 2007; and Chen et al., 2013) to understand and evaluate how cloud microphysical processes can be influenced by different microphysical schemes and their interaction with aerosols and radiation. These models include Kinematic Driver (KiD), Single Column Model of Community Atmosphere Model (SCAM), Large Eddy Simulation (LES), and NCAR CESM model. Simulation results from these models will be further validated and compared to either field campaign or satellite observations depending on the scale of the models. Off-line satellite simulator approach (i.e. Joint-Simulator) will also be applied for evaluating cloud microphysics against CloudSat and CALIPSO. Such type of synergy of models can be very useful for improvement, development and evaluation of physical parameterizations for global climate prediction and weather forecast in the near future especially for processes related to cloud macrophysics and microphysics.

  19. Saharan Dust Aerosol Radiative Forcing Measured from Space.

    NASA Astrophysics Data System (ADS)

    Li, F.; Vogelmann, A. M.; Ramanathan, V.

    2004-07-01

    This study uses data collected from the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to determine Saharan dust broadband shortwave aerosol radiative forcing over the Atlantic Ocean near the African coast (15° 25°N, 45° 15°W). The clear-sky aerosol forcing is derived directly from these data, without requiring detailed information about the aerosol properties that are not routinely observed such as chemical composition, microphysical properties, and their height variations. To determine the diurnally averaged Saharan dust radiative forcing efficiency (i.e., broadband shortwave forcing per unit optical depth at 550 nm, W m-2 τ-1a), two extreme seasons are juxtaposed: the high-dust months [June August (JJA)] and the low-dust months [November January (NDJ)]. It is found that the top-of-atmosphere (TOA) diurnal mean forcing efficiency is -35 ± 3 W m-2 τ-1a for JJA, and -26 ± 3 W m-2 τ-1a for NDJ. These efficiencies can be fit by reducing the spectrally varying aerosol single-scattering albedo such that its value at 550 nm is reduced from 0.95 ± 0.04 for JJA to about 0.86 ± 0.04 for NDJ. The lower value for the low-dust months might be influenced by biomass-burning aerosols that were transported into the study region from equatorial Africa. Although the high-dust season has a greater (absolute value of the) TOA forcing efficiency, the low-dust season may have a greater surface forcing efficiency. Extrapolations based on model calculations suggest the surface forcing efficiencies to be about -65 W m-2 τ-1a for the high-dust season versus -81 W m-2 τ-1a for the low-dust season. These observations indicate that the aerosol character within a region can be readily modified, even immediately adjacent to a powerful source region such as the Sahara. This study provides important observational constraints for models of dust radiative forcing.


  20. Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO2 chemistry

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Evans, M. J.; Scott, C. E.; D'Andrea, S. D.; Farmer, D. K.; Swietlicki, E.; Spracklen, D. V.

    2013-03-01

    H2SO4 vapor is important for the nucleation of atmospheric aerosols and the growth of ultrafine particles to cloud condensation nuclei (CCN) sizes with important roles in the global aerosol budget and hence planetary radiative forcing. Recent studies have found that reactions of stabilized Criegee intermediates (CIs, formed from the ozonolysis of alkenes) with SO2 may be an important source of H2SO4 that has been missing from atmospheric aerosol models. For the first time in a global model, we investigate the impact of this new source of H2SO4 in the atmosphere. We use the chemical transport model, GEOS-Chem, with the online aerosol microphysics module, TOMAS, to estimate the possible impact of CIs on present-day H2SO4, CCN, and the cloud-albedo aerosol indirect effect (AIE). We extend the standard GEOS-Chem chemistry with CI-forming reactions (ozonolysis of isoprene, methyl vinyl ketone, methacrolein, propene, and monoterpenes) from the Master Chemical Mechanism. Using a fast rate constant for CI+SO2, we find that the addition of this chemistry increases the global production of H2SO4 by 4%. H2SO4 concentrations increase by over 100% in forested tropical boundary layers and by over 10-25% in forested NH boundary layers (up to 100% in July) due to CI+SO2 chemistry, but the change is generally negligible elsewhere. The predicted changes in CCN were strongly dampened to the CI+SO2 changes in H2SO4 in some regions: less than 15% in tropical forests and less than 2% in most mid-latitude locations. The global-mean CCN change was less than 1% both in the boundary layer and the free troposphere. The associated cloud-albedo AIE change was less than 0.03 W m-2. The model global sensitivity of CCN and the AIE to CI+SO2 chemistry is significantly (approximately one order-of-magnitude) smaller than the sensitivity of CCN and AIE to other uncertain model inputs, such as nucleation mechanisms, primary emissions, SOA (secondary organic aerosol) and deposition. Similarly

  1. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  2. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    SciTech Connect

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I

    2008-04-23

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced

  3. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I.

    2008-04-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

  4. Aerosol indirect effects from ground-based retrievals over the rain shadow region in Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Harikishan, G.; Padmakumari, B.; Maheskumar, R. S.; Pandithurai, G.; Min, Q. L.

    2016-03-01

    Aerosol-induced changes in cloud microphysical and radiative properties have been studied for the first time using ground-based and airborne observations over a semiarid rain shadow region. The study was conducted for nonprecipitating, ice-free clouds during monsoon (July to September) and postmonsoon (October) months, when cloud condensation nuclei (CCN) concentrations over the region of interest increased monotonically and exhibited characteristics of continental origin. A multifilter rotating shadowband radiometer and microwave radiometric profiler were used to retrieve the cloud optical depth and liquid water path (LWP), respectively, from which cloud effective radius (CER) was obtained. CER showed wide variability from 10-18 µm and a decreasing trend toward the postmonsoon period. During monsoon, the estimated first aerosol indirect effect (AIE) increased from 0.01 to 0.23 with increase in LWP. AIE at different super saturations (SS) showed maximum value (significant at 95%) at 0.4% SS and higher LWP bin (250-300 g/m2). Also, statistically significant AIE values were found at 0.6% and 0.8% SSs but at lower LWP bin (200-250 g/m2). The relationship between CCN and CER showed high correlation at 0.4% SS at higher LWP bin, while at higher SSs good correlations were observed at lower LWPs. Data combined from ground-based and aircraft observations showed dominance of microphysical effect at aerosol concentrations up to 1500 cm-3 and radiative effect at higher concentrations. This combined cloud microphysical and aerosol radiative effect is more prominent during postmonsoon period due to an increase in aerosol concentration.

  5. Aerosol and cloud forcing in the Indo-Gangetic plain

    NASA Astrophysics Data System (ADS)

    Dey, S.; Tripathi, S. N.

    2006-12-01

    Aerosol and cloud direct radiative forcings are investigated in the Indo-Gangetic plain (IGP) for a 5-year time period (Jan 2001-Dec 2005) using ground-based Aerosol Robotic Network (AERONET) and Moderate Resolution Imaging Spectroradiometer (MODIS) data for the first time. Aerosol optical properties (aerosol optical depth (AOD) spectra, single scattering albedo, SSA, asymmetry parameter) from AERONET along with cloud parameters (cloud optical depth, COD and cloud effective radius, Reff) derived from MODIS are incorporated in SBDART radiative transfer model to estimate the clear sky (FCLR) and cloudy-sky (FCLO) forcing for the whole time period in the shortwave (SW) and longwave (LW) regions at the top of the atmosphere (TOA) and surface (S). Whenever AERONET data are unavailable for the optical properties, we have used OPAC model to simulate SSA and g to fill in the data gaps. SW FCLR,TOA/S show strong seasonal variability with TOA forcing flipping to even positive sign in some months. In the winter season, although black carbon contributes to only 11% to the AOD, its contribution to the FCLR,S is 33%. Large difference between TOA and S forcing (>25 W m-2) leads to strong atmospheric heating in the region. Annual mean heating rate is ~0.9 K day-1 with highest value observed in the monsoon season, which could significantly affect the long-term regional hydrological cycle. The SW atmospheric heating is partly compensated by LW cooling in the winter season only, whereas in the other seasons, LW forcing adds to the atmospheric heating. Aerosols reduce surface-reaching solar radiation by 20-30% in the IGP. The variability of cloud parameters in the IGP is less as compared to that over oceans, but cloud fraction varies in a wide range (0.08-0.99) during the time period, which ultimately changes the TOA and S forcing significantly, particularly in the monsoon season. The detailed results of the aerosol and cloud radiative forcing and their implications in modifying the

  6. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect

    Phillips, Vaughan T. J.

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition

  7. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    , respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.

  8. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-11-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local

  9. Common summertime total cloud cover and aerosol optical depth weekly variabilities over Europe: Sign of the aerosol indirect effects?

    NASA Astrophysics Data System (ADS)

    Georgoulias, A. K.; Kourtidis, K. A.; Alexandri, G.; Rapsomanikis, S.; Sanchez-Lorenzo, A.

    2015-02-01

    In this study, the summer total cloud cover (TCC) weekly cycle over Europe is investigated using MODIS and ISCCP satellite data in conjunction with aerosol optical depth (AOD) MODIS data. Spatial weekly patterns are examined at a 1° × 1° (MODIS) and 250 × 250 km2 (ISCCP) resolution. Despite the noise in the TCC weekly cycle patterns, their large-scale features show similarities with the AOD550 patterns. Regions with a positive (higher values during midweek) weekly cycle appear over Central Europe, while a strong negative (higher values during weekend) weekly plume appears over the Iberian Peninsula and the North-Eastern Europe. The TCC weekly variability exhibits a very good agreement with the AOD550 weekly variability over Central, South-Western Europe and North-Eastern Europe and a moderate agreement for Central Mediterranean. The MODIS derived TCC weekly variability shows reasonable agreement with the independent ISCCP observations, thus supporting the credibility of the results. TCC and AOD550 correlations exhibit a strong slope for the total of the 6 regions investigated in this work with the slopes being higher for regions with common TCC-AOD550 weekly variabilities. The slope is much stronger for AOD550 values less than 0.2 for Central and South-Western Europe, in line with previous studies around the world. Possible scenarios that could explain the common weekly variability of aerosols and cloud cover through the aerosol indirect effects are discussed here also taking into account the weekly variability appearing in ECA&D E-OBS rainfall data.

  10. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    SciTech Connect

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.; Kosmopoulos, P. G.; Tripathi, S. N.; Misra, Amit; Sharma, M.; Singh, R. P.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may cause

  11. Investigation of Aerosol Indirect Effects on Simulated Flash-flood Heavy Rainfall over Korea

    SciTech Connect

    Lim, Kyo-Sun; Hong, Songyou

    2012-11-01

    This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed autoconversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5 % decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.

  12. Aerosol indirect effect during the aberrant Indian Summer Monsoon breaks of 2009

    NASA Astrophysics Data System (ADS)

    Manoj, M. G.; Devara, P. C. S.; Joseph, Susmitha; Sahai, A. K.

    2012-12-01

    The significant role of aerosol-cloud interaction during the large-scale drought producing breaks of 2009 Indian Summer Monsoon is investigated in the present paper. This mega drought had already been attributed to two long breaks, one in June and the other in July-August. While Central India (CI) and northern parts of the country experienced deficient rainfall, the rainfall over the southern Peninsular India (PI) remained close to normal. During the first break in June, which was associated with mid-latitude intrusion of dry air, the Twomey effect (positive aerosol indirect effect - AIE) was a dominant factor inhibiting efficient precipitation over CI region, as compared to that over PI. Moreover, the number of days that experienced significant (at 5% level of significance) positive AIE during the first break was more over CI compared to the same during the second break. The AIE on ice clouds was not as significant as that of the low-clouds. The resulting cloud properties during both break and active phases over CI differ significantly from that over PI for the corresponding periods. The positive AIE mentioned here is attributed to the large-scale deficit of moisture supply to the CI region due to dynamical reasons. However, it is shown that under ample availability of moisture, more aerosols could invigorate deep clouds over specific regions even during the break spells.

  13. Aerosol and ozone radiative forcing 1990-2015

    NASA Astrophysics Data System (ADS)

    Myhre, Cathrine Lund; Myhre, Gunnar; Samset, Bjørn H.; Schulz, Michael

    2016-04-01

    The regional changes in economic growth and pollution regulations have caused large changes in the geographical distribution of emissions of precursors and components affecting the radiation balance. Here we use recently updated emission data over the 1990-2015 period in eight global aerosol models to simulate aerosol and ozone changes and their radiative forcing. The models reproduce the general large-scale changes in aerosol and ozone changes over this period. The surface particle mass changes is simulated to 2-3 %/yr for the total fine particle concentration over main industrialized regions. Six models simulated changes in PM2.5 (particulate matter with aerodynamic diameters less 2.5 μm) over the 1990-2015 period. Observations of changes in PM2.5 are available for selected regions and time periods. The available PM2.5 trends from observations and model mean results are compared and for Europe the observed trend is 20% stronger than the model-mean over the 2000-2010 period. Over the 1990-2010 period the US observed changes are 13% lower than the simulated changes. Despite this relatively promising result, the agreement over US for the 2000-2010 period is poor. The reasons for this will be further explored. The forcing for ozone and aerosols increase over the 1990-2015 period and more positive relative to results in IPCC AR5. The main reason for a positive aerosol forcing over this period is explained by a substantial reduction of global mean SO2 emissions, in parallel with increasing black carbon emissions.

  14. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  15. Reconstruction of the Tambora forcing with global aerosol models : Challenges and limitations

    NASA Astrophysics Data System (ADS)

    Khodri, Myriam; Zanchettin, Davide; Timmreck, Claudia

    2016-04-01

    It is now generally recognised that volcanic eruptions have an important effect on climate variability from inter-annual to decadal timescales. For the largest tropical volcanic eruptions of the last millennium, simulated volcanic surface cooling derived from climate models often disagrees with the cooling seen in tree-ring-based proxies. Furthermore, cooling estimates from simulations show large uncertainties. Such disagreement can be related to several sources, including inconsistency of the currently available volcanic forcing datasets, unrealistic modelled volcanic forcing, insufficient representation of relevant climate processes, and different background climate states simulated at the time of the eruption. In particular, for eruptions that occurred before the observational period forcing characteristics related to the eruption magnitude and stratospheric aerosol properties are deduced from indirect evidences. So, while climatically relevant forcing properties for recent volcanic eruptions are relatively well constrained by direct observations, large uncertainties remain regarding processes of aerosol formation and evolution in the stratosphere after large tropical eruptions of the remote past. Several coordinated modelling assessments have been defined to frame future modeling activities and constrain the above-mentioned uncertainties. Among these, the sixth phase of the Coupled Model Intercomparison Project (CMIP6) has endorsed a multi-model assessment focused on the climatic response to strong volcanic eruptions (VolMIP). VolMIP defines a protocol for idealized volcanic-perturbation experiments to improve comparability among climate model results. Identification of a consensual volcanic forcing dataset for the 1815 Tambora eruption is a key step of VolMIP, as it is the largest-magnitude volcanic eruption of the past five centuries and reference for the VolMIP core experiments. Therefore, as a first key step, five current/state-of-the-art global aerosol

  16. Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity

    NASA Astrophysics Data System (ADS)

    Krall, G. M.; Cottom, W. R.

    2012-01-01

    aerosols resulted in large amounts of condensate being thrust into the storm anvil which weakened convective downdrafts and cold-pools, yet the system did show reductions in windspeed (although weaker) compared with the clean control run. This study suggests that ingestion of elevated amounts of CCN into a tropical cyclone (TC) can appreciably alter the intensity of the storm. This implies that intensity prediction of TCs would be improved by including indirect aerosol affects. However, the pollution aerosols have very little impact on the storm track.

  17. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  18. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  19. Matrix identity and tractional forces influence indirect cardiac reprogramming

    PubMed Central

    Kong, Yen P.; Carrion, Bita; Singh, Rahul K.; Putnam, Andrew J.

    2013-01-01

    Heart regeneration through in vivo cardiac reprogramming has been demonstrated as a possible regenerative strategy. While it has been reported that cardiac reprogramming in vivo is more efficient than in vitro, the influence of the extracellular microenvironment on cardiac reprogramming remains incompletely understood. This understanding is necessary to improve the efficiency of cardiac reprogramming in order to implement this strategy successfully. Here we have identified matrix identity and cell-generated tractional forces as key determinants of the dedifferentiation and differentiation stages during reprogramming. Cell proliferation, matrix mechanics, and matrix microstructure are also important, but play lesser roles. Our results suggest that the extracellular microenvironment can be optimized to enhance cardiac reprogramming. PMID:24326998

  20. QUantifying the Aerosol Direct and Indirect Effect over Eastern Mediterranean from Satellites (QUADIEEMS): Overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Zanis, Prodromos; Pöschl, Ulrich; Kourtidis, Konstantinos A.; Alexandri, Georgia; Ntogras, Christos; Marinou, Eleni; Amiridis, Vassilis

    2013-04-01

    An overview and preliminary results from the research implemented within the framework of QUADIEEMS project are presented. For the scopes of the project, satellite data from five sensors (MODIS aboard EOS TERRA, MODIS aboard EOS AQUA, TOMS aboard Earth Probe, OMI aboard EOS AURA and CALIOP aboard CALIPSO) are used in conjunction with meteorological data from ECMWF ERA-interim reanalysis and data from a global chemical-aerosol-transport model as well as simulation results from a regional climate model (RegCM4) coupled with a simplified aerosol scheme. QUADIEEMS focuses on Eastern Mediterranean [30oN-45No, 17.5oE-37.5oE], a region situated at the crossroad of different aerosol types and thus ideal for the investigation of the direct and indirect effects of various aerosol types at a high spatial resolution. The project consists of five components. First, raw data from various databases are acquired, analyzed and spatially homogenized with the outcome being a high resolution (0.1x0.1 degree) and a moderate resolution (1.0x1.0 degree) gridded dataset of aerosol and cloud optical properties. The marine, dust and anthropogenic fraction of aerosols over the region is quantified making use of the homogenized dataset. Regional climate model simulations with REGCM4/aerosol are also implemented for the greater European region for the period 2000-2010 at a resolution of 50 km. REGCM4's ability to simulate AOD550 over Europe is evaluated. The aerosol-cloud relationships, for sub-regions of Eastern Mediterranean characterized by the presence of predominant aerosol types, are examined. The aerosol-cloud relationships are also examined taking into account the relative position of aerosol and cloud layers as defined by CALIPSO observations. Within the final component of the project, results and data that emerged from all the previous components are used in satellite-based parameterizations in order to quantify the direct and indirect (first) radiative effect of the different

  1. Large radiative forcing efficiency of atmospheric aerosols over the Himalaya

    NASA Astrophysics Data System (ADS)

    Gasbarra, Daniele; di Sarra, Alcide; Meloni, Daniela; Bonasoni, Paolo; Di Biagio, Claudia; Gobbi, Gian Paolo; Marinoni, Angela; Pietro Verza, Gian; Vuillermoz, Elisa

    2014-05-01

    , it becomes relatively large during elevated aerosol cases. The radiative forcing efficiency (radiative effect produced by a unit aerosol optical depth) is significantly larger than at other sites worldwide, reaching values above 360 W/m2 at about 50° solar zenith angle. The maximum radiative effect is about -90±18 Wm-2 (for τ=0.25), corresponding to a reduction by more than 10% of the solar radiation at the surface. During these elevated aerosol events high concentrations of pollutants were measured: PM10 and PM 2.5 showed concentrations higher than 50 ng m-3, while the black carbon concentration reached 3000 ng m-3. The backtrajectory analysis for the elevated aerosol cases shows that the polluted airmasses observed at NCO-P come from Indo-Gangetic plain and Punjab, regions characterized by the highest industrial and demographic concentration of the Indian subcontinent.

  2. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  3. Method for Six-Legged Robot Stepping on Obstacles by Indirect Force Estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-04-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  4. QUantifying the Aerosol Direct and Indirect Effect over Eastern Mediterranean from Satellites (QUADIEEMS): Satellite, model and reanalysis data synergy

    NASA Astrophysics Data System (ADS)

    Georgoulias, A.; Zanis, P.; Poeschl, U.; Kourtidis, K.; Alexandri, G.; Dogras, C.; Marinou, E.; Amiridis, V.

    2013-12-01

    The research implemented within the QUADIEEMS project is presented here. Satellite data from five sensors (MODIS aboard EOS TERRA, MODIS aboard EOS AQUA, TOMS aboard Earth Probe, OMI aboard EOS AURA and CALIOP aboard CALIPSO) are combined with meteorological data from ECMWF ERA-interim reanalysis, aerosol data from a global chemical-aerosol-transport model (GOCART) and MACC reanalysis as well as simulation results from a regional climate model (RegCM4) coupled with a simplified aerosol scheme. QUADIEEMS focuses on Eastern Mediterranean [30N-45N, 17.5E-37.5E]. Various sources, like industry and transport, occasional Saharan dust intrusions, sea spray and agricultural fires in Southeastern and Eastern Europe as well as occasional fire events in the region, create an ideal environment for the investigation of the direct and indirect effects of various aerosol types. The acquired data were spatially homogenized resulting in a novel satellite-model-reanalysis high resolution (0.1x0.1 degree) dataset of aerosol and cloud optical properties. The relative contribution of marine, dust and anthropogenic aerosols to the total aerosol optical depth (AOD550) is quantified combining different parameters from our high resolution dataset. The same procedure is repeated at a moderate resolution (1.0x1.0 degree). Within QUADIEEMS, decadal REGCM4/aerosol regional climate model simulations are implemented for the greater European region at a resolution of 50 km. We evaluate the ability of REGCM4 to simulate AOD550 patterns. For different sub-regions of Eastern Mediterranean, the aerosol-cloud relationships are examined. The same procedure is repeated also taking into account the relative position of aerosol and cloud layers as defined by CALIPSO observations. Results and data from the first four components of the project are used in satellite-based parameterizations to quantify the direct and indirect (first) radiative effect of the different aerosol types at a resolution of 0.1x0

  5. Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Costantino, L.; Bréon, F.-M.

    2013-01-01

    In this study, we provide a comprehensive analysis of aerosol interaction with warm boundary layer clouds over the South-East Atlantic. We use aerosol and cloud parameters derived from MODIS observations, together with co-located CALIPSO estimates of the layer altitudes, to derive statistical relationships between aerosol concentration and cloud properties. The CALIPSO products are used to differentiate between cases of mixed cloud-aerosol layers from cases where the aerosol is located well-above the cloud top. This technique allows us to obtain more reliable estimates of the aerosol indirect effect than from simple relationships based on vertically integrated measurements of aerosol and cloud properties. Indeed, it permits us to somewhat distinguish the effects of aerosol and meteorology on the clouds, although it is not possible to fully ascertain the relative contribution of each on the derived statistics. Consistently with the results from previous studies, our statistics clearly show that aerosol affects cloud microphysics, decreasing the Cloud Droplet Radius (CDR). The same data indicate a concomitant strong decrease in cloud Liquid Water Path (LWP), which is inconsistent with the hypothesis of aerosol inhibition of precipitation (Albrecht, 1989). We hypothesise that the observed reduction in LWP is the consequence of dry air entrainment at cloud top. The combined effect of CDR decrease and LWP decrease leads to rather small sensitivity of the Cloud Optical Thickness (COT) to an increase in aerosol concentration. The analysis of MODIS-CALIPSO coincidences also evidences an aerosol enhancement of low cloud cover. Surprisingly, the Cloud Fraction (CLF) response to aerosol invigoration is much stronger when (absorbing) particles are located above cloud top than in cases of physical interaction. This result suggests a relevant aerosol radiative effect on low cloud occurrence: absorbing particles above the cloud top may heat the corresponding atmosphere layer

  6. Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Bréon, François-Marie

    2013-04-01

    In this study, we provide a comprehensive analysis of aerosol interaction with warm boundary layer clouds over the South-East Atlantic. We use aerosol and cloud parameters derived from MODIS observations, together with co-located CALIPSO estimates of the layer altitudes, to derive statistical relationships between aerosol concentration and cloud properties. The CALIPSO products are used to differentiate between cases of mixed cloud-aerosol layers from cases where the aerosol is located well-above the cloud top. This technique allows us to obtain more reliable estimates of the aerosol indirect effect than from simple relationships based on vertically integrated measurements of aerosol and cloud properties. Indeed, it permits us to somewhat distinguish the effects of aerosol and meteorology on the clouds, although it is not possible to fully ascertain the relative contribution of each on the derived statistics. Consistently with the results from previous studies, our statistics clearly show that aerosol affects cloud microphysics, decreasing the Cloud Droplet Radius (CDR). The same data indicate a concomitant strong decrease in cloud Liquid Water Path (LWP), which is inconsistent with the hypothesis of aerosol inhibition of precipitation (Albrecht, 1989). We hypothesise that the observed reduction in LWP is the consequence of dry air entrainment at cloud top. The combined effect of CDR decrease and LWP decrease leads to rather small sensitivity of the Cloud Optical Thickness (COT) to an increase in aerosol concentration. The analysis of MODIS-CALIPSO coincidences also evidences an aerosol enhancement of low cloud cover. Surprisingly, the Cloud Fraction (CLF) response to aerosol invigoration is much stronger when (absorbing) particles are located above cloud top than in cases of physical interaction. This result suggests a relevant aerosol radiative effect on low cloud occurrence: absorbing particles above the cloud top may heat the corresponding atmosphere layer

  7. Long-wave radiative forcing due to mineral dust aerosol

    NASA Astrophysics Data System (ADS)

    Gunn, L. N.; Collins, W.

    2010-12-01

    Radiative forcing due to aerosols has been identified by the IPCC as a major contributor to the total radiative forcing uncertainty budget. Optically thick plumes of dust and pollutants extending out from Africa and Asia can be lifted into the middle troposphere and often are transported over synoptic length scales. These events can decrease the upwelling long-wave fluxes at the top of the atmosphere, especially in the mid-infrared "window". Typically these effects have not been included in model simulations and the spectrally integrated effects of aerosols on the planetary long-wave energy budget have not employed satellite data to produce systematic global estimates. In this study we will show initial results for the quantitative determination of a global radiative forcing due to mineral dust calculated using A-train satellite instrument measurements from AIRS, TES, and MODIS. The initial results focus on localized dust outbreaks, over Australia, Africa and Asia, and describe the methods that will be implemented for the determination of a quantitative global radiative forcing estimate.

  8. Evidence for a Third aerosol Indirect Effect from Ship Tracks Observed by Calipso

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Stephens, G. L.

    2009-12-01

    Ship tracks are a phenomenon that provide a unique way of studying aerosol effects on clouds because the regions of clouds that are heavily contaminated by pollution can be separated from adjacent regions of clean clouds formed in a marine boundary layer. Ship tracks have been used to study the 1st indirect radiative effect (Twomey, 1974) and also the 2nd indirect effect (Albrecht, 1989) because they often persist while the surrounding unpolluted clouds dissipate. A 3rd indirect effect is the change to cloud geometrical depth associated with the reduced precipitation in polluted clouds (Pincus and Baker, 1995). Presented for the first time, the vertical structure of ship tracks are used to confirm the presence of this 3rd indirect effect. Using the Lidar from Calipso, high vertical resolution data of cloud top height along ship track cross sections were used to calculate differences in height between ship tracks and the clean clouds adjacent to them. Using MODIS imagery to locate ship tracks collocated to the Calipso orbital track, over 100 ship track vertical profiles were used in the analysis. In addition, atmospheric stability was assessed for each ship track using temperature and moisture data from the ECMWF-AUX product collocated to the Calipso orbit. Height differences between ship tracks and unpolluted clouds were found to be strongly correlated with cloud cover fraction, dew point depression above cloud top, and lower tropospheric static stability. Ship tracks were most often observed to be elevated above the surrounding clouds by approximately 100 - 200 meters when the cloud cover fraction was below 90% and capped by a weak temperature inversion. Ship tracks were not elevated above the surrounding clouds when either cloud cover fraction was high, the stability was high, or the air above the clouds was dry. Since mean cloud top heights were about 650 m, ship tracks in partly cloudy regions were often elevated above the surrounding clouds by ~15-30%. The

  9. Aerosol Radiative Forcing over North India during Pre-Monsoon Season using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Misra, A.; Kumar, K.; Michael, M.; Tripathi, S. N.

    2013-12-01

    Study of aerosols is important for a fair understanding of the Earth climate system. This requires knowledge of the physical, chemical, optical, and morphological properties of aerosols. Aerosol radiative forcing provides information on the effect of aerosols on the Earth radiation budget. Radiative forcing estimates using model data provide an opportunity to examine the contribution of individual aerosol species to overall radiative forcing. We have used Weather Research and Forecast with Online Chemistry (WRF-Chem) derived aerosol concentration data to compute aerosol radiative forcing over north India during pre-monsoon season of 2008, 2009, and 2010. WRF-Chem derived mass concentrations are converted to number concentrations using standard procedure. Optical Properties of Aerosol and Cloud (OPAC) software package is used to compute extinction and scattering coefficients, and asymmetry parameter. Computations are performed at different altitudes and the obtained values are integrated to get the column optical properties. Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model is used to calculate the radiative forcing at surface and top-of-atmosphere. Higher values of aerosol radiative forcing are observed over desert region in western Indian state of Rajasthan, and Punjab of Pakistan. Contribution of individual aerosol species to atmospheric radiative forcing is also assessed. Dust radiative forcing is high over western India. Radiative forcing due to BC and water-soluble (WASO) aerosols are higher over north-west Indian states of Punjab and Haryana, and the Indo-Gangetic Basin. A pool of high WASO optical depth and radiative forcing is observed over the Indo-Bangladesh border. The findings of aerosol optical depth and radiative forcing are consistent with the geography and prevailing aerosol climatology of various regions. Heating rate profiles due to total aerosols and only due to BC have been evaluated at selected stations in north India. They show

  10. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1993-01-01

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. (1992) are discussed.

  11. EVALUATION OF ACOUSTIC FORCES ON A PARTICLE IN AEROSOL MEDIUM

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    The acoustic force exerted on a solid particle was evaluated to develop a fundamental understanding of the critical physical parameters or constraints affecting particle motion and capture in a collecting device. The application of an acoustic force to the collection of a range of submicron-to-micron particles in a highly turbulent airflow stream laden with solid particles was evaluated in the presence of other assisting and competing forces. This scoping estimate was based on the primary acoustic force acting directly on particles in a dilute aerosol system, neglecting secondary interparticle effects such as agglomeration of the sub-micron particles. A simplified analysis assuming a stable acoustic equilibrium with an infinite sound speed in the solid shows that for a solid-laden air flow in the presence of a standing wave, particles will move toward the nearest node. The results also show that the turbulent drag force on a 1-{micro}m particle resulting from eddy motion is dominant when compared with the electrostatic force or the ultrasonic acoustic force. At least 180 dB acoustic pressure level at 1 MHz is required for the acoustic force to be comparable to the electrostatic or turbulent drag forces in a high-speed air stream. It is noted that particle size and pressure amplitude are dominant parameters for the acoustic force. When acoustic pressure level becomes very large, the acoustic energy will heat up the surrounding air medium, which may cause air to expand. With an acoustic power of about 600 watts applied to a 2000-lpm air flow, the air temperature can increase by as much as 15 C at the exit of the collector.

  12. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Park, Rokjin J.; Kim, Minjoong J.; Jeong, Jaein I.; Youn, Daeok; Kim, Sangwoo

    2010-04-01

    Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to -2.4 W m -2 and 0.24 W m -2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is -0.43 W m -2 and 0.05 W m -2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (-2.2 W m -2 and 0.33 W m -2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.

  13. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  14. On the contribution of black carbon to the composite aerosol radiative forcing over an urban environment

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Dipu, S.; Lee, Dong-In

    2010-08-01

    This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm -2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m -3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm -2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2-6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.

  15. Extensive closed cell marine stratocumulus downwind of Europe—A large aerosol cloud mediated radiative effect or forcing?

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Rosenfeld, Daniel

    2015-06-01

    Marine stratocumulus clouds (MSC) cover large areas over the oceans and possess super sensitivity of their cloud radiative effect to changes in aerosol concentrations. Aerosols can cause transitions between regimes of fully cloudy closed cells and open cells. The possible role of aerosols in cloud cover has a big impact on the amount of reflected solar radiation from the clouds, thus potentially constitutes very large aerosol indirect radiative effect, which can exceed 100 Wm-2. It is hypothesized that continentally polluted clouds remain in closed cells regime for longer time from leaving continent and hence for longer distance away from land, thus occupying larger ocean areas with full cloud cover. Attributing this to anthropogenic aerosols would imply a very large negative radiative forcing with a significant climate impact. This possibility is confirmed by analyzing a detailed case study based on geostationary and polar-orbiting satellite observations of the microphysical and dynamical evolution of MSC. We show that large area of closed cells was formed over the northeast Atlantic Ocean downwind of Europe in a continentally polluted air mass. The closed cells undergo cleansing process that was tracked for 3.5 days that resulted with a rapid transition from closed to open cells once the clouds started drizzling heavily. The mechanism leading to the eventual breakup of the clouds due to both meteorological and aerosol considerations is elucidated. We termed this cleansing and cloud breakup process maritimization. Further study is needed to assess the climatological significance of such situations.

  16. Radiative forcing of organic aerosol in the atmosphere and on snow: incorporation of SOA and brown carbon

    NASA Astrophysics Data System (ADS)

    Lin, G.; Flanner, M.; Penner, J. E.

    2013-12-01

    Organic aerosols (OA) play an important role in climate change through their radiative forcing. Secondary organic aerosol (SOA) contributes a large portion of total organic aerosol, especially in remote regions. Organic aerosol has been shown to be an important source of solar-light absorption. However, very few global model calculations of the radiative forcing due to organic aerosol include SOA or the light-absorbing part of OA (brown carbon). Here, we use a global chemical transport model with a detailed SOA formation mechanism to investigate the change in SOA between present day and pre-industrial conditions. We employ a radiative transfer model to assess the radiative forcing associated with the change in SOA. We also reassess the radiative forcing of total OA by considering previously neglected brown carbon. In addition to the OA in the atmosphere, we examine for the first time the radiative forcing of OA deposited in snow and sea-ice by using the NCAR Community Land Model 4 (CLM4) for the land snow simulation and the Community Ice CodE 4 (CICE) for the sea-ice simulation. Anthropogenic emissions of NOx, CO, sulfate, biomass burning and fossil fuel organic aerosol are shown to influence the formation rate of SOA substantially, causing it to increase by 35 Tg/yr (41%) since pre-industrial times. The increase of SOA results in a direct forcing ranging from -0.12 to -0.34 Wm-2 and a first indirect forcing in warm phase clouds ranging from -0.24 to -0.32 Wm-2, with the range due to different assumed size distributions for SOA and different refractive indices. The global burden of primary organic aerosol (POA) is estimated to increase by 0.53 Tg since pre-industrial times. Based on different refractive indices assumed for brown carbon, the increase of POA leads to a direct forcing varying from -0.07 to -0.12 Wm-2. The change in total OA exerts a direct radiative forcing ranging from -0.17 to -0.46 Wm-2. Atmospheric absorption from brown carbon ranges from +0.13 to

  17. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Xie, Shang-Ping; Tokinaga, Hiroki; Liu, Qinyu; Kosaka, Yu

    2016-04-01

    Anthropogenic aerosols are a major driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

  18. Can satellite-derived aerosol optical depth quantify the surface aerosol radiative forcing?

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Ceamanos, Xavier; Roujean, Jean-Louis; Carrer, Dominique; Xue, Yong

    2014-12-01

    Aerosols play an important role in the climate of the Earth through aerosol radiative forcing (ARF). Nowadays, aerosol particles are detected, quantified and monitored by remote sensing techniques using low Earth orbit (LEO) and geostationary (GEO) satellites. In the present article, the use of satellite-derived AOD (aerosol optical depth) products is investigated in order to quantify on a daily basis the ARF at the surface level (SARF). By daily basis we mean that an average SARF value is computed every day based upon the available AOD satellite measurements for each station. In the first part of the study, the performance of four state-of-art different AOD products (MODIS-DT, MODIS-DB, MISR, and SEVIRI) is assessed through comparison against ground-based AOD measurements from 24 AERONET stations located in Europe and Africa during a 6-month period. While all AOD products are found to be comparable in terms of measured value (RMSE of 0.1 for low and average AOD values), a higher number of AOD estimates is made available by GEO satellites due to their enhanced frequency of scan. Experiments show a general lower agreement of AOD estimates over the African sites (RMSE of 0.2), which show the highest aerosol concentrations along with the occurrence of dust aerosols, coarse particles, and bright surfaces. In the second part of this study, the lessons learned about the confidence in aerosol burden derived from satellites are used to estimate SARF under clear sky conditions. While the use of AOD products issued from GEO observations like SEVIRI brings improvement in the SARF estimates with regard to LEO-based AOD products, the resulting absolute bias (13 W/m2 in average when AERONET AOD is used as reference) is judged to be still high in comparison with the average values of SARF found in this study (from - 25 W/m2 to - 43 W/m2) and also in the literature (from - 10 W/m2 to - 47 W/m2).

  19. On the relationship between aerosol model uncertainty and radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Lee, Lindsay A.; Reddington, Carly L.; Carslaw, Kenneth S.

    2016-05-01

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model‑observation agreement could give a misleading impression of model robustness.

  20. On the relationship between aerosol model uncertainty and radiative forcing uncertainty.

    PubMed

    Lee, Lindsay A; Reddington, Carly L; Carslaw, Kenneth S

    2016-05-24

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple "equifinal" models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness. PMID:26848136

  1. On the relationship between aerosol model uncertainty and radiative forcing uncertainty

    PubMed Central

    Reddington, Carly L.; Carslaw, Kenneth S.

    2016-01-01

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model−observation agreement could give a misleading impression of model robustness. PMID:26848136

  2. An analysis of lift forces on aerosols in a wall bounded turbulent shear flow

    SciTech Connect

    Cherukat, P.; McLaughlin, J.B.

    1992-12-31

    This paper describes work that will lead to a better understanding of the role of lift forces in the deposition of aerosols on the walls bounding a turbulent shear flow. After providing some background information about aerosol trajectories that has been obtained from computer simulations, new results for the lift force in the relevant parameter ranges are presented.

  3. An analysis of lift forces on aerosols in a wall bounded turbulent shear flow

    SciTech Connect

    Cherukat, P.; McLaughlin, J.B.

    1992-01-01

    This paper describes work that will lead to a better understanding of the role of lift forces in the deposition of aerosols on the walls bounding a turbulent shear flow. After providing some background information about aerosol trajectories that has been obtained from computer simulations, new results for the lift force in the relevant parameter ranges are presented.

  4. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China

    DOE Data Explorer

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  5. Sensitivity of dust emissions to aerosol feedback and the impact of dust loading on climate forcing with varied resolutions using FIM-Chem

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Grell, Georg; Henze, Daven; Mckeen, Stuart; Sun, Shan; Li, Haiqin

    2016-04-01

    Meteorological conditions directly impact aerosol loading, especially dust emissions. Variations in dust emissions on the other hand, will also impact meteorology and climate through direct and indirect aerosol forcing. To study these impacts in more detail we use the global Flow-following finite-volume Icosahedra Model (FIM, http://fim.noaa.gov/), a new global weather prediction model currently under development in the Global Systems Division of NOAA/ESRL, as it is coupled online with the aerosol modules from the Goddard Gobal Ozone Chemistry Aerosol Radiation and Transport (GOCART) model (FIM-Chem). FIM-Chem includes direct and semi direct feedback, and uses the dust schemes of GOCART and the Air Force Weather Agency (AFWA). FIM-Chem is able to investigate the contribution of climate feedbacks to simulated hyperspectral data by considering a range of simulations with different dust emissions and different levels of aerosol feedbacks enabled at four different spatial resolutions. The emitted dust flux and total emissions are highly depending on the wind, soil moisture and model resolution. We compare the dust emissions by including and excluding the aerosol radiative feedback in the simulations to quantify the sensitivity of dust emissions to aerosol feedback. The results show that all aerosol-induced dust emissions increase about 10% globally, which is mainly dominated by the contributions of anthropogenic black carbon (EC) aerosol. While the dust-induced percentage changes of dust emissions are about -5.5%, that indicates reduction effect globally. Also, the simulations based on different resolutions of 240x240 km, 120x120 km, 60x60 km and 30x30 km are performed to test the impacts of model resolution on total dust emissions. By comparing the dust emission sensitivity to aerosol feedback and model resolution, we can estimate the uncertainty of model resolution versus aerosol feedback. We also conduct FIM-Chem simulations to investigate the sensitivity of dust

  6. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; Halthore, R. N.; Haywood, J. M.; Iversen, T.; Kato, S.; Kinne, S.; Kirkevag, A.; Knapp, K. R.; Lacis, A.; Laszlo, I.; Mishchenko, M. I.

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  7. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Naik, V.; Horowitz, L. W.; Liu, J.; Mauzerall, D. L.

    2008-12-01

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct and indirect effects, SO42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing. Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to radiative forcing in 2000 and 2030. In 2000, we estimate these aerosols cause 385,320 premature deaths in China and an additional 18 240 globally. In 2030, aggressive emission controls lead to a reduction in premature deaths to 200,370 in China and 7,740 elsewhere, while under a high emissions scenario premature deaths would increase to 602,950 in China and to 29,750 elsewhere. Because the negative radiative forcing from SO42- and OC is larger than the positive forcing from BC, the Chinese aerosols lead to global net direct radiative forcing of -74 mW m-2 in 2000 and between -15 and -97 mW m-2 in 2030 based on the emissions scenario. Our analysis suggests that environmental policies that simultaneously improve public health and mitigate climate change would be highly beneficial (eg. reductions in BC emissions).

  8. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR and CERES Observations on Terra

    NASA Technical Reports Server (NTRS)

    Zhang, Jiang-Long; Christopher, Sundar A.

    2003-01-01

    Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.

  9. The indirect measurement of biomechanical forces in the moving human body

    NASA Astrophysics Data System (ADS)

    Cluss, Melanie; Laws, Kenneth; Martin, Natalie; Nowicki, T. Scott; Mira, Allan

    2006-02-01

    Inexpensive experimental techniques now exist for indirectly measuring forces within the moving human body. These techniques involve nontrivial applications of basic physical principles, have practical uses, and are appropriate for undergraduate experimentation. A two-dimensional video motion analysis is used to find the accelerations of various parts of the body, and anatomical geometry is used to determine specific biomechanical forces and torques. The simple movement of a dancer landing from a vertical jump is analyzed through the use of a theoretical model of the leg to find the forces in the tendons attached to the knee. It is shown that these forces can be sufficiently large to lead to injury if jumps are performed repetitively.

  10. Signatures of semi-direct radiative forcing by absorbing aerosols in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Hosseinpour, F.; Colarco, P. R.

    2014-12-01

    Semi-direct radiative forcing of climate occurs when interactions between aerosols and radiative fluxes in the atmosphere yield a dynamical response in clouds. Semi-direct forcing is typically thought to be a positive radiative forcing whereby soot and biomass burning aerosols absorb sunlight and burn-off clouds. However, a negative semi-direct forcing is suspected in at least two regimes, the summertime Southeast Atlantic Ocean and the wintertime North Indian Ocean, where the heating profile by aerosol absorption by solar radiation is elevated above the elevation of the low clouds. Here we use a combination of satellite data and a model simulation to further characterize the signature of semi-direct radiative forcing in these two locations and elsewhere on the globe. We apply CERES albedos, Calipso profiles of aerosol extinction and cloud-top altitude, and a simulation with the Goddard Earth Observing System Model version 5 (GEOS-5) Earth system model with meteorology constrained by MERRA and an assimilation of MODIS AOT (MERRAero). to quantify the vertical heating profile by aerosols under clear and cloudy skies. We seek to determine: (1) where aerosol heating by soot and biomass burning aerosol is occurring; (2) where vertically in the column the heating is occurring relative to the observed level of low cloud development; and (3) whether the variations of albedo with aerosol forcing suggest a positive, negative, or inconclusive semi-direct radiative forcing.

  11. An indirect method to assess wrist ligament forces with particular regard to the effect of preconditioning.

    PubMed

    Savelberg, H H; Kooloos, J G; Huiskes, R; Kauer, J M

    1993-11-01

    A method has been developed to calculate the forces that are developed in the ligaments of a joint specimen during motions. This indirect method is needed since direct measurements fail in the case of small ligaments. As an example the small ligaments of the carpal joint are considered. The rationale of the method is that the force generated in a ligament depends on the amount of strain to which it is subjected and on its material characteristics. In the method presented the lengths of the ligaments are determined in vitro at several joint positions by means of röntgenstereophotogrammetry. The zero-force length and the force-elongation relationship are determined on the same ligaments isolated in a materials testing machine. Over a considerable part of the strain range the measurement errors are relatively small compared to the forces determined, less than 10%. The method is applicable to joints in situations where other measuring methods cannot be used. The present analysis shows, however, that the force values determined are susceptible to preconditioning of the ligaments. In preconditioned ligaments the forces could be up to 50% lower than in the non-preconditioned situation. This suggests that ligament forces may vary considerably in vivo, depending on the extent of preconditioning provoked by a particular function. PMID:8262996

  12. Global Radiative Forcing of Coupled Tropospheric Ozone and Aerosols in a Unified General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.; Adams, Peter J.; Mickley, Loretta J.

    2008-01-01

    Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II', that simulates coupled tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled gas-aerosol unified GCM allows one to evaluate the extent to which global burdens, radiative forcing, and eventually climate feedbacks of ozone and aerosols are influenced by gas-aerosol chemical interactions. Estimated present-day global burdens of sea salt and mineral dust are 6.93 and 18.1 Tg with lifetimes of 0.4 and 3.9 days, respectively. The GCM is applied to estimate current top of atmosphere (TOA) and surface radiative forcing by tropospheric ozone and all natural and anthropogenic aerosol components. The global annual mean value of the radiative forcing by tropospheric ozone is estimated to be +0.53 W m(sup -2) at TOA and +0.07 W m(sup -2) at the Earth's surface. Global, annual average TOA and surface radiative forcing by all aerosols are estimated as -0.72 and -4.04 W m(sup -2), respectively. While the predicted highest aerosol cooling and heating at TOA are -10 and +12 W m(sup -2) respectively, surface forcing can reach values as high as -30 W m(sup -2), mainly caused by the absorption by black carbon, mineral dust, and OC. We also estimate the effects of chemistry-aerosol coupling on forcing estimates based on currently available understanding of heterogeneous reactions on aerosols. Through altering the burdens of sulfate, nitrate, and ozone, heterogeneous reactions are predicted to change the global mean TOA forcing of aerosols by 17% and influence global mean TOA forcing of tropospheric ozone by 15%.

  13. Long-term variations in the South Asian monsoon annual cycle: the role of regional anthropogenic aerosol forcing

    NASA Astrophysics Data System (ADS)

    Bollasina, Massimo; Ming, Yi

    2013-04-01

    Detection and attribution of long-term variations of the South Asian monsoon is of extreme importance. Indeed, even small changes in the onset and duration of the monsoon season or in the spatial distribution of the seasonal mean precipitation may severely impact agriculture, health, water availability, ecosystems, and economy for a substantial fraction of the world's population. In the past decades emissions of aerosols have dramatically increased over South Asia due to rapid urbanization and population growth. As a result, the study of the impact of anthropogenic aerosols on the monsoon has recently emerged as one of the topics of highest priority in the scientific community. This study makes use of a state-of-the-art coupled climate model, the GFDL CM3, to investigate two aspects of the aerosol influence on the 20th-century changes in the monsoon. The model has fully-interactive aerosols and a representation of both direct and indirect effects. Aerosols are responsible for the advancement of the monsoon onset over India, leading, in agreement with observations, to enhanced precipitation in June over most parts of the subcontinent. Our experiments show that the earlier onset is preceded in early spring by a strong aerosol forcing over the Bay of Bengal and Indonesia and associated atmospheric circulation anomalies. The latter triggers thermodynamical changes over the northwestern part of the Subcontinent in May and June, including enhanced surface heating, which in turn drive the movement of the monsoon to the west. We also performed historical experiments with time-evolving radiative forcings aimed at isolating the contribution of regional versus remote anthropogenic aerosol emissions on the observed 20th century widespread drying of the Indian monsoon. Indian-only aerosol sources are found to play a predominant role in generating suppressed rainfall over the subcontinent, especially during early summer. Remote aerosols contribute, although in a minor way, to

  14. Aerosol radiative forcing over land: effect of surface and cloud reflection

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.

    2002-12-01

    It is now clearly understood that atmospheric aerosols have a significant impact on climate due to their important role in modifying the incoming solar and outgoing infrared radiation. The question of whether aerosol cools (negative forcing) or warms (positive forcing) the planet depends on the relative dominance of absorbing aerosols. Recent investigations over the tropical Indian Ocean have shown that, irrespective of the comparatively small percentage contribution in optical depth ( ~ 11%), soot has an important role in the overall radiative forcing. However, when the amount of absorbing aerosols such as soot are significant, aerosol optical depth and chemical composition are not the only determinants of aerosol climate effects, but the altitude of the aerosol layer and the altitude and type of clouds are also important. In this paper, the aerosol forcing in the presence of clouds and the effect of different surface types (ocean, soil, vegetation, and different combinations of soil and vegetation) are examined based on model simulations, demonstrating that aerosol forcing changes sign from negative (cooling) to positive (warming) when reflection from below (either due to land or clouds) is high.

  15. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  16. Observational Constraint of Aerosol Effects on the CMIP5 Inter-model Spread of Adjusted Forcings

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wennberg, P. O.; Jiang, J. H.; Su, H.; Bordoni, S.

    2013-12-01

    The simulated global-mean temperature (GMT) change over the past 150 years is quite consistent across CMIP5 climate models and also consistent with the observations. However, the predicted future GMT under the identical CO2 forcing is divergent. This paradox is partly due to the errors in the predicted GMT produced by historical greenhouse gas (GHG) forcing being compensated by the parameterization of aerosol cloud radiative forcing. Historical increases in anthropogenic aerosols exert an overall (but highly uncertain) cooling effect in the climate system, which partially offsets the warming due to well mixed greenhouse gases (WMGHGs). Because aerosol concentrations are predicted to eventually decrease in future scenarios, climate change becomes dominated by warming due to the WMGHG. This change in the relative importance of forcing by aerosol versus WMGHG makes apparent the substantial differences in prediction of climate by WMGHG forcing. Here we investigate the role of aerosols in the context of adjusted forcing changes in the historical runs and the effect of aerosols on the cloud feedback. Our preliminary results suggest that models which are more sensitive to the increase in concentration of CO2 have a larger aerosol radiative cooling effect. By comparing the historicalMisc runs and historicalGHG runs, we find that aerosols exert a potential impact on the cloud adjusted forcings, especially shortwave cloud adjusted forcings. We use the CLIPSO, MISR and CERES data as the benchmark to evaluate the present aerosol simulations. Using satellite observations to assess the relative reliability of the different model responses and to constrain the simulated aerosol radiative forcing will contribute significantly to reducing the across model spread in future climate simulations and identifying some missing physical processes.

  17. Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans.

    PubMed

    Haywood; Ramaswamy; Soden

    1999-02-26

    Tropospheric aerosols affect the radiative forcing of Earth's climate, but their variable concentrations complicate an understanding of their global influence. Model-based estimates of aerosol distributions helped reveal spatial patterns indicative of the presence of tropospheric aerosols in the satellite-observed clear-sky solar radiation budget over the world's oceans. The results show that, although geographical signatures due to both natural and anthropogenic aerosols are manifest in the satellite observations, the naturally occurring sea-salt is the leading aerosol contributor to the global-mean clear-sky radiation balance over oceans. PMID:10037595

  18. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  19. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  20. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  1. Mechanisms for indirect effects from aerosol pollution on mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Phillips, Vaughan

    2015-04-01

    Aerosol pollution can have various effects on mixed-phase clouds. They can alter coalescence and raindrop-freezing for droplet activation by CCN aerosols. They can alter aggregation of ice crystals and snow formation. This can alter the lifetime of mixed-phase clouds, as well as the reflectivity for solar radiation. Simulations of observed cases of mixed-phase clouds have been performed to examine the mechanisms for effects from aerosol pollution on them. Such mechanisms are discussed in the presentation.

  2. Different responses of Sea Surface Temperature in the North Pacific to greenhouse gas and aerosol forcing

    NASA Astrophysics Data System (ADS)

    Wang, Liyi; Liu, Qinyu

    2015-12-01

    The responses of Sea Surface Temperature (SST) to greenhouse gas (GHG) and anthropogenic aerosol in the North Pacific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). During 1860-2005, the effect of GHG forcing on the North Pacific SST is opposite to that of the aerosol forcing. Specifically, the aerosol cooling effect exceeds the GHG warming effect in the Kuroshio Extension (KE) region during 1950-2004 in the CM3 single forcing. The mid-latitude response of ocean circulation to the GHG (aerosol) forcing is to enhance (weaken) the Subtropical Gyre. Then the SST warming (cooling) lies on the zonal band of 40°N because of the increased (reduced) KE warm advection effect in the GHG (aerosol) forcing simulations, and the cooling effect to SST will surpass the warming effect in the KE region in the historical all-forcing simulations. Besides, the positive feedback between cold SST and cloud can also strengthen the aerosol cooling effect in the KE region during boreal summer, when the mixed layer depth is shallow. In the GHG (aerosol) forcing simulations, corresponding to warming (cooling) SST in the KE region, the weakened (enhanced) Aleutian Low appears in the Northeast Pacific. Consequently, the SST responses to all-forcing in the historical simulations are similar to the responses to aerosol forcing in sign and spatial pattern, hence the aerosol effect is quite important to the SST cooling in the mid-latitude North Pacific during the past 55 years.

  3. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2001-01-01

    Global simulations of the composition of and direct forcing due to aerosols containing natural and/or anthropogenic sulfate, nitrate, chloride, carbonate, ammonium, sodium, calcium, magnesium, potassium, black carbon, organic matter, silica, ferrous oxide, and aluminum oxide were carried out. Chloride and natural sulfate were found to be the most important natural aerosol constituents in the atmosphere in terms of solar plus thermal-infrared forcing. Sea spray was the most important natural aerosol type, indicating that it should be accounted for in weather and climate calculations. Ammonium was found to have a positive direct forcing, since it reduces water uptake in sulfate-containing solutions; thus, anthropogenic ammonium contributes to global warming. The magnitudes of ammonium and nitrate forcing were smaller than those of chloride or sulfate forcing. When organics were divided into three groups with different assumed UV absorption characteristics, total aerosol direct forcing at the tropopause increased by about +0.03 to +0.05 W m-2 (direct forcing by organics remained negative), suggesting that UV absorption by organics is a nontrivial component of the global energy balance. Gypsum [CaSO4-2H2O], sal ammoniac [NH4Cl], halite [NaCl], halite, and nitrum [KNO3] were estimated to be the most common sulfate-, ammonium-, sodium-, chloride-, and nitrate-containing solid-phase aerosol constituents, respectively, in the global atmosphere. Solid formation in aerosols was found to increase total-aerosol direct forcing by +0.03 to +0.05 W m-2. Spatial and vertical forcing estimates, sensitivities of forcing to relative humidity and concentration, and estimates of global aerosol liquid water content are given. Modeled aerosol optical properties are compared with satellite and field measurements.

  4. How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

  5. Vertical profiles of aerosol radiative forcing - a comparison of AEROCOM phase 2 model submissions

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.

    2012-04-01

    Aerosols in the earth's atmosphere affect the radiation balance of the planet. The radiative forcing (RF) induced by a given aerosol burden is however sensitive to its vertical density profile, in addition to aerosol optical properties, cloud distributions and surface albedo. Differences in vertical profiles are thought to be among the causes for the large intermodel differences in RF of the aerosol direct effect. As part of the AEROCOM phase 2 direct radiative forcing experiment, this study compares 3D concentration fields of black carbon from fossil fuel burning (BC) and sulphate (SO4) from a set of major global climate models. The participating models were run using a prescribed set of emissions of aerosol and aerosol precursors and the same meteorological year. We assume that model differences due to the aerosol vertical profile can be factored out from other differences such as aerosol physics, radiative transfer or ground albedo. We consequently analyse model RF variability using profiles of normalized RF (radiative forcing per unit mass, NDRF) calculated from a single model. This tool allows us to quantify the fraction of the intermodel variability due to differences in aerosol vertical profiles. We show that there are still significant differences between both modelled vertical density profiles, treatment of aerosol physics and other factors influencing the RF profiles.

  6. Asian Monsoon Changes and the Role of Aerosol and Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    Ting, M.; Li, X.

    2015-12-01

    Changes in Asian summer (June to August) monsoon in response to aerosol and greenhouse gas forcing are examined using observations and the Coupled Model Intercomparison Project - Phase 5 (CMIP5) multi-model, multi-realization ensemble. Results show that during the historical period, CMIP5 models show a predominantly drying trend in Asian monsoon, while in the 21st Century under representative concentration pathway 8.5 (rcp8.5) scenario, monsoon rainfall enhances across the entire Asian domain. The thermodynamic and dynamic mechanisms causing the changes are evaluated using the moisture budget analysis. The drying trend in the CMIP5 historical simulations and the wetting trend in the rcp8.5 projections can be explained by the relative importance of dynamical and thermodynamical contributions to the total moisture convergence. While thermodynamic mechanism dominates in the future, the historical rainfall changes are dominated by the changes in circulation. The relative contributions of aerosols and greenhouse gases (GHGs) on the historical monsoon change are further examined using CMIP5 single-forcing simulations. Rainfall reduces under aerosol forcing and increases under greenhouse gas (GHG) forcing. Aerosol forcing dominates over the greenhouse effect during the historical period, leading to the general drying trend in the all-forcing simulations. While the thermodynamic change of mean moisture convergence in the all-forcing case is dominated by the GHG forcing, the dynamic change in mean moisture convergence in the all-forcing case is dominated by the aerosol forcing. Further analysis using atmospheric GCM with prescribed aerosol and GHG radiative forcing versus those with the prescribed sea surface temperature (SST) warming suggests that the weak circulation changes due to GHG forcing is a result of the cancellation between CO2 radiative forcing and the SST warming, while aerosol radiative effect tends to enhance the circulation response due to SST forcing.

  7. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally-based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the US East coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically-resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical profiles of the aerosols are of the order of -36 W/sq m at the top of the atmosphere and about -56 W/sq m at the surface for both case studies.

  8. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.

  9. Final Report for “Simulating the Arctic Winter Longwave Indirect Effects. A New Parameterization for Frost Flower Aerosol Salt Emissions” (DESC0006679) for 9/15/2011 through 9/14/2015

    SciTech Connect

    Russell, Lynn M.; Somerville, Richard C.J.; Burrows, Susannah; Rasch, Phil

    2015-12-12

    Description of the Project: This project has improved the aerosol formulation in a global climate model by using innovative new field and laboratory observations to develop and implement a novel wind-driven sea ice aerosol flux parameterization. This work fills a critical gap in the understanding of clouds, aerosol, and radiation in polar regions by addressing one of the largest missing particle sources in aerosol-climate modeling. Recent measurements of Arctic organic and inorganic aerosol indicate that the largest source of natural aerosol during the Arctic winter is emitted from crystal structures, known as frost flowers, formed on a newly frozen sea ice surface [Shaw et al., 2010]. We have implemented the new parameterization in an updated climate model making it the first capable of investigating how polar natural aerosol-cloud indirect effects relate to this important and previously unrecognized sea ice source. The parameterization is constrained by Arctic ARM in situ cloud and radiation data. The modified climate model has been used to quantify the potential pan-Arctic radiative forcing and aerosol indirect effects due to this missing source. This research supported the work of one postdoc (Li Xu) for two years and contributed to the training and research of an undergraduate student. This research allowed us to establish a collaboration between SIO and PNNL in order to contribute the frost flower parameterization to the new ACME model. One peer-reviewed publications has already resulted from this work, and a manuscript for a second publication has been completed. Additional publications from the PNNL collaboration are expected to follow.

  10. Response of North Pacific eastern subtropical mode water to greenhouse gas versus aerosol forcing

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Luo, Yiyong

    2016-04-01

    Mode water is a distinct water mass characterized by a near vertical homogeneous layer or low potential vorticity, and is considered essential for understanding ocean climate variability. Based on the output of GFDL CM3, this study investigates the response of eastern subtropical mode water (ESTMW) in the North Pacific to two different single forcings: greenhouse gases (GHGs) and aerosol. Under GHG forcing, ESTMW is produced on lighter isopycnal surfaces and is decreased in volume. Under aerosol forcing, in sharp contrast, it is produced on denser isopycnal surfaces and is increased in volume. The main reason for the opposite response is because surface ocean-to-atmosphere latent heat flux change over the ESTMW formation region shoals the mixed layer and thus weakens the lateral induction under GHG forcing, but deepens the mixed layer and thus strengthens the lateral induction under aerosol forcing. In addition, local wind changes are also favorable to the opposite response of ESTMW production to GHG versus aerosol.

  11. Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation

    NASA Astrophysics Data System (ADS)

    Liu, X.; Easter, R. C.; Ghan, S. J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, F.; Conley, A.; Park, S.; Neale, R.; Hannay, C.; Ekman, A. M. L.; Hess, P.; Mahowald, N.; Collins, W.; Iacono, M. J.; Bretherton, C. S.; Flanner, M. G.; Mitchell, D.

    2011-12-01

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical

  12. Possible Influence of Anthropogenic Aerosols on Cirrus Clouds and Anthropogenic Forcing

    SciTech Connect

    Penner, Joyce E.; Chen, Yang; Wang, Minghuai; Liu, Xiaohong

    2009-02-03

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth’s area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We find that fossil fuel and biomass burning soot aerosols exert a radiative forcing of -0.68 to 0.01 Wm-2 while anthropogenic sulfate aerosols exert a forcing of -0.01 to 0.18 Wm-2. Our calculations show that the sign of the forcing by aircraft soot depends on the model configuration and can be both positive or negative, ranging from -0.16 to 0.02 Wm-2. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  13. Can Aerosol Forcing Compensate the Greenhouse Gas Warming?

    NASA Astrophysics Data System (ADS)

    Feichter, J.; Liepert, B.; Lohmann, U.; Roeckner, E.

    2002-12-01

    Fossil fuel combustion and biomass burning modify the chemical composition of the atmosphere by enhancing aerosol particles (AP) and greenhouse gas (GHG) concentrations. These changes induce opposite effects on temperature, i.e. warming through increasing GHG levels and cooling through increasing AP concentrations. While increasing GHGs tend to enhance the hydrological cycle, the APs have the opposite effect: First, through climate cooling and, second, through a reduction in solar radiation absorbed at the Earth's surface. Moreover, in contrast to GHGs, there is a strong coupling between aerosols, clouds and precipitation formation such that AP induced changes in the hydrological cycle feed back on the aerosol distribution. We performed simulations with of a low-resolution version (T30 spectral truncation) of the atmospheric general circulation model ECHAM4 coupled to an ocean mixed layer model and a thermodynamic sea ice model. Furthermore, the atmospheric model solves prognostic equations for the mass mixing ratio of dimethyl sulfide, sulfur dioxide, sulfate aerosols, organic and black carbon aerosols, mineral dust, sea-salt, cloud liquid water, cloud ice and for the cloud droplet and ice crystal number concentration. It also includes a fully coupled aerosol-cloud microphysics module. We performed three pairs of climate equilibrium experiments. Each pair consists of two simulations: one represents pre-industrial (year 1870) (PI) and one present-day (early 1980's) conditions (PD). In the first pair we change the greenhouse gas (GHG) concentrations and apply the model's operational aerosol climatology as PD conditions. In the second pair we calculate the aerosol interactively and we change the anthropogenic aerosol and aerosol precursor emissions and keep the GHG concentrations fixed to PD level. In the third pair we change both, GHG concentrations and aerosol emissions. The climate responses and the basic mechanisms will be discussed.

  14. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  15. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  16. Aerosol indirect effects in the ECHAM5-HAM2 climate model with subgrid cloud microphysics in a stochastic framework

    NASA Astrophysics Data System (ADS)

    Tonttila, Juha; Räisänen, Petri; Järvinen, Heikki

    2015-04-01

    Representing cloud properties in global climate models remains a challenging topic, which to a large extent is due to cloud processes acting on spatial scales much smaller than the typical model grid resolution. Several attempts have been made to alleviate this problem. One such method was introduced in the ECHAM5-HAM2 climate model by Tonttila et al. (2013), where cloud microphysical properties, along with the processes of cloud droplet activation and autoconversion, were computed using an ensemble of stochastic subcolumns within the climate model grid columns. Moreover, the subcolumns were sampled for radiative transfer using the Monte Carlo Independent Column Approximation approach. The same model version is used in this work (Tonttila et al. 2014), where 5-year nudged integrations are performed with a series of different model configurations. Each run is performed twice, once with pre-industrial (PI, year 1750) aerosol emission conditions and once with present-day (PD, year 2000) conditions, based on the AEROCOM emission inventories. The differences between PI and PD simulations are used to estimate the impact of anthropogenic aerosols on clouds and the aerosol indirect effect (AIE). One of the key results is that when both cloud activation and autoconversion are computed in the subcolumn space, the aerosol-induced PI-to-PD change in the global-mean liquid water path is up to 19 % smaller than in the reference with grid-scale computations. Together with similar changes in the cloud droplet number concentration, this influences the cloud radiative effects and thus the AIE, which is estimated as the difference in the net cloud radiative effect between PI and PD conditions. Accordingly, the AIE is reduced by 14 %, from 1.59 W m-2 in the reference model version to 1.37 W m-2 in the experimental model configuration. The results of this work explicitly show that careful consideration of the subgrid variability in cloud microphysical properties and consistent

  17. Effect of aerosol radiative forcing on the seasonal variation of snow over the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lau, W. K.; Lee, W.; Kim, K.

    2009-12-01

    In this study, the effect of aerosol radiative forcing on the seasonal variation of snow is studied based on GCM simulation with prescribed aerosols. Numerical experiments are conducted using NASA fvGCM with McRAS. Monthly mean distribution of five aerosol species (black carbon, organic carbon, dust, sulfate, and sea salt) is obtained from GOCART model. In the control run, all five aerosol species are included. For sensitivity test, we carry out an experiment without any aerosol radiative forcing and three additional runs, which are identical to the control run, except for exclusion of black carbon, of dust, and of sulfate, to show the effect of different types of aerosols. The results show that atmospheric warming by absorbing aerosols, dust and black carbon, initiate the elevated heat pump (EHP) and subsequently warm the atmosphere and land surface, especially over Tibetan Plateau (TP). As a results snow over TP reduced greatly in April and May, and the reduction of snow cover decrease surface albedo. Surface energy balance analysis shows that the surface warming due to absorbing aerosol cause early snow melting and further increase surface-atmosphere warming through snow/ice albedo feedback. The similar relations between aerosol radiative forcing and snow melt are also found over other higher latitude region in the Northern Hemisphere. The intensity and duration of earlier snow melt by black carbon aerosol is more significant than that of dust aerosol over the higher latitude in the Northern Hemisphere while over the Tibetan Plateau both black carbon and dust aerosol are important in driving earlier snow melt.

  18. Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model

    SciTech Connect

    Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

    2014-01-29

    A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

  19. Stratospheric aerosol forcing for climate modeling: 1850-1978

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Luo, Beiping; Thomason, Larry; Vernier, Jean-Paul; Peter, Thomas

    2016-04-01

    We present here a stratospheric aerosol dataset produced using the available aerosol optical depth observations from the pre-satellite period. The scarce atmospheric observations are supplemented by additional information from an aerosol microphysical model, initialized by ice-core derived sulfur emissions. The model is used to derive extinctions at all altitudes, latitudes and times when sulfur injections are known for specific volcanic eruptions. The simulated extinction coefficients are then scaled to match the observed optical depths. In order to produce the complete optical properties at all wavelengths (and the aerosol surface area and volume densities) needed by climate models, we assume a lognormal size distribution of the aerosols. Correlations between the extinctions in the visible and the effective radius and distribution width parameters are taken from the better constrained SAGE II period. The aerosol number densities are then fitted to match the derived extinctions in the 1850-1978 period. From these aerosol size distributions, we then calculate extinction coefficients, single scattering albedos and asymmetry factors at all wavelengths using the Mie theory. The aerosol surface area densities and volume densities are also provided.

  20. Effect of anthropogenic aerosol forcing on climate change in the North Pacific Ocean during the 20th Century

    NASA Astrophysics Data System (ADS)

    Abe, M.; Watanabe, S.; Kawamiya, M.; Nozawa, T.

    2014-12-01

    Reliable future projection by the climate or Earth system model is crucial for the issue on future climate change. For the reliable future projection, uncertainty of the aerosol effect on the climate change should be reduced, because the uncertainty has been large. Therefore, it is essential to understand the effect of anthropogenic aerosol forcing on climate change in the 20th century. In this study, we have assessed the effect by a comparison between the 20th century historical simulations (20C and piAero) with the aerosol forcing fluctuated realistically over time and fixed in the pre-industrial condition by MIROC-ESM. We focus on the climate change in the North Pacific Ocean (NPO) due to anthropogenic aerosol emitted from China in the late 20th century. In the comparison between the two simulations, there has been little difference in the global mean surface temperature (SAT) from 1851 to 1900. Then the difference appears and reaches to about 0.2 deg. C in 1950's. After 1960, the difference in SAT between the two experiments become large. For SST change in the NPO, small positive trend is found after 1900 in the piAero, but not found in the 20C. Thus, the SST difference in the NPO between the two experiments is significant after 1900. While the positive SST trend in the NPO has been large in the piAero after 1960, SST in the Central NPO shows the negative trend in the 20C. These enlarge SST difference between the two experiments. The negative SST trend in the Central NPO in the 20C is likely to be attributable to an increase of aerosol emission from China. The aerosol increase, which is also found in the NPO, makes solar insolation into the surface decrease mainly through the aerosol indirect effect. This effect decreases SST. Also, the effect is seen in the boreal spring and summer. However, the effect is not found in the piAero. The Pacific Decadal Oscillation (PDO), which is the principal natural variability in the NPO, has been investigated. Linear trend of

  1. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  2. Reducing the Uncertainties in Direct Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2011-01-01

    Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction.

  3. Speciated local aerosol characteristics and radiative forcing at a rural midwestern site

    NASA Astrophysics Data System (ADS)

    Dillner, Ann Marie

    2000-11-01

    In this research, physical and chemical properties of ambient aerosols were measured at a rural perturbed mid- latitude site (Bondville, IL) and used to calculate the aerosol optical properties and the resulting direct radiative forcing. Size-segregated aerosol samples were collected during the summer of 1997 using three parallel MOUDIs operating at ambient relative humidity. Two sample sets were used to obtain sulfate, organic carbon (OC), elemental carbon (EC), carbonate and total aerosol mass. The third sample set was used to obtain the size-specific and wavelength-dependent extinction efficiency of EC. The measured submicrometer mass concentration was 11.4 +/- 4.0 μg m-3. Ammonium sulfate comprised nearly half of the submicrometer aerosol and OC plus EC comprised 25%. Water content for ammonium sulfate and OC was estimated using both Köhler theory and parameterized water uptake curves from the literature. Water content for internally mixed aerosols was determined using a ZSR method. Aerosol optical properties (extinction efficiency, asymmetry parameter, single scatter albedo) were calculated from measured size distributions and wavelength dependent refractive indexes for each species and for internal and external mixtures using Mie theory. A technique, utilizing transmission measurements through extracts of size segregated ambient aerosol samples, was developed to obtain the extinction efficiency of EC. Measured EC extinction efficiencies ranged from 7.3 to 1.7 m2 g-1 at 550 nm, depending on particle diameter. Normalized direct aerosol radiative forcing (W g-1 ) was calculated using the Column Radiation Module (CRM) of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3). Aerosol optical properties, used in the model, were assumed to be uniform throughout the lowest one kilometer of the atmosphere. The normalized forcing due to ammonium sulfate was -340 +/- 10 W g-1. OC was 1/3 larger and residue was 1/3 smaller. EC within an

  4. Evaluating the aerosol indirect effect in WRF-Chem simulations of the January 2013 Beijing air pollution event.

    NASA Astrophysics Data System (ADS)

    Peckham, Steven; Grell, Georg; Xie, Ying; Wu, Jian-Bin

    2015-04-01

    In January 2013, an unusual weather pattern over Northern China produced unusually cool, moist conditions for the region. Recent peer-reviewed scientific manuscripts report that during this time period, Beijing experienced a historically severe haze and smog event with observed monthly average fine particulate matter (PM2.5) concentrations exceeding 225 micrograms per cubic meter. MODIS satellite observations produced AOD values of approximately 1.5 to 2 for the same time. In addition, over eastern and northern China record-breaking hourly average PM2.5 concentrations of more than 700 μg m-3 were observed. Clearly, the severity and persistence of this air pollution episode has raised the interest of the scientific community as well as widespread public attention. Despite the significance of this and similar air pollution events, several questions regarding the ability of numerical weather prediction models to forecast such events remain. Some of these questions are: • What is the importance of including aerosols in the weather prediction models? • What is the current capability of weather prediction models to simulate aerosol impacts upon the weather? • How important is it to include the aerosol feedbacks (direct and indirect effect) in the numerical model forecasts? In an attempt to address these and other questions, a Joint Working Group of the Commission for Atmospheric Sciences and the World Climate Research Programme has been convened. This Working Group on Numerical Experimentation (WGNE), has set aside several events of interest and has asked its members to generate numerical simulations of the events and examine the results. As part of this project, weather and pollution simulations were produced at the NOAA Earth System Research Laboratory using the Weather Research and Forecasting (WRF) chemistry model. These particular simulations include the aerosol indirect effect and are being done in collaboration with a group in China that will produce

  5. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Han, Zhiwei; Xin, Jinyuan; Liu, Xiaohong

    2011-11-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m -2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m -2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  6. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  7. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    SciTech Connect

    Han, Xiao; Zhang, Meigen; Han, Zhiewi; Xin, Jin-Yuan; Liu, Xiaohong

    2011-11-14

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m-2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m-2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  8. Aerosol Indirect Effect Studies at Southern Great Plains During the May 2003 Intensive Operations Period

    NASA Technical Reports Server (NTRS)

    Feingold, Graham; Furrer, Reinhard; Pilewskie, Peter; Remer, Lorraine A.; Min, Qilong; Jonsson, Haflidi

    2006-01-01

    During May 2003 the Department of Energy's Atmospheric Radiation Measurement Program conducted an Intensive Operations Period (IOP) to measure the radiative effects of aerosol and clouds. A suite of both in situ and remote sensing measurements were available to measure aerosol and cloud parameters. This paper has three main goals: First, it focuses on comparison between in situ retrievals of the radiatively important drop effective radius r(sub e) and various satellite, airborne, and surface remote sensing retrievals of the same parameter. On 17 May 2003, there was a fortuitous, near-simultaneous sampling of a stratus cloud by five different methods. The retrievals of r(sub e) agree with one another to within approx.20%, which is approximately the error estimate for most methods. Second, a methodology for deriving a best estimate of r(sub e) from these different instruments, with their different physical properties and sampling volumes, is proposed and applied to the 17 May event. Third, the paper examines the response of r(sub e) to changes in aerosol on 3 days during the experiment and examines the consistency of remote sensing and in situ measurements of the effect of aerosol on r(sub e). It is shown that in spite of the generally good agreement in derived r(sub e), the magnitude of the response of r(sub e), to changes in aerosol is quite sensitive to the method of retrieving r(sub e) and to the aerosol proxy for cloud condensation nuclei. Nonphysical responses are sometimes noted, and it is suggested that further work needs to be done to refine these techniques.

  9. Quantification of Regional Aerosol Radiative Forcing due to Asian Aerosols through the Indian Efforts the ARFI and ICARB: A perspective

    NASA Astrophysics Data System (ADS)

    Krishna Moorthy, K.; Suresh Babu, S.; Satheesh, S.

    2012-12-01

    The Asian landmass and adjoining oceans are amongst the high-aerosol laden regions of the globe. Arising out of the activities of the large density of population in this region, through diverse living habits, agricultural practices, transportation, and industry, coupled with abundance of strong natural sources (dust and sea-salt), long-range transport and the contrasting large-scale monsoonal circulations make the aerosol environment over this regions one of the most complex to model and assess the impact. Despite, it is all the more needed to understand the regional and global climate implications of these particles. With a long-term vision, this is addressed through concerted efforts under a regional program, ARFI (Aerosol Radiative Forcing over India) under the Geosphere Biosphere Program of Indian Space Research Organization (ISRO), supplemented by field experiments ICARB (Integrated campaigns for Aerosols, gases and Radiation Budget). This effort, involving several national research laboratories, academia and University participant, is one of the biggest chain of aerosol observatories, covering coastal, continental, oceanic, vegetated, arid and high-altitude environment, both remote and urban. This paper provides the perspective of these efforts, spanning over about 3 decades and providing one of the longest primary data on aerosols, and the major outcomes that have relevance to Asia in particular and the globe in general.

  10. Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy

    DOE PAGESBeta

    Mazet, Lucie; Jesse, Stephen; Niu, Gang; Schroeder, Thomas; Schamm-Chardon, Sylvie; Dubourdieu, Catherine; Baddorf, Arthur P.; Kalinin, Sergei V.; Yang, Sang Mo; Okatan, M. Baris

    2016-06-20

    Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging and hysteresismore » loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.« less

  11. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  12. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  13. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer

  14. Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts

    NASA Astrophysics Data System (ADS)

    Collins, William D.; Rasch, Phillip J.; Eaton, Brian E.; Fillmore, David W.; Kiehl, Jeffrey T.; Beck, C. Trevor; Zender, Charles S.

    2002-10-01

    The direct radiative forcing by aerosols over the Indian Ocean region is simulated for the Indian Ocean Experiment (INDOEX) Intensive Field Phase during Spring 1999. The forcing is calculated for the top-of-atmosphere (TOA), surface, and atmosphere by differencing shortwave fluxes computed with and without aerosols. The calculation includes the effects of sea-salt, sulfate, carbonaceous, and soil-dust aerosols. The aerosol distributions are obtained from a global aerosol simulation including assimilation of satellite retrievals of aerosol optical thickness (AOT). The time-dependent, three-dimensional aerosol distributions are derived with a chemical transport model driven with meteorological analyses for this period. The surface albedos are obtained from a land-surface model forced with an identical meteorological analysis and satellite-derived rainfall and insolation. These calculations are consistent with in situ observations of the surface insolation over the central Indian Ocean and with satellite measurements of the reflected shortwave radiation. The calculations show that the surface insolation under clear skies is reduced by as much as 40 W/m2 over the Indian subcontinent by natural and anthropogenic aerosols. This reduction in insolation is accompanied by an increase in shortwave flux absorbed in the atmosphere by 25 W/m2. The inclusion of clouds in the calculations changes the direct effect by less than 2 W/m2 over the Indian subcontinent, although the reduction is much larger over China. The magnitude of the difference between all-sky and clear-sky forcing is quite sensitive to the three-dimensional spatial relationship between the aerosol and cloud fields, and other estimates of the difference for the INDOEX Intensive Field Phase are as large as 5 W/m2.

  15. Similarities in large-scale pattern of precipitation responses to aerosol and greenhouse gas forcing (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Lu, B.; Xiang, B.

    2013-12-01

    Developing reliable regional projections for mitigation and adaptation is an emerging challenge for climate change research. Important for regional changes in tropical cyclone, precipitation, and monsoon are spatial patterns of ocean warming. Localized in space, anthropogenic aerosol forcing is considered to induce patterns of climate response distinct from well-mixed greenhouse gases. Using a multi-model ensemble, we show that regional changes in ocean temperature and precipitation are remarkably similar between greenhouse gas and aerosol experiments. This suggests a global ocean-atmosphere mode with spatial patterns common to radiative-induced climate change and relatively insensitive to forcing distribution. While the aerosol forcing is largely confined to the Northern Hemisphere, its climate effect reaches pristine Southern Hemisphere oceans, including decreased temperature and decelerated westerly winds. Ocean-atmosphere interaction spreads the effect of localized forcing around the globe, leaving distinctive patterns on the way. We show that the greenhouse gas- and aerosol-induced climate responses share key ocean-atmospheric feedback, explaining their spatial resemblance. Tropospheric temperature response, homogenized within the tropics and insensitive to forcing distribution, is suggested to be a key mechanism. While large uncertainties remain in microphysics, our results show that there are robust macro-structures in climate response to aerosol forcing.

  16. Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades

    NASA Astrophysics Data System (ADS)

    Regayre, L. A.; Pringle, K. J.; Booth, B. B. B.; Lee, L. A.; Mann, G. W.; Browse, J.; Woodhouse, M. T.; Rap, A.; Reddington, C. L.; Carslaw, K. S.

    2014-12-01

    Aerosols and their effect on the radiative properties of clouds are one of the largest sources of uncertainty in calculations of the Earth's energy budget. Here the sensitivity of aerosol-cloud albedo effect forcing to 31 aerosol parameters is quantified. Sensitivities are compared over three periods; 1850-2008, 1978-2008, and 1998-2008. Despite declining global anthropogenic SO2 emissions during 1978-2008, a cancelation of regional positive and negative forcings leads to a near-zero global mean cloud albedo effect forcing. In contrast to existing negative estimates, our results suggest that the aerosol-cloud albedo effect was likely positive (0.006 to 0.028Wm-2) in the recent decade, making it harder to explain the temperature hiatus as a forced response. Proportional contributions to forcing variance from aerosol processes and natural and anthropogenic emissions are found to be period dependent. To better constrain forcing estimates, the processes that dominate uncertainty on the timescale of interest must be better understood.

  17. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    USGS Publications Warehouse

    Guo, S.; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  18. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    NASA Astrophysics Data System (ADS)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  19. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    SciTech Connect

    Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  20. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2016-04-01

    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  1. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes

  2. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Golaz, J.-C.; Mauzerall, D. L.

    2015-11-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80 % by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm day-1. However, when using a version of CM3 with reduced present-day aerosol radiative forcing (-1.0 W m-2), the global temperature increase for RCP8.5 is about 0.5 K, with similar magnitude decreases in other climate response parameters as well. Regionally and locally, climate impacts can be much larger than the global mean, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm day-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in

  3. Aerosol Climate Effects: Local Radiative Forcing and Column Closure Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Kinne, S. A.

    2000-01-01

    In an effort to reduce uncertainties in climate change predictions, experiments are being planned and conducted to measure anthropogenic aerosol properties and effects, including effects on radiative fields. The global average, direct anthropogenic aerosol effect on upwelling shortwave fluxes is estimated to be about +1/2 W/sq m, whereas errors in flux changes measured with airborne and spaceborne radiometers are 2 to 8 W/sq m or larger. This poses the question of whether flux changes expected in field experiments will be large enough to measure accurately. This paper obtains a new expression for the aerosol-induced change in upwelling flux, compares it to two-stream and adding-doubling (AD) results, and uses all three methods to estimate expected flux changes. The new expression accounts for the solar zenith angle dependences of aerosol transmission and reflection, as well as of surface albedo, all of which can have a strong effect in determining flux changes measured in field experiments. Despite its relative simplicity, the new expression gives results similar to previous two-stream results. Relative to AD results, it agrees within a few watts per square meter for the intermediate solar elevation angles where the flux changes peak (roughly 10 to 30 degrees), but it has negative errors for higher Sun and positive errors for lower Sun. All three techniques yield aerosol-induced changes in upwelling flux of +8 to +50 W/sq m for aerosol midvisible optical depths of 0.1 to 0.5. Because such aerosol optical depths occur frequently off the U.S. and European Atlantic coasts in summer, the flux changes they induce should be measurable by airborne, and possibly by spaceborne, radiometers, provided sufficient care is taken in experiment design (including measurements to separate aerosol radiative effects from those of absorbing gases). The expected flux changes are about 15 to 100 times larger than the global average flux change expected for the global average

  4. Aerosols over Delhi during pre-monsoon months: Characteristics and effects on surface radiation forcing

    NASA Astrophysics Data System (ADS)

    Singh, Sachchidanand; Nath, Shambhu; Kohli, Ramesh; Singh, Risal

    2005-07-01

    The surface fluxes in the wavelength range 280-2800 nm were measured during the pre-monsoon period, April-June 2003 along with the spectral distribution of aerosol optical depth (AOD) in the visible and near infrared wavelengths. The Ångström exponent alpha retrieved from the data showed abundance of desert aerosols over Delhi during this period. The aerosol composition constructed using the OPAC model indicated a typical mixture of two aerosol types: urban and desert. Due to this the aerosol mixture had a very low value of single scattering albedo ~0.67. The average total radiative forcing efficiency observed at the surface in the broad wavelength band (280-2800 nm) was estimated and compared with the SBDART model calculated values.

  5. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  6. Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2.

    PubMed

    Hoaglin, David C; Hawkins, Neil; Jansen, Jeroen P; Scott, David A; Itzler, Robbin; Cappelleri, Joseph C; Boersma, Cornelis; Thompson, David; Larholt, Kay M; Diaz, Mireya; Barrett, Annabel

    2011-06-01

    Evidence-based health care decision making requires comparison of all relevant competing interventions. In the absence of randomized controlled trials involving a direct comparison of all treatments of interest, indirect treatment comparisons and network meta-analysis provide useful evidence for judiciously selecting the best treatment(s). Mixed treatment comparisons, a special case of network meta-analysis, combine direct evidence and indirect evidence for particular pairwise comparisons, thereby synthesizing a greater share of the available evidence than traditional meta-analysis. This report from the International Society for Pharmacoeconomics and Outcomes Research Indirect Treatment Comparisons Good Research Practices Task Force provides guidance on technical aspects of conducting network meta-analyses (our use of this term includes most methods that involve meta-analysis in the context of a network of evidence). We start with a discussion of strategies for developing networks of evidence. Next we briefly review assumptions of network meta-analysis. Then we focus on the statistical analysis of the data: objectives, models (fixed-effects and random-effects), frequentist versus Bayesian approaches, and model validation. A checklist highlights key components of network meta-analysis, and substantial examples illustrate indirect treatment comparisons (both frequentist and Bayesian approaches) and network meta-analysis. A further section discusses eight key areas for future research. PMID:21669367

  7. Aerosol First Indirect Effects on Non-Precipitating Low-Level Liquid Cloud Properties as Simulated by CAM5 at ARM Sites

    SciTech Connect

    Zhao, Chuanfeng; Klein, Stephen A.; Xie, Shaocheng; Liu, Xiaohong; Boyle, James; Zhang, Yuying

    2012-04-28

    We quantitatively examine the aerosol first indirect effects (FIE) for non-precipitating low-level single-layer liquid phase clouds simulated by the Community Atmospheric Model version 5 (CAM5) running in the weather forecast mode at three DOE Atmospheric Radiation Measurement (ARM) sites. The FIE is quantified in terms of a relative change in cloud droplet effective radius for a relative change in aerosol accumulation mode number concentration under conditions of fixed liquid water content (LWC). CAM5 simulates aerosol-cloud interactions reasonably well for this specific cloud type, and the simulated FIE is consistent with the long-term observations at the examined locations. The FIE in CAM5 generally decreases with LWC at coastal ARM sites, and is larger by using cloud condensation nuclei rather than aerosol accumulation mode number concentration as the choice of aerosol amount. However, it has no significant variations with location and has no systematic strong seasonal variations at examined ARM sites.

  8. Indirect Nanoplasmonic Sensing to Probe with a High Sensitivity the Interaction of Water Vapor with Soot Aerosols.

    PubMed

    Demirdjian, Benjamin; Bedu, Frederic; Ranguis, Alain; Ozerov, Igor; Karapetyan, Artak; Henry, Claude R

    2015-10-15

    We demonstrate in this work that the indirect nanoplasmonic sensing lets us follow the adsorption/desorption of water molecules on soot particles that are a major contributor of the global warming. Increasing the relative humidity of the surrounding medium we measure a shift in wavelength of the localized surface plasmon resonance response of gold nanodisks on which soot particles are deposited. We show a singular and reversible blue shift with hydrophilic aircraft soot particles interpreted from a basic model as a reversible morphological change of the soot aggregates. This new method is highly sensitive and interesting to follow the change of optical properties of aerosols during their aging in the atmosphere, where they can adsorb and react with different gas molecules. PMID:26722790

  9. Towards a Global Aerosol Climatology: Preliminary Trends in Tropospheric Aerosol Amounts and Corresponding Impact on Radiative Forcing between 1950 and 1990

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko

    1999-01-01

    A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.

  10. Investigation of key quantities for the first indirect aerosol effect contrasting MSG SEVIRI and ground site measurements

    NASA Astrophysics Data System (ADS)

    Merk, Daniel; Deneke, Hartwig; Pospichal, Bernhard; Seifert, Patric; Ansmann, Albert

    2014-05-01

    The first indirect aerosol effect remains one of the main uncertainties in projections of anthropogenic climate change. Satellites provide a unique possibility to globally quantify the importance of the first indirect aerosol effect. Given a constant liquid water content within the cloud, a higher cloud droplet number concentration results in higher cloud albedo. But the cloud albedo is also altered by the geometrical cloud extent. Therefore the two key quantities for this investigation are the CDNC and the geometrical cloud extent. Both quantities can not be obtained directly from current geostationary satellites. Due to necessary assumptions and missing information about the vertical cloud structure, the retrieval of both quantities remains a great challenge. Our aim is to investigate the accuracy of current satellite retrievals by contrasting the key quantities with those obtained from ground-site. The satellite retrieval is based on the method described by Nakajima and King to derive the optical cloud depth and the effective radius. In a second step, the CDNC and cloud extent is determined, assuming an adiabatically increasing liquid water content above cloud base. Single-layer liquid water clouds are simultaneously observed with ground-based remote sensing instruments at different locations in Germany (Leipzig, Juelich, Melpitz). We use a ceilometer to detect the cloud base height, a 35 GHz cloud radar to detect the cloud top height and the reflectivity profile, and a microwave radiometer to obtain the liquid water path. We developed an Optimal Estimation approach to retrieve the CDNC as well as the liquid water content profile. Our observation vector consists of the radar reflectivity profile and the liquid water path. We compare the retrieved quantities from ground with the satellite perspective to closer investigate the assumption of adiabatic cloud profiles.

  11. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-06-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high latitude effects result from robust enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. While there is significant ensemble variability in the high latitude response to each aerosol forcing set, the mean response is sensitive to the forcing set used. Significant differences, for example, are found in the NH polar stratosphere temperature and zonal wind response to two different forcing data sets constructed from different versions of SAGE II aerosol observations. Significant strengthening of the polar vortex, in rough agreement with the expected response, is achieved only using aerosol forcing extracted from prior coupled aerosol-climate model simulations. Differences in the dynamical response to the different forcing sets used imply that reproducing

  12. Near-cloud aerosols in monsoon environment and its impact on radiative forcing

    NASA Astrophysics Data System (ADS)

    Konwar, M.; Panicker, A. S.; Axisa, D.; Prabha, T. V.

    2015-02-01

    In order to understand the near-cloud aerosol properties and their impact on radiative forcing, we utilized in situ aircraft measurements of aerosol particles and cloud droplets during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment carried out over the Indian subcontinent in the monsoon season. From the measurement of aerosol size distribution of diameter range from 0.1 to 50 µm, we reported that aerosol concentrations could be enhanced by 81% and the effective diameter (deff, µm) by a factor of 2 near the cloud edges when compared with regions far from the cloud. These enhanced aerosol concentrations are a function of the relative humidity (RH) in the cloud-free zone, attributed to mixing and entrainment processes in the cloud edges. It is also found that for warm clouds, RH increases exponentially in the near-cloud regions. In addition, deff was increased linearly with RH. Through model simulations, we found that aerosol optical depth decreases with distance from the cloud edge. Further, aerosols in cloud edges were found to increase the reflected flux by 20% compared to cloud-free regions, thus brightening the near-cloud areas.

  13. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  14. Aerosol direct radiative forcing at the top of atmosphere based on satellite remote sensing over China Seas: a preliminary study

    NASA Astrophysics Data System (ADS)

    Hao, Zengzhou; Pan, Delu; Gong, Fang

    2010-09-01

    Radiative forcing as an index of climate change can reflect the relative effect of climate factors. To understand climatic implications of aerosols over the China Seas, the aerosol direct radiative forcing at the top of atmosphere (TOA) is computed using three-year collocated Clouds and the Earth's Radiant Energy System (CERES) radiation fluxes and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness data on the platform Terra. The upward radiation flux for clear skies is a key for the aerosol radiative forcing at the TOA. A linear relationship is found between the solar radiation fluxes at the TOA from CERES and the aerosol optical thickness is at 550 nm from MODIS over the China Seas. In a linear regression Eq., the intercept for zero aerosol optical thickness is the radiation flux at the TOA for clear skies. Based on the definition of the aerosol direct radiative forcing at TOA and the diurnal correction factor from a simulated radiative forcing using radiation transfer model, the daily averaged aerosol direct radiative forcing at the TOA is estimated and its seasonal variations over the cloud-free China Seas are presented. In total, the aerosol radiative forcing over the China Seas is negative. It implies that the aerosol over the China Seas is mainly a cooling effect on climate change, which is opposite to the greenhouse effect. The largest aerosol radiative forcing is found in spring, while the smallest is in summer. The aerosol radiative forcing over the coastal region is always more than that in the open ocean in four seasons. The method in the study can be used for evaluation of the aerosols impact on global or region climate from satellite measurements.

  15. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  16. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosol

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the third year of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this one-year grant consisted in analysis and publication of field studies using a new in-situ capability for measuring aerosol 180 deg backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Analyzed data consisted of measurements made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with target in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator.

  17. Observations of a substantial cloud-aerosol indirect effect during the 2014-2015 Bárðarbunga-Veiðivötn fissure eruption in Iceland

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.; Hartmann, Dennis L.

    2015-12-01

    The Bárðarbunga-Veiðivötn fissure eruption lasted from 31 August 2014 to 28 February 2015, during which its sulfur emissions dwarfed anthropogenic emissions from Europe. This natural experiment offers an excellent opportunity to investigate the aerosol indirect effect and the effect of effusive volcanic eruptions on climate. During the eruption cloud droplet effective radius (re) over the region surrounding Iceland was at the lowest value in the 14 year Moderate Imaging Spectroradiometer data record during September and October 2014. The change in reflected solar radiation due to increased cloud reflectivity during September and October is estimated to exceed 2 W m-2 over the region surrounding Iceland, with increases of 1 W m-2 extending as far south as the Açores. The strength of the aerosol indirect effect diagnosed here reaffirms the ability of volcanic aerosols to affect cloud properties and ultimately the planetary albedo.

  18. Host Model Uncertainties in Aerosol Radiative Forcing Estimates: Results from the AeroCom Prescribed Intercomparison Study

    SciTech Connect

    Stier, Phillip; Schutgens, Nick A.; Bellouin, N.; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven J.; Huneeus, N.; Kinne, Stefan; Lin, G.; Ma, Xiaoyan; Myhre, G.; Penner, J. E.; Randles, Cynthia; Samset, B. H.; Schulz, M.; Takemura, T.; Yu, Fangqun; Yu, Hongbin; Zhou, Cheng

    2013-03-20

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as mea- sure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties,simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 Wm-2 and the inter-model standard deviation is 0.70 Wm-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 Wm-2, and the standard deviation increases to 1.21 W-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative in the AeroCom Direct Effect experiment, demonstrates that host model uncertain- ties could explain about half of the overall sulfate forcing diversity of 0.13 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained.

  19. Quantifying enhancement in aerosol radiative forcing during 'extreme aerosol days' in summer at Delhi National Capital Region, India.

    PubMed

    Kumar, Sumant; Dey, Sagnik; Srivastava, Arun

    2016-04-15

    Changes in aerosol characteristics (spectral aerosol optical depth, AOD and composition) are examined during the transition from 'relatively clean' to 'extreme' aerosol days in the summer of 2012 at Delhi National Capital Region (NCR), India. AOD smaller than 0.54 (i.e. 12-year mean AOD-1σ) represents 'relatively clean' days in Delhi during the summer. 'Extreme' days are defined by the condition when AOD0.5 exceeds 12-year mean AOD+1 standard deviation (σ). Mean (±1σ) AOD increases to 1.2±0.12 along with a decrease of Angstrom Exponent from 0.54±0.09 to 0.22±0.12 during the 'extreme' days. Aerosol composition is inferred by fixing the number concentrations of various individual species through iterative tweaking when simulated (following Mie theory) AOD spectrum matches with the measured one. Contribution of coarse mode dust to aerosol mass increased from 76.8% (relatively clean) to 96.8% (extreme events), while the corresponding contributions to AOD0.5 increased from 35.0% to 70.8%. Spectrally increasing single scattering albedo (SSA) and CALIPSO aerosol sub-type information support the dominant presence of dust during the 'extreme' aerosol days. Aerosol direct radiative forcing (ADRF) at the top-of-the-atmosphere increases from 21.2Wm(-2) (relatively clean) to 56.6Wm(-2) (extreme), while the corresponding change in surface ADRF is from -99.5Wm(-2) to -153.5Wm(-2). Coarse mode dust contributes 60.3% of the observed surface ADRF during the 'extreme' days. On the contrary, 0.4% mass fraction of black carbon (BC) translates into 13.1% contribution to AOD0.5 and 33.5% to surface ADRF during the 'extreme' days. The atmospheric heating rate increased by 75.1% from 1.7K/day to 2.96K/day during the 'extreme' days. PMID:26855352

  20. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  1. Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985-2010

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong J.; Yeh, Sang-Wook; Park, Rokjin J.

    2016-02-01

    We examine the effect of anthropogenic aerosol forcing on the East Asian summer monsoon (EASM) using the Community Atmosphere Model version 5.1.1. One control and two sensitivity model experiments were conducted in order to diagnose the separate roles played by sea surface temperature (SST) variations and anthropogenic sulfate aerosol forcing changes in East Asia. We find that the SST variation has been a major driver for the observed weakening of the EASM, whereas the effect of the anthropogenic aerosol forcing has been opposite and has slightly intensified the EASM over the recent decades. The reinforcement of the EASM results from radiative cooling by the sulfate aerosol forcing, which decelerates the jet stream around the jet's exit region. Subsequently, the secondary circulation induced by such a change in the jet stream leads to the increase in precipitation around 18-23°N. This result indicates that the increase in anthropogenic emissions over East Asia may play a role in compensating for the weakening of the EASM caused by the SST forcing.

  2. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

    NASA Astrophysics Data System (ADS)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-01

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  3. Aerosol characteristics and surface radiative forcing components during a dust outbreak in Gwangju, Republic of Korea.

    PubMed

    Ogunjobi, K O; Kim, Y J

    2008-02-01

    Atmospheric surface aerosol radiative forcing (SARF) DeltaF, forcing efficiency DeltaF(e) and fractional forcing efficiency DeltaFF(e) evaluated from cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Asia dust outbreak episodes in Gwangju, Republic of Korea are reported in this study. Columnar aerosol optical properties (aerosol optical depth (AOD), tau (alambda), Angstrom exponent alpha, mass concentration of fine and coarse mode particles) were also reported for the station between January 2000 and May 2001 consisting of 211cloud-free days. Results indicate that majority of the AOD were within the range 0.25-0.45 while some high aerosol events in which AODs > or = 0.6 were observed during the severe dust episodes. For example, AOD increases from annual average value of 0.34 +/- 0.13 at 501 nm to values >0.60 during the major dust events of March 27-30 and April 7-9, 2000, respectively. The alpha (501-870 nm) which is often used as a qualitative indicator of aerosol particle size had values ranging from 0.01 to 1.77. The diurnal forcing efficiency DeltaDF(e) at Gwangju was estimated to be -81.10 +/- 5.14 W m (-2)/tau (501 nm) and -47.09 +/- 2.20 W m (-2)/tau (501 nm) for the total solar broadband and visible band pass, respectively while the fractional diurnal forcing efficiency DeltaFDF(e) were -15.8 +/- 0.64%/tau (501 nm) and -22.87 +/- 1.13%/tau (501 nm) for the same band passes. Analyses of the 5-day air-mass back trajectories were further developed for Gwangju in order to classify the air-mass and types of aerosol reaching the site during the Asia dust episodes. PMID:17458510

  4. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-05-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local

  5. New Satellite Measurements of Aerosol Direct Radiative Forcing from MODIS, MISR, and POLDER

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2000-01-01

    New set of satellites, MODIS and MISR launched on EOS-Terra and POLDER launched on ADEOS-1, and scheduled for ADEOS-II and PARASOL in orbit with EOS-AQUA, open exciting opportunities to measure aerosol and their radiative forcing of climate. Each of these instruments has a different approach to invert remote sensing data to derive the aerosol properties. MODIS is using wide spectral range 0.47-2.1 micron. MISR is using narrower spectral range (0.44 to 0.87 micron) but observing the same spot from 9 different angles along the satellite track. POLDER using similar wavelengths, uses two dimensional view with a wide angle optics and adds polarization to the inversion process. Among these instruments, we expect to measure the global distribution of aerosol, to distinguish small pollution particles from large particles from deserts and ocean spray. We shall try to measure the aerosol absorption of solar radiation, and their refractive index that indicates the effect of liquid water on the aerosol size and interaction with sunlight. The radiation field measured by these instruments in variety of wavelengths and angles, is also used to derive the effect of the aerosol on reflection of sunlight spectral fluxes to space. When combined with flux measurements at the ground, it gives a complete characterization of the effect of aerosol on solar illumination, heating in the atmosphere and reflection to space.

  6. Opposing forces of aerosol cooling and El Nino drive coral bleaching on Caribbean reefs.

    PubMed

    Gill, Jennifer A; Watkinson, Andrew R; McWilliams, John P; Côté, Isabelle M

    2006-12-01

    Bleaching of corals as a result of elevated sea surface temperatures (SST) is rapidly becoming a primary source of stress for reefs globally; the scale and extent of this threat will depend on how the drivers of SST interact to influence bleaching patterns. We demonstrate how the opposing forces of the El Niño-Southern Oscillation (ENSO) and levels of atmospheric aerosols drive regional-scale patterns of coral bleaching across the Caribbean. When aerosol levels are low, bleaching is largely determined by El Niño strength, but high aerosol levels mitigate the effects of a severe El Niño. High aerosol levels, resulting principally from recent volcanic activity, have thus protected Caribbean reefs from more frequent widespread bleaching events but cannot be relied on to provide similar protection in the future. PMID:17116861

  7. Radiative Forcing of Climate Change

    SciTech Connect

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  8. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models

    NASA Astrophysics Data System (ADS)

    Vuolo, M. R.; Schulz, M.; Balkanski, Y.; Takemura, T.

    2014-01-01

    The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete understanding of the role of the vertical distribution of aerosols and clouds. This work aims at reducing the uncertainty of aerosol top-of-the-atmosphere (TOA) forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosol species and clouds. We propose a method to quantify the contribution of different parts of the atmospheric column to the TOA forcing as well as to evaluate the contribution to model differences that is exclusively due to different spatial distributions of aerosols and clouds. We investigate the contribution of aerosol above, below and in clouds by using added diagnostics in the aerosol-climate model LMDz. We also compute the difference between the TOA forcing of the ensemble of the aerosols and the sum of the forcings from individual species in clear sky. This difference is found to be moderate for the global average (14%) but can reach high values regionally (up to 100%). Nonlinear effects are even more important when superposing aerosols and clouds. Four forcing computations are performed: one where the full aerosol 3-D distribution is used, and then three where aerosols are confined to regions above, inside and below clouds, respectively. We find that the TOA forcing of aerosols depends crucially on the presence of clouds and on their position relative to that of the aerosol, in particular for black carbon (BC). We observe a strong enhancement of the TOA forcing of BC above clouds, attenuation for BC below clouds, and a moderate enhancement when BC is found within clouds. BC above clouds accounts for only about 30% of the total BC optical depth but for 55% of the forcing, while forcing efficiency increases by a factor of 7.5 when passing from below to above clouds. The different behaviour of forcing

  9. An Energetic Perspective on Aerosol Radiative Forcing and Interactions with Atmospheric Wave Activity

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.; Colarco, P. R.

    2014-12-01

    Aerosols have the capability to alter regional-scale atmospheric circulations. A better understanding of the contribution of aerosols to multi-scale atmospheric phenomena and their transient changes is crucial for efforts to evaluate climate predictions using next generation climate models. In this study we address the following questions: (1) Is there a mechanistic relationship between variability of oceanic dust aerosol forcing and transient changes in the African easterly jet- African easterly wave (AEJ-AEW) system? (2) What are the long-term impacts of possible aerosol-wave interactions on climate dynamics of eastern tropical Atlantic Ocean and western African monsoon (WAM) region during boreal summer seasons? Our hypothesis is that aerosol radiative forcing may act as additional energy source to fuel the development of African easterly waves on the northern and southern sides of the AEJ. Evidence in support of this hypothesis is presented based on analysis of an ensemble of NASA satellite data sets, including aerosol optical thickness (AOT) observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), as well as an atmospheric reanalysis from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and a simulation of global aerosol distributions made with the Goddard Earth Observing System Model version 5 (GEOS-5) Earth system model with meteorology constrained by MERRA and an assimilation of MODIS AOT (MERRAero). We propose that the impacts of Saharan aerosols on the regional climate dynamics occur through contributions to the eddy energy of waves with 2—7-day and 7—11-day variability.

  10. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    NASA Astrophysics Data System (ADS)

    García, O. E.; Díaz, J. P.; Expósito, F. J.; Díaz, A. M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C.

    2011-12-01

    The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the top (TOA) and at the bottom of atmosphere (BOA) modeled based on AERONET aerosol retrievals. In this study we have considered six main types of atmospheric aerosols: desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere. The ΔF averages obtained vary from -148 ± 44 Wm-2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in Central Africa and -42 ± 22 Wm-2 (AOD = 0.86 ± 0.51) at the TOA for the pure mineral dust also in this region up to -6 ± 3 Wm-2 and -4 ± 2 Wm-2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system, contributing to the greenhouse gas effect.

  11. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    NASA Astrophysics Data System (ADS)

    García, O. E.; Díaz, J. P.; Expósito, F. J.; Díaz, A. M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C.

    2012-06-01

    The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA) and at the Bottom Of Atmosphere (BOA) modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere) in similar observational conditions (i.e., for solar zenith angles between 55° and 65°) in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from -122 ± 37 Wm-2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and -42 ± 22 Wm-2 (AOD = 0.9 ± 0.5) at the TOA for the pure mineral dust also in this region up to -6 ± 3 Wm-2 and -4 ± 2 Wm-2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  12. Downscaling Aerosols and the Impact of Neglected Subgrid Processes on Direct Aerosol Radiative Forcing for a Representative Global Climate Model Grid Spacing

    SciTech Connect

    Gustafson, William I.; Qian, Yun; Fast, Jerome D.

    2011-07-13

    Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We found that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.

  13. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  14. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  15. Pollution trends over Europe constrain global aerosol forcing as simulated by climate models

    NASA Astrophysics Data System (ADS)

    Cherian, Ribu; Quaas, Johannes; Salzmann, Marc; Wild, Martin

    2014-03-01

    An increasing trend in surface solar radiation (solar brightening) has been observed over Europe since the 1990s, linked to economic developments and air pollution regulations and their direct as well as cloud-mediated effects on radiation. Here, we find that the all-sky solar brightening trend (1990-2005) over Europe from seven out of eight models (historical simulations in the Fifth Coupled Model Intercomparison Project) scales well with the regional and global mean effective forcing by anthropogenic aerosols (idealized "present-day" minus "preindustrial" runs). The reason for this relationship is that models that simulate stronger forcing efficiencies and stronger radiative effects by aerosol-cloud interactions show both a stronger aerosol forcing and a stronger solar brightening. The all-sky solar brightening is the observable from measurements (4.06±0.60 W m-2 decade-1), which then allows to infer a global mean total aerosol effective forcing at about -1.30 W m-2 with standard deviation ±0.40 W m-2.

  16. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Mauzerall, D. L.

    2015-03-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30-40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5). The expected unmasking of global warming caused by aerosol reductions will

  17. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis

    SciTech Connect

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X.

    2014-01-01

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF–CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF–CMAQ/CAM (WRF–CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF–CMAQ/CAM (WRF–CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF–CMAQ/CAM, WRF–CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the

  18. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X.

    2014-10-01

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF-CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF-CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not

  19. Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg; Peckham, S. E.

    2006-11-11

    A new fully-coupled meteorology-chemistry-aerosol model is used to simulate the urban to regional scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a five day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still under-estimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  20. The Spatial and Temporal Heterogeneity of Precipitation and Aerosol-Cloud Radiative Forcing Uncertainty in Climatically Important Regions

    NASA Astrophysics Data System (ADS)

    Regayre, L.; Pringle, K.; Lee, L.; Booth, B.; Browse, J.; Mann, G.; Woodhouse, M. T.; Reddington, C.; Carslaw, K. S.; Rap, A.

    2015-12-01

    Aerosol-cloud radiative forcing and precipitation sensitivities are quantified within climatically important regions, where surface temperatures and moisture availability are thought to influence large-scale climatic effects. The sensitivity of precipitation and the balance of incoming and outgoing radiation to uncertain historical aerosol emission fluxes and aerosol-cloud parametrisations are quantified and their climatic importance considered. The predictability of monsoon onset and intensity, position of the inter-tropical convergence zone, tropical storm frequency and intensity, heat transport to the Arctic and changes in the mode of the El Niño Southern Oscillation are all limited by the parametric uncertainties examined here. Precipitation and aerosol-cloud radiative forcing sensitivities are found to be both spatially and temporally heterogeneous. Statistical analysis highlights aspects of aerosol-climate research and model development that should be prioritised in order to reduce the impact of uncertainty in regional precipitation and aerosol-cloud forcing on near-term climate projections.

  1. Past and future direct radiative forcing of nitrate aerosol in East Asia

    NASA Astrophysics Data System (ADS)

    Li, Jiandong; Wang, Wei-Chyung; Liao, Hong; Chang, Wenyuan

    2015-08-01

    Nitrate as a rapidly increasing aerosol species in recent years affects the present climate and potentially has large implications on the future climate. In this study, the long-term direct radiative forcing (DRF) of nitrate aerosol is investigated using State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) atmospheric general circulation model (AGCM) and the aerosol dataset simulated by a chemical transport model with focus on East Asia. The DRF due to other aerosols, especially sulfate, is also evaluated for comparisons. Although the chemical transport model underestimates the magnitudes of nitrate and sulfate aerosols when compared with Chinese site observations, some insights into the significances of nitrate climate effects still emerge. The present-day global annual mean all-sky DRF of nitrate is calculated to be -0.025 W m-2 relative to the preindustrial era, which is much weaker than -0.37 W m-2 for sulfate. However, nitrate DRF may become increasingly important in the future especially over East Asia, given the expectation that decreasing trend in global sulfate continues while the projected nitrate maintains at the present level for a mid-range forcing scenario and even be a factor of two larger by the end of the 21st century for high emission scenarios. For example, the anthropogenic nitrate DRF of -2.0 W m-2 over eastern China could persist until the 2050s, and nitrate is projected to account for over 60 % of total anthropogenic aerosol DRF over East Asia by 2100. In addition, we illustrate that the regional nitrate DRF and its seasonal variation are sensitive to meteorological parameters, in particular the relative humidity and cloud amount. It thus remains a need for climate models to include more realistically nitrate aerosol in projecting future climate changes.

  2. Aerosol radiative forcing efficiency in the UV-B region over central Argentina

    NASA Astrophysics Data System (ADS)

    Palancar, Gustavo G.; Olcese, Luis E.; Lanzaco, Bethania L.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2016-07-01

    AEROSOL Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer (MODIS) and global UV-B (280-315 nm) irradiance measurements and calculations were combined to investigate the effects of aerosol loading on the ultraviolet B radiation (UV-B) reaching the surface under cloudless conditions in Córdoba, Argentina. The aerosol radiative forcing (ARF) and the aerosol forcing efficiency (ARFE) were calculated for an extended period of time (2000-2013) at a ground-based monitoring site affected by different types and loading of aerosols. The ARFE was evaluated by using the aerosol optical depth (AOD) at 340 nm retrieved by AERONET at the Cordoba CETT site. The individual and combined effects of the single scattering albedo (SSA) and the solar zenith angle (SZA) on the ARFE were also analyzed. In addition, and for comparison purposes, the MODIS AOD at 550 nm was used as input in a machine learning method to better characterize the aerosol load at 340 nm and evaluate the ARFE retrieved from AOD satellite measurements. The ARFE at the surface calculated using AOD data from AERONET ranged from (-0.11 ± 0.01) to (-1.76 ± 0.20) Wm-2 with an average of -0.61 Wm-2; however, when using AOD data from MODIS (TERRA/AQUA satellites), it ranged from (-0.22 ± 0.03) to (-0.65 ± 0.07) Wm-2 with an average value of -0.43 Wm-2. At the same SZA and SSA, the maximum difference between ground and satellite-based was 0.22 Wm-2.

  3. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Kassianov, E. I.; Barnard, J.; Flynn, C.; Ackerman, T. P.

    2009-07-01

    The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility (AMF) was deployed to Niamey, Niger, during 2006. Niamey, which is located in sub-Saharan Africa, is affected by both dust and biomass burning emissions. Column aerosol optical properties were derived from multifilter rotating shadowband radiometer, measurements and the vertical distribution of aerosol extinction was derived from a micropulse lidar during the two observed dry seasons (January-April and October-December). Mean aerosol optical depth (AOD) and single scattering albedo (SSA) at 500 nm during January-April were 0.53 ± 0.4 and 0.94 ± 0.05, while during October-December mean AOD and SSA were 0.33 ± 0.25 and 0.99 ± 0.01. Aerosol extinction profiles peaked near 500 m during the January-April period and near 100 m during the October-December period. Broadband shortwave surface fluxes and heating rate profiles were calculated using retrieved aerosol properties. Comparisons for noncloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the aerosol optical properties, with mean differences between calculated and observed fluxes of less than 5 W m-2 and RMS differences less than 25 W m-2. Sensitivity tests showed that the observed fluxes could be matched with variations of <10% in the inputs to the radiative transfer model. The calculated 24-h averaged SW instantaneous surface aerosol radiative forcing (ARF) was -21.1 ± 14.3 W m-2 and was estimated to account for 80% of the total radiative forcing at the surface. The ARF was larger during January-April (-28.5 ± 13.5 W m-2) than October-December (-11.9 ± 8.9 W m-2).

  4. Atmospheric aerosol scavenging processes and the role of thermo- and diffusio-phoretic forces

    NASA Astrophysics Data System (ADS)

    Santachiara, Gianni; Prodi, Franco; Belosi, Franco

    2013-07-01

    In-cloud and below-cloud scavenging due to snow crystals is reviewed, outlining the theoretical models, laboratory and field measurements which take into account also the role of phoretic forces in this process. In-cloud scavenging includes contributions from both nucleation and impaction, while below-cloud scavenging includes only impaction. Scavenging of aerosol particles by ice has been modelled only for simple shapes (planar and columnar ice crystals) and restricted size range, in view of the large variety of shapes and, consequently, the complicated flow patterns of air, water vapour and heat around the crystal. A significant feature of theoretical efficiency curves is the predominant minimum for aerosol particles of radius between 0.01 and 0.1 μm where phoretic forces are active, analogous to the particle scavenging behaviour of water drops. Experiments on aerosol particle scavenging by snow include field measurements, experiments where natural snow crystals are allowed to fall through laboratory generated aerosol, and experiments where both crystals and aerosol are generated in the laboratory. Contradictory results have been found in laboratory and field experiments concerning the role of phoretic forces. In particular, an important discrepancy arises relating to the roles of thermophoresis and diffusiophoresis in the scavenging of submicron particles by ice crystals growing in mixed-phase clouds, consisting of water vapour, supercooled liquid droplets and ice particles. A decrease in scavenging efficiency as a function of crystal diameter is reported both theoretically and experimentally. By comparing aerosol scavenging by drops and snow, most studies agree that, in terms of equal mass of precipitation, snow is more efficient at scavenging atmospheric particles than rain.

  5. Estimation of aerosol direct radiative forcing in Lecce during the 2013 ADRIMED campaign

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria-Rita; Comeron, Adolfo

    2015-10-01

    In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the typical "Mediterranean aerosol" and its direct radiative forcing (column closure and regional scale). This work is focused on the multi-intrusion Saharan dust transport period of moderate intensity that occurred over the western and central Mediterranean Basin during the period 14 - 27 June. The dust plumes were detected by the EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations of Barcelona (16 and 17 June) and Lecce (22 June). First, two well-known and robust radiative transfer models, parametrized by lidar profiles for the aerosol vertical distribution, are validated both in the shortwave and longwave spectral range 1) at the surface with down- and up-ward flux measurements from radiometers and 2) at the top of the atmosphere with upward flux measurements from the CERES (Clouds and the Earth's Radiant Energy System) radiometers on board the AQUA and TERRA satellites. The differences between models and their limitations are discussed. The instantaneous and clear-sky direct radiative forcing of mineral dust is then estimated using lidar data for parametrizing the particle vertical distribution at Lecce. The difference between the obtained forcings is discussed in regard to the mineralogy and vertical structure of the dust plume.

  6. Sensitivity of Aerosol Radiative Forcing to Mixing State and Non-Sphericity

    NASA Astrophysics Data System (ADS)

    Srivastava, P.; Dey, S.; Srivastava, A.; Singh, S.; Agarwal, P.

    2014-12-01

    Mixing state and particle non-sphericity of aerosols are two major sources of uncertainties in estimation of aerosol direct radiative forcing (DRF). To examine the sensitivity of optical properties to the mixing state, aerosols were collected on filter papers and analyzed for detailed chemical composition in Delhi national capital region (NCR) during 2007-2008. Black carbon, BC was measured directly by Aethalometer. They are grouped into four major aerosol species - dust, water soluble (WS), water insoluble (WINS) and BC. Eight different mixing cases - external mixing, internal mixing, and six combinations of core-shell type which includes two modes of dust (accumulation and coarse) have been considered for the present study. Core-shell mixing cases are BC over dust, WS over dust, BC over WS and, WS over BC. These core shell mixed components are then externally mixed with rest of the aerosol species. The aerosol optical properties for each of the mixing state cases are utilized to estimate the radiative forcing using a radiative transfer model. The surface-reaching fluxes for each of the cases are compared with measured clear-sky surface radiation. MISR aerosol product were analyzed to understand the seasonal variations of the bulk aerosol properties that may help in interpreting the sensitivity results. We observed that for the winter season (DJF), core-shell mixed case; BC over dust (accumulation) (207.7±4.28 Wm-2) and BC over WS (207.25±8.4 Wm-2) are almost comparable with measured surface flux (206.46±70.06 Wm-2), while for the monsoon season (JAS) external mixing is closest to observations. None of the mixing cases show compatible comparison, for the pre-monsoon (MAMJ) and post-monsoon season (ON). The remaining discrepancy may be attributed to the assumption of uniform vertical distribution (calculated from CALIPSO data) for each individual aerosol species, whereas ideally different vertical profile should be considered. Secondly, dust is assumed to be

  7. Is the radiative forcing due to black carbon aerosols as large as some recent studies suggest?

    NASA Astrophysics Data System (ADS)

    Boucher, O.; Wang, R.; Balkanski, Y.; Tao, S.; Myhre, G.; Valari, M.; Huneeus, N.

    2013-12-01

    Anthropogenic black carbon aerosols is responsible for a radiative forcing due to aerosol-radiation interactions (RFari), aerosol-cloud interactions (RFaci) and aerosol-snow interactions (RFasi). All estimates are very uncertain but some recent studies (e.g. Chung et al., 2012; Bond et al., 2013) have suggested that global models significantly underestimate aerosol absorption and have applied scaling factors to correct for this underestimation. As a result Bond et al. estimate RFari to be +0.5 (+0.1 to +0.9) Wm-2 for fossil fuel and biofuel only. The fifth assessment report adopted an estimate of +0.4 (+0.05 to +0.8) Wm-2. In this presentation we will show that a number of factors are likely to lead to overestimate the discrepancy in aerosol absorption between observations and models, which questions the need for very large scaling factors to reconcile models with observations. Issues with past methodological include a too small correction for NO2 absorption in AERONET retrievals of aerosol absorption optical depth (AAOD) at 440 nm, representativity errors when comparing outputs from global models with AERONET retrievals, and model biases in aerosol vertical profiles. We will show in particular how a new emission inventory and high-resolution aerosol modelling over Asia can resolve a significant fraction of the discrepancy with observations. Bond, T. C., et al., 2013: Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research, 118, 5380-5552, doi:10.1002/jgrd.50171. Chung, C. E., V. Ramanathan, and D. Decremer, 2012: Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, 109, 11624-11629 Geographic distributions of BC emission density (A, MACCity; B, PKU-BC), modeled surface BC concentrations (C, by MACCity/INCA; D, by PKU-BC/INCA-zA), and modeled BC AAOD (E, by MACCity/INCA; F, by PKU-BC/INCA-zA). The

  8. Evapo-transpiration, role of aerosol radiative forcing: a study over a dense canopy

    NASA Astrophysics Data System (ADS)

    Bhanage, VInayak; Latha, R.; Murthy, B. S.

    2016-05-01

    Current study uses Satellite and Reanalysis data to quantify the effect of aerosol on ET at various space and time scales. All the data are obtained for the period June 2008 to May 2009 over Dibrugarh district, Assam, Indi a where NDVI has limited change of through the year. Monthly Evapo-Transpiration (ET, cumulative), Normalized Difference Vegetation Index (NDVI) and Aerosol Optical Depth (AOD) are retrieved from satellite images of Terra-MODIS. The AOD data are evaluated against in-situ observations. Maximum values of AOD are observed in the pre-monsoon season while minimum AOD values are perceived in October and November. Aerosol Radiative Forcing (ARF) is calculated by using the MERRA data sets of `clean-clear radiation' and `clear-radiation' at surface over the study area. Maximum aerosol radiative forcing is observed during the pre-monsoon season; this is in tune with ground observations. Strong positive correlation (r=0.75) between ET and NDVI is observed and it is found that the dense vegetative surfaces exhibit higher rate of evapo-transpiration. A strong positive correlation (r= -0.85) between ARF at surface and AOD is observed with radiative forcing efficiency of 35 W/m2. A statistical regression equation of ET a s a function of NDVI and AOD i.e. ET = 0.25 + (-84.27) * AOD + (131.51) * NDVI, is obtained that shows a correlation of 0.824.

  9. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    PubMed

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. PMID:27344510

  10. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique

    2016-09-01

    Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This

  11. Aerosol Direct Radiative Forcing over Delhi NCR, India: Sensitivity to Mixing State and Particle Shape

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul; Singh, Sachchidanand; Agarwal, Poornima

    2015-04-01

    Aerosol properties changes with the change in mixing state of aerosols and thus aerosol direct radiative forcing (DRF). The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. A detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out during 2007-2008. These results were used to examine the sensitivity of optical properties to the aerosol mixing state. Black carbon, BC was measured directly by Aethalometer. The species are grouped into four major components; dust, water soluble (WS), water insoluble (WINS) and BC. To infer the probable mixing state of aerosols in the Delhi NCR, eight different mixing cases, external mixing, internal mixing, and six combinations of core- shell type mixing which includes two modes of dust (accumulation and coarse) have been considered. Core-shell mixing cases are considered to be as follows - BC over dust, WS over dust, BC over WS and, WS over BC. These core shell mixed components are then externally mixed with rest of the aerosol species. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing state cases are calculated. These optical properties are utilized to estimate the radiative forcing using a radiative transfer model. The surface-reaching fluxes for each of the cases are compared with MERRA downward shortwave surface flux. MISR aerosol products were also analyzed to understand the seasonal variations of the bulk aerosol properties that may help in interpreting the sensitivity results. We observed that for the pre-monsoon season (MAMJ), core shell mixed case; BC coated over WS (surface DRF is -10.52 Wm-2) and BC over coarse dust (surface DRF is -2.81 Wm-2) are the most probable mixing states. For monsoon season (JAS,) BC coated over coarse dust (often referred to as polluted dust) (surface DRF is -0.60 Wm-2

  12. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall

    NASA Astrophysics Data System (ADS)

    Haywood, Jim M.; Jones, Andy; Bellouin, Nicolas; Stephenson, David

    2013-07-01

    The Sahelian drought of the 1970s-1990s was one of the largest humanitarian disasters of the past 50 years, causing up to 250,000 deaths and creating 10 million refugees. It has been attributed to natural variability, over-grazing and the impact of industrial emissions of sulphur dioxide. Each mechanism can influence the Atlantic sea surface temperature gradient, which is strongly coupled to Sahelian precipitation. We suggest that sporadic volcanic eruptions in the Northern Hemisphere also strongly influence this gradient and cause Sahelian drought. Using de-trended observations from 1900 to 2010, we show that three of the four driest Sahelian summers were preceded by substantial Northern Hemisphere volcanic eruptions. We use a state-of-the-art coupled global atmosphere-ocean model to simulate both episodic volcanic eruptions and geoengineering by continuous deliberate injection into the stratosphere. In either case, large asymmetric stratospheric aerosol loadings concentrated in the Northern Hemisphere are a harbinger of Sahelian drought whereas those concentrated in the Southern Hemisphere induce a greening of the Sahel. Further studies of the detailed regional impacts on the Sahel and other vulnerable areas are required to inform policymakers in developing careful consensual global governance before any practical solar radiation management geoengineering scheme is implemented.

  13. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  14. Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing

    NASA Astrophysics Data System (ADS)

    Liu, J.; Scheuer, E.; Dibb, J.; Diskin, G. S.; Ziemba, L. D.; Thornhill, K. L.; Anderson, B. E.; Wisthaler, A.; Mikoviny, T.; Devi, J. J.; Bergin, M.; Perring, A. E.; Markovic, M. Z.; Schwarz, J. P.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Weber, R. J.

    2015-07-01

    Chemical components of organic aerosol (OA) selectively absorb light at short wavelengths. In this study, the prevalence, sources, and optical importance of this so-called brown carbon (BrC) aerosol component are investigated throughout the North American continental tropospheric column during a summer of extensive biomass burning. Spectrophotometric absorption measurements on extracts of bulk aerosol samples collected from an aircraft over the central USA were analyzed to directly quantify BrC abundance. BrC was found to be prevalent throughout the 1 to 12 km altitude measurement range, with dramatic enhancements in biomass-burning plumes. BrC to black carbon (BC) ratios, under background tropospheric conditions, increased with altitude, consistent with a corresponding increase in the absorption Ångström exponent (AAE) determined from a three-wavelength particle soot absorption photometer (PSAP). The sum of inferred BC absorption and measured BrC absorption at 365 nm was within 3 % of the measured PSAP absorption for background conditions and 22 % for biomass burning. A radiative transfer model showed that BrC absorption reduced top-of-atmosphere (TOA) aerosol forcing by ~ 20 % in the background troposphere. Extensive radiative model simulations applying this study background tropospheric conditions provided a look-up chart for determining radiative forcing efficiencies of BrC as a function of a surface-measured BrC : BC ratio and single scattering albedo (SSA). The chart is a first attempt to provide a tool for better assessment of brown carbon's forcing effect when one is limited to only surface data. These results indicate that BrC is an important contributor to direct aerosol radiative forcing.

  15. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models

    NASA Astrophysics Data System (ADS)

    Vuolo, M. R.; Schulz, M.; Balkanski, Y.; Takemura, T.

    2013-07-01

    The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete comprehension of the role of the aerosol and clouds vertical distribution. This work aims at reducing the incertitude of aerosol forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosols species and clouds. We propose a method to quantify the contribution of different parts of the atmospheric column to the forcing, and to evaluate model differences by isolating the effect of radiative interactions only. Any microphysical or thermo-dynamical interactions between aerosols and clouds are deactivated in the model, to isolate the effects of radiative flux coupling. We investigate the contribution of aerosol above, below and in clouds, by using added diagnostics in the aerosol-climate model LMDz. We also compute the difference between the forcing of the ensemble of the aerosols and the sum of the forcings from individual species, in clear-sky. This difference is found to be moderate on global average (14%) but can reach high values regionally (up to 100%). The non-additivity of forcing already for clear-sky conditions shows, that in addition to represent well the amount of individual aerosol species, it is critical to capture the vertical distribution of all aerosols. Nonlinear effects are even more important when superposing aerosols and clouds. Four forcing computations are performed, one where the full aerosol 3-D distribution is used, and then three where aerosols are confined to regions above, inside and below clouds respectively. We find that the forcing of aerosols depends crucially on the presence of clouds and on their position relative to that of the aerosol, in particular for black carbon (BC). We observe a strong enhancement of the forcing of BC above clouds, attenuation for BC below clouds, and a moderate

  16. The impacts of optical properties on radiative forcing due to dust aerosol

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shi, G. Y.; Li, S. Y.; Li, W.; Wang, B.; Huang, Y. B.

    2006-05-01

    There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering albedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.

  17. Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.

    1996-01-01

    We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 deg. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.

  18. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  19. Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model

    NASA Astrophysics Data System (ADS)

    Hassan, Taufiq; Moosmüller, H.; Chung, Chul E.

    2015-10-01

    Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface

  20. Influence of Brown Carbon Aerosols on Absorption Enhancement and Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Shamjad, Puthukkadan; Nand Tripathi, Sachchida; Kant Pathak, Ravi; Hallquist, Mattias

    2015-04-01

    This study presents aerosol mass and optical properties measured during winter-spring months (February-March) of two consecutive years (2013-2014) from Kanpur, India located inside Gangetic Plain. Spectral absorption and scattering coefficients (405, 532 and 781 nm) of both atmospheric and denuded (at 300° C) is measured using a 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Ratio between the atmospheric and denuded absorption is reported as enhancement in absorption (Eabs). Eabs values shows presence of large quantities of Brown Carbon (BrC) aerosols in the location. Diurnal trend of Eabs shows similar patterns at 405 and 532 nm. But at 781 nm Eabs values increased during day time (10:00 to 18:00) while that 405 and 532 nm decreased. Positive Matrix Analysis (PMF) of organic aerosols measured using HR-ToF-AMS shows factors with different trends with total absorption. Semi-volatile factor (SV-OOA) show no correlation with absorption but other factors such as Low-volatile (LV-OOA), Hydrocarbon (HOA) and Biomass burning (BBOA) organic aerosols shows a positive trend. All factors shows good correlation with scattering coefficient. Also a strong dependence of absorption is observed at 405 and 532 nm and a weak dependence at 781 nm is observed during regression analysis with factors and mass loading. We also present direct radiative forcing (DRF) calculated from measured optical properties due to total aerosol loading and only due to BrC. Total and BrC aerosol DRF shows cooling trends at top of atmosphere (TOA) and surface and warming trend in atmosphere. Days with biomass burning events shows increase in magnitude of DRF at atmosphere and surface up to 30 % corresponding to clear days. TOA forcing during biomass burning days shows increase in magnitude indicating change from negative to less negative.

  1. GCM simulations of volcanic aerosol forcing. I - Climate changes induced by steady-state perturbations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Rind, David; Lacis, Andrew; Hansen, James E.; Sato, Makiko; Ruedy, Reto

    1993-01-01

    The response of the climate system to a temporally and spatially constant amount of volcanic particles is simulated using a general circulation model (GCM). The optical depth of the aerosols is chosen so as to produce approximately the same amount of forcing as results from doubling the present CO2 content of the atmosphere and from the boundary conditions associated with the peak of the last ice age. The climate changes produced by long-term volcanic aerosol forcing are obtained by differencing this simulation and one made for the present climate with no volcanic aerosol forcing. The simulations indicate that a significant cooling of the troposphere and surface can occur at times of closely spaced multiple sulfur-rich volcanic explosions that span time scales of decades to centuries. The steady-state climate response to volcanic forcing includes a large expansion of sea ice, especially in the Southern Hemisphere; a resultant large increase in surface and planetary albedo at high latitudes; and sizable changes in the annually and zonally averaged air temperature.

  2. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

    PubMed Central

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-01-01

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324

  3. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    PubMed

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324

  4. The Role of Local and Remote Anthropogenic Aerosol Forcing on Long-term Variations in the South Asian Monsoon Annual Cycle

    NASA Astrophysics Data System (ADS)

    Bollasina, M. A.; Ming, Y.; Ramaswamy, V.

    2013-12-01

    Detection and attribution of long-term variations of the South Asian monsoon is of extreme importance: even small changes in the onset and duration of the monsoon season or in the spatial distribution of the seasonal mean precipitation may severely impact agriculture, health, water availability, ecosystems, and economy for a substantial fraction of the world's population. In the past decades emissions of aerosols have dramatically increased over South Asia due to rapid urbanization and population growth. As a result, the study of the impact of anthropogenic aerosols on the monsoon has recently emerged as one of the topics of highest priority in the scientific community. This study makes use of a state-of-the-art coupled climate model, the GFDL CM3, to investigate two aspects of the aerosol influence on the observed late 20th century changes in the monsoon annual cycle. The model has fully-interactive aerosols and a representation of both direct and indirect aerosol effects. Aerosols are responsible for an earlier shift of the monsoon onset over India, leading, in agreement with observations, to enhanced precipitation in June over most parts of the subcontinent. Our experiments show that the shift is preceded in early spring by strong aerosol forcing over the Bay of Bengal and Indochina, mostly attributable to the direct effect, resulting in increased atmospheric stability that inhibits the monsoon migration in May. The adjusted atmospheric circulation leads to thermodynamical changes over the northwestern continental region, including increased surface heating and near-surface moist static energy, which support a stronger June flow and, facilitated by a relative warming of the Indian Ocean, a vigorous northwestward precipitation shift. These findings underscore the importance of dynamical feedbacks and regional land-surface processes for the aerosol-monsoon link. We also performed historical experiments with time-evolving radiative forcings aimed at isolating the

  5. How skillfully can we simulate drivers of aerosol direct climate forcing at the regional scale?

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Sullivan, R. C.; Thota, A.; Pryor, S. C.

    2015-10-01

    Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the skill of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled chemistry (WRF-Chem) in capturing spatio-temporal variability of aerosol optical depth (AOD) and Ångström exponent (AE) by comparison with ground- and space- based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A small systematic positive bias in simulated AOD relative to observations is found (annual MFB = 0.17 and 0.50 when comparing with MODIS and AERONET respectively), whereas the spatial variability is well captured during most months. The spatial correlation of AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5-0.7) when the aerosol loading is large and more observations are available. AE is retrieved with higher uncertainty from the remote sensing observations. The model is biased towards simulation of coarse mode aerosols (annual MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation for AE with observations is 0.3-0.5 during most months. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of an extreme aerosol event (i.e. AOD > 75th percentile) varies between 30 and 70 % during winter and summer months respectively.

  6. Global direct radiative forcing by process-parameterized aerosol optical properties

    NASA Astrophysics Data System (ADS)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  7. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    SciTech Connect

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J. -F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  8. Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations

    NASA Technical Reports Server (NTRS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; vanNoije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m(sup-2), with a mean of -0.27 W m(sup-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 W m(sup-2). Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study.We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results

  9. Radiative Forcing, Satellite Validation, and Thermodynamic Impact of Aerosols during Aerose Campaigns

    NASA Astrophysics Data System (ADS)

    Flores, A.; Joseph, E.; Nalli, N. R.; Smirnov, A.; Morris, V. R.; Wolfe, D. E.; Aerose Team

    2011-12-01

    An estimated three billion metric tons of mineral aerosols are injected into the troposphere annually from the Saharan desert [Prospero et al., 1996]. These windswept aerosols from the African continent are responsible for a variety of climate, health, and environmental impacts on both global and regional scales that span the Western Hemisphere [Morris et al., 2006]. The Aerosol and Ocean Science Expeditions (AEROSE) are a great opportunity to tackle these impacts. The Saharan Air Layer (SAL) appears to retain its Saharan characteristics of warm, stable air near its base, and dryness and dustiness throughout its depth as it is carried as far as the western Caribbean Sea [Dunion & Velden, 2004]. AEROSE provides insitu characterization of the impact of aerosols of African origin on energy balance and microphysical evolution of mineral dust outflow over the tropical Atlantic Ocean. By quantifying the radiative properties of the SAL, aerosol optical depths (AOD) as high as 1.6 was detected over the Atlantic [Nalli et al., 2011], producing a shortwave forcing of 200 W/m2 and therefore a warming just above the marine boundary layer for this particular case. Also in this study, AOD values from AEROSE have been compared with the Moderate Resolution Imaging Spectroradiometer (MODIS), showing variety on each campaign.

  10. Long-range forces and the collisions of free-molecular and transition regime aerosols

    SciTech Connect

    Marlow, W.H.

    1988-12-31

    An aerosol here is understood to be a two-component system comprised of gaseous and condensed phases with the characteristic that the condensed phase is not an equilibrium subsystem. In contrast to the usual definitions based upon geometrical or mechanical variables, this quasi-thermodynamic formulation is framed to emphasize the dynamical behavior of aerosols by allowing for coagulation and other aerosol evolutionary processes as natural consequences of the interactions and state variables appropriate to the system. As will become clear later, it also provides a point of departure for distinguishing aerosol particles from unstable gas-phase cluster systems. The question of accommodation in particle collisions must be addressed as a prelude to the discussion of the role of long-range forces. Microscopic reversibility is frequently assumed for molecular collisions with either molecules or solid surfaces. In the case of aerosol collisions, the implication of this assumption is that collisions are elastic, which is contrary to the evidence from coagulation experiments and the conventional operational assumption of sticking upon collision. Gay and Berne have performed computer simulations of the collision of two clusters consisting of a total of 135 molecules interacting via Lennard-Jones potentials. That work showed that complete accommodation, accompanied by overall heating of the unified cluster, occurred. Since heating represents an irreversible degradation of the kinetic energy of the collision, the hamiltonian of the two-cluster system should be considered as dissipative and therefore microscopic reversibility does not apply.

  11. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  12. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    dominate the both surface mass concentration and the columnar burden. The BC contributed only 6% to the aerosol mass loading, but its contribution to the total AOD and net atmospheric forcing were 12% and 75%, respectively. The mean radiative forcing was -6.8 to -8.7 W m-2 at the top-of-atmosphere and -28 to -33 W m-2 at surface. Furthermore BC aerosols contributed 45-49% to the surface radiative forcing along with the water soluble aerosols (49-52%), thus, significantly contributing to solar dimming

  13. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique of estimating aerosol radiative forcing from high resolution spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, Roshan

    2016-04-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive

  14. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and direct aerosol forcing

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-06-01

    This study develops an algorithm for the representation of large spectral variations of albedo over vegetation surfaces based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels centered at 0.47, 0.55, 0.67, 0.86, 1.24, 1.63, and 2.11 μm. The MODIS 7-channel observations miss several major features of vegetation albedo including the vegetation red edge near 0.7 μm and vegetation absorption features at 1.48 and 1.92 μm. We characterize these features by investigating aerosol forcing in different spectral ranges. We show that the correction at 0.7 μm is the most sensitive and important due to the presence of the red edge and strong solar radiation; the other two corrections are less sensitive due to the weaker solar radiation and strong atmospheric water absorption. Four traditional approaches for estimating the reflectance spectrum and the MODIS enhanced vegetation albedo (MEVA) are tested against various vegetation types: dry grass, green grass, conifer, and deciduous from the John Hopkins University (JHU) spectral library; aspens from the US Geological Survey (USGS) digital spectral library; and Amazon vegetation types. Compared to traditional approaches, MEVA improves the accuracy of the outgoing flux at the top of the atmosphere by over 60 W m-2 and aerosol forcing by over 10 W m-2. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol forcing at equator at equinox by 3.7 W m-2 (about 70% of the aerosol forcing calculated with high spectral resolution surface reflectance). These improvements indicate that MEVA can contribute to vegetation covered regional climate studies, and help to improve understanding of climate processes and climate change.

  15. Aerosol Precursor Emissions, Secondary Aerosol Production, and Climate-Forcing Gas Exchange in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Doskey, P. V.

    2009-12-01

    Aerosol precursors in the Midwest are generated from a myriad of sources including biogenic emissions of terpenes from the Ozarks region, anthropogenic emissions of volatile and semivolatile aliphatic and aromatic hydrocarbons from the St. Louis airshed, and agricultural emissions of ammonia (NH3), amines, and nitrogen oxides (NOx) from animal husbandry and cropping systems of the Midwest Corn Belt. The deciduous and coniferous forests of the Ozarks region are significant sources of isoprene, monoterpenes, and sesquiterpenes that are sensitive to rising CO2 levels and temperature and generate light-scattering, secondary organic aerosol (SOA). Application of nitrogen fertilizers stimulates emissions of ammonia (NH3), nitric oxide (NO), and nitrous oxide (N2O) from agricultural soils and crops. Nitric acid, generated through photooxidation of NO emissions from fossil fuel combustion in urban air and from soil emissions in agroecosystems, reacts rapidly with NH3 to generate light-scattering, secondary inorganic aerosol (SIA). The atmospheric lifetime of N2O is about 120 years, making the substance a potent greenhouse gas with a global warming potential of 290 for a time horizon of 20 years relative to CO2. Emissions of CO2, N2O, and SIA precursors from the Midwest Corn Belt and surrounding areas are likely to increase in the near future as pastureland and prairie is converted to grow corn and other biofuel crops to meet the demand for renewable fuels. Several large river systems transport nutrients from fertilized fields of the Midwest agroecosystem to the Gulf of Mexico where plankton growth is accelerated. Microbial decomposition of plankton detritus consumes oxygen and creates a hypoxic zone, which might be a significant source of N2O.The presentation will discuss gaps in our knowledge of the production of climate-forcing species in the Midwestern United States.

  16. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    SciTech Connect

    Nemesure, S.; Wagener, R.; Schwartz, S.E.

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  17. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  18. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    PubMed

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (<0.5); whereas, large spectral dependence in AOD was observed for the remaining aerosol types, with the highest AE values (>1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB. PMID:25893625

  19. Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Costantino, L.; Bréon, F.-M.

    2012-06-01

    In this study, we provide a comprehensive analysis of aerosol interaction with warm boundary layer clouds, over South-East Atlantic. We use MODIS retrievals to derive statistical relationships between aerosol concentration and cloud properties, together with co-located CALIPSO estimates of cloud and aerosol layer altitudes. The latter are used to differentiate between cases of mixed and interacting cloud-aerosol layers from cases where the aerosol is located well-above the cloud top. This strategy allows, to a certain extent, to isolate real aerosol-induced effect from meteorology. Similar to previous studies, statistics clearly show that aerosol affects cloud microphysics, decreasing the Cloud Droplet Radius (CDR). The same data indicate a concomitant strong decrease in cloud Liquid Water Path (LWP), in evident contrast with the hypothesis of aerosol inhibition of precipitation (Albrecht, 1989). Because of this water loss, probably due to the entrainment of dry air at cloud top, Cloud Optical Thickness (COT) is found to be almost insensitive to changes in aerosol concentration. The analysis of MODIS-CALIPSO coincidences also evidenced an aerosol enhancement of low cloud cover. Surprising, the Cloud Fraction (CLF) response to aerosol invigoration is much stronger when (absorbing) particles are located above cloud top, than in cases of physical interaction, This result suggests a relevant aerosol radiative effect on low cloud occurrence. Heating the atmosphere above the inversion, absorbing particles above cloud top may decrease the vertical temperature gradient, increase the low tropospheric stability and provide favorable conditions for low cloud formation. We also focus on the impact of anthropogenic aerosols on precipitation, through the statistical analysis of CDR-COT co-variations. A COT value of 10 is found to be the threshold beyond which precipitation mostly forms, in both clean and polluted environments. For larger COT, polluted clouds showed evidence of

  20. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  1. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  2. Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    SciTech Connect

    Park, Sungsu

    2014-12-12

    The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets and ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be directly

  3. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  4. Radiative Forcing at the Surface by Clouds, Aerosols, and Water Vapor Over Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Key, E.; Minnett, P.; Szczodrak, G.; Caniaux, G.; Voss, K.; Bourras, D.

    2007-12-01

    Data from recent campaigns conducted in the tropical Atlantic and Indian Oceans provide thorough testbeds for determining the contribution of clouds, aerosols, and water vapor to surface radiative forcing, with particular focus on areas of extreme SST gradients. Oceanographic cruises conducted during the African Monsoon Multidisciplinary Analysis included sampling monsoon onset in the Gulf of Guinea, which was characterized nearshore by rain and haze, the latter being a combination of water vapor and continental and pollution aerosols. Offshore and nearer to the equatorial cold tongue, the ITCZ was the dominant northern hemisphere cloud feature, while drier, cooler air masses existed south of the equator. The R/V Ronald H. Brown, operating a north-south transect along 23 W, encountered both atmospheric tropical wave conditions as well as dry Saharan Air Layers. In the Indian Ocean, the N/O Le Suroit occupied a point station near a positive SST anomaly to observe the onset of convection associated with the MJO and strong diurnal warming signatures. Combining radiative and turbulent flux data with measured and modeled profiles of the marine and atmospheric boundary layer, the evolution and interaction of the total air-sea column is observed. Particular emphasis is placed on the radiative forcing of clouds, aerosols, and water vapor on the sea surface skin temperature, towards the improvement of current diurnal warming models, which simplify atmospheric radiative effects into a general cloud parameter.

  5. Long-wave radiative forcing due to dust aerosols: observations and climatology comparisons

    NASA Astrophysics Data System (ADS)

    Gunn, L. N.; Collins, W.

    2012-12-01

    Dust aerosols have been identified by the Intergovernmental Panel for Climate Change as a major source of uncertainty in the radiative forcing of the climate system. Optically thick plumes of dust and pollutants originating from arid regions can be lifted into the middle troposphere and are often transported over synoptic length scales. These events can decrease the upwelling long-wave fluxes at the top of atmosphere (TOA), especially in the mid-infrared portion of the spectrum. Although the long-wave effects of dust are included in model simulations, it is difficult to validate these effects in the absence of satellite-derived global estimates. Using hyper-spectral measurements from NASA's AIRS instrument, we estimate long-wave radiative forcing due to dust over the oceans for the year 2007. Firstly, we will present the results of these global, year long, radiative forcing estimates and secondly, we will use these estimates, along with other variables available from A-train instruments (e.g. MODIS aerosol optical depth) to evaluate the long-wave radiative forcing values from climatological data.

  6. Closing the Confidence Gap in Aerosol Contributions to Direct Radiative Forcing Using Space-based and Suborbital Resources

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2009-12-01

    As expected, the aerosol data products from the NASA Earth Observing System’s MISR and MODIS instruments provide significant advances in regional and global aerosol optical depth (AOD) mapping, aerosol type measurement, and source plume characterization from space. Although these products have been and are being used for many applications, ranging from regional air quality assessment, to aerosol air mass type evolution, to aerosol injection height and aerosol transport model validation, uncertainties still limit the quantitative constraints these satellite data place on global-scale direct aerosol radiative forcing. Some further refinement of the current aerosol products is possible, but a major advance in this area seems to require a different paradigm, involving the integration of satellite and suborbital data with models. This presentation will briefly summarize where we stand, and what incremental advances we can expect, with the current aerosol products, and will then elaborate on some initial steps aimed at the necessary integration. Many other AGU presentations, covering parts of the community’s emerging efforts in this direction, will be referenced, and key points from the recently released CCSP-SAP (US Climate Change Program - Synthesis and Assessment Product) 2.3 - Atmospheric aerosols: Properties and Climate Impacts, will be included in the discussion.

  7. Intensification of North American Megadroughts through Surface and Dust Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Seager, Richard; Miller, Ron L.; Mason, Joseph A

    2013-01-01

    Tree-ring-based reconstructions of the Palmer drought severity index (PDSI) indicate that, during the Medieval Climate Anomaly (MCA), the central plains of North America experienced recurrent periods of drought spanning decades or longer. These megadroughts had exceptional persistence compared to more recent events, but the causes remain uncertain. The authors conducted a suite of general circulation model experiments to test the impact of sea surface temperature (SST) and land surface forcing on the MCA megadroughts over the central plains. The land surface forcing is represented as a set of dune mobilization boundary conditions, derived from available geomorphological evidence and modeled as increased bare soil area and a dust aerosol source (32deg-44degN, 105deg-95degW). In the experiments, cold tropical Pacific SST forcing suppresses precipitation over the central plains but cannot reproduce the overall drying or persistence seen in the PDSI reconstruction. Droughts in the scenario with dust aerosols, however, are amplified and have significantly longer persistence than in other model experiments, more closely matching the reconstructed PDSI. This additional drying occurs because the dust increases the shortwave planetary albedo, reducing energy inputs to the surface and boundary layer. The energy deficit increases atmospheric stability, inhibiting convection and reducing cloud cover and precipitation over the central plains. Results from this study provide the first model-based evidence that dust aerosol forcing and land surface changes could have contributed to the intensity and persistence of the central plains megadroughts, although uncertainties remain in the formulation of the boundary conditions and the future importance of these feedbacks.

  8. Direct and indirect climate forcing in a multi-species marine system.

    PubMed

    Stige, Leif Christian; Ottersen, Geir; Dalpadado, Padmini; Chan, Kung-Sik; Hjermann, Dag Ø; Lajus, Dmitry L; Yaragina, Natalia A; Stenseth, Nils Chr

    2010-11-22

    Interactions within and between species complicate quantification of climate effects, by causing indirect, often delayed, effects of climate fluctuations and compensation of mortality. Here we identify direct and indirect climate effects by analysing unique Russian time-series data from the Norwegian Sea-Barents Sea ecosystem on the first life stages of cod, capelin, herring and haddock, their predators, competitors and zooplanktonic prey. By analysing growth and survival from one life stage to the next (eggs-larvae-juveniles-recruits), we find evidence for both bottom-up, direct and top-down effects of climate. Ambient zooplankton biomass predicts survival of all species, whereas ambient temperature mainly affects survival through effects on growth. In warm years, all species experienced improved growth and feeding conditions. Cohorts born following a warm year will, however, experience increased predation and competition because of increased densities of subadult cod and herring, leading to delayed climate effects. While climate thus affects early growth and survival through several mechanisms, only some of the identified mechanisms were found to be significant predictors of population growth. In particular, our findings exemplify that climate impacts are barely propagated to later life stages when density dependence is strong. PMID:20538646

  9. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  10. Daytime Variation of Shortwave Direct Radiative Forcing of Biomass Burning Aerosols from GOES-8 Imager.

    NASA Astrophysics Data System (ADS)

    Christopher, Sundar A.; Zhang, Jianglong

    2002-02-01

    Hourly Geostationary Operational Environmental Satellite-8 (GOES-8) imager data (1344-1944 UTC) from 20 July-31 August 1998 were used to study the daytime variation of shortwave direct radiative forcing (SWARF) of smoke aerosols over biomass burning regions in South America (4°-16°S, 51°-65°W). Vicarious calibration procedures were used to adjust the GOES visible channel reflectance values for the degradation in signal response. Using Mie theory and discrete ordinate radiative transfer (DISORT) calculations, smoke aerosol optical thickness (AOT) was estimated at 0.67 m. The GOES-retrieved AOT was then compared against ground-based AOT retrieved values. Using the retrieved GOES-8 AOT, a four-stream broadband radiative transfer model was used to compute shortwave fluxes for smoke aerosols at the top of the atmosphere (TOA). The daytime variation of smoke AOT and SWARF was examined for the study area. For selected days, the Clouds and the Earth's Radiant Energy System (CERES) TOA shortwave (SW) fluxes are compared against the model-derived SW fluxes.Results of this study show that the GOES-derived AOT is in excellent agreement with Aerosol Robotic Network (AERONET)-derived AOT values with linear correlation coefficient of 0.97. The TOA CERES-estimated SW fluxes compare well with the model-calculated SW fluxes with linear correlation coefficient of 0.94. For August 1998 the daytime diurnally averaged AOT and SWARF for the study area is 0.63 ± 0.39 and 45.8 ± 18.8 W m2, respectively. This is among the first studies to estimate the daytime diurnal variation of SWARF of smoke aerosols using satellite data.

  11. Multi-site characterization of tropical aerosols: Implications for regional radiative forcing

    NASA Astrophysics Data System (ADS)

    Sumit, Kumar; Devara, P. C. S.; Manoj, M. G.

    2012-03-01

    A land campaign, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP), has been organized using a suit of instruments like AERONET (Aerosol Robotic Network) Sun/Sky sunphotometer, Microtops-II (MICROprocessor-controlled Total Ozone Portable Spectrometer), short-wave pyranometer from December 1, 2006 to April 30, 2007, over five locations (Ahmedabad, Pune, Sinhgad, Trivandrum and Gadanki) representing different environments. The dominance of different aerosol types such as biomass burning, urban/industrial pollution, marine origin and desert-dust particles is expected at these five sites. In all locations, significant day-to-day variability in AOD and Ångström exponent is observed. The Ångström exponent exhibits its lowest values over semi-arid region (Ahmedabad) 0.4-0.7, while it is around 1.8 at rural site (Gadanki). The retrieved volume size distributions for Pune, Ahmedabad and Trivandrum are found to be bimodal with varying concentration of each mode. Interesting feature of this observation is, very low coarse-mode volume concentration observed at Trivandrum even though observations were made about 300 m from the coast. The synergy of results from these complementary measurements is reflected in the computed regional aerosol radiative forcing and heating rates. We have used a radiative transfer model (SBDART) to examine the variations of aerosol direct radiative effect (ADRE) and heating rates to give an overall estimation of the effect on climate. The ADRE, over different measurement sites, at short wavelength is found to be negative at the surface in the range of - 18 to - 59 W m - 2 , and TOA forcing values varied from + 0.9 to - 8 W m - 2 .

  12. The Impact of Pre-Industrial Land Use Change on Atmospheric Composition and Aerosol Radiative Forcing.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. S.; Carslaw, K. S.; Spracklen, D. V.; Folberth, G.; Kaplan, J. O.; Pringle, K.; Scott, C.

    2015-12-01

    Anthropogenic land use change (LUC) has had a major impact on the climate by altering the amount of carbon stored in vegetation, changing surface albedo and modifying the levels of both biogenic and pyrogenic emissions. While previous studies of LUC have largely focused on the first two components, there has recently been a recognition that changes to aerosol and related pre-cursor gas emissions from LUC are equally important. Furthermore, it has also recently been recognised that the pre-industrial (PI) to present day (PD) radiative forcing (RF) of climate from aerosol cloud interactions (ACI) due to anthropogenic emissions is highly sensitive to the amount of natural aerosol that was present in the PI. This suggests that anthropogenic RF from ACI may be highly sensitive to land-use in the PI. There are currently two commonly used baseline reference years for the PI; 1750 and 1860. Rapid LUC occurred between 1750 and 1860, with large reductions in natural vegetation cover in Eastern Northern America, Europe, Central Russia, India and Eastern China as well as lower reductions in parts of Brazil and Africa. This LUC will have led to significant changes in biogenic and fire emissions with implications for natural aerosol concentrations and PI-to-PD RF. The focus of this study is therefore to quantify the impact of LUC between 1750 and 1860 on aerosol concentrations and PI-to-PD RF calculations from ACI. We use the UK Met Office HadGEM3-UKCA coupled-chemistry-climate model to calculate the impacts of anthropogenic emissions and anthropogenic LUC on aerosol size distributions in both 1750 and 1860. We prescribe LUC using the KK10 historical dataset of land cover change. Monoterpene emissions are coupled directly to the prescribed LUC through the JULES land surface scheme in HadGEM3. Fire emissions from LUC were calculated offline using the fire module LPJ-LMfire in the Lund-Potsdam-Jena dynamic global vegetation model. To separate out the impacts of LUC from

  13. Moisture dynamics in the cloudy and polluted tropical atmosphere: The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX)

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.

    2012-12-01

    Aerosols are well known to modify the microphysical properties of clouds. This modification is expected to yield brighter clouds that cover a greater area. However, observations from satellites show little inter-hemispheric difference in cloud optical thickness and liquid water path in spite of the clear inter-hemispheric difference in aerosol optical thickness. Furthermore, comparisons of observations with global atmospheric models suggest that models that parameterize the mechanisms of aerosol nucleation of cloud drops but do not resolve cloud-scale dynamics may be overestimating the magnitude of aerosol effects on cloud radiative forcing. Resolving these discrepancies requires a deeper understanding of the factors determining the transport of moisture to the cloud layer and the effects of aerosols on that transport. Towards this goal, we have conducted a new field experiment to study the moisture dynamics in the boundary layer and lower troposphere of the polluted and cloudy tropical atmosphere. The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX) was conducted during the winter of 2012 at the Maldives Climate Observatory - Hanimaadhoo in the tropical northern Indian Ocean during the period of extensive outflow of the South Asian pollution. Pollution in the CARDEX region has been well documented to both modify the microphysical properties of low clouds and strongly absorb solar radiation with significant consequences for the lower atmosphere and surface radiative energy budgets. Three unmanned aerial vehicles (UAVs) flew nearly 60 research flights instrumented to measure turbulent latent and sensible heat fluxes, aerosol concentrations, and cloud microphysical properties. Airborne measurements were enhanced with continuous surface monitoring of surface turbulent heat fluxes, aerosol concentrations and physical properties, surface remote sensing of cloud water amount and aerosol profiles, and model analyses of aerosols and dynamics with WRFchem. This

  14. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  15. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    SciTech Connect

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  16. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  17. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  18. Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale

    NASA Astrophysics Data System (ADS)

    Richardson, Thomas; Forster, Piers; Parker, Doug; Andrews, Tim

    2015-04-01

    Regional precipitation change is one of the most uncertain aspects of climate change prediction, and can have major societal implications. On a global scale, precipitation is tightly constrained by the radiative cooling of the troposphere. As a result, precipitation exhibits a significant rapid adjustment in response to certain forcing agents, which is important for understanding long term climate change. However, the mechanisms which drive the spatial pattern of rapid adjustment are not well understood. In this study we analyze the spatial pattern of rapid precipitation change using simulations with fixed sea surface temperature. Using data obtained from sixteen models participating in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), we investigate the response to three different forcing scenarios; an abrupt quadrupling of CO2, an increase in all aerosols, and an increase in sulphate aerosol from pre-industrial to present day levels. Analysis of the local atmospheric energy budget is used to understand the observed changes. We find that the spatial pattern of rapid precipitation adjustment due to forcing is primarily driven by the rapid land surface response. As a result, the spatial pattern due to quadrupling CO2 opposes that due to increased sulphate and increased all aerosols. Increasing CO2 levels causes warming of the land surface, due to enhanced downwelling longwave radiation. This destabilizes the atmosphere by warming the lower troposphere, producing an overall shift of convection and precipitation to over land. The reverse is observed for increased sulphate and increased all aerosols. Changes in tropospheric cooling are important in determining the magnitude of regional precipitation change, thereby satisfying global energy budget constraints. We find the spatial pattern of rapid precipitation change due to quadrupling CO2 levels is robust between models. The most significant precipitation changes occur in the tropics, with significant

  19. Development of RAMS-CMAQ to Simulate Aerosol Optical Depth and Aerosol Direct Radiative Forcing and Its Application to East Asia

    SciTech Connect

    Han, Xiao; Zhang, Meigen; Liu, Xiaohong; Ghan, Steven J; Xin, Jin-Yuan; Wang, Li-Li

    2009-11-16

    The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2-1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than -25 and -20 W m-2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.

  20. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    NASA Technical Reports Server (NTRS)

    Yu, Shao-Cai

    1999-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has reported that in the southeastern US and eastern China, the general greenhouse warming due to anthropogenic gaseous emissions is dominated by the cooling effect of anthropogenic aerosols. To verify this model prediction in eastern China and southeastern US, we analyzed regional patterns of climate changes at 72 stations in eastern China during 1951- 94 (44 years), and at 52 stations in the southeastern US during 1949-94 (46 years) to detect the fingerprint of aerosol radiative forcing. It was found that the mean rates of change of annual mean daily, maximum, minimum temperatures and diurnal temperature range (DTR) in eastern China were 0.8, -0.2, 1.8, and -2.0 C/100 years respectively, while the mean rates of change of annual mean daily, maximum, minimum temperatures and DTR in the southeastern US were -0.2, -0.6, 0.2, and -0.8 C/100 years, respectively. This indicates that the high rate of increase in annual mean minimum temperature in eastern China results in a slightly warming trend of daily temperature, while the high rate of decrease in annual mean maximum temperature and low rate of increase in annual mean minimum temperature lead to the cooling trend of daily temperature in the southeastern US. We found that the warming from the longwave forcing due to both greenhouse gases and aerosols was completely counteracted by the shortwave aerosol forcing in the southeastern US in the past 46 years. A slightly overall warming trend in eastern China is evident; winters have become milder. This finding is explained by hypothesizing that increasing energy usage during the past 44 years has resulted in more coal and biomass burning, thus increasing the emission of absorbing soot and organic aerosols in eastern China. Such emissions, in addition to well-known Asia dust and greenhouse gases, may be responsible for the winter warming trend in eastern China that we have reported here. The sensitivity of aerosol

  1. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  2. Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; DíAz, A. M.; Expósito, F. J.; DíAz, J. P.; Dubovik, O.; Dubuisson, P.; Roger, J.-C.; Eck, T. F.; Sinyuk, A.; Derimian, Y.; Dutton, E. G.; Schafer, J. S.; Holben, B. N.; GarcíA, C. A.

    2008-11-01

    The AErosol RObotic NETwork (AERONET) estimates of instantaneous solar broadband fluxes (F) at surface have been validated through comparison with ground-based measurements of broadband fluxes at Mauna Loa Observatory (MLO) and by the Baseline Surface Radiation (BSRN) and the Solar Radiation Networks (SolRad-Net) during the period 1999-2005 and 1999-2006, respectively. The uncertainties in the calculated aerosol radiative forcing (ΔF) and radiative forcing efficiency (ΔFeff) at the bottom of the atmosphere were also assessed. The stations have been selected attempting to cover different aerosols influences and hence radiative properties: urban-industrial, biomass burning, mineral dust, background continental, maritime aerosols and free troposphere. The AERONET solar downward fluxes at surface agree with ground-based measurements in all situations, with a correlation higher than 99% whereas the relation of observed to modeled fluxes ranges from 0.98 to 1.02. Globally an overestimation of 9 ± 12 Wm-2 of solar measurements was found, whereas for MLO (clear atmosphere) the differences decrease noticeably up to 2 ± 10 Wm-2. The highest dispersion between AERONET estimates and measurements was observed in locations dominated by mineral dust and mixed aerosols types. In these locations, the F and ΔF uncertainties have shown a modest increase of the differences for high aerosol load, contrary to ΔFeff which are strongly affected by low aerosol load. Overall the discrepancies clustered within 9 ± 12 Wm-2 for ΔF and 28 ± 30 Wm-2 per unit of aerosol optical depth, τ, at 0.55 μm for ΔFeff, where the latter is given for τ(0.44 μm) ≥ 0.4. The error distributions have not shown any significant tendency with other aerosol radiative properties as well as size and shape particles.

  3. Cloud droplet nucleation and its connection to aerosol properties

    SciTech Connect

    Schwartz, S.E.

    1996-04-01

    Anthropogenic aerosols influence the earth`s radiation balance and climate directly, by scattering shortwave (solar) radiation in cloud-free conditions and indirectly, by increasing concentrations of cloud droplets thereby enhancing cloud shortwave reflectivity. These effects are thought to be significant in the context of changes in the earth radiation budget over the industrial period, exerting a radiative forcing that is of comparable magnitude to that of increased concentrations of greenhouse gases over this period but opposite in sign. However the magnitudes of both the direct and indirect aerosol effects are quite uncertain. Much of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties arising from anthropogenic aerosols. This paper examines recent studies pertaining to the influence of anthropogenic aerosols on loading and properties of aerosols affecting their cloud nucleating properties and indicative of substantial anthropogenic influence on aerosol and cloud properties over the North Atlantic.

  4. Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo

    NASA Astrophysics Data System (ADS)

    di Biagio, Claudia; di Sarra, Alcide; Meloni, Daniela

    2010-05-01

    Aerosol optical properties and shortwave irradiance measurements at the island of Lampedusa (central Mediterranean) during 2004-2007 are combined with Clouds and the Earth's Radiant Energy System observations of the outgoing shortwave flux at the top of the atmosphere (TOA). The measurements are used to estimate the surface (FES), the top of the atmosphere (FETOA), and the atmospheric (FEATM) shortwave aerosol forcing efficiencies for solar zenith angle (θ) between 15° and 55° for desert dust (DD), urban/industrial-biomass burning aerosols (UI-BB), and mixed aerosols (MA). The forcing efficiency at the different atmospheric levels is derived by applying the direct method, that is, as the derivative of the shortwave net flux versus the aerosol optical depth at fixed θ. The diurnal average forcing efficiency at the surface/TOA at the equinox is (-68.9 ± 4.0)/(-45.5 ± 5.4) W m-2 for DD, (-59.0 ± 4.3)/(-19.2 ± 3.3) W m-2 for UI-BB, and (-94.9 ± 5.1)/(-36.2 ± 1.7) W m-2 for MA. The diurnal average atmospheric radiative forcing at the equinox is (+7.3 ± 2.5) W m-2 for DD, (+8.4 ± 1.9) W m-2 for UI-BB, and (+8.2 ± 1.9) W m-2 for MA, suggesting that the mean atmospheric forcing is almost independent of the aerosol type. The largest values of the atmospheric forcing may reach +35 W m-2 for DD, +23 W m-2 for UI-BB, and +34 W m-2 for MA. FETOA is calculated for MA and 25° ≤ θ ≤ 35° for three classes of single scattering albedo (0.7 ≤ ω < 0.8, 0.8 ≤ ω < 0.9, and 0.9 ≤ ω ≤ 1) at 415.6 and 868.7 nm: FETOA increases, in absolute value, for increasing ω. A 0.1 increment in ω determines an increase in FETOA by 10-20 W m-2.

  5. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign.

    PubMed

    Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia

    2009-08-01

    Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area. PMID:19523748

  6. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign

    NASA Astrophysics Data System (ADS)

    Liu, Xingang; Zhang, Yuanhang; Cheng, Yafang; Hu, Min; Han, Tingting

    2012-12-01

    The objective of this study is to quantify the relation of aerosol chemical compositions and optical properties, and to assess the impact of relative humidity (RH) on atmospheric visibility and aerosol direct radiative forcing (ADRF). Mass concentration and size distribution of aerosol chemical compositions as well as aerosol optical properties were concurrently measured at Guangzhou urban site during the PRD (Pearl River Delta) campaign from 1 to 31 July, 2006. Gaseous pollutant NO2 and meteorological parameter were simultaneously monitored. Compared with its dry condition, atmospheric ambient extinction coefficient σext(RH) averagely increased about 51% and atmospheric visibility deceased about 35%, among which RH played an important role on the optical properties of water soluble inorganic salts. (NH4)2SO4 is the most important component responsible for visibility degradation at Guangzhou. In addition, the asymmetry factor g increased from 0.64 to 0.74 with the up-scatter fraction β decreasing from 0.24 to 0.19 when RH increasing from 40% to 90%. At 80% RH, the ADRF increased about 280% compared to that at dry condition and it averagely increased about 100% during the campaign under ambient conditions. It can be inferred that aerosol water content is a key factor and could not be ignored in assessing the role of aerosols in visibility impairment and radiative forcing, especially in the regions with high RH.

  7. Physical and optical properties of aerosols over an urban location in western India: Implications for shortwave radiative forcing

    NASA Astrophysics Data System (ADS)

    Ganguly, Dilip; Jayaraman, A.

    2006-12-01

    We discuss results on implications of seasonal and interannual variabilities in aerosol parameters measured over Ahmedabad, an urban location in western India, for the regional-scale shortwave aerosol direct radiative forcing. Results on physical and optical properties of aerosols are discussed in a companion paper. A discrete ordinate radiative transfer model has been used to carry out the radiative transfer computations. Two different approaches are followed to generate spectral values of aerosol parameters required as input for the radiative transfer computations, and the estimated values are found comparable for both methods. Magnitudes of surface forcing are found to be highest during postmonsoon (-63 ± 10 W/m2), followed by dry (-54 ± 6 W/m2) and lower values during premonsoon (-41.4 ± 5 W/m2) and monsoon (-41 ± 11 W/m2) seasons. In case of TOA, radiative forcing are found to be negative during dry (-26 ± 3 W/m2) and postmonsoon (-22), while positive values are obtained during monsoon (14) and premonsoon (8). Large differences between TOA and surface forcing during monsoon and premonsoon indicate large absorption of radiant energy (˜50 W/m2) within the atmosphere during these seasons. Different properties of aerosols and differences in their vertical distribution give rise to different heating rates within the atmosphere for different seasons. Heating rates at the surface are found to be highest during postmonsoon (5.6°K/day) but decreases sharply with increase in height. Atmosphere is heated strongly at higher levels between 1 and 2 km during monsoon. Results from several sensitivity studies have emphasized the importance of solar zenith angle and other related factors in modulating the values of aerosol radiative forcing.

  8. The forcing of anthropogenic aerosols and greenhouse gases on sub-thermocline temperature trends in the southern subtropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cowan, T.; Purich, A.; Cai, W.; Rotstayn, L. D.; England, M. H.

    2013-12-01

    In the late twentieth century, the sub-thermocline waters of the southern tropical and subtropical Indian Ocean (IO) experienced a sharp cooling. This cooling has been previously attributed to an anthropogenic aerosol-induced strengthening of the global ocean conveyor, which transfers heat from the subtropical gyre latitudes toward the North Atlantic. From the mid-1990s the sub-thermocline IO experienced a rapid temperature trend reversal. In the context of understanding the causes of the sub-thermocline temperature changes, we use a suite of Coupled Model Intercomparison Project phase 5 (CMIP5) models forced with natural and anthropogenic radiative forcings and as well as individual forcing runs. We use these to: (i) examine whether the sub-thermocline cooling and/or rapid warming of the tropical/subtropical IO is anthropogenic or naturally forced; and (ii) assess future projections of the sub-thermocline temperatures in the mid twenty-first century from available model output. Results suggest that the late twentieth century sub-thermocline cooling of the southern IO was primarily driven by increasing anthropogenic aerosols and greenhouse gases. The models simulate a slow-down in the sub-thermocline cooling followed by a rapid warming towards the middle of the twenty-first century. The timing of the commencement of this warming appears dependent on the total change in anthropogenic aerosol levels, with models exhibiting a strong (weak) decline in future aerosols simulating a greater (weaker) magnitude of warming after the occurrence of peak aerosols. The role of greenhouse gases in forcing sub-thermocline temperature trends in the IO in the future remains to be determined. Despite this, it is clear is that as human generated aerosols continue to decline over the coming century, the subsurface ocean circulation will respond accordingly through an acceleration in the warming.

  9. Plan for a research program on aerosol radiative forcing and climate change. Final report, 1 December 1993-17 April 1996

    SciTech Connect

    1996-04-17

    The panel`s main findings are that (1) anthropogenic aerosols reduce the amount of solar radiation reaching the Earth`s surface, (2) anthropogenic aerosols provide a negative climate forcing function for large regions, (3) global models suggest that sulfate aerosols produce a direct forcing in the Northern Hemisphere of the same order of magnitude as that from anthropogenic greenhouse gases, but opposite in sign, and (4) there is substantial uncertainty about the magnitude and spatial distribution of the radiative forcing by aerosols.

  10. Opposing forces of aerosol cooling and El Niño drive coral bleaching on Caribbean reefs

    PubMed Central

    Gill, Jennifer A.; Watkinson, Andrew R.; McWilliams, John P.; Côté, Isabelle M.

    2006-01-01

    Bleaching of corals as a result of elevated sea surface temperatures (SST) is rapidly becoming a primary source of stress for reefs globally; the scale and extent of this threat will depend on how the drivers of SST interact to influence bleaching patterns. We demonstrate how the opposing forces of the El Niño–Southern Oscillation (ENSO) and levels of atmospheric aerosols drive regional-scale patterns of coral bleaching across the Caribbean. When aerosol levels are low, bleaching is largely determined by El Niño strength, but high aerosol levels mitigate the effects of a severe El Niño. High aerosol levels, resulting principally from recent volcanic activity, have thus protected Caribbean reefs from more frequent widespread bleaching events but cannot be relied on to provide similar protection in the future. PMID:17116861

  11. Trends in Ocean Irradiance using a Radiative Model Forced with Terra Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Casey, Nancy; Romanou, Anastasia

    2010-01-01

    Aerosol and cloud information from MODIS on Terra provide enhanced capability to understand surface irradiance over the oceans and its variability. These relationships can be important for ocean biology and carbon cycles. An established radiative transfer model, the Ocean-Atmosphere Spectral Irradiance Model (OASIM) is used to describe ocean irradiance variability on seasonal to decadal time scales. The model is forced with information on aerosols and clouds from the MODIS sensor on Terra and Aqua. A 7-year record (2000-2006) showed no trends in global ocean surface irradiance or photosynthetic available irradiance (PAR). There were significant (P<0.05) negative trends in the Mediterranean Sea, tropical Pacific) and tropical Indian Oceans, of -7.0, -5.0 and -2.7 W/sq m respectively. Global interannual variability was also modest. Regional interannual variability was quite large in some ocean basins, where monthly excursions from climatology were often >20 W/sq m. The trends using MODIS data contrast with results from OASIM using liquid water path estimates from the International Satellite Cloud Climatology Project (ISCCP). Here, a global trend of -2 W/sq m was observed, largely dues to a large negative trend in the Antarctic -12 W/sq m. These results suggest the importance of the choice of liquid water path data sets in assessments of medium-length trends in ocean surface irradiance. The choices also impact the evaluation of changes in ocean biogeochemistry.

  12. Potential of lidar backscatter data to estimate solar aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Müller, Detlef; Mattis, Ina; Ansmann, Albert

    2006-02-01

    The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (betac). A close correlation between the SARF and betac was found. SARF-betac parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia.

  13. Potential of lidar backscatter data to estimate solar aerosol radiative forcing.

    PubMed

    Wendisch, Manfred; Müller, Detlef; Mattis, Ina; Ansmann, Albert

    2006-02-01

    The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (beta(c)). A close correlation between the SARF and beta(c) was found. SARF-beta(c) parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia. PMID:16485690

  14. The relative impacts of greenhouse gas and aerosol climate forcing on mountain glacier melt at the third pole

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.

    2010-12-01

    The third pole region resides within a hot spot for atmospheric brown clouds owing to the widespread emissions of dust, soot, and organic carbon aerosols in South and East Asia. As much as one-half of the regional climate warming over South Asia in the later 20th and early 21st centuries has been attributed to the direct radiative heating of the troposphere by aerosol solar absorption. The other half is attributed to the global greenhouse gas forcing. While the increase in temperature and infrared back radiation attributable to greenhouse gas warming is expected to accelerate melting of Himalayan glaciers, aerosol radiative forcing, and the climate response to it, contribute a host of additional impacts on mountain glaciers, many of which exacerbate the melting. These impacts include atmospheric warming, increased infrared back radiation, reduced surface insolation, surface albedo modification by soot deposition, and reductions in monsoon precipitation. The contributions of each of these effects upon melting of Himalayan mountain glaciers is explored in a glacier mass model based on energy balance calculations. The surface energy balance from the base to the top of several glaciers is calculated based on remote sensing and in-situ time series of radiative fluxes and precipitation. The model is calibrated against recent in-situ measurements of glacier mass balance and equilibrium altitude where available. Perturbations to the radiative fluxes and precipitation are then imposed on the mass balance calculations based on published estimates of the aerosol radiative forcing magnitudes and observed changes in regional temperature and precipitation over the modern era. In light of the substantial uncertainty surrounding regional forcing values and mountain glacier characteristics, the study emphasizes sensitivity studies comparing the relative responses of glaciers to the components of aerosol and greenhouse gas forcing mentioned above. Of particular interest are: (a) the

  15. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  16. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing.

    PubMed

    Bisht, D S; Dumka, U C; Kaskaoutis, D G; Pipal, A S; Srivastava, A K; Soni, V K; Attri, S D; Sateesh, M; Tiwari, S

    2015-07-15

    Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO4(2-) and NO3(-)) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO4(2-) and NO3(-)). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6μgm(-3) (annual mean of 124.6±87.9μgm(-3)) exhibiting higher night-time (129.4μgm(-3)) than daytime (103.8μgm(-3)) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3(-)and SO4(2-), which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R(2)=0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~1.8-2.0Kday(-1)) due to agricultural burning effects during the 2012 post-monsoon season. PMID:25864155

  17. Seasonal differences in aerosol abundance and radiative forcing in months of contrasting emissions and rainfall over northern South Asia

    NASA Astrophysics Data System (ADS)

    Sadavarte, P.; Venkataraman, C.; Cherian, R.; Patil, N.; Madhavan, B. L.; Gupta, T.; Kulkarni, S.; Carmichael, G. R.; Adhikary, B.

    2016-01-01

    A modeling framework was used to examine gaps in understanding of seasonal and spatial heterogeneity in aerosol abundance and radiative forcing over northern South Asia, whose glimpses are revealed in observational studies. Regionally representative emissions were used in chemical transport model simulations at a spatial resolution of 60 × 60 km2, in April, July and September, chosen as months of contrasting emissions and rainfall. Modeled aerosol abundance in northern South Asia was predominantly found to be dust and carbonaceous in April, dust and sulfate in July and sulfate and carbonaceous in September. Anthropogenic aerosols arose from energy-use emissions (from industrial sources, residential biofuel cooking, brick kilns) in all months, additionally from field burning in April, and incursion from East Asia in September. In April, carbonaceous aerosols were abundant from open burning of agricultural fields even at high altitude locations (Godavari), and of forests in the eastern Gangetic Plain (Kolkata). Direct radiative forcing and heating rate, calculated from OPAC-SBDART, using modeled aerosol fields, and corrected by MODIS AOD observations, showed regionally uniform atmospheric forcing in April, compared to that in other months, influenced by both dust and black carbon abundance. A strong spatial heterogeneity of radiative forcing and heating rate was found, with factor of 2.5-3.5 lower atmospheric forcing over the Tibet plateau than that over the Ganga Plain and Northwest in July and September. However, even over the remote Tibet plateau, there was significant anthropogenic contribution to atmospheric forcing and heating rate (45% in Apr, 75% in Sep). Wind fields showed black carbon transport from south Asia in April and east Asia in September. Further evaluation of the transport of dust and anthropogenic emissions from various source regions and their deposition in the Himalaya and Tibet, is important in understanding regional air quality and climate

  18. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  19. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  20. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Hauglustaine, D. A.; Balkanski, Y.; Schulz, M.

    2014-03-01

    The ammonia cycle and nitrate particle formation have been introduced in the LMDz-INCA global model. Both fine nitrate particles formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is -0.056 W m-2. This forcing has the same magnitude than the forcing associated with organic carbon particles and represents 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four Representative Concentration Pathway (RCP) scenarios and for the 2030, 2050 and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentrations of most of the species involved in the nitrate-ammonium-sulfate system drop by 2100 except for ammonia which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and Northern America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of -0.234 W m-2 to a range of -0.070 to -0.130 W m-2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates for which the direct negative forcing increases to a range of -0.060 to -0.115 W m-2 in 2100. Including nitrates in the radiative forcing calculations increases the total direct forcing of aerosols by a

  1. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  2. Characterization of marine boundary layer aerosol from North Atlantic and European sources: Physical and chemical properties and climate forcing parameters

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike

    This thesis focuses on aerosol properties measured in Southwestern Portugal during the second Aerosol Characterization Experiment. Fundamental aerosol physical properties such as particle size distribution and hygroscopic properties are related to possible sources and aerosol transformation processes. From these fundamental properties we derive aerosol properties that are important for aerosol forcing of climate. First, a new method for calculating CCN spectra is proposed in this work and tested using sensitivity studies and comparisons to direct measurements. The measured and calculated CCN spectra differ on average by 30%, which at small supersaturations is similar to the measurement uncertainties. Second, aerosol number to volume ratios (R) are calculated and the fact that values of R are relatively constrained is explained based on observed correlations between size distribution parameters. Third, a simple parameterization of the humidity dependence of the submicron aerosol scattering coefficient has been derived, depending only on a volume weighted average diameter growth factor and the volume mean diameter of the dry size distribution. One set of empirical parameters can be used to parameterize all aerosol types characterized during the ACE-2 measurement period. Aerosol physical properties and climate forcing parameters in the North-East Atlantic Ocean were clearly affected by pollution outbreaks from Europe. The submicron particle volume increased by a factor of 5 in polluted conditions, the light scattering coefficient of dry particles increased on average by a factor of up to 10, CCN concentrations at supersaturations of 0.2% increased by a factor of 3--5. The aerosol fundamental properties vary often strongly with air mass history, but also show short-term variability that often has a characteristic diurnal scale. The number concentration of fine particles below 50nm and the particle hygroscopic growth factors are mostly dominated by diurnal processes

  3. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  4. Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Kalita, Gayatry; Bhuyan, K.; Bhuyan, P. K.; Moorthy, K. Krishna

    2010-10-01

    Measurements of aerosol optical depth (AOD) and mass concentration of composite and black carbon (BC) aerosols made with collocated instruments over Dibrugarh in Northeast India are used to estimate the aerosol radiative forcing for the period June 2008 to May 2009. AOD shows seasonal variation with maximum in premonsoon (0.69 ± 0.13 at 500 nm in March 2009) and minimum in the retreating monsoon (0.08 ± 0.01 at 500 nm in October 2008). Ångström coefficients α and β are highest in monsoon and premonsoon season and are lowest in premonsoon and retreating monsoon, respectively. The size segregated mass concentration is minimum in the monsoon season for all the three modes nucleation, accumulation, and coarse and maximum in winter for accumulation and coarse and in premonsoon for nucleation mode. The BC mass concentration is highest 16.3 ± 1.4 μg m-3 in winter and lowest 3.4 ± 0.9 μg m-3 in monsoon. The estimated aerosol radiative forcing of the atmosphere, using Optical Properties of Aerosols and Clouds (OPAC) outputs as inputs for Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART), is maximum in premonsoon followed by that in winter and minimum in retreating monsoon. Negative forcing is observed at the surface, whereas the top of the atmosphere (TOA) forcing is nearly zero in retreating monsoon and is negative in rest of the seasons. The forcing efficiency and heating rate were highest during winter and premonsoon, respectively.

  5. Sensitivity of nocturnal boundary layer temperature to tropospheric aerosol surface radiative forcing under clear-sky conditions

    NASA Astrophysics Data System (ADS)

    Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk

    2011-01-01

    Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.

  6. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  7. Radiative forcing due to enhancements in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 2008

    NASA Astrophysics Data System (ADS)

    Natarajan, Murali; Pierce, R. Bradley; Schaack, Todd K.; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-03-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/m2 occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/m2 occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  8. Timing, global aerosol forcing, and climate impact of volcanic eruptions during the Common Era

    NASA Astrophysics Data System (ADS)

    Sigl, Michael; McConnell, Joseph R.; Winstrup, Mai; Welten, Kees C.; Plunkett, Gill; Ludlow, Francis; Toohey, Matthew; Büntgen, Ulf; Caffee, Marc; Kipfstuhl, Sepp; Kostick, Conor; Krüger, Kirstin; Maselli, Olivia J.; Mulvaney, Robert; Woodruff, Thomas E.

    2015-04-01

    Early documentary records report of a mysterious dust cloud that was covering Europe for 12 months in 536-37 CE, which was followed by climatic downturn and societal decline globally. Tree rings and other climate proxies have corroborated the occurrence of this event as well as characterized its extent and duration, but failed to trace its origin. By using a multi-disciplinary approach that integrates novel, global-scale age markers with state-of-the-art continuous ice core aerosol measurements, automated objective ice-core layer counting, tephra analyses, and detailed examination of historical archives, we developed an accurate volcanic forcing series from bipolar ice-core arrays back into early Roman times. Our study reconciles human and natural archives - demonstrated by the synchronicity of major volcanic eruption dates to historical documentary records and the now consistent response of tree-ring-reconstructed cooling extremes occurring in the immediate aftermath of large volcanic eruptions throughout the past 2,000 years. These findings have significant implications in multiple research fields including (1) quantification and attribution of climate variations to external solar and volcanic forcing and (2) improvement of reconstructions of climate variations from multi-proxy networks comprising tree-ring and/or ice-core data (e.g., PAGES 2k).

  9. Carbonaceous aerosols recorded in a Southeastern Tibetan glacier: variations, sources and radiative forcing

    NASA Astrophysics Data System (ADS)

    Wang, M.; Xu, B.; Cao, J.; Tie, X.; Wang, H.; Zhang, R.; Qian, Y.; Rasch, P. J.; Zhao, S.; Wu, G.; Zhao, H.; Joswiak, D. R.; Li, J.; Xie, Y.

    2014-07-01

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956-2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of OC / BC ratio with higher values in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source-receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia is a primary contributor during the non-monsoon season (October to May) (81%) and on an annual basis (74%), followed by East Asia (14% and 21%, respectively). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia as the primary contributor. Moreover, the increasing trend of OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice core record.

  10. Asian Summer Monsoon Anomalies Induced by Aerosol Direct Forcing: The Role of the Tibetan Plateau

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, M. K.; Kim, K. M.

    2006-01-01

    In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau (TP). During the premonsoon season of March April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the TP. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the TP relative to the region to the south. In May through early June in a manner akin to an elevated heat pump , the rising hot air forced by the increasing heating in the upper troposphere, draws in warm and moist air over the Indian subcontinent, setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions.

  11. Clear-sky direct aerosol radiative forcing variations over mega-city Delhi

    NASA Astrophysics Data System (ADS)

    Singh, S.; Soni, K.; Bano, T.; Tanwar, R. S.; Nath, S.; Arya, B. C.

    2010-05-01

    The direct aerosol radiative forcing (DARF) has been estimated for the clear-sky conditions over Delhi from January 2006 to January 2007 using Santa Barbara DISORT Atmospheric Radiative Transfer model (SBDART) in the wavelength range 300-3000 nanometer. The single scattering albedo (SSA) and the asymmetry parameter used in this model were estimated using the Optical Properties of Aerosol and Cloud (OPAC) model. The annual average AOD observed at 500 nm was ~0.86±0.42 with an average Angstrom exponent ~0.68±0.35. The average monthly AOD throughout the year over Delhi was found to be in the range 0.56 to 1.22 with the Angstrom exponent in the range 0.38 to 0.96. A high monthly average BC concentration in the range 4-15 μg m-3 led to monthly average SSA in the range 0.90±0.4 to 0.74±0.3 during the year. Consequently, the monthly average clear-sky DARF at the surface was found to vary in the range -46±8 W m-2 to -110±20 W m-2, at TOA in the range -1.4±0.4 to 21±2 W m-2, whereas in the atmosphere it was in the range 46±9 W m-2 to 115±19 W m-2 throughout the year. As the dust concentration in the atmosphere was highest (May-June) the SSA showed an increase with wavelength however when dust concentration was low the SSA decreased with the wavelength.

  12. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    NASA Astrophysics Data System (ADS)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shuguang

    2016-02-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001-2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m-2 and a standard deviation of 2,589 g C m-2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (-583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m-2 with a standard deviation of 2.87 W m-2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  13. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  14. Assimilation of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Verver, Gé; Henzing, Bas

    Climate predictions are hampered by the large uncertainties involved in the estima- tion of the effects of atmospheric aerosol (IPCC,2001). These uncertainties are caused partly because sources and sinks as well as atmospheric processing of the different types of aerosol are not accurately known. Moreover, the climate impact (especially the indirect effect) of a certain distribution of aerosol is hard to quantify. There have been different approaches to reduce these uncertainties. In recent years intensive ob- servational campaigns such as ACE and INDOEX have been carried out, aiming to in- crease our knowledge of atmospheric processes that determine the fate of atmospheric aerosols and to quantify the radiation effects. With the new satellite instruments such as SCIAMACHY and OMI it will be possible in the near future to derive the ge- ographical distribution of the aerosol optical depths (AOD) and perhaps additional information on the occurrence of different aerosol types. The goal of the ARIA project (started in 2001) is to assimilate global satellite de- rived aerosol optical depth (AOD) in an off-line chemistry/transport model TM3. The TM3 model (Jeuken et al. 2001) describes sources, sinks, transformation and transport processes of different types of aerosol (mineral dust, carbon, sulfate, nitrate) that are relevant to radiative forcing. All meteorological input is provided by ECMWF. The assimilation procedure constrains the aerosol distribution produced by the model on the basis of aerosol optical depths observed by satellite. The product, i.e. an optimal estimation of global aerosol distribution, is then available for the calculation of radia- tive forcing. Error analyses may provide valuable information on deficiencies of the model. In the ARIA project it is tried to extract additional information on the type of aerosol present in the atmosphere by assimilating AOD at multiple wavelengths. First results of the ARIA project will be presented. The values

  15. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to -90 W m-2 at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5° K per day in the solar spectrum (for a solar angle of 30°) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about -10 to -20 W m-2 (for the whole period) over the Mediterranean Sea together with maxima (-50 W m-2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multi-year simulation, performed for the 2003 to 2009 period and including an ocean-atmosphere (O-A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O-A fluxes and the hydrological cycle over the Mediterranean.

  16. Retrieval of dust aerosols during night: improved assessment of long wave dust radiative forcing over Afro-Asian regions

    NASA Astrophysics Data System (ADS)

    Deepshikha, S.; Srinivasan, J.

    2010-08-01

    Several investigators in the past have used the radiance depression (with respect to clear-sky infrared radiance), resulting from the presence of mineral dust aerosols in the atmosphere, as an index of dust aerosol load in the atmosphere during local noon. Here, we have used a modified approach to retrieve dust index during night since assessment of diurnal average infrared dust forcing essentially requires information on dust aerosols during night. For this purpose, we used infrared radiance (10.5-12.5 μm), acquired from the METEOSAT-5 satellite (~ 5 km resolution). We found that the "dust index" algorithm, valid for daytime, will no longer hold during the night because dust is then hotter than the theoretical dust-free reference. Hence we followed a "minimum reference" approach instead of a conventional "maximum reference" approach. A detailed analysis suggests that the maximum dust load occurs during the daytime. Over the desert regions of India and Africa, maximum change in dust load is as much as a factor of four between day and night and factor of two variations are commonly observed. By realizing the consequent impact on long wave dust forcing, sensitivity studies were carried out, which indicate that utilizing day time data for estimating the diurnally averaged long-wave dust radiative forcing results in significant errors (as much as 50 to 70%). Annually and regionally averaged long wave dust radiative forcing (which account for the diurnal variation of dust) at the top of the atmosphere over Afro-Asian region is 2.6 ± 1.8 W m-2, which is 30 to 50% lower than those reported earlier. Our studies indicate that neglecting diurnal variation of dust while assessing its radiative impact leads to an overestimation of dust radiative forcing, which in turn result in underestimation of the radiative impact of anthropogenic aerosols.

  17. Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data

    SciTech Connect

    Gu, Y.; Liou, K. N.; Jiang, Jonathan; Su, Hui; Liu, Xiaohong

    2012-02-15

    The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is

  18. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    SciTech Connect

    McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

    2009-03-18

    This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated

  19. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high

  20. Dust Aerosol Optical Properties Retrieval and Radiative Forcing over Northwestern China during 2008 China-US Joint Field Experiment

    NASA Astrophysics Data System (ADS)

    Ge, J.; Su, J.; Ackerman, T. P.; Fu, Q.; Huang, J.; Shi, J.

    2009-12-01

    The Atmosphere Radiation Measurements (ARM) Program’s Ancillary Facility (AAF/SMART-COMMIT) was deployed to Zhangye (39.082° N, 100.276° E), which is located in a semi-desert area of Northwest China, during the period of late April to mid June in 2008. We selected 11 cases to retrieve dust aerosol optical depth (AOD), Angstrom exponent, size distribution, single-scattering albedo (SSA) and asymmetry parameter (ASY) from Multi-filter Rotating Shadowband Radiometer (MFRSR) measurements. These cases are dominated by large particles with Angstrom exponent values ranging from 0.34 to 0.93. The values of AOD at 0.67 µm range from 0.074 to 0.249. The mean SSA value increases with wavelength from 0.76±0.02 at 0.415 µm to 0.86±0.01 at 0.867 µm, while the mean ASY value decreases from 0.74±0.04 to 0.70±0.02. Before estimating dust aerosol direct radiative forcing, a radiative closure experiment was performed to verify that the retrieved aerosol optical properties and other input parameters to the radiative transfer model appropriately represent atmospheric conditions. The daytime-averaged differences between model simulations and ground observations are -8.5, -2.9, and -2.1 Wm-2 for the total, diffuse, and direct normal fluxes, respectively. The mean difference in the instantaneous reflected solar fluxes at the top of atmosphere (TOA) between the model and CERES observations is 8.0 Wm-2. The solar aerosol direct radiative forcing (ARF), averaged over a 24-hour period, at the surface is-22.4±8.9 Wm-2, while the TOA ARF is small and has an average value of only 0.52±1.69 Wm-2. The daily-average surface aerosol radiative forcing effici