Sample records for aerosol indirect radiative

  1. Aerosol direct and indirect radiative effect over Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis; Alexandri, Georgia; Zanis, Prodromos; Ntogras, Christos; Poeschl, Ulrich; Kourtidis, Kostas

    In this work, we present results from the QUADIEEMS project which is focused on the aerosol-cloud relations and the aerosol direct and indirect radiative effect over the region of Eastern Mediterranean. First, a gridded dataset at a resolution of 0.1x0.1 degrees (~10km) with aerosol and cloud related parameters was compiled, using level-2 satellite observations from MODIS TERRA (3/2000-12/2012) and AQUA (7/2002-12/2012). The aerosol gridded dataset has been validated against sunphotometric measurements from 12 AERONET ground stations, showing that generally MODIS overestimates aerosol optical depth (AOD550). Then, the AOD550 and fine mode ratio (FMR550) data from MODIS were combined with aerosol index (AI) data from the Earth Probe TOMS and OMI satellite sensors, wind field data from the ERA-interim reanalysis and AOD550 data for various aerosol types from the GOCART model and the MACC reanalysis to quantify the relative contribution of different aerosol types (marine, dust, anthropogenic, fine-mode natural) to the total AOD550. The aerosol-cloud relations over the region were investigated with the use of the joint high resolution aerosol-cloud gridded dataset. Specifically, we focused on the seasonal relations between the cloud droplet number concentration (CDNC) and AOD550. The aerosol direct and first indirect radiative effect was then calculated for each aerosol type separately making use of the aerosol relative contribution to the total AOD550, the CDND-AOD550 relations and satellite-based parameterizations. The direct radiative effect was also quantified using simulations from a regional climate model (REGCM4), simulations with a radiative transfer model (SBDART) and the three methods were finally intervalidated.

  2. Indirect effect of changing aerosol concentrations on methane and ozone radiative forcing

    NASA Astrophysics Data System (ADS)

    Rowlinson, Matthew; Rap, Alexandru; Arnold, Steve; Forster, Piers; Chipperfield, Martyn

    2017-04-01

    % decreases atmospheric sulpate concentrations by 44% after 2 years, while increasing global OH concentrations by 0.9%. CH4 lifetime is reduced by approximately 50 days as a result, leading to a decrease in CH4 burden of 38ppb. NOx is anticipated to have a similar but much larger effect (Matsui and Koike 2016). The Edwards and Slingo offline radiation model is also used to calculate changes to direct and indirect aerosol forcing. Presented here is the net RF change following 50% emission decrease of each aerosol or precursors, accounting for the direct and indirect aerosol effect as well as indirect effects via oxidation chemistry on the RF due to CH4 and tropospheric O3.

  3. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  4. Assessment of the first indirect radiative effect of ammonium-sulfate-nitrate aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Skorokhod, Andrei

    2017-11-01

    A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached -3.47 W m-2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.

  5. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  6. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  7. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGES

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; ...

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  8. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  9. Evidence for Limited Indirect Aerosol Forcing in Stratocumulus

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.

    2003-01-01

    Increases in cloud cover and condensed water contribute more than half of the indirect aerosol effect in an ensemble of general circulation model (GCM) simulations estimating the global radiative forcing of anthropogenic aerosols. We use detailed simulations of marine stratocumulus clouds and airborne observations of ship tracks to show that increases in cloud cover and condensed water in reality are far less than represented by the GCM ensemble. Our results offer an explanation for recent simplified inverse climate calculations indicating that indirect aerosol effects are greatly exaggerated in GCMs.

  10. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmosphericmore » emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.« less

  11. Strong impacts on aerosol indirect effects from historical oxidant changes

    NASA Astrophysics Data System (ADS)

    Hafsahl Karset, Inger Helene; Koren Berntsen, Terje; Storelvmo, Trude; Alterskjær, Kari; Grini, Alf; Olivié, Dirk; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Schulz, Michael

    2018-06-01

    Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from -1.32 to -1.07 W m-2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  12. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  13. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; ...

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  14. Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Quaas, J.; Ming, Y.; Menon, S.; Takemura, T.; Wang, M.; Penner, J. E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, O.; Sayer, A. M.; Thomas, G. E.; McComiskey, A.; Feingold, G.; Hoose, C.; Kristjánsson, J. E.; Liu, X.; Balkanski, Y.; Donner, L. J.; Ginoux, P. A.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, I.; Bauer, S. E.; Koch, D.; Grainger, R. G.; Kirkevåg, A.; Iversen, T.; Seland, Ø.; Easter, R.; Ghan, S. J.; Rasch, P. J.; Morrison, H.; Lamarque, J.-F.; Iacono, M. J.; Kinne, S.; Schulz, M.

    2009-11-01

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld-τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR-τa relationship show a strong positive correlation between τa and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation

  15. A Climatologically Significant Aerosol Longwave Indirect Effect in the Arctic

    NASA Astrophysics Data System (ADS)

    Lubin, D.; Vogelmann, A.

    2006-12-01

    Analysis of Atmospheric Emitted Radiance Interferometer (AERI) data from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program North Slope of Alaska (NSA) site confirms a pervasive first indirect effect of aerosols in low-level stratiform clouds, which are the prevailing meteorological condition throughout the Arctic. The AERI longwave emission spectra under clouds of low to moderate optical depth (<8) are sensitive to both the effective droplet radius and the liquid water path, and can be used to retrieve both quantities. When supplemented by additional NSA sensor data, these AERI retrievals reveal a longwave surface flux enhancement of 8.2 Watts per square meter under liquid water clouds subject to aerosol entrainment versus similar clouds in clean air. Of this total enhancement revealed by co-located pyrgeometer data, 3.4 Watts per square meter can be readily attributed to the first indirect effect. This observed indirect effect occurs frequently during spring, but rarely during summer. The indirect effect's manifestation in the longwave is climatologically significant given that this part of the spectrum dominates the radiation budget at high latitudes throughout most of the year. Lubin, D., and A. M. Voglemann, Nature, 439, 453-456 (2006).

  16. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is foundmore » that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the

  17. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  18. Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.

    2016-12-01

    Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.

  19. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  20. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  1. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found thatmore » the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on

  2. Response of different regional online coupled models to aerosol-radiation interactions

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  3. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  4. The Impact of Aerosol Microphysical Representation in Models on the Direct Radiative Effect

    NASA Astrophysics Data System (ADS)

    Ridley, D. A.; Heald, C. L.

    2017-12-01

    Aerosol impacts the radiative balance of the atmosphere both directly and indirectly. There is considerable uncertainty remaining in the aerosol direct radiative effect (DRE), hampering understanding of the present magnitude of anthropogenic aerosol forcing and how future changes in aerosol loading will influence climate. Computationally expensive explicit aerosol microphysics are usually reserved for modelling of the aerosol indirect radiative effects that depend upon aerosol particle number. However, the direct radiative effects of aerosol are also strongly dependent upon the aerosol size distribution, especially particles between 0.2µm - 2µm diameter. In this work, we use a consistent model framework and consistent emissions to explore the impact of prescribed size distributions (bulk scheme) relative to explicit microphysics (sectional scheme) on the aerosol radiative properties. We consider the difference in aerosol burden, water uptake, and extinction efficiency resulting from the two representations, highlighting when and where the bulk and sectional schemes diverge significantly in their estimates of the DRE. Finally, we evaluate the modelled size distributions using in-situ measurements over a range of regimes to provide constraints on both the accumulation and coarse aerosol sizes.

  5. Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Da Silva, Nicolas; Mailler, Sylvain; Drobinski, Philippe

    2018-03-01

    Aerosols affect atmospheric dynamics through their direct and semi-direct effects as well as through their effects on cloud microphysics (indirect effects). The present study investigates the indirect effects of aerosols on summer precipitation in the Euro-Mediterranean region, which is located at the crossroads of air masses carrying both natural and anthropogenic aerosols. While it is difficult to disentangle the indirect effects of aerosols from the direct and semi-direct effects in reality, a numerical sensitivity experiment is carried out using the Weather Research and Forecasting (WRF) model, which allows us to isolate indirect effects, all other effects being equal. The Mediterranean hydrological cycle has often been studied using regional climate model (RCM) simulations with parameterized convection, which is the approach we adopt in the present study. For this purpose, the Thompson aerosol-aware microphysics scheme is used in a pair of simulations run at 50 km resolution with extremely high and low aerosol concentrations. An additional pair of simulations has been performed at a convection-permitting resolution (3.3 km) to examine these effects without the use of parameterized convection. While the reduced radiative flux due to the direct effects of the aerosols is already known to reduce precipitation amounts, there is still no general agreement on the sign and magnitude of the aerosol indirect forcing effect on precipitation, with various processes competing with each other. Although some processes tend to enhance precipitation amounts, some others tend to reduce them. In these simulations, increased aerosol loads lead to weaker precipitation in the parameterized (low-resolution) configuration. The fact that a similar result is obtained for a selected area in the convection-permitting (high-resolution) configuration allows for physical interpretations. By examining the key variables in the model outputs, we propose a causal chain that links the aerosol

  6. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  7. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-Phase II exercise

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela

    2014-05-01

    The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological

  8. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  9. Simulating Aerosol Indirect Effects with Improved Aerosol-Cloud- Precipitation Representations in a Coupled Regional Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Leung, L. Ruby; Fan, Jiwen

    This is a collaborative project among North Carolina State University, Pacific Northwest National Laboratory, and Scripps Institution of Oceanography, University of California at San Diego to address the critical need for an accurate representation of aerosol indirect effect in climate and Earth system models. In this project, we propose to develop and improve parameterizations of aerosol-cloud-precipitation feedbacks in climate models and apply them to study the effect of aerosols and clouds on radiation and hydrologic cycle. Our overall objective is to develop, improve, and evaluate parameterizations to enable more accurate simulations of these feedbacks in high resolution regional and globalmore » climate models.« less

  10. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    NASA Technical Reports Server (NTRS)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  11. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Hoose, C.

    2009-11-01

    Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate coating. The glaciation effect can partly offset the indirect aerosol effect on warm clouds and thus causes the total anthropogenic aerosol effect to be smaller. It is investigated by varying the parameterization for the Bergeron-Findeisen process and the threshold coating thickness of sulfate (SO4-crit), which is required to convert an externally mixed aerosol particle into an internally mixed particle. Differences in the net radiation at the top-of-the-atmosphere due to anthropogenic aerosols between the different sensitivity studies amount up to 0.5 W m-2. This suggests that the investigated mixed-phase processes have a major effect on the total anthropogenic aerosol effect.

  12. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Hoose, C.

    2009-07-01

    Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate coating. The glaciation effect can partly offset the indirect aerosol effect on warm clouds and thus causes the total anthropogenic aerosol effect to be smaller. It is investigated by varying the parameterization for the Bergeron-Findeisen process and the threshold coating thickness of sulfate (SO4-crit), which is required to convert an externally mixed aerosol particle into an internally mixed particle. Differences in the net radiation at the top-of-the-atmosphere due to anthropogenic aerosols between the different sensitivity studies amount up to 0.5 W m-2. This suggests that the investigated mixed-phase processes have a major effect on the total anthropogenic aerosol effect.

  13. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  14. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  15. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect.

    PubMed

    Righi, Mattia; Klinger, Carolin; Eyring, Veronika; Hendricks, Johannes; Lauer, Axel; Petzold, Andreas

    2011-04-15

    Aerosol emissions from international shipping are recognized to have a large impact on the Earth's radiation budget, directly by scattering and absorbing solar radiation and indirectly by altering cloud properties. New regulations have recently been approved by the International Maritime Organization (IMO) aiming at progressive reductions of the maximum sulfur content allowed in marine fuels from current 4.5% by mass down to 0.5% in 2020, with more restrictive limits already applied in some coastal regions. In this context, we use a global bottom-up algorithm to calculate geographically resolved emission inventories of gaseous (NO(x), CO, SO(2)) and aerosol (black carbon, organic matter, sulfate) species for different kinds of low-sulfur fuels in shipping. We apply these inventories to study the resulting changes in radiative forcing, attributed to particles from shipping, with the global aerosol-climate model EMAC-MADE. The emission factors for the different fuels are based on measurements at a test bed of a large diesel engine. We consider both fossil fuel (marine gas oil) and biofuels (palm and soy bean oil) as a substitute for heavy fuel oil in the current (2006) fleet and compare their climate impact to that resulting from heavy fuel oil use. Our simulations suggest that ship-induced surface level concentrations of sulfate aerosol are strongly reduced, up to about 40-60% in the high-traffic regions. This clearly has positive consequences for pollution reduction in the vicinity of major harbors. Additionally, such reductions in the aerosol loading lead to a decrease of a factor of 3-4 in the indirect global aerosol effect induced by emissions from international shipping.

  16. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE PAGES

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; ...

    2016-03-04

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity ( ω 500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strongmore » large-scale ascent ( ω 500  <  −25 hPa day −1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day −1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  17. Aerosol microphysical and radiative effects on continental cloud ensembles

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  18. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE PAGES

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; ...

    2018-01-10

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by

  19. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by

  20. Assessment of aerosol indirect effects over Indian subcontinent using long term MODIS aerosol and cloud data

    NASA Astrophysics Data System (ADS)

    Das, Saurabh; Maitra, Animesh; Saha, Upal; De, Arijit

    Aerosols have direct consequences on climate research and in climate change study due to its role in radiative forcing. The modulation of cloud properties due to the presence of aerosol is another important factor in understanding of the climate change scenario. However, the relationship between these two is mostly indirect as the meteorological conditions have a strong impact on the relationship. Cloud effective radius and decreases in precipitation efficiency are interlinked with the increase of aerosols. The net effect is that the cloud liquid water path and cloud lifetime increase with AOD. Though these facts are included in the global climate models (GCM), the quantitative estimation of aerosol indirect efficiency (AIE) varied widely. Some recent studies indicate an increasing trend of the aerosol optical depth over the Indian landmass. The anthropogenic activities are linked with this increase in aerosols. In general, aerosol increase can affect the cloud radius and leads to formation of non-precipitating cloud. However, the chemical composition of aerosols may also be an important factor. It is therefore necessary to have better understanding of the relationship for predicting the future climate which may be affected by such human activities. In this paper, the relation of aerosol optical depth (AOD) with cloud effective radius (CER) has been investigated over the Indian subcontinent using the long term MODIS observations. MODIS can able to provide reliable AOD information over the land surface. It also able to provide information of the cloud effective radius of the same observation point. A grid-wise correlation analysis can thus be performed to estimate the relation between AOD and CER. Result indicates both positive and negative AIE of AOD on CER. To identify the possible reason for such variability in the AIE, the role of anthropogenic aerosols and water vapor is investigated. The study on the efficiency of aerosol indirect effect indicates that a large

  1. Introducing Convective Cloud Microphysics to a Deep Convection Parameterization Facilitating Aerosol Indirect Effects

    NASA Astrophysics Data System (ADS)

    Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.

    2012-12-01

    Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical

  2. Limits to the Indirect Aerosol Forcing in Stratocumulus

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew; Toon, O.; Stevens, D.; Coakley, J., Jr.

    2003-01-01

    The indirect radiative forcing of aerosols is poorly constrained by the observational data underlying the simple cloud parameterizations in GCMs. signal of cloud response to increased aerosol concentrations from meteorological noise. Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ measurements showing no average change in cloud water relative to the surrounding clouds. Both results contradict the expectation of cloud water increasing in polluted clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. The simulations also show that increases in cloud water from suppressing drizzle by increased droplet concentrations are favored at night or at extremely low droplet concentrations. At typical droplet concentrations we find that the Twomey effect on cloud albedo is amplified very little by the secondary indirect effect of drizzle suppression, largely because the absorption of solar radiation by cloud water reduces boundary-layer mixing in the daytime and thereby restricts any possible increase in cloud water from drizzle suppression. The cloud and boundary layer respond to radiative heating variations on a time scale of hours, and on longer time scales respond to imbalances between large-scale horizontal advection and the entrainment of inversion air. We analyze the co-varying response of cloud water, cloud thickness, width of droplet size distributions, and dispersion of the optical depth, as well as the overall response of cloud albedo, to changes in droplet concentrations. We also dissect the underlying physical mechanisms through sensitivity studies. Ship tracks represent an ideal natural laboratory to extricate the

  3. Results of a comprehensive atmospheric aerosol-radiation experiment in the southwestern United States. I - Size distribution, extinction optical depth and vertical profiles of aerosols suspended in the atmosphere. II - Radiation flux measurements and

    NASA Technical Reports Server (NTRS)

    Deluisi, J. J.; Furukawa, F. M.; Gillette, D. A.; Schuster, B. G.; Charlson, R. J.; Porch, W. M.; Fegley, R. W.; Herman, B. M.; Rabinoff, R. A.; Twitty, J. T.

    1976-01-01

    Results are reported for a field test that was aimed at acquiring a sufficient set of measurements of aerosol properties required as input for radiative-transfer calculations relevant to the earth's radiation balance. These measurements include aerosol extinction and size distributions, vertical profiles of aerosols, and radiation fluxes. Physically consistent, vertically inhomogeneous models of the aerosol characteristics of a turbid atmosphere over a desert and an agricultural region are constructed by using direct and indirect sampling techniques. These results are applied for a theoretical interpretation of airborne radiation-flux measurements. The absorption term of the complex refractive index of aerosols is estimated, a regional variation in the refractive index is noted, and the magnitude of solar-radiation absorption by aerosols and atmospheric molecules is determined.

  4. Observed Reduction In Surface Solar Radiation - Aerosol Forcing Versus Cloud Feedback?

    NASA Astrophysics Data System (ADS)

    Liepert, B.

    The solar radiation reaching the ground is a key parameter for the climate system. It drives the hydrological cycle and numerous biological processes. Surface solar radi- ation revealed an estimated 7W/m2 or 4% decline at sites worldwide from 1961 to 1990. The strongest decline occurred at the United States sites with 19W/m2 or 10%. Increasing air pollution and hence direct and indirect aerosol effect, as we know today can only explain part of the reduction in solar radiation. Increasing cloud optical thick- ness - possibly due to global warming - is a more likely explanation for the observed reduction in solar radiation in the United States. The analysis of surface solar radiation data will be shown and compared with GCM results of the direct and indirect aerosol effect. It will be argued that the residual declines in surface solar radiation is likely due to cloud feedback.

  5. A climatologically significant aerosol longwave indirect effect in the Arctic.

    PubMed

    Lubin, Dan; Vogelmann, Andrew M

    2006-01-26

    The warming of Arctic climate and decreases in sea ice thickness and extent observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin, and important positive reinforcements including ice-albedo and cloud-radiation feedbacks. The importance of cloud-radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer. The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes. Here we use multisensor radiometric data to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect. Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.

  6. Does temperature nudging overwhelm aerosol radiative ...

    EPA Pesticide Factsheets

    For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c

  7. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  8. Zonal Aerosol Direct and Indirect Radiative Forcing using Combined CALIOP, CERES, CloudSat, and CERES Data

    NASA Astrophysics Data System (ADS)

    Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.

    2009-12-01

    Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.

  9. Regional aerosol radiative and hydrological effects over the mid-Atlantic corridor

    NASA Astrophysics Data System (ADS)

    Creekmore, Torreon N.

    A thorough assessment of direct, indirect, and semi-direct influences of aerosols on Earth's energy budget is required to better understand climate and estimate how it may change in the future. Clear-sky surface broadband (measured and modeled) irradiance, spectral aerosol optical depth, heating rate profiles, and non-radiative flux measurements were conducted at a state-of-the-art site, developed by the NOAA-Howard University Center for Atmospheric Sciences (NCAS) program, providing a best estimate of aerosol radiative atmosphere-surface interactions. Methods developed by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program were applied to: (1) temporally quantify regional aerosol forcing, (2) to derive an empirical equation describing a relationship between aerosol optical depth and normalized diffuse ratio, (3) evaluate aerosol impacts on atmospheric heating, and (4) evaluate how aerosol forcing impacts may possibly reduce latent and sensible fluxes. Measurements were obtained during the period of May--September for the years of 2005, 2006, and 2007. Atmospheric aerosols are among the key uncertainties affecting the Earth's climate and atmospheric radiative processes. Present-day increases in aerosol concentrations directly, indirectly, and semi-directly impact the Earth's energy budget (i.e., cooling the surface and heating the atmosphere), thereby contributing to climate change. The Howard University Beltsville Site (HUBS) has experienced a greater loss in mean normalized aerosol radiative forcing with time, as observations show a decrease from --0.9 in 2005 to --3.1 and --3.4 W/m2 for 2006 and 2007 respectively, in mean net surface irradiance. The mean normalized aerosol radiative forcing estimated for the period considered was --2.5 W/m2. The reduction in surface solar insolation is due to increased scattering and absorption related to increased aerosol burdens v for the period, promoting surface cooling and atmospheric heating

  10. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  11. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.

    2014-10-01

    Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.

  12. Aerosol radiative effects on mesoscale cloud-precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign

    NASA Astrophysics Data System (ADS)

    Park, Shin-Young; Lee, Hyo-Jung; Kang, Jeong-Eon; Lee, Taehyoung; Kim, Cheol-Hee

    2018-01-01

    The online model, Weather Research and Forecasting Model with Chemistry (WRF-Chem) is employed to interpret the effects of aerosol-cloud-precipitation interaction on mesoscale meteorological fields over Northeast Asia during the Megacity Air Pollution Study-Seoul (MAPS-Seoul) 2015 campaign. The MAPS-Seoul campaign is a pre-campaign of the Korea-United States Air Quality (KORUS-AQ) campaign conducted over the Korean Peninsula. We validated the WRF-Chem simulations during the campaign period, and analyzed aerosol-warm cloud interactions by diagnosing both aerosol direct, indirect, and total effects. The results demonstrated that aerosol directly decreased downward shortwave radiation up to -44% (-282 W m-2) for this period and subsequently increased downward longwave radiation up to +15% (∼52 W m-2) in the presence of low-level clouds along the thematic area. Aerosol increased cloud fraction indirectly up to ∼24% with the increases of both liquid water path and the droplet number mixing ratio. Precipitation properties were altered both directly and indirectly. Direct effects simply changed cloud-precipitation quantities via simple updraft process associated with perturbed radiation and temperature, while indirect effects mainly suppressed precipitation, but sometimes increased precipitation in the higher relative humidity atmosphere or near vapor-saturated condition. The total aerosol effects caused a time lag of the precipitation rate with the delayed onset time of up to 9 h. This implies the importance of aerosol effects in improving mesoscale precipitation rate prediction in the online approach in the presence of non-linear warm cloud.

  13. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  14. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  15. The Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2006-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.

  16. Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India

    NASA Technical Reports Server (NTRS)

    Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg

    2013-01-01

    Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic

  17. A study of aerosol indirect effects and feedbacks on convective precipitation

    NASA Astrophysics Data System (ADS)

    Da Silva, Nicolas; Mailler, Sylvain; Drobinski, Philippe

    2017-04-01

    Atmospheric aerosols from natural and anthropogenic origin are present in the troposphere of the Mediterranean basin and continental Europe, occasionnally reaching very high concentrations in air masses with a strong content of aerosols related to mineral dust emissions, wildfires, or anthropogenic contamination [1]. On the other hand precipitations in the Mediterranean basin need to be understood precisely since drought and extreme precipitation events are a part of Mediterranean climate which can strongly affect the people and the economic activity in the Mediterranean basin [2]. The present study is a contribution to the investigations on the effects of aerosols on precipitation in the Mediterranean basin and continental Europe. For that purpose, we used the Weather Research and Forecasting Model (WRF) parameterized with the Thompson aerosol-aware microphysics schemes, performing two sensitivity simulations forced with two different aerosol climatologies during six months covering an entire summer season on a domain, covering the Mediterranean basin and continental Europe at 50 km resolution. Aerosols may affect atmospheric dynamics through their direct and semidirect radiative effects as well as through their indirect effects (through the changes of cloud microphysics). While it is difficult to disentangle these differents effects in reality, numerical modelling with the WRF model make it possible to isolate indirect effects by modifying them without affecting the direct or semidirect effects of aerosols in an attempt to examine the effect of aerosols on precipitations through microphysical effects only. Our first results have shown two opposite responses depending whether the precipitation are convective or large-scale. Since convective precipitations seem to be clearly inhibited by increased concentrations of cloud-condensation nuclei, we attempted to understand which processes and feedbacks are involved in this reduction of parameterized convective

  18. Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.

    PubMed

    Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen

    2009-01-20

    We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

  19. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    NASA Astrophysics Data System (ADS)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  20. Aerosol radiative effects and their trends under clear-sky situations over Europe

    NASA Astrophysics Data System (ADS)

    Bartok, Blanka

    2017-04-01

    -sky radiation controlled by the effects of aerosols and water vapour. If we subtract the water vapour effects also calculated by MAGIC radiation code from this trend, the magnitude of the trends in aerosol radiative effects can be estimated. In this case it is assumed that the two effects do not amplify and do not cancel each other, and their arithmetic sum gives the change in clear-sky radiation trend. The two approaches give good fit, based on the direct (modelled) approach the annual trend of the aerosol radiative effects on clear-sky solar surface radiation is -4.41 W/m2 per decade for the period of 2001-2013, while in the case of the indirect approach (based on clear-sky trends) this trend is found to be -4.46 W/m2 per decade.

  1. Multi-year application of WRF-CAM5 over East Asia-Part II: Interannual variability, trend analysis, and aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wang, Kai; He, Jian

    2017-09-01

    Following a comprehensive evaluation of WRF-CAM5 in Part I, Part II describes analyses of interannual variability, multi-year variation trends, and the direct, indirect, and total effects of anthropogenic aerosols. The interannual variations of chemical column and surface concentrations, and ozone (O3)/particulate matter (PM) indicators are strongly correlated to anthropogenic emission changes. Despite model biases, the model captures well the observed interannual variations of temperature at 2-m, cloud fraction, shortwave cloud forcing, downwelling shortwave radiation, cloud droplet number concentration, column O3, and column formaldehyde (HCHO) for the whole domain. While the model reproduces the volatile organic compound (VOC)-limited regimes of O3 chemistry at sites in Hong Kong, Taiwan, Japan, South Korea, and from the Acid Deposition Monitoring Network in East Asia (EANET) and the degree of sulfate neutralization at the EANET sites, it has limited capability in capturing the interannual variations of the ratio of O3 and nitrogen dioxide (O3/NO2) and PM chemical regime indicators, due to uncertainties in the emissions of precursors for O3 and secondary PM, the model assumption for ammonium bisulfate (NH4HSO4) as well as lack of gas/particle partitioning of total ammonia and total nitrate. While the variation trends in multi-year periods in aerosol optical depth and column concentrations of carbon monoxide, sulfur dioxide, and NO2 are mainly caused by anthropogenic emissions, those of major meteorological and cloud variables partly reflect feedbacks of chemistry to meteorological variables. The impacts of anthropogenic aerosol indirect effects either dominate or play an important role in the aerosol total effects for most cloud and chemical predictions, whereas anthropogenic aerosol direct effects influence most meteorological and radiation variables. The direct, indirect, and total effects of anthropogenic aerosols exhibit a strong interannual variability in

  2. Historical anthropogenic radiative forcing of changes in biogenic secondary aerosol

    NASA Astrophysics Data System (ADS)

    Acosta Navarro, Juan; D'Andrea, Stephen; Pierce, Jeffrey; Ekman, Annica; Struthers, Hamish; Zorita, Eduardo; Guenther, Alex; Arneth, Almut; Smolander, Sampo; Kaplan, Jed; Farina, Salvatore; Scott, Catherine; Rap, Alexandru; Farmer, Delphine; Spracklen, Domink; Riipinen, Ilona

    2016-04-01

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA. We found that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m².

  3. CLouds, and Aerosols Radiative Impacts and Forcing: Year 2016 (CLARIFY-2016)

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Bellouin, N.; Carslaw, K. S.; Coe, H.; Field, P.; Highwood, E. J.; Redemann, J.; Stier, P.; Wood, R.; Zuidema, P.

    2013-12-01

    Strongly absorbing biomass burning aerosols (BBAs) exist above highly reflectant stratocumulus clouds in the SE Atlantic with implications on the direct (e.g. Haywood et al., 2003), semi-direct (e.g. Johnson et al., 2006), and indirect effect of aerosols, implications on the remote sensing of cloud optical properties, development of clouds and feedback processes. Here, we present an analysis of modelled estimates of the direct effect using twelve models from the AEROCOM project (Myhre et al., 2013) to show that estimates of the direct effect in SE Atlantic range from strongly negative to strongly positive. Furthermore, we evaluate the performance of the HadGEM2 model and show it cannot replicate the extreme values of positive forcing inferred from high spectral resolution satellite retrievals. By examining patterns of deposition, we infer that the indirect effect from biomass burning aerosols is very limited in the model, but without detailed measurements we are unsure of the validity of this inference. We conclude that the SE Atlantic is therefore of key importance in determining the radiative forcing of biomass burning aerosols and provides a very stringent test for global climate models as they need to accurately represent the geographic distribution of the aerosol optical depth, the wavelength dependent aerosol single scattering albedo, the vertical profile of the aerosol, the geographic distribution of the cloud, the cloud fraction, the cloud liquid water content, the cloud droplet effective radii, and the vertical profile of the cloud. These results are used as scientific rationale to justify a new measurement campaign: CLouds and Aerosol Radiative Impacts and Forcing: Year-2016 (CLARIFY-2016). Haywood, J.M., Osborne, S.R. Francis, P.N., Keil, A., Formenti, P., Andreae, M.O., and Kaye, P.H., The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res., 108

  4. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Roeckner, E.; Zhang, J.

    2007-03-01

    The double-moment cloud microphysics scheme from ECHAM4 has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass and number concentrations and the aerosol mixing state. This results in a much better agreement with observed vertical profiles of the black carbon and aerosol mass mixing ratios than with the previous version ECHAM4, where only the different aerosol mass mixing ratios were predicted. Also, the simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35°C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.8 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and present-day aerosol emissions representative for the year 2000 are used. It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed.

  5. Aerosol indirect effects from ground-based retrievals over the rain shadow region in Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Harikishan, G.; Padmakumari, B.; Maheskumar, R. S.; Pandithurai, G.; Min, Q. L.

    2016-03-01

    Aerosol-induced changes in cloud microphysical and radiative properties have been studied for the first time using ground-based and airborne observations over a semiarid rain shadow region. The study was conducted for nonprecipitating, ice-free clouds during monsoon (July to September) and postmonsoon (October) months, when cloud condensation nuclei (CCN) concentrations over the region of interest increased monotonically and exhibited characteristics of continental origin. A multifilter rotating shadowband radiometer and microwave radiometric profiler were used to retrieve the cloud optical depth and liquid water path (LWP), respectively, from which cloud effective radius (CER) was obtained. CER showed wide variability from 10-18 µm and a decreasing trend toward the postmonsoon period. During monsoon, the estimated first aerosol indirect effect (AIE) increased from 0.01 to 0.23 with increase in LWP. AIE at different super saturations (SS) showed maximum value (significant at 95%) at 0.4% SS and higher LWP bin (250-300 g/m2). Also, statistically significant AIE values were found at 0.6% and 0.8% SSs but at lower LWP bin (200-250 g/m2). The relationship between CCN and CER showed high correlation at 0.4% SS at higher LWP bin, while at higher SSs good correlations were observed at lower LWPs. Data combined from ground-based and aircraft observations showed dominance of microphysical effect at aerosol concentrations up to 1500 cm-3 and radiative effect at higher concentrations. This combined cloud microphysical and aerosol radiative effect is more prominent during postmonsoon period due to an increase in aerosol concentration.

  6. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  7. Quantitative impact of aerosols on numerical weather prediction. Part I: Direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Marquis, J. W.; Zhang, J.; Reid, J. S.; Benedetti, A.; Christensen, M.

    2017-12-01

    While the effects of aerosols on climate have been extensively studied over the past two decades, the impacts of aerosols on operational weather forecasts have not been carefully quantified. Despite this lack of quantification, aerosol plumes can impact weather forecasts directly by reducing surface reaching solar radiation and indirectly through affecting remotely sensed data that are used for weather forecasts. In part I of this study, the direct impact of smoke aerosol plumes on surface temperature forecasts are quantified using a smoke aerosol event affecting the United States Upper-Midwest in 2015. NCEP, ECMWF and UKMO model forecast surface temperature uncertainties are studied with respect to aerosol loading. Smoke aerosol direct cooling efficiencies are derived and the potential of including aerosol particles in operational forecasts is discussed, with the consideration of aerosol trends, especially over regions with heavy aerosol loading.

  8. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  9. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE PAGES

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    2016-11-23

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  10. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  11. Study of aerosol direct and indirect effects and auto-conversion processes over the West African monsoon region using a regional climate model

    NASA Astrophysics Data System (ADS)

    Salah, Zeinab; Shalaby, Ahmed; Steiner, Allison L.; Zakey, Ashraf S.; Gautam, Ritesh; Abdel Wahab, Mohamed M.

    2018-02-01

    This study assesses the direct and indirect effects of natural and anthropogenic aerosols (e.g., black carbon and sulfate) over West and Central Africa during the West African monsoon (WAM) period (June-July-August). We investigate the impacts of aerosols on the amount of cloudiness, the influences on the precipitation efficiency of clouds, and the associated radiative forcing (direct and indirect). Our study includes the implementation of three new formulations of auto-conversion parameterization [namely, the Beheng (BH), Tripoli and Cotton (TC) and Liu and Daum (R6) schemes] in RegCM4.4.1, besides the default model's auto-conversion scheme (Kessler). Among the new schemes, BH reduces the precipitation wet bias by more than 50% over West Africa and achieves a bias reduction of around 25% over Central Africa. Results from detailed sensitivity experiments suggest a significant path forward in terms of addressing the long-standing issue of the characteristic wet bias in RegCM. In terms of aerosol-induced radiative forcing, the impact of the various schemes is found to vary considerably (ranging from -5 to -25 W m-2).

  12. Implementation of an Aerosol-Cloud Microphysics-Radiation Coupling into the NASA Unified WRF: Simulation Results for the 6-7 August 2006 AMMA Special Observing Period

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Matsui, T.; Tao, W.-K.; Tan, Q.; Peters-Lidard, C.; Chin, M.; Pickering, K.; Guy, N.; Lang, S.; Kemp, E. M.

    2014-01-01

    Aerosols affect the Earth's radiation balance directly and cloud microphysical processes indirectly via the activation of cloud condensation and ice nuclei. These two effects have often been considered separately and independently, hence the need to assess their combined impact given the differing nature of their effects on convective clouds. To study both effects, an aerosol-microphysics-radiation coupling, including Goddard microphysics and radiation schemes, was implemented into the NASA Unified Weather Research and Forecasting model (NU-WRF). Fully coupled NU-WRF simulations were conducted for a mesoscale convective system (MCS) that passed through the Niamey, Niger area on 6-7 August 2006 during an African Monsoon Multidisciplinary Analysis (AMMA) special observing period. The results suggest that rainfall is reduced when aerosol indirect effects are included, regardless of the aerosol direct effect. Daily mean radiation heating profiles in the area traversed by the MCS showed the aerosol (mainly mineral dust) direct effect had the largest impact near cloud tops just above 200 hectopascals where short-wave heating increased by about 0.8 Kelvin per day; the weakest long-wave cooling was at around 250 hectopascals. It was also found that more condensation and ice nuclei as a result of higher aerosol/dust concentrations led to increased amounts of all cloud hydrometeors because of the microphysical indirect effect, and the radiation direct effect acts to reduce precipitating cloud particles (rain, snow and graupel) in the middle and lower cloud layers while increasing the non-precipitating particles (ice) in the cirrus anvil. However, when the aerosol direct effect was activated, regardless of the indirect effect, the onset of MCS precipitation was delayed about 2 hours, in conjunction with the delay in the activation of cloud condensation and ice nuclei. Overall, for this particular environment, model set-up and physics configuration, the effect of aerosol

  13. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    PubMed

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Integrated Cloud-Aerosol-Radiation Product using CERES, MODIS, CALIPSO and CloudSat Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave

    2007-01-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  15. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  16. Aerosol radiative forcing from GEO satellite data over land surfaces

    NASA Astrophysics Data System (ADS)

    Costa, Maria J.; Silva, Ana M.

    2005-10-01

    Aerosols direct and indirect effects on the Earth's climate are widely recognized but have yet to be adequately quantified. Difficulties arise due to the very high spatial and temporal variability of aerosols, which is a major cause of uncertainties in radiative forcing studies. The effective monitoring of the global aerosol distribution is only made possible by satellite monitoring and this is the reason why the interest in aerosol observations from satellite passive radiometers is steadily increasing. From the point of view of the study of land surfaces, the atmosphere with its constituents represents an obscurant whose effects should be as much as possible eliminated, being this process sometimes referred to as atmospheric correction. In absence of clouds and using spectral intervals where gas absorption can be avoided to a great extent, only the aerosol effect remains to be corrected. The monitoring of the aerosol particles present in the atmosphere is then crucial to succeed in doing an accurate atmospheric correction, otherwise the surface properties may be inadequately characterised. However, the atmospheric correction over land surfaces turns out to be a difficult task since surface reflection competes with the atmospheric component of the signal. On the other hand, a single mean pre-established aerosol characterisation would not be sufficient for this purpose due to very high spatial and temporal variability of aerosols and their unpredictability, especially what concerns particulary intense "events" such as biomass burning and forest fires, desert dust episodes and volcanic eruptions. In this context, an operational methodology has been developed at the University of Evora - Evora Geophysics Centre (CGE), in the framework of the Satellite Application Facility for Land Surface Analysis - Land SAF, to derive an Aerosol Product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, flying on the Geostationary (GEO) satellite system Meteosat-8

  17. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  18. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  19. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, Tianle; Remer, Lorraine A.; Bian, Huisheng; Ziemke, Jerald R.; Albrecht, Rachel; Pickering, Kenneth E.; Oreopoulos, Lazaros; Goodman, Steven J.; Yu, Hongbin; Allen, Dale J.

    2012-09-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. Inadequate understanding of processes related to O3 production, in particular those natural ones such as lightning, contributes to this uncertainty. Here we demonstrate a new effect of aerosol particles on O3production by affecting lightning activity and lightning-generated NOx (LNOx). We find that lightning flash rate increases at a remarkable rate of 30 times or more per unit of aerosol optical depth. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses show O3is increased as a result of aerosol-induced increase in lightning and LNOx, which is supported by modle simulations with prescribed lightning change. O3production increase from this aerosol-lightning-ozone link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. In the face of anthropogenic aerosol increase our findings suggest that lightning activity, LNOx and O3, especially in the upper troposphere, have all increased substantially since preindustrial time due to the proposed aerosol-lightning-ozone link, which implies a stronger O3 historical radiative forcing. Aerosol forcing therefore has a warming component via its effect on O3 production and this component has mostly been ignored in previous studies of climate forcing related to O3and aerosols. Sensitivity simulations suggest that 4-8% increase of column tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and

  20. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  1. Large contribution of natural aerosols to uncertainty in indirect forcing

    NASA Astrophysics Data System (ADS)

    Carslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R.

    2013-11-01

    The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.

  2. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  3. Lidar characterizations of atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.

    2017-12-01

    Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and

  4. Radiative capture reactions via indirect methods

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Rogachev, G. V.

    2017-10-01

    Many radiative capture reactions of astrophysical interest occur at such low energies that their direct measurement is hardly possible. Until now the only indirect method, which was used to determine the astrophysical factor of the astrophysical radiative capture process, was the Coulomb dissociation. In this paper we address another indirect method, which can provide information about resonant radiative capture reactions at astrophysically relevant energies. This method can be considered an extension of the Trojan horse method for resonant radiative capture reactions. The idea of the suggested indirect method is to use the indirect reaction A (a ,s γ )F to obtain information about the radiative capture reaction A (x ,γ )F , where a =(s x ) and F =(x A ) . The main advantage of using the indirect reactions is the absence of the penetrability factor in the channel x +A , which suppresses the low-energy cross sections of the A (x ,γ )F reactions and does not allow one to measure these reactions at astrophysical energies. A general formalism to treat indirect resonant radiative capture reactions is developed when only a few intermediate states contribute and a statistical approach cannot be applied. The indirect method requires coincidence measurements of the triple differential cross section, which is a function of the photon scattering angle, energy, and the scattering angle of the outgoing spectator particle s . Angular dependence of the triple differential cross section at fixed scattering angle of the spectator s is the angular γ -s correlation function. Using indirect resonant radiative capture reactions, one can obtain information about important astrophysical resonant radiative capture reactions such as (p ,γ ) , (α ,γ ) , and (n ,γ ) on stable and unstable isotopes. The indirect technique makes accessible low-lying resonances, which are close to the threshold, and even subthreshold bound states located at negative energies. In this paper, after

  5. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Wei-Kuo

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e.,more » Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and

  6. Interactive Nature of Climate Change and Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Nazarenko, L.; Rind, D.; Tsigaridis, K.; Del Genio, A. D.; Kelley, M.; Tausnev, N.

    2017-01-01

    The effect of changing cloud cover on climate, based on cloud-aerosol interactions, is one of the major unknowns for climate forcing and climate sensitivity. It has two components: (1) the impact of aerosols on clouds and climate due to in-situ interactions (i.e., rapid response); and (2) the effect of aerosols on the cloud feedback that arises as climate changes - climate feedback response. We examine both effects utilizing the NASA GISS ModelE2 to assess the indirect effect, with both mass-based and microphysical aerosol schemes, in transient twentieth-century simulations. We separate the rapid response and climate feedback effects by making simulations with a coupled version of the model as well as one with no sea surface temperature or sea ice response (atmosphere-only simulations). We show that the indirect effect of aerosols on temperature is altered by the climate feedbacks following the ocean response, and this change differs depending upon which aerosol model is employed. Overall the effective radiative forcing (ERF) for the direct effect of aerosol-radiation interaction (ERFari) ranges between -0.2 and -0.6 W/sq m for atmosphere-only experiments while the total effective radiative forcing, including the indirect effect (ERFari+aci) varies between about -0.4 and -1.1 W/sq m for atmosphere-only simulations; both ranges are in agreement with those given in IPCC (2013). Including the full feedback of the climate system lowers these ranges to -0.2 to -0.5 W/sq m for ERFari, and -0.3 to -0.74 W/sq m for ERFari+aci. With both aerosol schemes, the climate change feedbacks have reduced the global average indirect radiative effect of atmospheric aerosols relative to what the emission changes would have produced, at least partially due to its effect on tropical upper tropospheric clouds.

  7. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying

  8. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  9. The Impact of a Laki-style Eruption on Cloud Drops, Indirect Radiative Forcing and Air Quality

    NASA Astrophysics Data System (ADS)

    Carslaw, K.; Schmidt, A.; Mann, G.; Pringle, K. J.; Forster, P.; Wilson, M.; Thordarson, T.

    2010-12-01

    We assess the impact of 1783-1784 Laki eruption on changes in cloud drop number concentrations and the aerosol indirect (cloud) radiative forcing using an advanced global aerosol microphysics model. We further extend these simulations to quantify the impact of a modern-day Laki on air quality. Our results suggest that the first aerosol indirect effect is of similar magnitude as the direct forcing calculated in previous assessments of the Laki eruption, but has a different spatial pattern. We estimate that northern hemisphere mean cloud drop concentrations in low-level clouds increased by a factor 2.7 in the 3 months after the onset of the eruption, with peak changes exceeding a factor 10. The calculated northern hemisphere mean aerosol indirect effect peaks at -5.2 W/m2 in the month after the eruption and remains larger than -2 W/m2 for 6 months. From our understanding of anthropogenic aerosol effects on modern-day clouds, the calculated changes in cloud drop concentrations after Laki are likely to have caused substantial changes in pecipitation and cloud dynamics. Our results also show that a modern-day Laki-style volcanic air pollution event would be a severe health hazard, increasing excess mortality in Europe on a scale that is at least comparable with excess mortality due to seasonal flu. Investigating the potential impact of such an eruption is crucial in order to inform policy makers and society about the potential impact of such an event so that precautionary measures can be taken.

  10. Towards quantifying global aerosol radiative effects using lidar

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.

    2017-12-01

    Spaceborne lidar observations alleviate many of the limitations of passivesensors and have great potential to provide accurate global all-sky estimatesof the aerosol direct radiative effect (DRE). However, analysis of CALIPSOlidar observations show that CALIPSO does not detect allradiatively-significant aerosol, i.e. aerosol that directly modifies theEarth's radiation budget. We estimated that using CALIPSO observationsresults in an underestimate of the magnitude of the global mean aerosol DREby up to 54%. The CATS lidar on-board the ISS is shown to have a poorersensitivity than CALIPSO and the expected sensitivity of the upcoming ATLIDlidar on EarthCARE indicates that calculations of the aerosol DRE willcontinue to be significantly biased. Improvements to our knowledge of aerosol forcing, which contributes thelargest uncertainty to climate sensitivity, could be achieved by a futurespace-based HSRL mission. To this end, high-accuracy ground-based andairborne lidar datasets have been used to compute the detection sensitivityrequired to accurately resolve the aerosol DRE. Multiwavelength HSRLmeasurements also can retrieve vertically-resolved aerosol optical propertiesneeded for radiative transfer calculations which are not provided by currentsatellite observations. Current satellite observations also do not provideall the quantities needed to compute the aerosol direct radiative forcing,i.e. the radiative effect of just anthropogenic aerosols. A multiwavelengthHSRL allows for a more refined aerosol classification to be made enablingboth calculations of anthropogenic aerosol radiative effects and betterconstraints on global models.

  11. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGES

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; ...

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (N c) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering N c alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (N a) in the aerosol-limited regime, peaksmore » in the transitional regime, and decreases with further increasing N a in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional N a and w that separates the aerosol- and updraft-limited regimes.« less

  12. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  13. Algorithms for radiative transfer simulations for aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko

    2012-11-01

    Aerosol retrieval work from satellite data, i.e. aerosol remote sensing, is divided into three parts as: satellite data analysis, aerosol modeling and multiple light scattering calculation in the atmosphere model which is called radiative transfer simulation. The aerosol model is compiled from the accumulated measurements during more than ten years provided with the world wide aerosol monitoring network (AERONET). The radiative transfer simulations take Rayleigh scattering by molecules and Mie scattering by aerosols in the atmosphere, and reflection by the Earth surface into account. Thus the aerosol properties are estimated by comparing satellite measurements with the numerical values of radiation simulations in the Earth-atmosphere-surface model. It is reasonable to consider that the precise simulation of multiple light-scattering processes is necessary, and needs a long computational time especially in an optically thick atmosphere model. Therefore efficient algorithms for radiative transfer problems are indispensable to retrieve aerosols from space.

  14. Probing aerosol indirect effect on deep convection using idealized cloud-resolving simulations with parameterized large-scale dynamics.

    NASA Astrophysics Data System (ADS)

    Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.

    2017-12-01

    A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.

  15. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  16. Final Report for “Simulating the Arctic Winter Longwave Indirect Effects. A New Parameterization for Frost Flower Aerosol Salt Emissions” (DESC0006679) for 9/15/2011 through 9/14/2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Lynn M.; Somerville, Richard C.J.; Burrows, Susannah

    Description of the Project: This project has improved the aerosol formulation in a global climate model by using innovative new field and laboratory observations to develop and implement a novel wind-driven sea ice aerosol flux parameterization. This work fills a critical gap in the understanding of clouds, aerosol, and radiation in polar regions by addressing one of the largest missing particle sources in aerosol-climate modeling. Recent measurements of Arctic organic and inorganic aerosol indicate that the largest source of natural aerosol during the Arctic winter is emitted from crystal structures, known as frost flowers, formed on a newly frozen seamore » ice surface [Shaw et al., 2010]. We have implemented the new parameterization in an updated climate model making it the first capable of investigating how polar natural aerosol-cloud indirect effects relate to this important and previously unrecognized sea ice source. The parameterization is constrained by Arctic ARM in situ cloud and radiation data. The modified climate model has been used to quantify the potential pan-Arctic radiative forcing and aerosol indirect effects due to this missing source. This research supported the work of one postdoc (Li Xu) for two years and contributed to the training and research of an undergraduate student. This research allowed us to establish a collaboration between SIO and PNNL in order to contribute the frost flower parameterization to the new ACME model. One peer-reviewed publications has already resulted from this work, and a manuscript for a second publication has been completed. Additional publications from the PNNL collaboration are expected to follow.« less

  17. Sensitivity of Homogeneous Ice Nucleation to Aerosol Perturbations and Its Implications for Aerosol Indirect Effects Through Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Liu, X.; Shi, X.

    2018-02-01

    The magnitude and sign of anthropogenic aerosol impacts on cirrus clouds through ice nucleation are still very uncertain. In this study, aerosol sensitivity (ηα), defined as the sensitivity of the number concentration (Ni) of ice crystals formed from homogeneous ice nucleation to aerosol number concentration (Na), is examined based on simulations from a cloud parcel model. The model represents the fundamental process of ice crystal formation that results from homogeneous nucleation. We find that the geometric dispersion (σ) of the aerosol size distribution used in the model is a key factor for ηα. For a monodisperse size distribution, ηα is close to zero in vertical updrafts (V < 50 cm s-1) typical of cirrus clouds. However, ηα increases to 0.1-0.3 (i.e., Ni increases by a factor of 1.3-2.0 for a tenfold increase in Na) if aerosol particles follow lognormal size distributions with a σ of 1.6-2.3 in the upper troposphere. By varying the input aerosol and environmental parameters, our model reproduces a large range of ηα values derived from homogeneous ice nucleation parameterizations widely used in global climate models (GCMs). The differences in ηα from these parameterizations can translate into a range of anthropogenic aerosol longwave indirect forcings through cirrus clouds from 0.05 to 0.36 W m-2 with a GCM. Our study suggests that a larger ηα (0.1-0.3) is more plausible and the homogeneous nucleation parameterizations should include a realistic aerosol size distribution to accurately quantify anthropogenic aerosol indirect effects.

  18. Distribution and radiative forcing of Asian dust and anthropogenic aerosols from East Asia simulated by SPRINTARS

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Nakajima, T.; Uno, I.

    2002-12-01

    A three-dimensional aerosol transport-radiation model, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), has been developed based on an atmospheric general circulation model of the Center for Climate System Research, University of Tokyo/National Institute for Environmental Studies, Japan to research the effects of aerosols on the climate system and atmospheric environment. SPRINTARS successfully simulates the long-range transport of the large-scale Asian dust storms from East Asia to North America by crossing the North Pacific Ocean in springtime 2001 and 2002. It is found from the calculated dust optical thickness that 10 to 20% of Asian dust around Japan reached North America. The simulation also reveals the importance of anthropogenic aerosols, which are carbonaceous and sulfate aerosols emitted from the industrialized areas in the East Asian continent, to air turbidity during the large-scale Asian dust storms. The simulated results are compared with a volume of observation data regarding the aerosol characteristics over East Asia in the spring of 2001 acquired by the intensive observation campaigns of ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) and APEX (Asian Atmospheric Particulate Environmental Change Studies). The comparisons are carried out not only for aerosol concentrations but also for aerosol optical properties, such as optical thickness, Angstrom exponent which is a size index calculated by the log-slope exponent of the optical thickness between two wavelengths, and single scattering albedo. The consistence of Angstrom exponent between the simulation and observations means the reasonable simulation of the ratio of anthropogenic aerosols to Asian dust, which supports the suggestion by the simulation on the importance of anthropogenic aerosols to air turbidity during the large-scale Asian dust storms. SPRINTARS simultaneously calculates the aerosol direct and indirect radiative forcings. The direct radiative

  19. Direct radiative effect by multicomponent aerosol over China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xin; Song, Yu; Zhao, Chun

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO 2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM 10 and its components, andmore » aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m -2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m -2. BC was the leading radiative-heating component (+8.7 W m -2), followed by mineral aerosol (+1.1 W m -2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m -2), followed by sulfate (-1.4 W m -2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.« less

  20. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  1. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  2. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  3. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  4. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  5. Global radiative effects of solid fuel cookstove aerosol emissions

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  6. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  7. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sampa; Harshvardhan, H.; Bian, Huisheng

    Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found inmore » the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also found in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.« less

  8. Sensitivity of aerosol radiative forcing efficiency to the coarse mode contributions across aerosol regimes

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Telg, H.; Sheridan, P. J.; Kassianov, E.

    2017-12-01

    The coarse mode contribution to the aerosol radiative effect in a range of clean and turbid aerosol regimes has not been well quantified. While the coarse-mode radiative effect in turbid conditions is generally assumed to be consequential, the effect in clean conditions has likely been underestimated. We survey ground-based in situ measurements of the coarse mode fraction of aerosol optical properties measured around the globe over the past 20 years by the DOE Atmospheric Radiation Measurement Facility and the NOAA Global Monitoring Division. The aerosol forcing efficiency is presented, allowing an evaluation of where the aerosol coarse mode might be climatologically significant.

  9. Microphysical Cloud Regimes used as a tool to study Aerosol-Cloud-Precipitation-Radiation interactions

    NASA Astrophysics Data System (ADS)

    Cho, N.; Oreopoulos, L.; Lee, D.

    2017-12-01

    The presentation will examine whether the diagnostic relationships between aerosol and cloud-affected quantities (precipitation, radiation) obtained from sparse temporal resolution measurements from polar orbiting satellites can potentially demonstrate actual aerosol effects on clouds with appropriate analysis. The analysis relies exclusively on Level-3 (gridded) data and comprises systematic cloud classification in terms of "microphysical cloud regimes" (µCRs), aerosol optical depth (AOD) variations relative to a region's local seasonal climatology, and exploitation of the 3-hour difference between Terra (morning) and Aqua (afternoon) overpasses. Specifically, our presentation will assess whether Aerosol-Cloud-Precipitation-Radiation interactions (ACPRI) can be diagnosed by investigating: (a) The variations with AOD of afternoon cloud-affected quantities composited by afternoon or morning µCRs; (b) µCR transition diagrams composited by morning AOD quartiles; (c) whether clouds represented by ensemble cloud effective radius - cloud optical thickness joint histograms look distinct under low and high AOD conditions when preceded or followed by specific µCRs. We will explain how our approach addresses long-standing themes of the ACPRI problem such as the optimal ways to decompose the problem by cloud class, the prevalence and detectability of 1st/2nd aerosol indirect effects and invigoration, and the effectiveness of aerosol changes in inducing cloud modification at different segments of the AOD distribution.

  10. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  11. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    NASA Astrophysics Data System (ADS)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  12. Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Pleim, J.; Wong, D.; Hogrefe, C.; Xing, J.; Wei, C.; Gan, M.

    2013-12-01

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challenging. A detailed investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. Anthropogenic emissions of primary aerosol and gaseous precursors have witnessed dramatic changes over the past two decades across the northern hemisphere. During the period 1990-2010, SO2 and NOx emissions across the US have reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA). In contrast, anthropogenic emissions have increased dramatically in many developing regions during this period. We conduct a systematic investigation of changes in anthropogenic emissions of primary aerosols and gaseous precursors over the past two decades, their impacts on trends and spatial heterogeneity in anthropogenic aerosol loading across the northern hemisphere troposphere, and subsequent impacts on regional radiation budgets. The coupled WRF-CMAQ model is applied for selected time periods spanning the period 1990-2010 over a domain covering the northern hemisphere and a nested finer resolution continental U.S. domain. The model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation. Additionally, treatment of aerosol indirect effects on clouds has also recently been implemented. A methodology is developed to consistently estimate U.S. emission inventories for the 20-year period accounting for air quality regulations as well as

  13. First surface-based estimation of the aerosol indirect effect over a site in southeastern China

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Li, Zhanqing

    2018-02-01

    The deployment of the U.S. Atmospheric Radiation Measurement mobile facility in Shouxian from May to December 2008 amassed the most comprehensive set of measurements of atmospheric, surface, aerosol, and cloud variables in China. This deployment provided a unique opportunity to investigate the aerosol-cloud interactions, which are most challenging and, to date, have not been examined to any great degree in China. The relationship between cloud droplet effective radius (CER) and aerosol index (AI) is very weak in summer because the cloud droplet growth is least affected by the competition for water vapor. Mean cloud liquid water path (LWP) and cloud optical depth (COD) significantly increase with increasing AI in fall. The sensitivities of CER and LWP to aerosol loading increases are not significantly different under different air mass conditions. There is a significant correlation between the changes in hourly mean AI and the changes in hourly mean CER, LWP, and COD. The aerosol first indirect effect (FIE) is estimated in terms of relative changes in both CER (FIECER) and COD (FIECOD) with changes in AI for different seasons and air masses. FIECOD and FIECER are similar in magnitude and close to the typical FIE value of ˜ 0.23, and do not change much between summer and fall or between the two different air mass conditions. Similar analyses were done using spaceborne Moderate Resolution Imaging Spectroradiometer data. The satellite-derived FIE is contrary to the FIE estimated from surface retrievals and may have large uncertainties due to some inherent limitations.

  14. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-05-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local

  15. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-11-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local

  16. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-06

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  17. Evaluating The Indirect Effect of Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Dobbie, S.; Jonas, P. R.

    What effect would an increase in nucleating aerosols have on the radiative and cloud properties? What error would be incurred by evaluating the indirect effect by taking an evolved cloud and fixing the integrated water content and vary the number of ice crystals? These questions will be addressed in this work. We will use the UK LES cloud resolving model to perform a sensitivity study for cirrus clouds to the indirect effect, and will evaluate approximate methods in the process. In this work, we will initialize the base (no increase of aerosol) cirrus clouds so that the double moment scheme is constrained to agree with observations through the ef- fective radius. Effective radius is calculated using the local concentration and the ice water content. We then perform a sensitivity experiment to investigate the dependence of the average IWC, effective size, and radiative properties (including heating rates) to variations in the nucleation rate. Conclusions will be draw as to the possible ef- fect of changes in aerosol amounts on cirrus. We will determine how sensitive the cloud and radiative properties are to various aerosol increases. We will also discuss the applicability of the Meyer et al. (1992) nucleation formulae for our simulations. It is important to stress that in this work we only change the nucleation rate for the newly forming cloud. By doing this, we are not fixing the total water content and redistributing the water amongst increased ice crystals. We increase the number of aerosols available to be nucleated and allow the model to evolve the size distributions. In this way, there is competition for the water vapour, the ice particles are evolved dynamically with different fall speeds, the conversion rates to other hydrometers (such as aggregates) are affected, and the heating rates are different due to the different size distributions that evolve. We will look at how the water content, the distribution of water, and the radiative properties are affected

  18. Aerosol indirect effects on lightning in the generation of induced NOx and tropospheric ozone over an Indian urban metropolis

    NASA Astrophysics Data System (ADS)

    Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti

    Lightning flashes, associated with vigorous convective activity, is one of the most prominent weather phenomena in the tropical atmosphere. High aerosol loading is indirectly associated with the increase in lightning flash rates via the formation of tropospheric ozone during the pre-monsoon and monsoon over the tropics. Tropospheric ozone, an important greenhouse pollutant gas have impact on Earth’s radiation budget and play a key role in changing the atmospheric circulation patterns. Lightning-induced NOx is a primary pollutant found in photochemical smog and an important precursor for the formation of tropospheric ozone. A critical analysis is done to study the indirect effects of high aerosol loading on the formation of tropospheric ozone via lightning flashes and induced NOx formation over an urban metropolitan location Kolkata (22°32'N, 88°20'E), India during the period 2001-2012. The seasonal variation of lightning flash rates (LFR), taken from TRMM-LIS 2.5o x 2.5o gridded dataset, show that the LFR was observed to be intensified in the pre-monsoon (March-May) and high in monsoon (June-September) months over the region. Aerosol Optical Depth (AOD) at 555nm, taken from MISR 0.5o x 0.5o gridded level-3 dataset, plays an indirect effect on the increase in LFR during the pre-monsoon and monsoon months and has positive correlations between them during these periods. This is also justified from the seasonal variation of the increase in LFR due to the increase in AOD over the region during 2001-2012. The calibrated GOME and OMI/AURA satellite data analysis shows that the tropospheric ozone, formed as a result of lightning-induced NOx and due to the increased AOD at 555 nm, also increases during the pre-monsoon and monsoon months. The seasonal variation of lightning-induced tropospheric NOx, taken from SCIAMACHY observations also justified the fact that the pre-monsoon and monsoon LFR solely responsible for the generation of induced NOx over the region. The

  19. Sensitivity of aerosol indirect forcing and autoconversion to cloud droplet parameterization: an assessment with the NASA Global Modeling Initiative.

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, R. P.; Meshkhidze, N.; Nenes, A.

    2006-12-01

    The aerosol indirect forcing is one of the largest sources of uncertainty in assessments of anthropogenic climate change [IPCC, 2001]. Much of this uncertainty arises from the approach used for linking cloud droplet number concentration (CDNC) to precursor aerosol. Global Climate Models (GCM) use a wide range of cloud droplet activation mechanisms ranging from empirical [Boucher and Lohmann, 1995] to detailed physically- based formulations [e.g., Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005]. The objective of this study is to assess the uncertainties in indirect forcing and autoconversion of cloud water to rain caused by the application of different cloud droplet parameterization mechanisms; this is an important step towards constraining the aerosol indirect effects (AIE). Here we estimate the uncertainty in indirect forcing and autoconversion rate using the NASA Global Model Initiative (GMI). The GMI allows easy interchange of meteorological fields, chemical mechanisms and the aerosol microphysical packages. Therefore, it is an ideal tool for assessing the effect of different parameters on aerosol indirect forcing. The aerosol module includes primary emissions, chemical production of sulfate in clear air and in-cloud aqueous phase, gravitational sedimentation, dry deposition, wet scavenging in and below clouds, and hygroscopic growth. Model inputs include SO2 (fossil fuel and natural), black carbon (BC), organic carbon (OC), mineral dust and sea salt. The meteorological data used in this work were taken from the NASA Data Assimilation Office (DAO) and two different GCMs: the NASA GEOS4 finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II' (GISS II') GCM. Simulations were carried out for "present day" and "preindustrial" emissions using different meteorological fields (i.e. DAO, FVGCM, GISS II'); cloud droplet number concentration is computed from the correlations of Boucher and Lohmann [1995], Abdul-Razzak and Ghan [2000

  20. Simulation of the Indirect Radiative Forcing of Climate Due to Aerosols by the Two-Way Coupled WRF-CMAQ over the Eastern United States

    EPA Science Inventory

    In this study, the shortwave cloud forcing (SWCF) and longwave cloud forcing (LWCF) are estimated with the newly developed two-way coupled WRF-CMAQ over the eastern United States. Preliminary indirect aerosol forcing has been successfully implemented in WRF-CMAQ. The comparisons...

  1. Aerosol Retrievals Using Channel 1 and 2 AVHRR Data

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.

    1999-01-01

    The effect of tropospheric aerosols on global climate via the direct and indirect radiative forcings is one of the largest remaining uncertainties in climate change studies. Current assessments of the direct aerosol radiative effect mainly focus on sulfate aerosols. It has become clear, however, that other aerosol types like soil dust and smoke from biomass burning are also likely to be important climate forcing factors. The magnitude and even the sign of the climate forcing caused by these aerosol types is still unknown. General circulation models (GCMs) can be used to estimate the climatic effect of the direct radiative forcing by tropospheric and stratospheric aerosols. Aerosol optical properties are already parameterized in the Goddard Institute for Space Studies GCM. Once the global distribution of aerosol properties (optical thickness, size distribution, and chemical composition) is available, the calculation of the direct aerosol forcing is rather straighfforward. However, estimates of the indirect aerosol effect require additional knowledge of the physics and chemistry of aerosol-cloud interactions which are still poorly understood. One of the main objectives of the Global Aerosol Climatology Project, established in 1998 as a joint initiative of NASA's Radiation Science Program and GEWEX, is to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations for the full period of available satellite data. This will be accomplished primarily through a systematic application of multichannel aerosol retrieval algorithms to existing satellite data and advanced 3-dimensional aerosol chemistry/transport models. In this paper we outline the methodology of analyzing channel 1 and 2 AVHRR radiance data over the oceans and describe preliminary retrieval results.

  2. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AOD<0.4), becoming saturated at AOD of 0.5, followed by an increase in CDR with aerosol. In contrast, there is no such boomerang shape found for (aerosol-cloud) separated cases. We categorize dataset into warm-season and cold-season subsets to figure out how the

  3. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  4. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  5. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  6. Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects

    NASA Astrophysics Data System (ADS)

    Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.

    2016-12-01

    Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.

  7. The Mpi-M Aerosol Climatology (MAC)

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2014-12-01

    Monthly gridded global data-sets for aerosol optical properties (AOD, SSA and g) and for aerosol microphysical properties (CCN and IN) offer a (less complex) alternate path to include aerosol radiative effects and aerosol impacts on cloud-microphysics in global simulations. Based on merging AERONET sun-/sky-photometer data onto background maps provided by AeroCom phase 1 modeling output and AERONET sun-/the MPI-M Aerosol Climatology (MAC) version 1 was developed and applied in IPCC simulations with ECHAM and as ancillary data-set in satellite-based global data-sets. An updated version 2 of this climatology will be presented now applying central values from the more recent AeroCom phase 2 modeling and utilizing the better global coverage of trusted sun-photometer data - including statistics from the Marine Aerosol network (MAN). Applications include spatial distributions of estimates for aerosol direct and aerosol indirect radiative effects.

  8. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  9. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; hide

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  10. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    PubMed Central

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-01-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation. PMID:27911802

  11. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosol concentration;more » here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  12. SW radiative effect of aerosol in GRAPES_GFS

    NASA Astrophysics Data System (ADS)

    Chen, Qiying

    2017-04-01

    The aerosol particles can scatter and absorb solar radiation, and so change the shortwave radiation absorbed by the atmosphere, reached the surface and that reflected back to outer space at TOA. Since this process doesn't interact with other processes, it is called direct radiation effect. The clear sky downward SW and net SW fluxes at the surface in GRAPES_GFS of China Meteorological Administration are overestimated in Northern multitudes and Tropics. The main source of these errors is the absence of aerosol SW effect in GRAPES_GFS. The climatic aerosol mass concentration data, which include 13 kinds of aerosol and their 14 SW bands optical properties are considered in GRAPES_GFS. The calculated total optical depth, single scatter albedo and asymmetry factor are used as the input to radiation scheme. Compared with the satellite observation from MISER, the calculated total optical depth is in good consistent. The seasonal experiments show that, the summer averaged clear sky radiation fluxes at the surface are improved after including the SW effect of aerosol. The biases in the clear sky downward SW and net SW fluxes at the surface in Northern multitudes and Tropic reduced obviously. Furthermore, the weather forecast experiments also show that the skill scores in Northern hemisphere and East Asia also become better.

  13. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    activation, limiting maximum droplet concentrations Nd = 525 ± 50 cm-3, which is lower than the 750 cm-3 limit found by Leaitch et al. (1986) for mid-latitude continental cloud that had generally larger updraft speeds than the clouds interrogated in Arctic. These findings are important for the aerosol indirect effect, in which increase in aerosol particle number concentrations is expected to result in increase in Nd and decrease in droplet size, leading to increased cloud albedo and potentially lifetimes. Our conclusions point to limited susceptibility to changes in ambient aerosol concentrations, providing simple explanation for the finding of weaker than expected indirect effect. In summary, the data presented here show that Nd increases as the cloud base particle number concentration increases; however, they also show a limit on Nd that is in the range of 500-600 cm-3.

  14. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong

    Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less

  15. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong; Peng, Yiran; Liu, Yangang

    2017-05-01

    Aerosol-induced increase of relative dispersion of cloud droplet size distribution ɛ exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius (Re) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled as the dispersion effect), which can help reconcile global climate models (GCMs) with the satellite observations. However, the total dispersion effects on both Re and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). In order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of Re and Au explicitly accounting for ɛ are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ɛ reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. Additionally, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m-2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m-2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δɛ/ΔNc).

  16. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects

    DOE PAGES

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...

    2017-05-12

    Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less

  17. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, Jane; Walters, David; Bellouin, Nicolas; Milton, Sean

    2014-05-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. Inclusion of the indirect aerosol effects has significant impacts on the SW radiation particularly at high latitudes due to lower cloud amounts in high latitude clean air regions. This leads to improved surface radiation biases at the North Slope of Alaska ARM site. Verification of temperature and height forecasts is also improved in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. This study highlights the importance of including a more realistic treatment of aerosol-cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex

  18. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2012-12-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  19. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2013-03-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  20. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K.-S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  1. ARM-Led Improvements Aerosols in Climate and Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghan, Steven J.; Penner, Joyce E.

    2016-07-25

    The DOE ARM program has played a foundational role in efforts to quantify aerosol effects on climate, beginning with the early back-of-the-envelope estimates of direct radiative forcing by anthropogenic sulfate and biomass burning aerosol (Penner et al., 1994). In this chapter we review the role that ARM has played in subsequent detailed estimates based on physically-based representations of aerosols in climate models. The focus is on quantifying the direct and indirect effects of anthropogenic aerosol on the planetary energy balance. Only recently have other DOE programs applied the aerosol modeling capability to simulate the climate response to the radiative forcing.

  2. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE PAGES

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; ...

    2016-11-28

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  3. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  4. Aerosol Radiative Forcing over North India during Pre-Monsoon Season using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Misra, A.; Kumar, K.; Michael, M.; Tripathi, S. N.

    2013-12-01

    Study of aerosols is important for a fair understanding of the Earth climate system. This requires knowledge of the physical, chemical, optical, and morphological properties of aerosols. Aerosol radiative forcing provides information on the effect of aerosols on the Earth radiation budget. Radiative forcing estimates using model data provide an opportunity to examine the contribution of individual aerosol species to overall radiative forcing. We have used Weather Research and Forecast with Online Chemistry (WRF-Chem) derived aerosol concentration data to compute aerosol radiative forcing over north India during pre-monsoon season of 2008, 2009, and 2010. WRF-Chem derived mass concentrations are converted to number concentrations using standard procedure. Optical Properties of Aerosol and Cloud (OPAC) software package is used to compute extinction and scattering coefficients, and asymmetry parameter. Computations are performed at different altitudes and the obtained values are integrated to get the column optical properties. Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model is used to calculate the radiative forcing at surface and top-of-atmosphere. Higher values of aerosol radiative forcing are observed over desert region in western Indian state of Rajasthan, and Punjab of Pakistan. Contribution of individual aerosol species to atmospheric radiative forcing is also assessed. Dust radiative forcing is high over western India. Radiative forcing due to BC and water-soluble (WASO) aerosols are higher over north-west Indian states of Punjab and Haryana, and the Indo-Gangetic Basin. A pool of high WASO optical depth and radiative forcing is observed over the Indo-Bangladesh border. The findings of aerosol optical depth and radiative forcing are consistent with the geography and prevailing aerosol climatology of various regions. Heating rate profiles due to total aerosols and only due to BC have been evaluated at selected stations in north India. They show

  5. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  6. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  7. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  8. Aerosol in the Upper Troposphere Lower Stratosphere, decadal Simulations of Radiative Forcing using the Chemistry Circulation Model EMAC and MIPAS, GOMOS, IASI and other Satellite Data

    NASA Astrophysics Data System (ADS)

    Bruehl, C.; Schallock, J.; Lelieveld, J.; Bingen, C.; Robert, C. E.; Hoepfner, M.; Clarisse, L.

    2017-12-01

    The atmospheric chemistry - general circulation model EMAC with a modal interactive aerosol module is used to estimate radiative effects of UTLS aerosol for the ENVISAT period 2002 to 2012 in the framework of SPARC/SSIRC. Volcanic SO2 injections by about 230 explosive volcano eruptions are estimated mostly from MIPAS limb observations. For periods of data gaps, injected SO2 is estimated indirectly from extinctions observed by GOMOS. GOMOS extinctions in the UTLS and the seasonal component of radiative forcing can be only reproduced by the model if a comprehensive treatment of desert dust and organic and black carbon is included. Upward transport of particles and gases by the Asian Monsoon appears to contribute importantly. The time series of simulated stratospheric aerosol optical depth and radiative forcing agree with the corresponding quantities derived from different satellite data sets. Comparisons of total aerosol optical depth with IASI show that tropospheric and stratospheric aerosol in the model are consistently and realistically represented.

  9. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  10. Modeling Aerosol Microphysical and Radiative Effects on Clouds and Implications for the Effects of Black and Brown Carbon on Clouds

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, J. E.; Jacobson, M. Z.

    2010-12-01

    Satellite observational studies have found an increase in cloud fraction (CF) and cloud optical depth (COD) with increasing aerosol optical depth (AOD) followed by a decreasing CF/COD with increasing AOD at higher AODs over the Amazon Basin. The shape of this curve is similar to that of a boomerang, and thus the effect has been dubbed the "boomerang effect.” The increase in CF/COD with increasing AOD at low AODs is ascribed to the first and second indirect effects and is referred to as a microphysical effect of aerosols on clouds. The decrease in CF/COD at higher AODs is ascribed to enhanced warming of clouds due to absorbing aerosols, either as inclusions in drops or interstitially between drops. This is referred to as a radiative effect. To date, the interaction of the microphysical and radiative effects has not been simulated with a regional or global computer model. Here, we simulate the boomerang effect with the nested global-through-urban climate, air pollution, weather forecast model, GATOR-GCMOM, for the Amazon biomass burning season of 2006. We also compare the model with an extensive set of data, including satellite data from MODIS, TRMM, and CALIPSO, in situ surface observations, upper-air data, and AERONET data. Biomass burning emissions are obtained from the Global Fire Emissions Database (GFEDv2), and are combined with MODIS land cover data along with biomass burning emission factors. A high-resolution domain, nested within three increasingly coarser domains, is employed over the heaviest biomass burning region within the arc of deforestation. Modeled trends in cloud properties with aerosol loading compare well with MODIS observed trends, allowing causation of these observed correlations, including of the boomerang effect, to be determined by model results. The impact of aerosols on various cloud parameters, such as cloud optical thickness, cloud fraction, cloud liquid water/ice content, and precipitation, are shown through differences between

  11. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  12. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  13. Global Aerosol Direct Radiative Effect From CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  14. Global Aerosol Direct Radiative Effect from CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  15. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  16. Attribution of the United States “warming hole”: Aerosol indirect effect andprecipitable water vapor

    EPA Science Inventory

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and /or ice nuclei, thereby modifying cloud optical properties. Observations show a striking cooling trend in summertime daily maximum temperature (Tmax) in the central and...

  17. Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanju; Wang, Hailong; Singh, Balwinder

    The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BCmore » and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that

  18. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  19. Observations of enhanced aerosol longwave radiative forcing over an urban environment

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.

    2008-02-01

    Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.

  20. An Overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Aerosol effects on atmospheric radiation are a leading source of uncertainty in predicting future climate. As a result, the International Global Atmospheric Chemistry Program has established a Focus on Atmospheric Aerosols (IGAC/FAA) and endorsed a series of aerosol field campaigns. TARFOX, the second in the IGAC/FAA series, was designed to reduce this uncertainty by measuring aerosol properties and effects in the US eastern seaboard, where one of the world's major plumes of industrial haze moves from the continent over the Atlantic Ocean. TARFOX's objectives are to: 1. Make simultaneous measurements of: (a) aerosol effects on radiation fields, and (b) the chemical, physical, and optical properties of the aerosols causing those effects. 2. Perform a variety of closure studies by using overdetermined data sets to test the mutual consistency of measurements and calculations of a wide range of aerosol properties and effects. 3. Use the results of the closure studies to assess and reduce uncertainties in estimates of aerosol radiative forcing, as well as to guide future field programs. An important subset of the closure studies is tests and improvements of algorithms used to derive aerosol properties and radiative effects from satellite measurements. The TARFOX Intensive Field Period (IFP) was conducted July 10-31, 1996. It included coordinated measurements from four satellites (GOES-8, NOAA-14, ERS-2, LANDSAT), four aircraft (ER-2, C-130, C-131, and a modified Cessna), land sites, and ships. A variety of aerosol conditions was sampled, ranging from relatively clean behind frontal passages to moderately polluted with aerosol optical depths exceeding 0.5 at mid-visible wavelengths. The latter conditions included separate incidents of enhancements caused primarily by anthropogenic sources and another incident of enhancement apparently influenced by recent fog processing. Spatial gradients of aerosol optical thickness were sampled to aid in isolating aerosol effects from

  1. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; hide

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  2. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  3. Investigation of Multi-decadal Trends in Aerosol Direct Radiative Effects over North America using a Coupled Meteorology-Chemistry Model

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Pleim, J.; Wong, D.; Wei, C.; Xing, J.; Gan, M.; Yu, S.; Binkowski, F.

    2012-12-01

    -wave. New algorithms for the calculation of aerosol optical properties and radiation have been developed by considering both computational efficiency and more realistic aerosol states. Additionally, treatment of aerosol indirect effects on clouds has also recently been implemented. Analysis of measurements of aerosol composition, radiation, and associated variables, over the past two decades will be presented which indicate significant reductions in the tropospheric aerosol burden as well as an increase in down-welling shortwave radiation at numerous sites across the U.S. Initial applications of the coupled WRF-CMAQ model for time-periods pre and post the implementation of Title IV of the CAA will be discussed and comparisons with measurements to assess the model's ability to capture trends in aerosol burden, composition, and direct aerosol effects on surface shortwave radiation will be presented.

  4. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2013-11-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propogate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high latitude clean air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance

  5. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, D

    2011-09-21

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  6. Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGES

    Gan, C.-M.; Pleim, J.; Mathur, R.; ...

    2015-11-03

    Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends inmore » solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation

  7. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGES

    Gan, C.-M.; Pleim, J.; Mathur, R.; ...

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Ganmore » et al. (2014) utilizing observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot

  8. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, C.-M.; Pleim, J.; Mathur, R.

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Ganmore » et al. (2014) utilizing observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot

  9. Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, C.-M.; Pleim, J.; Mathur, R.

    Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends inmore » solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation

  10. Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment

    NASA Astrophysics Data System (ADS)

    Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.

    2012-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability

  11. Landscape fires dominate terrestrial natural aerosol - climate feedbacks

    NASA Astrophysics Data System (ADS)

    Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2017-12-01

    The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to

  12. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SJ Ghan; B Schmid; JM Hubbe

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and icemore » nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M

  13. New approaches to quantifying aerosol influence on the cloud radiative effect.

    PubMed

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  14. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong

    2018-06-01

    Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation

  15. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  16. A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX

    NASA Astrophysics Data System (ADS)

    Esteve, Anna R.; Highwood, Eleanor J.; Ryder, Claire L.

    2016-06-01

    The radiative effect of anthropogenic aerosols over Europe during the 2008 European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX) campaign has been calculated using measurements collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and radiative transfer modelling. The aircraft sampled anthropogenically perturbed air masses across north-western Europe under anticyclonic conditions with aerosol optical depths ranging from 0.047 to 0.357. For one specially designed "radiative closure" flight, simulated irradiances have been compared to radiation measurements for a case of aged European aerosol in order to explore the validity of model assumptions and the degree of radiative closure that can be attained given the spatial and temporal variability of the observations and their measurement uncertainties. Secondly, the diurnally averaged aerosol radiative effect throughout EUCAARI-LONGREX has been calculated. The surface radiative effect ranged between -3.9 and -22.8 W m-2 (mean -11 ± 5 W m-2), whilst top-of-the-atmosphere (TOA) values were between -2.1 and -12.0 W m-2 (mean -5 ± 3 W m-2). We have quantified the uncertainties in our calculations due to the way in which aerosols and other parameters are represented in a radiative transfer model. The largest uncertainty in the aerosol radiative effect at both the surface and the TOA comes from the spectral resolution of the information used in the radiative transfer model (˜ 17 %) and the aerosol description (composition and size distribution) used in the Mie calculations of the aerosol optical properties included in the radiative transfer model (˜ 7 %). The aerosol radiative effect at the TOA is also highly sensitive to the surface albedo (˜ 12 %).

  17. Black Carbon and Sulfate Aerosols in the Arctic: Long-term Trends, Radiative Impacts, and Source Attributions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhang, R.; Yang, Y.; Smith, S.; Rasch, P. J.

    2017-12-01

    The Arctic has warmed dramatically in recent decades. As one of the important short-lived climate forcers, aerosols affect the Arctic radiative budget directly by interfering radiation and indirectly by modifying clouds. Light-absorbing particles (e.g., black carbon) in snow/ice can reduce the surface albedo. The direct radiative impact of aerosols on the Arctic climate can be either warming or cooling, depending on their composition and location, which can further alter the poleward heat transport. Anthropogenic emissions, especially, BC and SO2, have changed drastically in low/mid-latitude source regions in the past few decades. Arctic surface observations at some locations show that BC and sulfate aerosols had a decreasing trend in the recent decades. In order to understand the impact of long-term emission changes on aerosols and their radiative effects, we use the Community Earth System Model (CESM) equipped with an explicit BC and sulfur source-tagging technique to quantify the source-receptor relationships and decadal trends of Arctic sulfate and BC and to identify variations in their atmospheric transport pathways from lower latitudes. The simulation was conducted for 36 years (1979-2014) with prescribed sea surface temperatures and sea ice concentrations. To minimize potential biases in modeled large-scale circulations, wind fields in the simulation are nudged toward an atmospheric reanalysis dataset, while atmospheric constituents including water vapor, clouds, and aerosols are allowed to evolve according to the model physics. Both anthropogenic and open fire emissions came from the newly released CMIP6 datasets, which show strong regional trends in BC and SO2 emissions during the simulation time period. Results show that emissions from East Asia and South Asia together have the largest contributions to Arctic sulfate and BC concentrations in the upper troposphere, which have an increasing trend. The strong decrease in emissions from Europe, Russia and

  18. Aerosol optical properties and their radiative effects in northern China

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Xia, Xiangao; Cribb, Maureen; Mi, Wen; Holben, Brent; Wang, Pucai; Chen, Hongbin; Tsay, Si-Chee; Eck, T. F.; Zhao, Fengsheng; Dutton, E. G.; Dickerson, R. E.

    2007-11-01

    As a fast developing country covering a large territory, China is experiencing rapid environmental changes. High concentrations of aerosols with diverse properties are emitted in the region, providing a unique opportunity for understanding the impact of environmental changes on climate. Until very recently, few observational studies were conducted in the source regions. The East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) attempts to characterize the physical, optical and chemical properties of the aerosols and their effects on climate over China. This study presents some preliminary results using continuous high-quality measurements of aerosol, cloud and radiative quantities made at the first EAST-AIRE baseline station at Xianghe, about 70 km east of Beijing over a period of one year (September 2004 to September 2005). It was found that the region is often covered by a thick layer of haze (with a yearly mean aerosol optical depth equal to 0.82 at 500 nm and maximum greater than 4) due primarily to anthropogenic emissions. An abrupt "cleanup" of the haze often took place in a matter of one day or less because of the passage of cold fronts. The mean single scattering albedo is approximately 0.9 but has strong day-to-day variations with maximum monthly averages occurring during the summer. Large aerosol loading and strong absorption lead to a very large aerosol radiative effect at the surface (the annual 24-hour mean values equals 24 W m-2), but a much smaller aerosol radiative effect at the top of the atmosphere (one tenth of the surface value). The boundary atmosphere is thus heated dramatically during the daytime, which may affect atmospheric stability and cloud formation. In comparison, the cloud radiative effect at the surface is only moderately higher (-41 W m-2) than the aerosol radiative effect at the surface.

  19. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    , respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.

  20. Aerosol Particle Shape and Radiative Coupling in a Three Dimensional Titan GCM

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, O. B.; Friedson, A. J.; West, R. A.

    2010-10-01

    Understanding the aerosols on Titan is imperative for understanding the atmosphere as a whole. The aerosols affect the albedo, optical depth, as well as heating and cooling rates which in turn affect the circulation on Titan leading to feedback with the aerosol distribution. Correctly representing the aerosols in atmospheric models is crucial to understanding this atmosphere. Friedson et al. (2009, A global climate model of Titan's atmosphere and surface. Planet. SpaceSci. 57, 1931-1949.) produced a three-dimensional model for Titan using the NCAR CAM3 model, to which we coupled the aerosol microphysics model CARMA. We have also made the aerosols produced by CARMA interactive with the radiation code in CAM. We compare simulations with radiatively interactive aerosols with those using a prescribed aerosol radiative effect. Preliminary results show that this model is capable of reproducing the seasonal changes in aerosols on Titan and many of the associated phenomena. For instance, the radiatively interactive aerosols are lofted by winds more in the summer hemisphere than the non-radiatively interactive aerosols, which is necessary to reproduce the observed seasonal cycle of the albedo. We compare simulations using spherical particles to simulations using fractal aggregate particles, which are expected from laboratory and observational data. Fractal particles have higher absorption in the UV, slower fall velocities and faster coagulation rates than equivalent mass spherical particles. We compare model simulations with observational data from the Cassini and Huygens missions.

  1. A modeling study of the effects of aerosols on clouds and precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Xie, Xiaoning; Yin, Zhi-Yong; Liu, Changhai; Gettelman, Andrew

    2011-12-01

    The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison-Gettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year 2000) and the other the pre-industrial conditions (year 1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol's second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol's radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.

  2. Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond

    NASA Astrophysics Data System (ADS)

    Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko

    2013-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.

  3. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  4. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  5. AN INITIAL ASSESSMENT OF THE CLIMATE IMPACT OF SECONDARY ORGANIC AEROSOLS

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Feichter, J.

    2009-12-01

    Atmospheric aerosols influence the Earth’s climate by absorbing and scattering solar radiation (the direct effect) and by altering the properties of clouds (indirect effects). Measurements have shown that a substantial fraction of the tropospheric aerosol burden consists of organic compounds. Hundreds of different organic species have been identified. While progress has been made in the understanding of the role of certain aerosol types in the climate system, that of organic aerosols remains poorly understood and the climate influences resulting from their presence poorly constrained. Organic aerosols are emitted directly from the surface (primary organic aerosols, POA) and are also formed in the atmosphere from gaseous precursors by oxidation reactions (secondary organic aerosols, SOA). Both biogenic and anthropogenic precursors have been identified. Biogenic emissions of aerosol precursors are known to be climate-dependent. Thus, a bi-directional dependency exists between the biosphere and the atmosphere, whereby aerosols of biogenic origin influence the climate system, which in turn affects biogenic aerosol precursor production. This study builds upon the global aerosol-climate model ECHAM5/HAM and adds techniques to model SOA as well as the necessary global emission inventories. Emission of biogenic precursors is calculated online. Formation of SOA is modeled by the well-known two-product model of SOA formation. SOA is subject to the same aerosol microphysics and sink processes as other modeled species (sulphate, black carbon, primary organic carbon, sea salt and dust). The aerosol radiative effects are calculated on a size resolved basis, and the aerosol scheme is coupled to the model cloud microphysics, permitting estimation of both direct and indirect aerosol effects. The following results will be discussed: (i) Estimation of the direct and indirect effects of biogenic and anthropogenic SOA, (ii) Estimation of the sign and magnitude of the biospheric

  6. On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Rothenberg, Daniel; Avramov, Alexander; Wang, Chien

    2018-06-01

    Interactions between aerosol particles and clouds contribute a great deal of uncertainty to the scientific community's understanding of anthropogenic climate forcing. Aerosol particles serve as the nucleation sites for cloud droplets, establishing a direct linkage between anthropogenic particulate emissions and clouds in the climate system. To resolve this linkage, the community has developed parameterizations of aerosol activation which can be used in global climate models to interactively predict cloud droplet number concentrations (CDNCs). However, different activation schemes can exhibit different sensitivities to aerosol perturbations in different meteorological or pollution regimes. To assess the impact these different sensitivities have on climate forcing, we have coupled three different core activation schemes and variants with the CESM-MARC (two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC) coupled with the National Center for Atmospheric Research's (NCAR) Community Earth System Model (CESM; version 1.2)). Although the model produces a reasonable present-day CDNC climatology when compared with observations regardless of the scheme used, ΔCDNCs between the present and preindustrial era regionally increase by over 100 % in zonal mean when using the most sensitive parameterization. These differences in activation sensitivity may lead to a different evolution of the model meteorology, and ultimately to a spread of over 0.8 W m-2 in global average shortwave indirect effect (AIE) diagnosed from the model, a range which is as large as the inter-model spread from the AeroCom intercomparison. Model-derived AIE strongly scales with the simulated preindustrial CDNC burden, and those models with the greatest preindustrial CDNC tend to have the smallest AIE, regardless of their ΔCDNC. This suggests that present-day evaluations of aerosol-climate models may not provide useful constraints on the magnitude of the AIE, which

  7. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  8. Collaborative Research: Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenes, Athanasios

    The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated newmore » parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.« less

  9. Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2014-05-01

    The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the

  10. First observation-based estimates of cloud-free aerosol radiative forcing across China

    Treesearch

    Zhanqing Li; Kwon-Ho Lee; Yuesi Wang; Jinyuan Xin; Wei-Min Hao

    2010-01-01

    Heavy loading of aerosols in China is widely known, but little is known about their impact on regional radiation budgets, which is often expressed as aerosol radiative forcing (ARF). Cloud‐free direct ARF has either been estimated by models across the region or determined at a handful of locations with aerosol and/or radiation measurements. In this study, ARF...

  11. Multidecadal variations of solar radiation reaching the surface and the role of aerosol direct radiative effects

    NASA Astrophysics Data System (ADS)

    Chin, M.; Diehl, T. L.; Bian, H.; Yu, H.; Kucsera, T. L.; Wild, M., Sr.; Hakuba, M. Z.; Qian, Y.; Stackhouse, P. W., Jr.; Pinker, R. T.; Zhang, Y.; Kato, S.; Loeb, N. G.; Kinne, S.; Streets, D. G.

    2017-12-01

    Incoming solar radiation drives the Earth's climate system. Long-term surface observations of the solar radiation reaching the surface (RSFC) have shown decreasing or increasing trends, often referred to as solar "dimming" or "brightening", in many regions of the world in the past several decades. Such long-term variation of RSFC mostly reflects the change of the solar-attenuation components within the atmosphere. Anthropogenic emissions of aerosols and precursor gases have changed significantly in the past decades with 50-80% reduction in North America and Europe but an increase of similar magnitude in East and South Asia since 1980, mirroring the change in RSFC over those regions. This has led to suggestions that aerosols play a critical role in determining RSFC trends. This work is to assess the role of direct radiative effects of aerosols on the solar "dimming" and "brightening" trends with modeling studies. First, we will show the trends of aerosol optical depth (AOD) and aerosol surface concentrations in different regions from 1980 to 2009 with remote sensing and in-situ data as well as model simulations, and attribute those changes to anthropogenic or natural sources. We will then show the trends of RSFC from the model and compare the results with observations from the surface networks and satellite-based products. Furthermore, we will use the GOCART model to attribute the "dimming/ brightening" trends to the changes of aerosols through the direct radiative effects. Finally, we will discuss the way forward to understand the aerosol effects on RSFC (as well as on other climate variables) through aerosol-cloud-radiation interactions.

  12. Roles of production, consumption and trade in global and regional aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Lin, J.; Tong, D.; Davis, S. J.; Ni, R.; Tan, X.; Pan, D.; Zhao, H.; Lu, Z.; Streets, D. G.; Feng, T.; Zhang, Q.; Yan, Y.; Hu, Y.; Li, J.; Liu, Z.; Jiang, X.; Geng, G.; He, K.; Huang, Y.; Guan, D.

    2016-12-01

    Anthropogenic aerosols exert strong radiative forcing on the climate system. Prevailing view regards aerosol radiative forcing as a result of emissions from regions' economic production, with China and other developing regions having the largest contributions to radiative forcing at present. However, economic production is driven by global demand for computation, and international trade allows for separation of regions consuming goods and services from regions where goods and related aerosol pollution are produced. It has recently been recognized that regions' consumption and trade have profoundly altered the spatial distribution of aerosol emissions and pollution. Building upon our previous work, this study quantifies for the first time the roles of trade and consumption in aerosol climate forcing attributed to different regions. We contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers like Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences in radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of

  13. Entrainment, Drizzle, and the Indirect Effect in Stratiform Clouds

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew

    2005-01-01

    Activation of some fraction of increased concentrations of sub-micron soluble aerosol particles lead to enhanced cloud droplet concentrations and hence smaller droplets, increasing their total cross sectional area and thus reflecting solar radiation more efficiently (the Twomey, or first indirect, effect). However, because of competition during condensational growth, droplet distributions tend to broaden as numbers increase, reducing the sensitivity of cloud albedo to droplet concentration on the order of 10%. Also, smaller droplets less effectively produce drizzle through collisions and coalescence, and it is widely expected (and found in large-scale models) that decreased precipitation leads to clouds with more cloud water on average (the so-called cloud lifetime, or second indirect, effect). Much of the uncertainty regarding the overall indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations based on FIRE-I, ASTEX, and DYCOMS-II conditions show that suppression of precipitation from increased droplet concentrations leads to increased cloud water only when sufficient precipitation reaches the surface, a condition favored when the overlying air is-humid or droplet concentrations are very low. Otherwise, aerosol induced suppression of precipitation enhances entrainment of overlying dry air, thereby reducing cloud water and diminishing the indirect climate forcing.

  14. Long-term changes of aerosol optical and radiative properties and their role in global dimming and brightening

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.; Papadimas, C. D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I.

    2009-04-01

    Global dimming and brightening (GDB) have profound effects on the Earth's environment. For example, GDB counteracts or supplements greenhouse warming. Atmospheric aerosols, through their interaction with solar radiation (direct, indirect and semi-direct effects) can affect GDB. Changes in aerosol burden or other physical and optical properties can modify tendencies of GDB. For example, satellite observations of aerosol amounts, available since the early 1980s, but only over the oceans, indicate a downward trend since about 1990, consistent with the observed brightening during this period. There is a need, however, to investigate similar trends, but also over land, and to relate them with contemporary GDB. The seasonal and inter-annual variability of the natural, but also anthropogenic aerosol direct radiative effect on solar radiation at the Earth's surface (DREsurf) and the contribution of aerosols to global dimming and brightening (GDB) is estimated over the period 1984-2001. This is achieved by using a spectral radiative transfer model together with Total Ozone Mapping Spectrometer (TOMS) aerosol optical thickness (AOT) and other satellite (International Satellite Cloud Climatology Project, ISCCP-D2), NCEP/NCAR reanalysis and Global Aerosol Data Set (GADS) data for surface and atmospheric parameters. The major findings are mostly related to natural and less to anthropogenic aerosols because of limitations of the TOMS observational technique. The model results indicate that aerosols exert a strong surface cooling over the globe by reducing locally the incoming surface solar radiation by up to 70 W m-2. This direct radiative effect averaged over the globe for the period 1984-2001, is equivalent to 5 W m-2, associated with 6.5 and 3.5 W m-2, for the Northern and Southern Hemispheres, respectively. However, this aerosol DREsurf effect shows an important inter-annual variability as large as 200%. A strong solar brightening, or decreased aerosol DREsurf, by as much as

  15. Analysis of aerosol-cloud-precipitation interactions based on MODIS data

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Zhang, Jiahua; He, Junliang; Zha, Yong; Li, Qiannan; Li, Yunmei

    2017-01-01

    Aerosols exert an indirect impact on climate change via its impact on clouds by altering its radiative and optical properties which, in turn, changes the process of precipitation. Over recent years how to study the indirect climate effect of aerosols has become an important research topic. In this study we attempted to understand the complex mutual interactions among aerosols, clouds and precipitation through analysis of the spatial correlation between aerosol optical depth (AOD), cloud effective radius (CER) and precipitation during 2000-2012 in central-eastern China that has one of the highest concentrations of aerosols globally. With the assistance of moderate resolution imaging spectroradiometer (MODIS)-derived aerosol and cloud product data, this analysis focuses on regional differentiation and seasonal variation of the correlation in which in situ observed precipitation was incorporated. On the basis of the achieved results, we proposed four patterns depicting the mutual interactions between aerosols, clouds and precipitation. They characterize the indirect effects of aerosols on the regional scale. These effects can be summarized as complex seasonal variations and north-south regional differentiation over the study area. The relationship between AOD and CER is predominated mostly by the first indirect effect (the negative correlation between AOD and CER) in the north of the study area in the winter and spring seasons, and over the entire study area in the summer season. The relationship between CER and precipitation is dominated chiefly by the second indirect effect (the positive correlation between CER and precipitation) in the northern area in summer and over the entire study area in autumn. It must be noted that aerosols are not the factor affecting clouds and rainfall singularly. It is the joint effect of aerosols with other factors such as atmospheric dynamics that governs the variation in clouds and rainfall.

  16. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  17. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  18. Development and Initial Testing of a Multi-Sensor Platform for Cloud-Aerosol Interactions in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.

    2009-12-01

    Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation

  19. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  20. "Investigation of Trends in Aerosol Direct Radiative Effects ...

    EPA Pesticide Factsheets

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing. A comprehensive investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. This study aims at addressing this issue through a systematic investigation of changes in anthropogenic emissions of SO2 and NOx over the past two decades in the United States, their impacts on anthropogenic aerosol loading in the North American troposphere, and subsequent impacts on regional radiation budgets. During the period 1990-2010, SO2 and NOx emissions across the US have reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA). A methodology is developed to consistently estimate emission inventories for the 20-year period accounting for air quality regulations as well as population trends, economic conditions, and technology changes in motor vehicles and electric power generation. The coupled WRF-CMAQ model is applied for time periods pre a

  1. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  2. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complexmore » interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.« less

  3. Aerosol Direct Radiative Effects and Heating in the New Era of Active Satellite Observations

    NASA Astrophysics Data System (ADS)

    Matus, Alexander V.

    Atmospheric aerosols impact the global energy budget by scattering and absorbing solar radiation. Despite their impacts, aerosols remain a significant source of uncertainty in our ability to predict future climate. Multi-sensor observations from the A-Train satellite constellation provide valuable observational constraints necessary to reduce uncertainties in model simulations of aerosol direct effects. This study will discuss recent efforts to quantify aerosol direct effects globally and regionally using CloudSat's radiative fluxes and heating rates product. Improving upon previous techniques, this approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties critical for accurately evaluating the radiative impacts of aerosols. We estimate the global annual mean aerosol direct effect to be -1.9 +/- 0.6 W/m2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects related to model biases in cloud cover. A low bias in stratocumulus cloud cover over the southeastern Pacific Ocean, for example, leads to an overestimate of the radiative effects of marine aerosols. Stratocumulus clouds over the southeastern Atlantic Ocean can enhance aerosol absorption by 50% allowing aerosol layers to remain self-lofted in an area of subsidence. Aerosol heating is found to peak at 0.6 +/- 0.3 K/day an altitude of 4 km in September when biomass burning reaches a maximum. Finally, the contributions of observed aerosols components are evaluated to estimate the direct radiative forcing of anthropogenic aerosols. Aerosol forcing is computed using satellite-based radiative kernels that describe the

  4. Relative Contributions of Regional and Sector Emissions to the Radiative Forcing of Aerosol-Radiation and Aerosol-Cloud Interactions Based on the AeroCOM Phase III/HTAP2 Experiment

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Chin, M.

    2014-12-01

    It is important to understand relative contributions of each regional and sector emission of aerosols and their precursor gases to the regional and global mean radiative forcing of aerosol-radiation and aerosol-cloud interactions. This is because it is useful for international cooperation on controls of air pollution and anthropogenic climate change along most suitable reduction path of their emissions from each region and sector. The Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the United Nations researches the intercontinental transport of air pollutants including aerosols with strong support of the Aerosol Comparisons between Observations and Models (AeroCOM). The ongoing AeroCOM Phase III/HTAP2 experiment assesses relative contributions of regional and sector sources of aerosols and their precursor gases to the air quality using global aerosol transport models with latest emission inventories. In this study, the extended analyses on the relative contributions of each regional and sector emission to the radiative forcing of aerosol-radiation and aerosol-cloud interactions are done from the AeroCOM Phase III/HTAP2 experiment. Simulated results from MIROC-SPRINTARS and other some global aerosol models participating in the the AeroCOM Phase III/HTAP2 experiment are assessed. Acknowledgements: This study is based on the AeroCOM Phase III/HTAP2 experiment and partly supported by the Environment Research and Technology Development Fund (S-12-3) of the Ministry of the Environment, Japan.

  5. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    NASA Astrophysics Data System (ADS)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  6. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    PubMed

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  7. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  8. Radiative absorption enhancement from coatings on black carbon aerosols.

    PubMed

    Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao; Chen, Bing; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2016-05-01

    The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4±0.8m(2)g(-1) was enhanced to 9.6±1.8m(2)g(-1) at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (EMAC) rises from 1.4±0.3 in fresh combustion emissions to ~3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25±0.55, and sulfates were primary drivers of the enhanced BC absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  10. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2015-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at mid-latitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30â€"50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  11. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the daysmore » having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may

  12. The Impact of Atmospheric Aerosols on the Fraction of absorbed Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank

    2010-05-01

    Aerosol pollution attracts a growing interest from atmospheric scientists with regard to their impact on health, the global climate and vegetation stress. A hypothesis, less investigated, is whether atmospheric aerosol interactions in the solar radiation field affect the amount of radiation absorbed by vegetation canopies and hence terrestrial vegetation productivity. Typically, aerosols affect vegetation canopy radiation absorption efficiency by altering the physical characteristics of solar radiation incoming on for example a forest canopy. It has been illustrated, that increasing mixing ratio's of atmospheric particulate matter lead to a higher fraction of diffuse sunlight as opposed to direct sunlight. It can be demonstrated, based on the application of atmospheric (MODTRAN) and leaf/canopy radiative transfer (LIBERTY/SPRINT) models, that radiation absorption efficiency in the PAR band of Picea like forests increases with increasing levels of diffuse radiation. It can be documented - on a theoretical basis - as well, that increasing aerosol loads in the atmosphere, induce and increased canopy PAR absorption efficiency. In this paper it is suggested, that atmospheric aerosols have to be taken into account when estimating vegetation gross primary productivity (GPP). The results suggest that Northern hemisphere vegetation CO2 uptake magnitude may increase with increasing atmospheric aerosol loads. Many climate impact scenario's related to vegetation productivity estimates, do not take this phenomenon into account. Boldly speaking, the results suggest a larger sink function for terrestrial vegetation than generally accepted. Keywords: Aerosols, vegetation, fAPAR, CO2 uptake, diffuse radiation.

  13. Interactive coupling of regional climate and sulfate aerosol models over eastern Asia

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Giorgi, Filippo

    1999-03-01

    The NCAR regional climate model (RegCM) is interactively coupled to a simple radiatively active sulfate aerosol model over eastern Asia. Both direct and indirect aerosol effects are represented. The coupled model system is tested for two simulation periods, November 1994 and July 1995, with aerosol sources representative of present-day anthropogenic sulfur emissions. The model sensitivity to the intensity of the aerosol source is also studied. The main conclusions from our work are as follows: (1) The aerosol distribution and cycling processes show substantial regional spatial variability, and temporal variability varying on a range of scales, from the diurnal scale of boundary layer and cumulus cloud evolution to the 3-10 day scale of synoptic scale events and the interseasonal scale of general circulation features; (2) both direct and indirect aerosol forcings have regional effects on surface climate; (3) the regional climate response to the aerosol forcing is highly nonlinear, especially during the summer, due to the interactions with cloud and precipitation processes; (4) in our simulations the role of the aerosol indirect effects is dominant over that of direct effects; (5) aerosol-induced feedback processes can affect the aerosol burdens at the subregional scale. This work constitutes the first step in a long term research project aimed at coupling a hierarchy of chemistry/aerosol models to the RegCM over the eastern Asia region.

  14. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanniah, K. D.; Beringer, J.; Tapper, N. J.

    2010-05-01

    We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptakemore » under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.« less

  15. The effect of different spectral shape parameterizations of cloud droplet size distribution on first and second aerosol indirect effects in NACR CAM5 and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Wang, M.; Peng, Y.; Xie, X.; Liu, Y.

    2017-12-01

    Aerosol cloud interaction continues to constitute one of the most significant uncertainties for anthropogenic climate perturbations. The parameterization of cloud droplet size distribution and autoconversion process from large scale cloud to rain can influence the estimation of first and second aerosol indirect effects in global climate models. We design a series of experiments focusing on the microphysical cloud scheme of NCAR CAM5 (Community Atmospheric Model Version 5) in transient historical run with realistic sea surface temperature and sea ice. We investigate the effect of three empirical, two semi-empirical and one analytical expressions for droplet size distribution on cloud properties and explore the statistical relationships between aerosol optical thickness (AOT) and simulated cloud variables, including cloud top droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP). We also introduce the droplet spectral shape parameter into the autoconversion process to incorporate the effect of droplet size distribution on second aerosol indirect effect. Three satellite datasets (MODIS Terra/ MODIS Aqua/ AVHRR) are used to evaluate the simulated aerosol indirect effect from the model. Evident CDER decreasing with significant AOT increasing is found in the east coast of China to the North Pacific Ocean and the east coast of USA to the North Atlantic Ocean. Analytical and semi-empirical expressions for spectral shape parameterization show stronger first aerosol indirect effect but weaker second aerosol indirect effect than empirical expressions because of the narrower droplet size distribution.

  16. Are ship tracks useful analogs for studying the aerosol indirect effect?

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Toll, V.; Stephens, G. L.

    2017-12-01

    Vessels transiting the ocean sometimes leave their mark on the clouds - leaving behind reflective cloud lines, known as ship tracks. Ship tracks have been looked upon by some as a possible Rosetta Stone connecting the effects of changing aerosol over the ocean and cloud albedo effects on climate (Porch et al. 1990, Atmos. Enviorn., 1051-1059). In this research, we establish whether ship tracks, and volcano tracks - a natural analog, can be used to relate these cloud-scale perturbations to the aerosol effects occurring at larger regional-scales. Two databases containing over 1,500 ship and 900 volcano tracks, all carefully hand-selected from satellite imagery, are utilized; showing that ship tracks exhibit very similar cloud albedo effect responses to that of volcano tracks. For comparison, our global dataset utilises over 7 million CloudSat profiles consisting of single-layer marine warm cloud in which the retrievals are co-located with the MODerate Imaging Spectroradiometer (MODIS) product so that statistical relationships between aerosol and cloud can be computed over 4x4 degree regions. All datasets show the same key physical processes that govern the cloud-aerosol indirect effect, namely, the strong negative responses in cloud droplet size and the bidirectional responses in liquid water path and cloud albedo depending on the meteorological conditions. Finally, this analysis is extended to a comparison against several general circulation models where it is suggested that key processes such as cloud-top entrainment and evaporation that regulates against strong liquid water path responses are likely underrepresented in most models.

  17. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  18. Radiative Effects of Atmospheric Aerosols and Impacts on Solar Photovoltaic Electricity Generation

    NASA Astrophysics Data System (ADS)

    Lund, Cory Christopher

    Atmospheric aerosols, by scattering and absorbing radiation, perturbs the Earth's energy balance and reduces the amount of insolation reaching the surface. This dissertation first studies the radiative effects of aerosols by analyzing the internal mixing of various aerosol species. It then examines the aerosol impact on solar PV efficiency and the resulting influence on power systems, including both atmospheric aerosols and deposition of particulate matter (PM) on PV surfaces,. Chapter 2 studies the radiative effects of black carbon (BC), sulfate and organic carbon (OC) internal mixing using a simple radiative transfer model. I find that internal mixing may not result in a positive radiative forcing compared to external mixing, but blocks additional shortwave radiation from the surface, enhancing the surface dimming effect. Chapter 3 estimates the impact of atmospheric aerosol attenuation on solar PV resources in China using a PV performance model with satellite-derived long-term surface irradiance data. I find that, in Eastern China, annual average reductions of solar resources due to aerosols are more than 20%, with comparable impacts to clouds in winter. Improving air quality in China would increase efficiency of solar PV generation. As a positive feedback, increased PV efficiency and deployment would further reduce air pollutant emissions too. Chapter 4 further quantifies the total aerosol impact on PV efficiency globally, including both atmospheric aerosols and the deposition of PM on PV surfaces. I find that, if panels are uncleaned and soiling is only removed by precipitation, deposition of PM accounts for more than two-thirds of the total aerosol impact in most regions. Cleaning the panels, even every few months, would largely increase PV efficiency in resource-abundant regions. Chapter 5 takes a further step to evaluate the impact of PV generation reduction due to aerosols on a projected 2030 power system in China with 400GW of PV. I find that aerosols

  19. A Study of Aerosol Direct Radiative Effect and Its Impacts on Global Terrestrial Ecosystem Cycles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Shao, S.; Zhou, L.

    2017-12-01

    Aerosols can absorb and scatter solar radiation, thus cause the total solar radiation reaching the surface to drop and the fraction of diffuse radiation to increase, which influence the surface radiation budget. The global surface radiation with and without consideration of aerosols are calculated by the Fu-Liou atmospheric radiative transfer model based on the MODIS aerosol products, CERES cloud products and other remote sensing data. The aerosol direct radiative effect is calculated based on the two scenarios of aerosols. Our calculation showed that in 2007, aerosols decreased the global total radiation by 9.16 W m-2 on average. Large decrease generally occurred in places with high AOD. As for the diffuse radiation, aerosol-induced changes were either positive or negative. Large increase generally occurred in places with high surface albedo, while large decrease generally occurred in places with high cloud fraction. The global aerosol-induced diffuse radiation change averaged 8.17 W m-2 in 2007. The aerosol direct radiative effect causes the photosynthetic active radiation to increase, and its influences on the global carbon cycle of terrestrial ecosystem are studied by using the Community Land Model (CLM). Calculations show that the aerosol direct radiative effects caused the global averages of terrestrial gross primary productivity (GPP), net primary productivity (NPP), heterotrophic respiration (RH), autotrophic respiration (RA), and net ecosystem productivity (Reco) to increase in 2007, with significant spatial variations however. The global average changes of GPP, NPP, NEP, RA, RH and Reco in 2007 were +6.47 gC m-2, +2.23 gC m-2, +0.34 gC m-2, +4.24 gC m-2, +1.89 gC m-2, +6.13 gC m-2, respectively. Examinations of the carbon fluxes show that the aerosol direct radiative effects influence the terrestrial ecosystem carbon cycles via the following two approaches: First, the diffuse fertilization effect, i.e. more diffuse radiation absorbed by vegetation shade

  20. Indirect Climatic Effects of Major Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  1. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    USGS Publications Warehouse

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  2. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.

  3. Maritime Aerosol Network (MAN) as a Component of AERONET

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; hide

    2008-01-01

    The World Ocean produces a large amount of natural aerosols that have all impact on the Earth's albedo and climate. Sea-salt is the major contributor to aerosol optical depth over the oceans. [Mahowald et al. 2006; Chin et al. 2002; Satheesh et al. 1999; Winter and Chylek, 1997] and therefore affects the radiative balance over the ocean through the direct [Haywood et al. 1999] and indirect aerosol effect [O'Dowd et al. 1999]. Aerosols over the oceans (produced marine and advected from land sources) are important for various atmospheric processes [Lewis and Schwartz, 2004] and remote sensing studies [Gordon, 1997].

  4. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  5. Radiative forcing and rapid adjustment of absorbing aerosols in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yim, S. H. L.; Lau, G.

    2016-12-01

    Part of organic carbon defined as brown carbon (BrC) has been found to absorb solar radiation, especially in near-ultraviolet and blue bands, but their radiation impact is far less understood than black carbon (BC). Rapid adjustment thought to occur within a few weeks, induced by aerosol radiative effect and thereby alter cloud cover or other climate components. These effects are particularly pronounced for absorbing aerosols. The data gathered is from an online coupled model, WRF-Chem. A two-simulation test is conducted from July 8 to July 15. The baseline simulation doesn't account for aerosol-radiation interactions, whereas the sensitivity run includes it. The differences between these two simulations represent total effects of the aerosol instantaneous radiative forcing and subsequent rapid adjustment. In Figure 1, without cloud effect (clear sky), at the top of atmosphere (TOA), the SW radiation changes are negative in the PRD region, representing an overall cooling effect of aerosols. However, in the atmosphere (ATM), aerosols heat the atmosphere by absorbing incoming solar radiation with an average of 2.4 W/m2 (Table 1). After including rapid adjustment (all sky), the radiation change pattern becomes significantly different, especially at TOA and surface (SFC). This may be caused by cloud cover change due to rapid adjustment. The magnitude of SW radiation changes for all sky at all levels is smaller than that for clear sky. This result suggests the rapid adjustment counteracts the instantaneous radiative forcing of aerosols. At TOA, the cooling effect of the aerosol is 74% lower for all sky compared with clear sky, highlighting an overall warming effect of rapid adjustment in the PRD region. Aerosol-induced changes (W/m2) TOA ATM SFC Clear Sky -9.2 2.4 -11.6 All Sky -2.4 1.9 -4.3 Table 1. Aerosol-induced averaged changes in shortwave radiation due to aerosol-radiation interactions in the Pearl River Delta. The test shows the rapid adjustment of aerosols

  6. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.« less

  7. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  8. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  9. Modeling Trends in Tropospheric Aerosol Burden & Its Radiative Effects

    EPA Science Inventory

    Large changes in emissions of aerosol precursors have occurred across the southeast U.S., North America, as well as the northern hemisphere. The spatial heterogeneity and contrasting trends in the aerosol burden is resulting in differing effects on regional radiative balance. Mul...

  10. Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri

    Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number

  11. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  12. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  13. Aerosol radiative effects over BIMSTEC regions

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  14. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  15. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    NASA Technical Reports Server (NTRS)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  16. Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.

  17. Downscaling Aerosols and the Impact of Neglected Subgrid Processes on Direct Aerosol Radiative Forcing for a Representative Global Climate Model Grid Spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I.; Qian, Yun; Fast, Jerome D.

    2011-07-13

    Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less

  18. Air pollution and climate response to aerosol direct radiative ...

    EPA Pesticide Factsheets

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42−, NO3−, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5–2.1%, 1–1.5%, 0.1–0.3%, 1.6–2.3%, 3.5–10.0%, and 2.2–3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6–10.6%, 6.2–6.7%, 2.0–3.0%, 7.8–9.5%, 11.1–18.6%, and 7.2–10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height a

  19. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  20. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide P. E.; Springston S.; Spak, S. N.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.« less

  1. Wind reduction by aerosol particles

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Kaufman, Yoram J.

    2006-12-01

    Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.

  2. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  3. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  4. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  5. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  6. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Model-Relevant Observations and the Beneficiary Modeling Efforts in the Realm of the EVS-2 Project ORACLES

    NASA Technical Reports Server (NTRS)

    Redemann, Jens

    2018-01-01

    Globally, aerosols remain a major contributor to uncertainties in assessments of anthropogenically-induced changes to the Earth climate system, despite concerted efforts using satellite and suborbital observations and increasingly sophisticated models. The quantification of direct and indirect aerosol radiative effects, as well as cloud adjustments thereto, even at regional scales, continues to elude our capabilities. Some of our limitations are due to insufficient sampling and accuracy of the relevant observables, under an appropriate range of conditions to provide useful constraints for modeling efforts at various climate scales. In this talk, I will describe (1) the efforts of our group at NASA Ames to develop new airborne instrumentation to address some of the data insufficiencies mentioned above; (2) the efforts by the EVS-2 ORACLES project to address aerosol-cloud-climate interactions in the SE Atlantic and (3) time permitting, recent results from a synergistic use of A-Train aerosol data to test climate model simulations of present-day direct radiative effects in some of the AEROCOM phase II global climate models.

  7. Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all

  8. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  9. Campaign datasets for Two-Column Aerosol Project (TCAP)

    DOE Data Explorer

    Berg,Larry; Mei,Fan; Cairns,Brian; Chand,Duli; Comstock,Jennifer; Cziczo,Daniel; Hostetler,Chris; Hubbe,John; Long,Chuck; Michalsky,Joseph; Pekour,Mikhail; Russell,Phil; Scott,Herman; Sedlacek,Arthur; Shilling,John; Springston,Stephen; Tomlinson,Jason; Watson,Thomas; Zelenyuk-Imre,Alla

    2013-12-30

    This campaign was designed to provide a detailed set of observations with which to 1) perform radiative and cloud condensation nuclei (CCN) closure studies, 2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing 3) extend a previously developed technique to investigate aerosol indirect effects, and 4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) was deployed on Cape Cod, Massachusetts for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation and cloud characteristics at a location subject to both clear- and cloudy- conditions, and clean- and polluted-conditions. These observations were supplemented by two aircraft intensive observation periods (IOPS), one in the summer and a second in the winter. Each IOP required two aircraft.

  10. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  11. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  12. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.

    2012-09-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host

  13. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.

    2013-03-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus

  14. Changing transport processes in the stratosphere by radiative heating of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Niemeier, Ulrike; Schmidt, Hauke

    2017-12-01

    The injection of sulfur dioxide (SO2) into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO) in the tropics. The QBO slows down after an injection of 4 Tg(S) yr-1 and completely shuts down after an injection of 8 Tg(S) yr-1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S) yr-1 (8-18 %), a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.

  15. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes

  16. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    NASA Astrophysics Data System (ADS)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  17. Stratospheric Aerosols for Solar Radiation Management

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben

    SRM in the context of this entry involves placing a large amount of aerosols in the stratosphere to reduce the amount of solar radiation reaching the surface, thereby cooling the surface and counteracting some of the warming from anthropogenic greenhouse gases. The way this is accomplished depends on the specific aerosol used, but the basic mechanism involves backscattering and absorbing certain amounts of solar radiation aloft. Since warming from greenhouse gases is due to longwave (thermal) emission, compensating for this warming by reduction of shortwave (solar) energy is inherently imperfect, meaning SRM will have climate effects that are different from the effects of climate change. This will likely manifest in the form of regional inequalities, in that, similarly to climate change, some regions will benefit from SRM, while some will be adversely affected, viewed both in the context of present climate and a climate with high CO2 concentrations. These effects are highly dependent upon the means of SRM, including the type of aerosol to be used, the particle size and other microphysical concerns, and the methods by which the aerosol is placed in the stratosphere. SRM has never been performed, nor has deployment been tested, so the research up to this point has serious gaps. The amount of aerosols required is large enough that SRM would require a major engineering endeavor, although SRM is potentially cheap enough that it could be conducted unilaterally. Methods of governance must be in place before deployment is attempted, should deployment even be desired. Research in public policy, ethics, and economics, as well as many other disciplines, will be essential to the decision-making process. SRM is only a palliative treatment for climate change, and it is best viewed as part of a portfolio of responses, including mitigation, adaptation, and possibly CDR. At most, SRM is insurance against dangerous consequences that are directly due to increased surface air

  18. Simulations of Hurricane Nadine (2012) during HS3 Using the NASA Unified WRF with Aerosol-Cloud Microphysics-Radiation Coupling

    NASA Astrophysics Data System (ADS)

    Shi, J. J.; Braun, S. A.; Sippel, J. A.; Tao, W. K.; Tao, Z.

    2014-12-01

    The impact of the SAL on the development and intensification of hurricanes has garnered significant attention in recent years. Many past studies have shown that synoptic outbreaks of Saharan dust, which usually occur from late spring to early fall and can extend from western Africa across the Atlantic Ocean into the Caribbean, can have impacts on hurricane genesis and subsequent intensity change. The Hurricane and Severe Storm Sentinel (HS3) mission is a multiyear NASA field campaign with the goal of improving understanding of hurricane formation and intensity change. One of HS3's primary science goals is to obtain measurements to help determine the extent to which the Saharan air layer impacts storm intensification. HS3 uses two of NASA's unmanned Global Hawk aircrafts equipped with three instruments each to measure characteristics of the storm environment and inner core. The Goddard microphysics and longwave/shortwave schemes in the NASA Unified Weather Research and Forecasting (NU-WRF) model have been coupled in real-time with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model in WRF-Chem to account for the direct (radiation) and indirect (microphysics) impact. NU-WRF with interactive aerosol-cloud-radiation physics is used to generate 30-member ensemble simulations of Nadine (2012) with and without the aerosol interactions. Preliminary conclusions related to the impact of the SAL on the evolution of Nadine from the HS3 observations and model output will be described.

  19. INDIRECT EFFECT OF X-RADIATION ON BONE GROWTH IN RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conard, R.A.

    1962-12-21

    Effects of 200 to 600 r of x irradiation on tibial bone growth in groups of weanling male rats were studied by in vivo measurement of tibial bone growth in serial radiographs. By comparison of growth rates in shielded with unshielded legs, direct and indirect effects of radiation were demonstrated, both roughly dose dependent, but with the indirect effect being about twice that of the direct effect. Pair-feeding experiments showed that about 70% of the indirect effect was due to radiation-induced lowered food consumption. By partial-body shielding experiments, using pnir-fed controls, it was shown that the abdomen may be themore » site of a non-nutritional abscopal effect. (auth)« less

  20. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly

  1. Elevated Aerosol Layers and Their Radiative Impact over Kanpur During Monsoon Onset Period

    NASA Technical Reports Server (NTRS)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Welton, E. J.

    2016-01-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximately 2-3 C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high

  2. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  3. Dust aerosol radiative effect and influence on urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, M.; Li, L.

    2007-11-01

    An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.

  4. Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Flatau, P. J.; Valero, F. P. J.; Nakajima, T.; Holben, B.; Pilewskie, P.; Bergin, M.; Schmid, B.; Bergstrom, R. W.; Vogelmann, A.; hide

    2002-01-01

    ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.

  5. Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Hong, Song-You

    2012-11-01

    This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed auto-conversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5 % decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.

  6. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.

    PubMed

    Jacobson, M Z

    2001-02-08

    Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbon--soot--that is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed) or incorporated within them (internally mixed), or a black-carbon core could be surrounded by a well mixed shell. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.

  7. How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum

    NASA Astrophysics Data System (ADS)

    Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.

    2017-12-01

    Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the

  8. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.

    2012-08-01

    For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 W m-2). Although a planetary cooling is found over most of the region, of up to -7 W m-2, large positive DRETOA values (up to +25 W m-2) are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 W m-2) and to decrease SSR (DREsurf = -16.5 W m-2 and DREnetsurf-13.5 W m-2) inducing thus significant atmospheric warming and surface

  9. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    NASA Astrophysics Data System (ADS)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  10. Global source attribution of sulfate aerosol and its radiative forcing

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  11. Development of absorbing aerosol index simulator based on TM5-M7

    NASA Astrophysics Data System (ADS)

    Sun, Jiyunting; van Velthoven, Peter; Veefkind, Pepijn

    2017-04-01

    Aerosols alter the Earth's radiation budget directly by scattering and absorbing solar and thermal radiation, or indirectly by perturbing clouds formation and lifetime. These mechanisms offset the positive radiative forcing ascribed to greenhouse gases. In particular, absorbing aerosols such as black carbon and dust strongly enhance global warming. To quantify the impact of absorbing aerosol on global radiative forcing is challenging. In spite of wide spatial and temporal coverage space-borne instruments (we will use the Ozone Monitoring Instrument, OMI) are unable to derive complete information on aerosol distribution, composition, etc. The retrieval of aerosol optical properties also partly depends on additional information derived from other measurements or global atmospheric chemistry models. Common quantities of great interest presenting the amount of absorbing aerosol are AAOD (absorbing aerosol optical depth), the extinction due to absorption of aerosols under cloud free conditions; and AAI (absorbing aerosol index), a measure of aerosol absorption more directly derivable from UV band observations than AAOD. When comparing model simulations and satellite observations, resemblance is good in terms of the spatial distribution of both parameters. However, the quantitative discrepancy is considerable, indicating possible underestimates of simulated AAI by a factor of 2 to 3. Our research, hence, has started by evaluating to what extent aerosol models, such as our TM5-M7 model, represent the satellite measurements and by identifying the reasons for discrepancies. As a next step a transparent methodology for the comparison between model simulations and satellite observations is under development in the form of an AAI simulator based on TM5-M7.

  12. Indirect detection of radiation sources through direct detection of radiolysis products

    DOEpatents

    Farmer, Joseph C [Tracy, CA; Fischer, Larry E [Los Gatos, CA; Felter, Thomas E [Livermore, CA

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  13. Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.

    2007-01-01

    In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.

  14. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  15. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique of estimating aerosol radiative forcing from high resolution spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, Roshan

    2016-04-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive

  16. Evaluation of standard radiation atmosphere aerosol models for a coastal environment

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Sebacher, D. I.; Fuller, W. H.; Lecroy, S. R.

    1986-01-01

    Calculations are compared with data from an experiment to evaluate the utility of standard radiation atmosphere (SRA) models for defining aerosol properties in atmospheric radiation computations. Initial calculations with only SRA aerosols in a four-layer atmospheric column simulation allowed a sensitivity study and the detection of spectral trends in optical depth, which differed from measurements. Subsequently, a more detailed analysis provided a revision in the stratospheric layer, which brought calculations in line with both optical depth and skylight radiance data. The simulation procedure allows determination of which atmospheric layers influence both downwelling and upwelling radiation spectra.

  17. Simulation of Optical Properties and Direct and Indirect Radiative Effects of Smoke Aerosols Over Marine Stratocumulus Clouds During Summer 2008 in California With the Regional Climate Model RegCM

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.

    2017-10-01

    The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.

  18. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    NASA Astrophysics Data System (ADS)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  19. Aerosol optical properties and radiative effect under different weather conditions in Harbin, China

    NASA Astrophysics Data System (ADS)

    Mao, Qianjun; Huang, Chunlin; Zhang, Hengxing; Chen, Qixiang; Yuan, Yuan

    2018-03-01

    The aerosol optical properties and radiative effect under different weather conditions in Harbin (126.63°E, 45.75°N) were analyzed based on ground-based Sun/Sky radiometric (CE-318) measurements during September 2016-April 2017. The means values of aerosol optical depth (AOD500) and Angstrom exponent (AE440-870) were 0.37 ± 0.27 and 1.08 ± 0.33, respectively. The mean AOD500 under four weather conditions are apparently higher in severe pollution (Se-Po) days (0.80 ± 0.31) and moderate pollution (Mo-Po) days (0.53 ± 0.25) but lower in slight pollution (Sl-Po) days (0.37 ± 0.26) and no pollution (No-Po) days (0.26 ± 0.20), while the mean values of AE440-870 maintain high, varying from 0.98 to 1.25. The higher AE440-870 indicated that the air quality in Harbin is mainly affected by aerosols originated from anthropogenic sources. The daily values of shortwave (0.25-4 μm) direct aerosol radiative forcing (DARF) at top/bottom of atmosphere (TOA/BOA) were estimated through Santa Barbara DISORT Atmosphere Radiative Transfer (SBDART) model. Further, the aerosol radiative forcing efficiency (ARFE), radiation flux (RF) and atmosphere heating rate (HR) in Harbin were also estimated by the SBDART model.

  20. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  1. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere.

  2. A 10-year climatology of pollen aerosol for the continental United States: implications for aerosol-climate interactions

    NASA Astrophysics Data System (ADS)

    Wozniak, M. C.

    2016-12-01

    Our current understanding of biological particles and their role in the climate system is uncertain. Pollen, a primary biological aerosol particle, has been understudied in the context of climate and atmospheric science because of its coarse size (10-100 µm). Local coarse grain pollen concentrations can reach up to 10,000 grains m-3, and when ruptured by wet or turbulent atmospheric conditions, can produce fine particles (sub-pollen particles, 10-1000 nm) that may increase pollen's lifetime in the atmosphere. Therefore, pollen contributes to both coarse and fine particle loads in the atmosphere that may have climatic impacts. During peak pollen emissions season, what impacts does pollen have on aerosol concentrations in the atmosphere and their indirect forcing? Here we use a model of accurately timed and scaled pollen and sub-pollen particle emissions with climate-dependent phenological dates for four plant functional types (deciduous broadleaf, evergreen needleleaf, grass and ragweed) that dominate emissions across the continental United States. Terrestrial pollen emissions are coupled with the land component of a regional climate model (RegCM4-CLM), and are transported as atmospheric tracers that are allowed interact with radiation and clouds, accounting for the direct and indirect effects of pollen. A ten-year climatology of pollen emissions and climate interactions is calculated for both pollen grains and sub-pollen particles. Its implications for the local and overall radiation budget, aerosol-cloud-precipitation interactions and regional climate are discussed.

  3. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  4. Earth cloud, aerosol, and radiation explorer optical payload development status

    NASA Astrophysics Data System (ADS)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  5. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  6. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  7. Aerosol Radiative Forcing in Asian Continental Outflow

    NASA Technical Reports Server (NTRS)

    Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1

  8. A 3-D Model Study of Aerosol Composition and Radiative Forcing in the Asian-Pacific Region

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xuepeng; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model will be used in analyzing the aerosol data in the ACE-Asia program. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosol and the processes that control these properties over the Asian-Pacific region, (2) to determine the aerosol radiative forcing over the Asian-Pacific region, and (3) to investigate the interaction between aerosol and tropospheric chemistry. We will present the GOCART aerosol simulations of sulfate, dust, carbonaceous, and sea salt concentrations, their optical thicknesses, and their radiative effects. We will also show the comparisons of model results with data taken from previous field campaigns, ground-based sun photometer measurements, and satellite observations. Finally, we will present our plan for the ACE-Asia study.

  9. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    NASA Astrophysics Data System (ADS)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  10. Remote Sensing of Aerosol and their Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine A.

    1999-01-01

    Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the

  11. An attempt to quantify aerosol-cloud effects in fields of precipitating trade wind cumuli

    NASA Astrophysics Data System (ADS)

    Seifert, Axel; Heus, Thijs

    2015-04-01

    Aerosol indirect effects are notoriously difficult to understand and quantify. Using large-eddy simulations (LES) we attempt to quantify the impact of aerosols on the albedo and the precipitation formation in trade wind cumulus clouds. Having performed a set of large-domain Giga-LES runs we are able to capture the mesoscale self-organization of the cloud field. Our simulations show that self-organization is intrinsically tied to precipitation formation in this cloud regime making previous studies that did not consider cloud organization questionable. We find that aerosols, here modeled just as a perturbation in cloud droplet number concentration, have a significant impact on the transient behavior, i.e., how fast rain is formed and self-organization of the cloud field takes place. Though, for longer integration times, all simulations approach the same radiative-convective equilibrium and aerosol effects become small. The sensitivity to aerosols becomes even smaller when we include explicit cloud-radiation interaction as this leads to a much faster and more vigorous response of the cloud layer. Overall we find that aerosol-cloud interactions, like cloud lifetime effects etc., are small or even negative when the cloud field is close to equilibrium. Consequently, the Twomey effect does already provide an upper bound on the albedo effects of aerosol perturbations. Our analysis also highlights that current parameterizations that predict only the grid-box mean of the cloud field and do not take into account cloud organization are not able to describe aerosol indirect effects correctly, but overestimate them due to that lack of cloud dynamical and mesoscale buffering.

  12. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Hailong; Smith, Steven J.; Easter, Richard; Ma, Po-Lun; Qian, Yun; Yu, Hongbin; Li, Can; Rasch, Philip J.

    2017-07-01

    The global source-receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010-2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with -0.31 W m-2 contributed by anthropogenic sulfate and -0.11 W m-2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17-84 % to the total DRF. East Asia has the largest contribution of 20-30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of -0.44 W m-2. DMS has the largest contribution, explaining -0.23 W m-2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  13. Impact of anthropogenic aerosols on regional climate change in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Li, Q.; Leung, L. R.

    2015-12-01

    Anthropogenic aerosols affect regional climate significantly through radiative (direct and semi-direct) and indirect effects, but the magnitude of these effects over megacities are subject to large uncertainty. In this study, we evaluated the effects of anthropogenic aerosols on regional climate change in Beijing, China using the online-coupled Weather Research and Forecasting/Chemistry Model (WRF/Chem) with the Fu-Liou-Gu radiation scheme and a spatial resolution of 4km. We further updated this radiation scheme with a geometric-optics surface-wave (GOS) approach for the computation of light absorption and scattering by black carbon (BC) particles in which aggregation shape and internal mixing properties are accounted for. In addition, we incorporated in WRF/Chem a 3D radiative transfer parameterization in conjunction with high-resolution digital data for city buildings and landscape to improve the simulation of boundary-layer, surface solar fluxes and associated sensible/latent heat fluxes. Preliminary simulated meteorological parameters, fine particles (PM2.5) and their chemical components agree well with observational data in terms of both magnitude and spatio-temporal variations. The effects of anthropogenic aerosols, including BC, on radiative forcing, surface temperature, wind speed, humidity, cloud water path, and precipitation are quantified on the basis of simulation results. With several preliminary sensitivity runs, we found that meteorological parameters and aerosol radiative effects simulated with the incorporation of improved BC absorption and 3-D radiation parameterizations deviate substantially from simulation results using the conventional homogeneous/core-shell configuration for BC and the plane-parallel model for radiative transfer. Understanding of the aerosol effects on regional climate change over megacities must consider the complex shape and mixing state of aerosol aggregates and 3D radiative transfer effects over city landscape.

  14. Direct radiative effects of aerosols over South Asia from observations and modeling

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Chin, Mian

    2017-08-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter (DRESUR = -28 ± 12 W m-2 and DREATM = +19.6 ± 9 W m-2) to spring (DRESUR = -33.7 ± 12 W m-2 and DREATM = +27 ± 9 W m-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as 1 K day-1 during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 ± 7 W m-2) during spring overwhelms that of black carbon DRE (+11.8 ± 6 W m-2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  15. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  16. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    NASA Astrophysics Data System (ADS)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  17. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  18. Global Radiative Forcing of Coupled Tropospheric Ozone and Aerosols in a Unified General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.; Adams, Peter J.; Mickley, Loretta J.

    2008-01-01

    Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II', that simulates coupled tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled gas-aerosol unified GCM allows one to evaluate the extent to which global burdens, radiative forcing, and eventually climate feedbacks of ozone and aerosols are influenced by gas-aerosol chemical interactions. Estimated present-day global burdens of sea salt and mineral dust are 6.93 and 18.1 Tg with lifetimes of 0.4 and 3.9 days, respectively. The GCM is applied to estimate current top of atmosphere (TOA) and surface radiative forcing by tropospheric ozone and all natural and anthropogenic aerosol components. The global annual mean value of the radiative forcing by tropospheric ozone is estimated to be +0.53 W m(sup -2) at TOA and +0.07 W m(sup -2) at the Earth's surface. Global, annual average TOA and surface radiative forcing by all aerosols are estimated as -0.72 and -4.04 W m(sup -2), respectively. While the predicted highest aerosol cooling and heating at TOA are -10 and +12 W m(sup -2) respectively, surface forcing can reach values as high as -30 W m(sup -2), mainly caused by the absorption by black carbon, mineral dust, and OC. We also estimate the effects of chemistry-aerosol coupling on forcing estimates based on currently available understanding of heterogeneous reactions on aerosols. Through altering the burdens of sulfate, nitrate, and ozone, heterogeneous reactions are predicted to change the global mean TOA forcing of aerosols by 17% and influence global mean TOA forcing of tropospheric ozone by 15%.

  19. an aerosol climatology optical properties and its associated direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2010-05-01

    Aerosol particles are quite complex in nature. Aerosol impacts on the distribution of radiative energy and on cloud microphysics have been debated climate impact issues. Here, a new aerosol-climatology is presented, combining the consistency and completeness of global modelling with quality data by ground-monitoring. It provides global monthly maps for spectral aerosol optical properties and for concentrations of CCN and IN. Based on the optical properties the aerosol direct forcing is determined. And with environmental data for clouds and estimates on the anthropogenic fraction from emission experiments with global modelling even the climate relevant aerosol direct forcing at the top of the atmosphere (ToA) is determined. This value is rather small near -0.2W/m2 with limited uncertainty estimated at (+/-0.3) due to uncertainties in aerosol absorption and underlying surface conditions or clouds.

  20. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  1. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.

    2011-11-01

    For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, by using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are Supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 Wm-2). Though planetary cooling is found over most of the region, up to -7 Wm-2, large positive DRETOA values (up to +25 Wm-2) are found over North Africa, indicating a strong planetary warming, as well as over the Alps (+0.5 Wm-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 Wm-2) and to decrease SSR (DREsurf = -16.5 Wm-2 and DREnetsurf -13.5 Wm-2) inducing thus significant atmospheric warming and surface radiative cooling

  2. Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics – A case study over India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seethala, C.; Pandithurai, G.; Fast, Jerome D.

    We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 tomore » 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of

  3. Identification and Quantification of Regional Aerosol Trends and Impact on Clouds Over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jongeward, Andrew R.

    Aerosols and clouds contribute to atmospheric variability and Earth's radiative balance across local, regional, and global scales. Originating from both natural and anthropogenic sources, aerosols can cause adverse health effects and can interact directly with solar radiation as well as indirectly through complex interactions with clouds. Aerosol optical depth (AOD) has been observed from satellite platforms for over 30 years. During this time, regional changes in emissions, arising from air quality policies and socioeconomic factors, have been suggested as causes for some observed AOD trends. In the United States, the Clean Air Act and amendments have produced improvements in air quality. In this work the impacts of improved air quality on the aerosol loading and aerosol direct and indirect effects over the North Atlantic Ocean are explored using satellite, ground, and model datasets on the monthly timescale during 2002 to 2012. It is established that two trends exist in the total AOD observed by MODIS over the North Atlantic. A decreasing AOD trend between ?0.02 and ?0.04 per decade is observed over the mid-latitude region. Using the GOCART aerosol model it is shown that this trend results from decreases in anthropogenic species. Ground based aerosol networks (AERONET and IMPROVE) support a decreasing trend in AOD and further strengthen links to anthropogenic aerosol species, particularly sulfate species. This anthropogenic decrease occurs primarily during spring and summer. During the same time period, MODIS also observes an increasing AOD trend of 0.02 per decade located in the sub-tropical region. This trend is shown to occur during summer and is the result of natural dust aerosol. Changes in the North African environment seen in the MERRA reanalysis suggest an accelerated warming over the Saharan Desert leads to changes in the African Easterly Jet, related Easterly Waves, and baroclinicity playing a role in an increase and northward shift in African dust

  4. Direct Radiative Effects of Aerosols Over South Asia From Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, Krishna K.; Chin, Mian

    2016-01-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter DRE(sub SUR) = -28 +/- 12 W m(exp -2) and DRE(sub ATM) = +19.6 +/- 9 W m(exp -2) to spring DRE(sub SUR) = -33.7 +/- 12 W m(exp -2) and DRE(sub ATM) = +27 +/- 9 W m(exp-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as approximately 1 K day(exp -1) during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 +/- 7 W m(exp 2) during spring overwhelms that of black carbon DRE (+11.8 +/- 6 W m(exp -2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  5. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass

  6. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  7. Direct Aerosol Radiative Effects and Heating Rates: Results from the 2016 and 2017 ORACLES Field Campaigns

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Chen, H.; Pilewskie, P.; Redemann, J.; LeBlanc, S. E.; Platnick, S. E.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Iwabuchi, H.

    2017-12-01

    The Southeast Atlantic contains a large, semi-permanent cloud deck often overlaid by a thick layer of biomass burning aerosols that has been advected westward from Southern Africa. We will present (a) the direct aerosol radiative effect (b) the albedo value for which the radiative effect transitions from warming to cooling, i.e., the critical albedo, and (c) aerosol and gas absorption and heating rates for this region from the 2016 and 2017 deployments of the NASA ORACLES experiment (ObseRvations of CLouds above Aerosols and their intEractionS). Observations by the Solar Spectral Flux Radiometer (SSFR), Enhanced MODIS Airborne Simulator (eMAS), High Spectral Resolution Lidar (HSRL-2,) and the Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) are put into context by the 3D radiative transfer model Monte Carlo Atmospheric Radiative Transfer Simulator (MCARaTS), which allows us to determine the aerosol radiative effect especially when inhomogeneous clouds are present. For highly homogeneous scenes, a direct derivation from the measurements is also possible. We give an overview of spectral single scattering albedo, Ångström exponents, and heating rate profiles for the two experiments while also exploring the dependence of the critical albedo on the aerosol properties.

  8. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  9. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  10. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  11. Sensitivity of inorganic aerosol radiative effects to U.S. emissions

    NASA Astrophysics Data System (ADS)

    Holt, J. I.; Solomon, S.; Selin, N. E.

    2017-06-01

    Between 2005 and 2012, U.S. emissions of nitrogen oxides (NOx) and sulfur dioxide (SO2) decreased by 42% and 62%, respectively. These species, as well as ammonia (NH3), are precursors of inorganic fine aerosols, which scatter incoming shortwave radiation and thus affect climate. Scaling aerosol concentrations to emissions, as might be done for near-term climate projections, neglects nonlinear chemical interactions. To estimate the magnitude of these nonlinearities, we conduct a suite of simulations with a chemical transport model and an off-line radiative transfer model. We find that the direct radiative effect (DRE) over the North American domain decreases by 59 and 160 mW m-2 in winter and summer, respectively, between 2005 and 2012. The sensitivities of DRE to NOx and SO2 emissions increase, by 11% and 21% in summer, while sensitivity to NH3 emissions decreases. The wintertime sensitivity of DRE to NOx emissions is small in 2005 but is 5 times as large in 2012. Scaling radiative effects from 2005 to 2012 based on 2005 sensitivities overestimates the magnitude of the DRE of 7% and 6% of the U.S. attributable DRE in January and July, respectively. The difference between the changes in DRE and the changes in sensitivity suggests that scaling to SO2 emissions alone has so far been an accurate approximation, but it may not be in the near future. These values represent the level of accuracy that can be expected in adjusting aerosol radiative effects in climate models without chemistry.

  12. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yiquan; Liu, Xiaohong; Yang, Xiuqun

    2013-05-01

    The impact of anthropogenic aerosol on the East Asian summer monsoon (EASM) is investigated with NCAR CAM5, a state-of-the-art climate model with aerosol’s direct and indirect effects. Results indicate that anthropogenic aerosol tends to cause a weakened EASM with a southward shift of precipitation in East Asia mostly by its radiative effect. Anthropogenic aerosol induced surface cooling stabilizes the boundary layer, suppresses the convection and latent heat release in northern China, and reduces the tropospheric temperature over land and land-sea thermal contrast, thus leading to a weakened EASM. Meanwhile, acting as cloud condensation nuclei (CCN), anthropogenic aerosol can significantly increasemore » the cloud droplet number concentration but decrease the cloud droplet effective radius over Indochina and Indian Peninsulas as well as over southwestern and northern China, inhibiting the precipitation in these regions. Thus, anthropogenic aerosol tends to reduce Southeast and South Asian summer monsoon precipitation by its indirect effect.« less

  13. Estimation of aerosol direct radiative forcing in Lecce during the 2013 ADRIMED campaign

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria-Rita; Comeron, Adolfo

    2015-10-01

    In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the typical "Mediterranean aerosol" and its direct radiative forcing (column closure and regional scale). This work is focused on the multi-intrusion Saharan dust transport period of moderate intensity that occurred over the western and central Mediterranean Basin during the period 14 - 27 June. The dust plumes were detected by the EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations of Barcelona (16 and 17 June) and Lecce (22 June). First, two well-known and robust radiative transfer models, parametrized by lidar profiles for the aerosol vertical distribution, are validated both in the shortwave and longwave spectral range 1) at the surface with down- and up-ward flux measurements from radiometers and 2) at the top of the atmosphere with upward flux measurements from the CERES (Clouds and the Earth's Radiant Energy System) radiometers on board the AQUA and TERRA satellites. The differences between models and their limitations are discussed. The instantaneous and clear-sky direct radiative forcing of mineral dust is then estimated using lidar data for parametrizing the particle vertical distribution at Lecce. The difference between the obtained forcings is discussed in regard to the mineralogy and vertical structure of the dust plume.

  14. Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Washenfelder, R. A.; Brock, C. A.; Hu, W.; Baumann, K.; Campuzano-Jost, P.; Day, D. A.; Edgerton, E. S.; Murphy, D. M.; Palm, B. B.; McComiskey, A.; Wagner, N. L.; Sá, S. S.; Ortega, A.; Martin, S. T.; Jimenez, J. L.; Brown, S. S.

    2014-11-01

    Emissions of SO2 in the United States have declined since the early 1990s, resulting in a decrease in aerosol sulfate mass in the Southeastern U.S. of -4.5(±0.9)% yr-1 between 1992 and 2013. Organic aerosol mass, the other major aerosol component in the Southeastern U.S., has decreased more slowly despite concurrent emission reductions in anthropogenic precursors. Summertime measurements in rural Alabama quantify the change in aerosol light extinction as a function of aerosol composition and relative humidity. Application of this relationship to composition data from 2001 to 2013 shows that a -1.1(±0.7)% yr-1 decrease in extinction can be attributed to decreasing aerosol water mass caused by the change in aerosol sulfate/organic ratio. Calculated reductions in extinction agree with regional trends in ground-based and satellite-derived aerosol optical depth. The diurnally averaged summertime surface radiative effect has changed by 8.0 W m-2, with 19% attributed to the decrease in aerosol water.

  15. Multiple-Year Application & Evaluation of Two-Way Coupled WRF-CMAQ with Aerosol Direct & Indirect Effects over the Continental U.S.

    EPA Science Inventory

    In this study, we present a multiple-year (2008-2010) application and evaluation of the two-way coupled WRFv3.4-CMAQv5.0.2 with both aerosol direct and indirect effects over the continental U.S. (CONUS) driven by chemical initial/boundary conditions derived from an advanced Earth...

  16. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    NASA Astrophysics Data System (ADS)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  17. Aerosol Complexity and Implications for Predictability and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2016-01-01

    There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry

  18. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wang, Hailong; Smith, Steven J.

    The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO 2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggestingmore » that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is –0.42 W m –2, with –0.31 W m –2 contributed by anthropogenic sulfate and –0.11 W m –2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of –0.44 W m –2. DMS has the largest contribution, explaining –0.23 W m –2 of the global sulfate incremental IRF. Here, incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.« less

  19. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    DOE PAGES

    Yang, Yang; Wang, Hailong; Smith, Steven J.; ...

    2017-07-25

    The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO 2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggestingmore » that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is –0.42 W m –2, with –0.31 W m –2 contributed by anthropogenic sulfate and –0.11 W m –2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of –0.44 W m –2. DMS has the largest contribution, explaining –0.23 W m –2 of the global sulfate incremental IRF. Here, incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.« less

  20. Simulation of aerosol radiative properties with the ORISAM-RAD model during a pollution event (ESCOMPTE 2001)

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Pont, V.; Liousse, C.; Roger, J. C.; Dubuisson, P.

    The aim of this study is to present the organic and inorganic spectral aerosol module-radiative (ORISAM-RAD) module, allowing the 3D distribution of aerosol radiative properties (aerosol optical depth, single scattering albedo and asymmetry parameter) from the ORISAM module. In this work, we test ORISAM-RAD for one selected day (24th June) during the ESCOMPTE (expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions) experiment for an urban/industrial aerosol type. The particle radiative properties obtained from in situ and AERONET observations are used to validate our simulations. In a first time, simulations obtained from ORISAM-RAD indicate high aerosol optical depth (AOD)˜0.50-0.70±0.02 (at 440 nm) in the aerosol pollution plume, slightly lower (˜10-20%) than AERONET retrievals. In a second time, simulations of the single scattering albedo ( ωo) have been found to well reproduce the high spatial heterogeneities observed over this domain. Concerning the asymmetry parameter ( g), ORISAM-RAD simulations reveal quite uniform values over the whole ESCOMPTE domain, comprised between 0.61±0.01 and 0.65±0.01 (at 440 nm), in excellent agreement with ground based in situ measurements and AERONET retrievals. Finally, the outputs of ORISAM-RAD have been used in a radiative transfer model in order to simulate the diurnal direct radiative forcing at different locations (urban, industrial and rural). We show that anthropogenic aerosols strongly decrease surface solar radiation, with diurnal mean surface forcings comprised between -29.0±2.9 and -38.6±3.9 W m -2, depending on the sites. This decrease is due to the reflection of solar radiations back to space (-7.3±0.8<Δ FTOA<-12.3±1.2 W m -2) and to its absorption into the aerosol layer (21.1±2.1<Δ FATM<26.3±2.6 W m -2). These values are found to be consistent with those measured at local scale.

  1. Contributions to the Understanding of Aerosol Microphysics Towards Improving the Assessment of Climate Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Dawson, Kyle William

    The study of climate and the associated impacts imposed by human activity has garnered the attention of scientists and policy makers since the 1950s. Research into the various atmospheric constituents that interact with solar radiation thus modulating Earth's radiative budget has been largely focused on the contributions from greenhouse gases and later focused on the role of atmospheric aerosol. The role of atmospheric aerosol, i.e. a solid or aqueous phase particulate, is complex and presents an opportunity for bettering the assessments of climate radiative forcing (i.e. the fraction of climate change due to anthropogenic, rather than natural, activities) in several ways. First, motivated to better understand the radiative effects of the Earth's background aerosol state to improve the assessment of anthropogenic effects, an experimental study on the water uptake ability of xanthan gum as a proxy for marine hydrogel, a component of natural primary emitted seaspray aerosol, is presented. Marine hydrogel comprises an organic component of the ocean surface microlayer that is released to the atmosphere via the bursting of bubbles generated by entrainment of air through crashing waves. This study investigates the water uptake ability (i.e. hygroscopicity) of these particles when exposed to a range of relative humidity (RH). The hydration characteristics of aerosolized pure xanthan gum as well as xanthan gum/salt mixtures were studied using a hygroscopic tandem differential mobility analyzer (HTDMA) and cloud condensation nuclei counter (CCNc). The hygroscopicity of the various solutions were compared to theoretical thermodynamic calculations accounting for the component volume fractions as a function of relative humidity. The data show that pure xanthan gum aerosol hygroscopicity behaves as other organic polysaccharides and, when combined with salts, is reasonably approximated by the volume fraction mixing rules above 90% RH. Deviations occur below 90% RH as well as for

  2. Substantial large-scale feedbacks between natural aerosols and climate

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Arnold, S. R.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2018-01-01

    The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol-climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol-climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol-climate feedback is estimated to be -0.14 W m-2 K-1 for landscape fire aerosol, greater than the -0.03 W m-2 K-1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.

  3. Simulation of Aerosol Transport and Radiative Effects In Lmd-gcm During Indoex-ifp 1999

    NASA Astrophysics Data System (ADS)

    Reddy, M. S.; Boucher, O.; Léon, J.-F.; Venkataraman, C.; Pham, M.

    During the January-March 1999, an international collaborative field experiment, In- dian Ocean Experiment (INDOEX) was carried out to understand the anthropogenic aerosol effects on radiative forcing (Ramanathan, 2001). In the present work we sim- ulated the cycle of the multi-component aerosol (sulphate, black carbon, organic car- bon, dust, sea-salt and fly-ash) in the Laboratoire de Météorologie Dynamique General Circulation Model (LMD GCM) and estimated the consequent radiative forcing. Sim- ulations are carried out in the zoomed version of the model focusing on the Indian sub- continent and Indian Ocean regions, for January-April 1999. To account correctly for the aerosol emissions in the source regions (Indian subcontinent) we have integrated newly developed SO2 and aerosol emission inventory for India for 1999 (Reddy and Venkataraman, 2002a and b) into the global emission data set input to model. Model performance is evaluated by comparing the simulated aerosol concentration fields against measurements over continental and oceanic stations. Model predicted concentrations agree well in the oceanic stations but are in the lower end of mea- surements in the continental stations. A large plume of sulphate and other aerosols ex- tended from the Indian sub-continent into the Indian Ocean, from surface and elevated flows, extending down to 5S in the pristine southern Indian Ocean. Predicted spec- trally resolved aerosol optical depths (AOD) will be compared with sun-photometer measurements in the region. We also present a comparison of model predicted aerosol optical depths with satellite (Meteosat) derived AOD for the same period. An assess- ment of the multi-component aerosol radiative forcing will be made and results will be discussed in the context of the possible climate effects over the region. Finally, the regional source contributions to sulphate and carbonaceous aerosol loadings in the Indian Ocean will be presented.

  4. Anthropogenic aerosol optical and radiative properties in the typical urban/suburban regions in China

    NASA Astrophysics Data System (ADS)

    Gong, Chongshui; Xin, Jinyuan; Wang, Shigong; Wang, Yuesi; Zhang, Tiejun

    2017-11-01

    The effect of high anthropogenic aerosols on the aerosol optical and radiative properties was aggravated from west to east in China. The annual mean (from 2004 to 2007) aerosol optical depth (AOD), Ångström exponents (α), absorptive aerosol optical depth (AAOD), and single-scattering albedo (SSA) were from 0.16 to 0.73, from - 0.01 to 1.15, from 0.03 to 0.04, and from 0.78 to 0.94, respectively. In addition, the annual mean of aerosol direct radiative forcing at the top of the atmosphere (TOA) were from - 7.2 to 18.5 W/m2. High anthropogenic aerosol exhibited the effect of heating the atmosphere (ATM) (48-52 W/m2) and cooling the surface (SFC) (- 48 to - 56 W/m2) in eastern China. In Lanzhou where there is more serious pollution of heavy industry, aerosol-induced surface cooling reached - 61 W/m2. The radiative forcing was higher in winter and spring than that in summer and autumn. Aerosol heating effect on the atmosphere was obvious; there was significantly linear correlation between AOD and TOA, SSA and TOA. The slopes of AOD vs TOA were from - 20.8 to - 42.6. The slopes of SSA vs TOA were from - 58 to - 302. The aerosol was cooling the Earth-atmosphere system with AOD or SSA increasing. In the meantime, AAOD (x) exhibited significantly linear correlation with the heating effect in the atmosphere (ATM: y) (y = 1053.7x + 10.5, R2 = 0.85). And the effect of AOD (x) on the SFC (y) cooling was also obvious (y = - 47.1x - 24.5, R2 = 0.56). Therefore, the thermodynamic effects of anthropogenic aerosols on the atmosphere circulation and structure should be taken into consideration in East Asia.

  5. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  6. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  7. Indirect effects of radiation induce apoptosis and neuroinflammation in neuronal SH-SY5Y cells.

    PubMed

    Saeed, Yasmeen; Xie, Bingjie; Xu, Jin; Wang, Hailong; Hassan, Murtaza; Wang, Rui; Hong, Ma; Hong, Qing; Deng, Yulin

    2014-12-01

    Recent studies have evaluated the role of direct radiation exposure in neurodegenerative disorders; however, association among indirect effects of radiation and neurodegenerative diseases remains rarely discussed. The objective of this study was to estimate the relative risk of neurodegeneration due to direct and indirect effects of radiation. (60)Co gamma ray was used as source of direct radiation whereas irradiated cell conditioned medium (ICCM) was used to mimic the indirect effect of radiation. To determine the potency of ICCM to inhibit neuronal cells survival colony forming assay was performed. The role of ICCM to induce apoptosis in neuronal SH-SY5Y cells was estimated by TUNEL assay and Annexin V/PI assay. Level of oxidative stress and the concentration of inflammatory cytokines after exposing to direct radiation and ICCM were evaluated by ELISA method. Expression of key apoptotic protein following direct and indirect radiation exposure was investigated by western blot technique. Experimental data manifest that ICCM account loss of cell survival and increase apoptotic induction in neuronal SH-SY5Y cells that was dependent on time and dose. Moreover, ICCM stimulate significant release of inflammatory cytokines i.e., tumor necrosis factor TNF-alpha (P < 0.01), Interleukin-1 (IL-1, P < 0.001), and Interleukin-6 (IL-6, P < 0.001) in neuronal SH-SY5Y cells and elevate the level of oxidative stress (MDA, P < 0.01). Up-regulation of key apoptotic protein expression i.e., Bax, Bid, cytochrome C, caspase-8 and caspase-3 confirms the toxicity of ICCM to neuronal cells. This study provides the evidence that indirect effect of radiation can be as much damaging to neuronal cells as direct radiation exposure can be. Hence, more focused research on estimation risks of indirect effect of radiation to CNS at molecular level may help to reduce the uncertainty about cure and cause of several neurodegenerative disorders.

  8. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  9. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE PAGES

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    2017-10-17

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  10. Dust radiative effect over Europe, Mediterranean, Sahara and Middle East from a radiative transfer model using BSC-DREAM8b aerosol optical data

    NASA Astrophysics Data System (ADS)

    Papadimas, Christos; Gkikas, Antonis; Hatzianastassiou, Nikos; Matsoukas, Christos; Kazadzis, Stelios; Basart, Sara; Baldasano, Jose; Vardavas, Ilias

    2013-04-01

    The arid regions of Saharan desert and Middle East are the world's major dust sources. However, dust particles from these areas are transported to nearby regions, through favourable synoptic conditions, even reaching remote locations in Europe or in the Arctic. This transport is very important in numerous aspects. One of its most important effects is on the radiation budget, and more specifically on solar radiation, through the aerosol direct radiative effect (DRE). Previous studies have shown that this effect is great under dust load conditions. Therefore, it is very important to simulate dust transport processes and associated radiative effects. The simulation of dust production, transport and removal is done by numerical models, which however have their own limitations as to the consideration of physical and dynamical processes as well as their initial conditions. On the other hand, the computation of dust DRE is ideally done with radiative transfer models (RTMs), which however imply uncertainties associated with the input aerosol optical properties. The most important aerosol optical properties used in RTMs and climate models are aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (AP). The main target of the present study is to reduce the uncertainties of dust DRE by using a detailed spectral RTM and an acknowledged regional and meso-scale model describing the distribution of dust. The combined use of these tools is applied to the region covering the deserts of Sahara, Arabian Peninsula and Middle East, and the neighbouring Mediterranean basin and European continent (extending from 15°N to 60°N and from 21°W to 54°E). The computations are performed on a monthly mean basis, refer to the 11-year period 2000-2010, and quantify the effects of dust on the reflected solar radiation at the top of atmosphere (DRETOA), on the absorbed solar radiation within the atmosphere (DREatmab), and on the downwelling and absorbed solar

  11. Radiative impact of Etna volcanic aerosols over south eastern Italy on 3 December 2015

    NASA Astrophysics Data System (ADS)

    Romano, S.; Burlizzi, P.; Kinne, S.; De Tomasi, F.; Hamann, U.; Perrone, M. R.

    2018-06-01

    Irradiance and LiDAR measurements at the surface combined with satellite products from SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and MODIS (MODerate resolution Imaging Spectroradiometer) were used to detect and characterize the Etna volcano (Italy) plume that crossed southeastern Italy on 3 December 2015, from about 10:00 up to 11:30 UTC, and estimate its radiative impact. The volcanic plume was delivered by a violent and short paroxysmal eruption that occurred from 02:30 to 03:10 UTC of 3 December 2015, about 400 km away from the monitoring site. Measurements from the LiDAR combined with model results showed that the aerosol optical depth of the volcanic plume, located from about 11 to 13 km above sea level (asl), was equal to 0.80 ± 0.07 at 532 nm. A low tropospheric aerosol load, located up to about 7 km asl, with optical depth equal to 0.19 ± 0.01 at 532 nm was also revealed by the LiDAR measurements. Short-Wave (SW) downward and upward irradiance measurements revealed that the instantaneous SW direct radiative forcing at the surface (DRFsurf) decreased to -146 ± 16 W m-2 at 10:50 UTC because of the volcanic plume passage. A Two-Stream radiative transfer model integrated with experimental measurements, which took into account the volcanic plume and the low tropospheric aerosol properties, was used to reproduce the SW radiative flux measurements at the surface and estimate the aerosol DRF both at the top of the atmosphere (TOA) and at the surface, in addition to the aerosol heating rate vertical profile. We found that the clear-sky, instantaneous, SW DRF at the TOA and the atmospheric forcing were equal to -112 and 33 W m-2, respectively, at 10:50 UTC that represented the time at which the volcanic plume radiative impact was the highest. The SW aerosol heating rate reached the peak value of 1.24 K day-1 at 12 km asl and decreased to -0.06 K day-1 at 11 km asl, at 10:50 UTC. The role of the aerosol load located up to about 7 km asl and the

  12. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides.

    PubMed

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E

    2018-05-09

    Iron (Fe) oxides in aerosols are known to absorb sun light and heat the atmosphere. However, the radiative forcing (RF) of light-absorbing aerosols of pyrogenetic Fe oxides is ignored in climate models. For the first time, we use a global chemical transport model and a radiative transfer model to estimate the RF by light-absorbing aerosols of pyrogenetic Fe oxides. The model results suggest that strongly absorbing Fe oxides (magnetite) contribute a RF that is about 10% of the RF due to black carbon (BC) over East Asia. The seasonal average of the RF due to dark Fe-rich mineral particles over East Asia (0.4-1.0 W m -2 ) is comparable to that over major biomass burning regions. This additional warming effect is amplified over polluted regions where the iron and steel industries have been recently developed. These findings may have important implications for the projection of the climate change, due to the rapid growth in energy consumption of the heavy industry in newly developing countries.

  13. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    NASA Astrophysics Data System (ADS)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.

  14. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  15. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-08-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry-climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry-climate model for the period 1960-2009 against extensive ground-based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009), aerosol size distributions (2008-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2), aerosol number concentrations (N30 NMBF = -0.85; N50 NMBF = -0.65; and N100 NMBF = -0.96) and AOD (NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68 % (-78 %), SPM of -42 % (-20 %), PM10 of -9 % (-8 %) and AOD of -11 % (-14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  16. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2

  17. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-08-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  18. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Langford, A. O.; Laskin, A.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  19. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Technical Reports Server (NTRS)

    Zaveri, R. A.; Shaw, W. J.; Cahill, J. F.; Cairns, Brian; Cappa, C. D.; Ottaviani, Matteo; Cziczo, D. J.; Ferrare, Richard A.; Alexander, M. L.; Alexandrov, Mikhail Dmitrievic; hide

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  20. Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols

    NASA Technical Reports Server (NTRS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-01-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6mW/sq. m for CFCs and -6.7mW/sq. m for N2O) and sulfate aerosols (-3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  1. Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Weisenstein, D. K.; Keith, D. W.

    2018-01-01

    We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.

  2. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR and CERES Observations on Terra

    NASA Technical Reports Server (NTRS)

    Zhang, Jiang-Long; Christopher, Sundar A.

    2003-01-01

    Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.

  3. Theoretical Characterization of the Radiative Properties of Dust Aerosol for the Air Force Combat Climatology Center Point Analysis Intelligence System

    DTIC Science & Technology

    2007-03-01

    dust aerosol is known to absorb radiation in these wavelengths. Therefore, the absorptive properties of the aerosol must be taken into account to...of the dust aerosol on radiation propagation is complicated. The study addressed this problem by modeling various radiative transfer situations...are ubiquitous in nature and frequently are the determining factor in the amount of radiation received at a sensor.” The horizontal and vertical

  4. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  5. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    NASA Astrophysics Data System (ADS)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  6. War Induced Aerosol Optical, Microphysical and Radiative Effects

    NASA Astrophysics Data System (ADS)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  7. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  8. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  9. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  10. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  11. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.

    PubMed

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-28

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  12. Multi-Decadal Change of Atmospheric Aerosols and Their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Tan, Qian; Wild, Martin; Qian, Yun; Yu, Hongbin; Bian, Huisheng; Wang, Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  13. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  14. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  15. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Romdhane, Haifa Ben; Ali, Mohammed Tauha; Armstrong, Peter; Ghedira, Hosni

    2016-12-01

    The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012-July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March-May) and summer (June-September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October-November) and winter (December-February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from -13.2 Wm-2 (˜-0.96 Wm-2) in November to -39.4 Wm-2 (-11.4 Wm-2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm-2 (November) to 28.2 Wm-2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (-85.0 ± 4.1 W m-2 τ -1) followed closely by winter (-79.2 ± 7.1 W m-2 τ -1) and the lowest values during autumn season (-54 ± 4.3 W m-2 τ -1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day -1) and the lowest in November (0.17 K day -1) and the temporal

  16. Aerosol contribution to the rapid warming of near-term climate under RCP 2.6

    NASA Astrophysics Data System (ADS)

    Chalmers, N.; Highwood, E. J.; Hawkins, E.; Sutton, R.; Wilcox, L. J.

    2012-09-01

    The importance of aerosol emissions for near term climate projections is investigated by analysing simulations with the HadGEM2-ES model under two different emissions scenarios: RCP2.6 and RCP4.5. It is shown that the near term warming projected under RCP2.6 is greater than under RCP4.5, even though the greenhouse gas forcing is lower. Rapid and substantial reductions in sulphate aerosol emissions due to a reduction of coal burning in RCP2.6 lead to a reduction in the negative shortwave forcing due to aerosol direct and indirect effects. Indirect effects play an important role over the northern hemisphere oceans, especially the subtropical northeastern Pacific where an anomaly of 5-10 Wm-2 develops. The pattern of surface temperature change is consistent with the expected response to this surface radiation anomaly, whilst also exhibiting features that reflect redistribution of energy, and feedbacks, within the climate system. These results demonstrate the importance of aerosol emissions as a key source of uncertainty in near term projections of global and regional climate.

  17. Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.

    1996-01-01

    We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 deg. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.

  18. Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.

    2000-01-01

    We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 degrees. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.

  19. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  20. Aerosol Climate Effects: Local Radiative Forcing and Column Closure Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Kinne, S. A.

    2000-01-01

    In an effort to reduce uncertainties in climate change predictions, experiments are being planned and conducted to measure anthropogenic aerosol properties and effects, including effects on radiative fields. The global average, direct anthropogenic aerosol effect on upwelling shortwave fluxes is estimated to be about +1/2 W/sq m, whereas errors in flux changes measured with airborne and spaceborne radiometers are 2 to 8 W/sq m or larger. This poses the question of whether flux changes expected in field experiments will be large enough to measure accurately. This paper obtains a new expression for the aerosol-induced change in upwelling flux, compares it to two-stream and adding-doubling (AD) results, and uses all three methods to estimate expected flux changes. The new expression accounts for the solar zenith angle dependences of aerosol transmission and reflection, as well as of surface albedo, all of which can have a strong effect in determining flux changes measured in field experiments. Despite its relative simplicity, the new expression gives results similar to previous two-stream results. Relative to AD results, it agrees within a few watts per square meter for the intermediate solar elevation angles where the flux changes peak (roughly 10 to 30 degrees), but it has negative errors for higher Sun and positive errors for lower Sun. All three techniques yield aerosol-induced changes in upwelling flux of +8 to +50 W/sq m for aerosol midvisible optical depths of 0.1 to 0.5. Because such aerosol optical depths occur frequently off the U.S. and European Atlantic coasts in summer, the flux changes they induce should be measurable by airborne, and possibly by spaceborne, radiometers, provided sufficient care is taken in experiment design (including measurements to separate aerosol radiative effects from those of absorbing gases). The expected flux changes are about 15 to 100 times larger than the global average flux change expected for the global average

  1. Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjørn H.; Myhre, Gunnar

    2011-12-01

    A global radiative transfer model is used to calculate the vertical profile of shortwave radiative forcing from a prescribed amount of aerosols. We study black carbon (BC), sulphate (SO4) and a black and organic carbon mixture typical of biomass burning (BIO), by prescribing aerosol burdens in layers between 1000 hPa and 20 hPa and calculating the resulting direct radiative forcing divided by the burden (NDRF). We find a strong sensitivity in the NDRF for BC with altitude, with a tenfold increase between BC close to the surface and the lower part of the stratosphere. Clouds are a major contributor to this dependence with altitude, but other factors also contribute. We break down and explain the different physical contributors to this strong sensitivity. The results show a modest regional dependence of the altitudinal dependence of BC NDRF between industrial regions, while for regions with properties deviating from the global mean NDRF variability is significant. Variations due to seasons and interannual changes in cloud conditions are found to be small. We explore the effect that large altitudinal variation in NDRF may have on model estimates of BC radiative forcing when vertical aerosol distributions are insufficiently constrained, and discuss possible applications of the present results for reducing inter-model differences.

  2. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp

  3. Radiative Effect of Springtime Biomass-Burning Aerosols over Northern Indochina During 7-SEAS Baseline 2013 Campaign

    NASA Technical Reports Server (NTRS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent N.; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-01-01

    The direct aerosol radiative effects of biomass-burning (BB) aerosols over northern Indochina were estimated by using aerosol properties (physical, chemical, and optical) along with the vertical profile measurements from ground-based measurements with integration of an optical and a radiative transfer model during the Seven South East Asian Studies Biomass-Burning Aerosols Stratocumulus Environment: Lifecycles Interactions Experiment (7-SEASBASELInE) conducted in spring 2013. Cluster analysis of backward trajectories showed the air masses arriving at mountainous background site (Doi Ang Khang; 19.93degN, 99.05degE, 1536 m above mean sea level) in northern Indochina, mainly from near-source inland BB activities and being confined in the planetary boundary layer. The PM(sub10) and black carbon (BC)mass were 87 +/- 28 and 7 +/- 2 micrograms m(exp -3), respectively. The aerosol optical depth (AOD (sub 500) was found to be 0.26--1.13 (0.71 +/- 0.24). Finer (fine mode fraction is approximately or equal to 0.95, angstrom-exponent at 440-870 nm is approximately or equal to 1.77) and significantly absorbing aerosols(single scattering albedo is approximately or equal to 0.89, asymmetry-parameter is approximately or equal to 0.67, and absorption AOD 0.1 at 440 nm) dominated over this region. BB aerosols (water soluble and BC) were the main contributor to the aerosol radiative forcing (ARF), while others (water insoluble, sea salt and mineral dust) were negligible mainly due to their low extinction efficiency. BC contributed only 6 to the surface aerosol mass but its contribution to AOD was 12 (2 times higher). The overall mean ARF was 8.0 and -31.4 W m(exp -2) at top-of-atmosphere (TOA) and at the surface (SFC), respectively. Likely, ARF due to BC was +10.7 and -18.1 W m(exp -2) at TOA and SFC, respectively. BC imposed the heating rate of +1.4 K d(exp -1) within the atmosphere and highlighting its pivotal role in modifying the radiation budget. We propose that to upgrade our

  4. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  5. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  6. Quantifying the uncertainties of aerosol indirect effects and impacts on decadal-scale climate variability in NCAR CAM5 and CESM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sungsu

    2014-12-12

    The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets andmore » ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be

  7. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  8. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  9. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  10. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    The role of aerosol forcing remains one of the largest uncertainties in estimating man's impact on the global climate system. One school of thought suggests that remote sensing by satellite sensors will provide the data necessary to narrow these uncertainties. While satellite measurements of direct aerosol forcing appear to be straightforward, satellite measurements of aerosol indirect forcing will be more complicated. Pioneering studies identified indirect aerosol forcing using AVHRR data in the biomass burning regions of Brazil. We have expanded this analysis with AVHRR to include an additional year of data and assimilated water vapor fields. The results show similar latitudinal dependence as reported by Kaufman and Fraser, but by using water vapor observations we conclude that latitude is not a proxy for water vapor and the strength of the indirect effect is not correlated to water vapor amounts. In addition to the AVHRR study we have identified indirect aerosol forcing in Brazil at much smaller spatial scales using the MODIS Airborne Simulator. The strength of the indirect effect appears to be related to cloud type and cloud dynamics. There is a suggestion that some of the cloud dynamics may be influenced by smoke destabilization of the atmospheric column. Finally, this study attempts to quantify remote sensing limitations due to the accuracy limits of the retrieval algorithms. We use a combination of numerical aerosol transport models, ground-based AERONET data and ISCCP cloud climatology to determine how much of the forcing occurs in regions too clean to determine from satellite retrievals.

  11. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    PubMed Central

    Sengupta, Kamalika; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol–cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20–100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m−2 (27%) to −0.60 W m−2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes. PMID:27790989

  12. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  13. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.

    PubMed

    Ben-David, Avishai; Davidson, Charles E; Embury, Janon F

    2008-11-01

    We introduced a two-dimensional radiative transfer model for aerosols in the thermal infrared [Appl. Opt.45, 6860-6875 (2006)APOPAI0003-693510.1364/AO.45.006860]. In that paper we superimposed two orthogonal plane-parallel layers to compute the radiance due to a two-dimensional (2D) rectangular aerosol cloud. In this paper we revisit the model and correct an error in the interaction of the two layers. We derive new expressions relating to the signal content of the radiance from an aerosol cloud based on the concept of five directional thermal contrasts: four for the 2D diffuse radiance and one for direct radiance along the line of sight. The new expressions give additional insight on the radiative transfer processes within the cloud. Simulations for Bacillus subtilis var. niger (BG) bioaerosol and dustlike kaolin aerosol clouds are compared and contrasted for two geometries: an airborne sensor looking down and a ground-based sensor looking up. Simulation results suggest that aerosol cloud detection from an airborne platform may be more challenging than for a ground-based sensor and that the detection of an aerosol cloud in emission mode (negative direct thermal contrast) is not the same as the detection of an aerosol cloud in absorption mode (positive direct thermal contrast).

  14. A Global Model Simulation of Aerosol Effects of Surface Radiation Budget- Toward Understanding of the "Dimming to Brightening" Transition

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin

    2008-01-01

    We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?

  15. Aircraft observations of the physical and radiative properties of biomass aerosol particles during SAFARI-2000.

    NASA Astrophysics Data System (ADS)

    Osborne, S. R.; Haywood, J. M.

    2001-12-01

    An initial analysis will be shown from the ~80 h of data collected between 2--18 September 2000 by the UK Met Office C-130 aircraft during the dry season campaign of the Southern African Regional Science Initiative (SAFARI-2000). The talk will concentrate on the physical and optical properties of the biomass aerosol. The evolution of the particle size spectrum and its optical properties at emission and after ageing will be shown. The vertical distribution of the biomass plume over the land and sea will be compared in view of the local meteorology. A generalised three log-normal model is shown to represent aged biomass aerosol over the sea areas, both in terms of the number and mass particle size spectra, but also derived optical properties (e.g. asymmetry factor, single scatter albedo (ω 0) and extinction coefficient) as calculated using Mie theory and appropriate refractive indices. ω 0 was determined independently using a particle soot absorption photometer (giving the absorption coefficient at a wavelength of 0.567 μ m) and a nephelometer (giving the scattering coefficients at 0.45, 0.55 and 0.65 μ m). Good agreement was found between the measurements and those obtained from the Mie calculations and observed size distributions. A typical value of ω 0 at 0.55 μ m for aged biomass aerosol was 0.90. The radiative properties of the biomass aerosol over both land and sea will be summarised. Stratocumulus cloud was present on some of the days over the sea and the surprising lack of interaction between the elevated biomass plume (containing significant levels of cloud condensation nuclei) and the cloud capping the marine boundary layer will be illustrated. Using the cloud-free and cloudy case studies we can begin to elucidate the levels of direct and indirect forcing of the biomass aerosol on a regional scale. >http://www.mrfnet.demon.co.uk/africa/SAFARI2000.htm

  16. Aerosol as a player in the Arctic Amplification - an aerosol-climate model evaluation study

    NASA Astrophysics Data System (ADS)

    Schacht, Jacob; Heinold, Bernd; Tegen, Ina

    2017-04-01

    Climate warming is much more pronounced in the Arctic than in any other region on Earth - a phenomenon referred to as the "Arctic Amplification". This is closely related to a variety of specific feedback mechanisms, which relative importance, however, is not yet sufficiently understood. The local changes in the Arctic climate are far-reaching and affect for example the general atmospheric circulation and global energy transport. Aerosol particles from long-range transport and local sources play an important role in the Arctic system by modulating the energy balance (directly by interaction with solar and thermal infrared radiation and indirectly by changing cloud properties and atmospheric dynamics). The main source regions of anthropogenic aerosol are Europe and East Asia, but also local shipping and oil/gas extraction may contribute significantly. In addition, important sources are widespread, mainly natural boreal forest fires. Most of the European aerosol is transported through the lower atmospheric layers in wintertime. The Asian aerosol is transported through higher altitudes. Because of the usually pristine conditions in the Arctic even small absolute changes in aerosol concentration can have large impacts on the Arctic climate. Using global and Arctic-focused model simulations, we aim at investigating the sources and transport pathways of natural and anthropogenic aerosol to the Arctic region, as well as their impact on radiation and clouds. Here, we present first results from an aerosol-climate model evaluation study. Simulations were performed with the global aerosol-climate model ECHAM6-HAM2, using three different state-of-the-art emission inventories (ACCMIP, ACCMIP + GFAS emissions for wildfires and ECLIPSE). The runs were performed in nudged mode at T63 horizontal resolution (approximately 1.8°) with 47 vertical levels for the 10-year period 2006-2015. Black carbon (BC) and sulphate (SO4) are of particular interest. BC is highly absorbing in the

  17. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology

  18. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    NASA Astrophysics Data System (ADS)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  19. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2004-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.

  20. Volcano and Ship Tracks Indicate Excessive Aerosol-Induced Cloud Water Increases in a Climate Model

    NASA Astrophysics Data System (ADS)

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-01

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational data set and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  1. New approaches to quantifying aerosol influence on the cloud radiative effect

    PubMed Central

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian

    2016-01-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system. PMID:26831092

  2. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  3. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will

  4. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called direct effect , aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called indirect effects, whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss

  5. Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions

    NASA Technical Reports Server (NTRS)

    Malavelle, Florent F.; Haywood, Jim M.; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P.; Karset, Inger Helene H.; Kristjansson, Jon Egill; Oreopoulos, Lazaros; hide

    2017-01-01

    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets - consistent with expectations - but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around minus 0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

  6. Strong constraints on aerosol-cloud interactions from volcanic eruptions.

    PubMed

    Malavelle, Florent F; Haywood, Jim M; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P; Karset, Inger Helene H; Kristjánsson, Jón Egill; Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Bellouin, Nicolas; Boucher, Olivier; Grosvenor, Daniel P; Carslaw, Ken S; Dhomse, Sandip; Mann, Graham W; Schmidt, Anja; Coe, Hugh; Hartley, Margaret E; Dalvi, Mohit; Hill, Adrian A; Johnson, Ben T; Johnson, Colin E; Knight, Jeff R; O'Connor, Fiona M; Partridge, Daniel G; Stier, Philip; Myhre, Gunnar; Platnick, Steven; Stephens, Graeme L; Takahashi, Hanii; Thordarson, Thorvaldur

    2017-06-22

    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

  7. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert A.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single- scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  8. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  9. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bergstrom, Robert W.; Schmid, Beat; Livingston, John M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  10. Comparison between calculations of shortwave radiation with different aerosol datasets and measured data at the MSU MO (Russia)

    NASA Astrophysics Data System (ADS)

    Poliukhov, Aleksei; Chubarova, Natalia; Kinne, Stephan; Rivin, Gdaliy; Shatunova, Marina; Tarasova, Tatiana

    2017-02-01

    The radiation block of the COSMO non-hydrostatic mesoscale model of the atmosphere and soil active layer was tested against a relatively new effective CLIRAD(FC05)-SW radiation model and radiative measurements at the Moscow State University Meteorological Observatory (MSU MO, 55.7N, 37.5E) using different aerosol datasets in cloudless conditions. We used the data of shortwave radiation components from the Kipp&Zonen net radiometer CNR4. The model simulations were performed with the application of various aerosol climatologies including the new MACv2 climatology and the aerosol and water vapor dataset from CIMEL (AERONET) sun photometer measurements. The application of the new MACv2 climatology in the CLIRAD(FC05)-SW radiation model provides the annual average relative error of the total global radiation of -3% varying from 0.5% in May to -7.7% in December. The uncertainty of radiative calculations in the COSMO model according to preliminary estimates changes from 1.4% to 8.4%. against CLIRAD(FC05)-SW radiation model with the same parameters. We showed that in clear sky conditions the sensitivity of air temperature at 2 meters to shortwave net radiation changes is about 0.7-0.9°C per100 W/m2 due to the application of aerosol climatologies over Moscow.

  11. “Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model”

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challengi...

  12. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalsky, Joseph; Lantz, Kathy

    The National Oceanic and Atmospheric Administration (NOAA) is preparing for the launch of the Geostationary Operational Environmental Satellite R-Series (GOES-R) satellite in 2015. This satellite will feature higher time (5-minute versus 30-minute sampling) and spatial resolution (0.5 km vs 1 km in the visible channel) than current GOES instruments provide. NOAA’s National Environmental Satellite Data and Information Service has funded the Global Monitoring Division at the Earth System Research Laboratory to provide ground-based validation data for many of the new and old products the new GOES instruments will retrieve specifically related to radiation at the surface and aerosol and itsmore » extensive and intensive properties in the column. The Two-Column Aerosol Project (TCAP) had an emphasis on aerosol; therefore, we asked to be involved in this campaign to de-bug our new instrumentation and to provide a new capability that the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facilities (AMF) did not possess, namely surface albedo measurement out to 1625 nm. This gave us a chance to test remote operation of our new multi-filter rotating shadowband radiometer/multi-filter radiometer (MFRSR/MFR) combination. We did not deploy standard broadband shortwave and longwave radiation instrumentation because ARM does this as part of every AMF deployment. As it turned out, the ARM standard MFRSR had issues, and we were able to provide the aerosol column data for the first 2 months of the campaign covering the summer flight phase of the deployment. Using these data, we were able to work with personnel at Pacific Northwest National Laboratory (PNNL) to retrieve not only aerosol optical depth (AOD), but single scattering albedo and asymmetry parameter, as well.« less

  13. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  14. Multi-site characterization of tropical aerosols: Implications for regional radiative forcing

    NASA Astrophysics Data System (ADS)

    Sumit, Kumar; Devara, P. C. S.; Manoj, M. G.

    2012-03-01

    A land campaign, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP), has been organized using a suit of instruments like AERONET (Aerosol Robotic Network) Sun/Sky sunphotometer, Microtops-II (MICROprocessor-controlled Total Ozone Portable Spectrometer), short-wave pyranometer from December 1, 2006 to April 30, 2007, over five locations (Ahmedabad, Pune, Sinhgad, Trivandrum and Gadanki) representing different environments. The dominance of different aerosol types such as biomass burning, urban/industrial pollution, marine origin and desert-dust particles is expected at these five sites. In all locations, significant day-to-day variability in AOD and Ångström exponent is observed. The Ångström exponent exhibits its lowest values over semi-arid region (Ahmedabad) 0.4-0.7, while it is around 1.8 at rural site (Gadanki). The retrieved volume size distributions for Pune, Ahmedabad and Trivandrum are found to be bimodal with varying concentration of each mode. Interesting feature of this observation is, very low coarse-mode volume concentration observed at Trivandrum even though observations were made about 300 m from the coast. The synergy of results from these complementary measurements is reflected in the computed regional aerosol radiative forcing and heating rates. We have used a radiative transfer model (SBDART) to examine the variations of aerosol direct radiative effect (ADRE) and heating rates to give an overall estimation of the effect on climate. The ADRE, over different measurement sites, at short wavelength is found to be negative at the surface in the range of - 18 to - 59 W m - 2 , and TOA forcing values varied from + 0.9 to - 8 W m - 2 .

  15. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.

    PubMed

    Ben-David, Avishai; Embury, Janon F; Davidson, Charles E

    2006-09-10

    A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.

  16. Aerosol Indirect effect on Stratocumulus Organization

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Heus, T.; Kollias, P.

    2015-12-01

    Large-eddy simulations are used to investigate the role of aerosol loading on organized Stratocumulus. We prescribed the cloud droplet number concentration (Nc) and considered it as the proxy for different aerosol loading. While the presence of drizzle amplifies the mesoscale variability as is in Savic-Jovcic and Stevens (JAS, 2008), two noticeable findings are discussed here: First, the scale of marine boundary layer circulation appears to be independent of aerosol loading, suggesting a major role of the turbulence. The precise role of the turbulence in stratocumulus organization is studied by modifying the large scale fluctuations from the LES domain. Second, while it is commonly thought that the whole circulation needs to be represented for robust cloud development, we find that stratocumulus dynamics, including variables like w'w' and w'w'w', are remarkably robust even if large scales are ignored by simply reducing the domain sizes. The only variable that is sensitive to the change of the scale is the amount of cloudiness. Despite their smaller cloud thickness and inhomogeneous macroscopic structure for low Nc, individual drizzling clouds have sizes that are commensurate with circulation scale. We observe an Nc threshold below which stratocumulus is thin enough so that a little decrease of Nc would lead to great change of cloud fraction. The simulated cloud albedo is more sensitive to in-cloud liquid water content than to the amount of cloudiness since the former decreases at least three times faster than the latter due to drizzle. The main impact of drizzle evaporation is observed to keep the sub-cloud layer moist and as a result to extend the lifetime of stratocumulus by a couple of hours.

  17. Vertical structure of aerosol distribution and radiative properties over Svalbard - observations and modelling

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Markowicz, Krzysztof; Jefimow, Maciej

    2015-04-01

    In the scope of the iAREA projects (Impact of absorbing aerosols on radiative forcing in the European Arctic - http://www.igf.fuw.edu.pl/iAREA) a field campaign was undertaken in March and April 2014 on Spitzbergen. Analysis of measurements was supported by the GEM-AQ model simulations. The GEM-AQ model is a chemical weather model. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). Numerical experiments were performed with the computational grid resolution of ˜15 km. The emission inventory developed by NILU in the ECLIPSE project was used. Preliminary analysis revealed small but systematic overestimation of modelled AOD and background BC levels. We will present the analysis of the vertical distribution of different aerosol species and its contribution to AOD for two stations on Svalbard. Also, changes of modelled chemical composition of aerosols with altitude will be analyzed.

  18. Assessment of dust aerosol effect on cloud properties over Northwest China using CERES SSF data

    NASA Astrophysics Data System (ADS)

    Huang, J.; Wang, X.; Wang, T.; Su, J.; Minnis, P.; Lin, B.; Hu, Y.; Yi, Y.

    Dust aerosols not only have direct effects on the climate through reflection and absorption of the short and long wave radiation but also modify cloud properties such as the number concentration and size of cloud droplets indirect effect and contribute to diabatic heating in the atmosphere that often enhances cloud evaporation and reduces the cloud water path In this study indirect and semi-direct effects of dust aerosols are analyzed over eastern Asia using two years June 2002 to June 2004 of CERES Clouds and the Earth s Radiant Energy Budget Scanner and MODIS MODerate Resolution Imaging Spectroradiometer Aqua Edition 1B SSF Single Scanner Footprint data sets The statistical analysis shows evidence for both indirect and semi-direct effect of Asia dust aerosols The dust appears to reduce the ice cloud effective particle diameter and increase high cloud amount On average ice cloud effective particle diameters of cirrus clouds under dust polluted conditions dusty cloud are 11 smaller than those derived from ice clouds in dust-free atmospheric environments The water paths of dusty clouds are also considerably smaller than those of dust-free clouds Dust aerosols could warm clouds thereby increasing the evaporation of cloud droplets resulting in reduced cloud water path semi-direct effect The semi-direct effect may be dominated the interaction between dust aerosols and clouds over arid and semi-arid areas and partly contribute to reduced precipitation

  19. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  20. {sup 99m}Tc DTPA aerosol clearances in the assessment of radiation injury top the lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halkar, R.K.; Raghab, A.; Higazi, E.

    1994-05-01

    In a prospective study, 36 patients with inoperable lung Ca. (sq. cells-24, adeno-5, largecell-2, unknown-5) underwent pre and post radiation {sup 99m}Tc DTPA aerosol clearance studies. The aim was to evaluate the value of aerosol clearance in the prediction of radiation injury to the regions other than the radiation field. Aerosol study was done using a commercially available nebulizer, dynamic images were obtained (30 sec/frame) in the posterior projection for a duration of 45 min. ROIs were drawn on upper, mid and lower zones on either lung, and time activity curves were generated. Using a linear fit, clearance half timemore » (t{sub 1/2}) was calculated, for all six curves. The difference between pre and post radiation (t{sub 1/2}) was compared to the clinical follow up of each patient and a difference of more than 15 minutes was considered positive. Of the 36 patients 12 had a t{sub 1/2} difference of more than 15 minutes. Of these 5 patients had radiation pulmonlitis and the remaining 7 had respiratory failure due to infection and uremia. 24 patients had a t{sub 1/2} difference of less than 15 minutes and their clinical follow-up did not reveal any evidence of pulmonary radiation injury during this period. The results indicate that the clearance of Tc-99m DTPA aerosols is effective for excluding radiation pulmonlitis.« less

  1. Exploring the Longwave Radiative Effects of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A., Jr.

    2012-01-01

    Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39

  2. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  3. Estimation of Aerosol Direct Radiative Effects Over the Mid-Latitude North Atlantic from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, P. B.

    2000-01-01

    We estimate solar radiative flux changes due to aerosols over the mid-latitude North Atlantic by combining optical depths from AVHRR measurements with aerosol properties from the recent TARFOX program. Results show that, over the ocean the aerosol decreases the net radiative flux at the tropopause and therefore has a cooling effect. Cloud-free, 24-hour average flux changes range from -9 W/sq m near the eastern US coast in summer to -1 W/sq m in the mid-Atlantic during winter. Cloud-free North Atlantic regional averages range from -5.1 W/sq m in summer to -1.7 W/sq m in winter, with an annual average of -3.5 W/sq m. Cloud effects estimated from ISCCP data, reduce the regional annual average to -0.8 W/sq m. All values are for the moderately absorbing TARFOX aerosol (omega(0.55 microns) = 0.9); values for a nonabsorbing aerosol are approx. 30% more negative. We compare our results to a variety of other calculations of aerosol radiative effects.

  4. Performance of McRAS-AC in the GEOS-5 AGCM: Part 1, Aerosol-Activated Cloud Microphysics, Precipitation, Radiative Effects, and Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2012-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.

  5. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  6. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1978-01-01

    Stratospht1ic sulfuric acid particles scatter and absorb sunlight and they scatter, absorb and emit terrestrial thermal radiation. These interactions play a role in the earth's radiation balance and therefore affect climate. The stratospheric aerosols are perturbed by volcanic injection of SO2 and ash, by aircraft injection of SO2, by rocket exhaust of Al2O3 and by tropospheric mixing of particles and pollutant SO2 and COS. In order to assess the effects of these perturbations on climate, the effects of the aerosols on the radiation balance must be understood and in order to understand the radiation effects the properties of the aerosols must be known. The discussion covers the aerosols' effect on the radiation balance. It is shown that the aerosol size distribution controls whether the aerosols will tend to warm or cool the earth's surface. Calculations of aerosol properties, including size distribution, for various perturbation sources are carried out on the basis of an aerosol model. Calculations are also presented of the climatic impact of perturbed aerosols due to volcanic eruptions and Space Shuttle flights.

  7. Radiative Impact of Observed and Simulated Aerosol Layers Over the East Coast of North America

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Burton, S. P.; Chand, D.; Comstock, J. M.; Ferrare, R. A.; Hair, J. W.; Hostetler, C. A.; Hubbe, J. M.; Kassianov, E.; Rogers, R. R.; Sedlacek, A. J., III; Shilling, J. E.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.

    2014-12-01

    The vertical distribution of particles in the atmospheric column can have a large impact on the radiative forcing and cloud microphysics. A recent climatology constructed using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) suggests elevated layers of aerosol are quite common near the North American east coast during both winter and summer. The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study utilizing both in situ and remotely sensed measurements designed to provide a comprehensive data set that can be used to investigate science questions related to aerosol radiative forcing and the vertical distribution of aerosol. The study sampled the atmosphere at a number of altitudes within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods (IOPs) using the ARM Aerial Facility. One important finding from the TCAP summer IOP is the relatively common occurrence (during four of the six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA Langley Research Center High-Spectral Resolution Lidar (HSRL-2). These elevated layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Both the in situ and remote sensing observations have been compared to

  8. Direct and semidirect aerosol effects of southern African biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-01

    Direct and semidirect radiative effects of biomass burning aerosols from southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. Aerosol optical depth is constrained using observations in clear skies from Moderate Resolution Imaging Spectroradiometer (MODIS) and for aerosol layers above clouds from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). Over the ocean, where the aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semidirect radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semidirect radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by radiative heating in overlying layers and surface cooling in response to direct aerosol forcing. The marine cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative, which leads to a reduction in precipitation and also a reduction in sensible heat flux. The former is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rain forest and the Intertropical Convergence Zone (ITCZ) in the

  9. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  10. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  11. New approaches to quantifying aerosol influence on the cloud radiative effect

    DOE PAGES

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...

    2016-02-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol–cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol–cloud interactions adequately. There is a dearth of observational constraints on aerosol–cloud interactions. In this paper, we develop a conceptual approach to systematically constrain the aerosol–cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. Finally, we heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol–cloud radiation system.« less

  12. Total ozone column, aerosol optical depth and precipitable water effects on solar erythemal ultraviolet radiation recorded in Malta.

    NASA Astrophysics Data System (ADS)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro

    2013-04-01

    The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at

  13. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-09-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  14. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, H.; Koike, Makoto; Kondo, Yutaka

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particlesmore » with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  15. "I sleep better at night:" How peer review of radiation treatment plans indirectly improves quality of care across radiation treatment programs.

    PubMed

    Brundage, Michael D; Hart, Margaret; O'Donnell, Jennifer; Reddeman, Lindsay; Gutierrez, Eric; Foxcroft, Sophie; Warde, Padraig

    Peer review of radiation oncology treatment plans is increasingly recognized as an important component of quality assurance in radiation treatment planning and delivery. Peer review of treatment plans can directly improve the quality of those plans and can also have indirect effects on radiation treatment programs. We undertook a systematic, qualitative approach to describing the indirect benefits of peer review, factors that were seen to facilitate or act as barriers to the implementation of peer review, and strategies to address these barriers across a provincial jurisdiction of radiation oncology programs (ROPs). Semistructured qualitative interviews were held with radiation oncology department heads and radiation therapy managers (or delegates) in all 14 ROPs in Ontario, Canada. We used a theoretically guided phenomenological qualitative approach to design and analyze the interview content. Themes were recorded by 2 independent reviewers, and any discordance was resolved by consensus. A total of 28 interviews were completed with 32 interviewees. Twenty-two unique themes addressed perceived benefits of peer review, relating to either peer review structure (n = 3), process (n = 9), or outcome (n = 10). Of these 22 themes, 19 related to indirect benefits to ROPs. In addition, 18 themes related to factors that facilitated peer review activities and 30 themes related to key barriers to implementing peer review were identified. Findings were consistent with, and enhanced the understanding of, previous survey-based assessments of the benefits and challenges of implementing peer review programs. Although challenges and concerns regarding the implementation of peer review were evident, the indirect benefits to radiation programs are numerous, far outweigh the implementation challenges, and strongly complement the direct individual-patient benefits that result from peer review quality assurance of radiation treatment plans. Copyright © 2016. Published by Elsevier Inc.

  16. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  17. Assessment of the Interactions Among Tropospheric Aerosol Loading, Radiative Balance and Clouds Through Examination of Their Multi-decadal Trends

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of aerosol radiative forcing has remained challenging. Anthropogenic emissions of prima...

  18. A comparison of uncertainties in the aerosol direct radiative effect in the SE U.S. calculated using satellite-based and ground-based aerosol properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.

    2017-12-01

    Satellite-retrieved aerosol optical depth is typically used for measurement-based estimates of the aerosol direct radiative effect (DRE) on solar radiation, on both global and regional scales. The SE U.S. is one of only a few regions not to have warmed during the 20th century and is home to some of the highest summertime levels of biogenic and sulfate aerosols in the U.S. While decreases in aerosol optical depth over the past few decades have likely reduced the cooling effect of aerosols in the region, satellite-derived estimates of aerosol DRE alone may not be sufficient to study long-term DRE trends and the roles played by changing AOD and aerosol optical properties. Appalachian State University (APP) in Boone, NC is home to the only co-located NASA AERONET, NOAA ESRL, and (active) NASA MPLNET sites in the U.S. and is well-positioned to validate satellite-based aerosol retrievals and better constrain background aerosol DRE in regional climate models. As part of the first multi-year `ground truth' DRE study in the SE U.S., Sherman and McComiskey (2017) applied nearly four years of spectral AOD from the APP AERONET site, along with single-scattering albedo(SSA) and asymmetry parameter from the APP NOAA ESRL site, as inputs to the SBDART Radiative Transfer model to calculate seasonal dependence of aerosol DRE and DRE uncertainties at the top-of-atmosphere and at the surface. Clear sky aerosol DRE uncertainty at the TOA (surface) above APP ranges from 0.44 Wm-2 (0.73 Wm-2) for DEC to 0.90 Wm-2 (1.3 Wm-2) for JUN. Expressed as a fraction of seasonal-mean DRE, these uncertainties are 12-20% for all seasons except winter, when they are close to 50%. Use of MODIS or MISR AOD in place of AERONET increases these uncertainties by factors of 2.5 to 5 and DRE uncertainties are dominated by AOD uncertainty for all seasons. The use of SSA from OMI or MISR further increases the DRE uncertainties, especially during the higher AOD summer months, when DRE sensitivity to aerosol

  19. Radiative Flux Changes by Aerosols from North America, Europe, and Africa over the Atlantic Ocean: Measurements and Calculations from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Livingston, J. M.; Schmid, B.; Chien, A.; Bergstrom, R.; Durkee, P. A.; Hobbs, P. V.; Bates, T. S.; Quinn, P. K.; hide

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that is a major source of uncertainty in understanding the past climate and predicting climate change. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modelling approaches. The best-fit midvisible single-scatter albedos (approx. 0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques. In ACE-2 we measured optical depth and extinction spectra for both European urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (Delta Flux / Delta Optical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.

  20. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  1. A Study of The Direct Aerosol Forcing At Ground Level For A Pollution Event During The Escompte Campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Dubuisson, P.; Putaud, J. P.; van Dingenen, R.; Despiau, S.

    Radiative forcing by aerosol particles is one of the largest source of uncertainties in predicting climate change (IPCC, 2001). Indeed, quantitative estimates of this effect are still uncertain due to little knowledge of these atmospheric particles. Atmospheric particles influence the Earth's radiation balance both directly and indirectly. The indi- rect effect denotes the effect of aerosols acting as cloud condensation nuclei, possibly modifying cloud albedo and cloud lifetime. The direct effect is due to scattering and absorption of radiation and each of these processes depends mainly on the refractive index and the size distribution of aerosol particles. During the ESCOMPTE campaign, which took place in coastal Mediterranean area during the summer 2001, we estimated these aerosol micro-physical properties during a pollution event at two different sites. The first is an urban site (the city of Marseille), and the second is a rural area located fifty kilometers inland. The aerosol size distribution was measured with an SMPS for the particles with radii < 1 µm, and an optical counter for r > 1 µm. The chemi- cal composition (including different ionic compounds , dust, elemental and organic carbon) was deduced from chromatography analysis. The aerosol optical properties calculated from measured aerosol physical and chemical properties at ground level (from Mie theory) are used as input to a shortwave radiative transfer model. Then, this model is used to calculate the diurnally averaged direct aerosol forcing at surface and to compare this values with those measured from the ARAT aircraft and surface pyranometer during the campaign.

  2. Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity

    NASA Astrophysics Data System (ADS)

    Krall, G. M.; Cottom, W. R.

    2012-01-01

    aerosols resulted in large amounts of condensate being thrust into the storm anvil which weakened convective downdrafts and cold-pools, yet the system did show reductions in windspeed (although weaker) compared with the clean control run. This study suggests that ingestion of elevated amounts of CCN into a tropical cyclone (TC) can appreciably alter the intensity of the storm. This implies that intensity prediction of TCs would be improved by including indirect aerosol affects. However, the pollution aerosols have very little impact on the storm track.

  3. Impacts of Aerosol Direct Effects on the South Asian climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/surface Measurements

    NASA Astrophysics Data System (ADS)

    Wang, S.; Gautam, R.; Lau, W. K.; Tsay, S.; Sun, W.; Kim, K.; Chern, J.; Colarco, P. R.; Hsu, N. C.; Lin, N.

    2011-12-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation. In addition to modeling study, we will also present the most recent results on aerosol properties, regional aerosol absorption, and radiative forcing estimation based on NASA's operational satellite and ground-based remote sensing. Observational results show spatial gradients in aerosol loading and solar absorption accounting over Indo-Gangetic Plains during the pre-monsoon season. The

  4. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented

  5. Impact of Transpacific Aerosol on Air Quality over the United States: A Perspective from Aerosol-Cloud-Radiation Interactions

    NASA Technical Reports Server (NTRS)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2015-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3- month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 micro-g/cu m over the west coast and about 0.5 micro-g/cu m over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (+/-6 micro-g/cu m3) and ozone (+/-12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  6. How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

  7. Assessment of Aerosol Optical Property and Radiative Effect for the Layer Decoupling Cases over the Northern South China Sea During the 7-SEAS Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-01-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  8. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  9. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  10. Impact of Biomass Burning Aerosols on the Biosphere over Amazonia

    NASA Astrophysics Data System (ADS)

    Malavelle, F.; Haywood, J.; Mercado, L.; Folberth, G.; Bellouin, N.

    2014-12-01

    Biomass burning (BB) smoke from deforestation and the burning of agricultural waste emit a complex cocktail of aerosol particles and gases. BB emissions show a regional hotspot over South America on the edges of Amazonia. These major perturbations and impacts on surface temperature, surface fluxes, chemistry, radiation, rainfall, may have significant consequent impacts on the Amazon rainforest, the largest and most productive carbon store on the planet. There is therefore potential for very significant interaction and interplay between aerosols, clouds, radiation and the biosphere in the region. Terrestrial carbon production (i.e. photosynthesis) is intimately tied to the supply of photosynthetically active radiation (PAR - i.e. wavelengths between 300-690 nm). PAR in sufficient intensity and duration is critical for plant growth. However, if a decrease in total radiation is accompanied by an increase in the component of diffuse radiation, plant productivity may increase due to higher light use efficiency per unit of PAR and less photosynthetic saturation. This effect, sometimes referred as diffuse light fertilization effect, could have increased the global land carbon sink by approximately one quarter during the global dimming period and is expected to be a least as important locally. By directly interacting with radiation, BB aerosols significantly reduce the total amount of PAR available to plant canopies. In addition, BB aerosols also play a centre role in cloud formation because they provide the necessary cloud condensation nuclei, hence indirectly altering the water cycle and the components and quantity of PAR. In this presentation, we use the recent observations from the South American Biomass Burning Analysis (SAMBBA) to explore the impact of radiation changes on the carbon cycle in the Amazon region caused by BB emissions. A parameterisation of the impact of diffuse and direct radiation upon photosynthesis rates and net primary productivity in the

  11. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  12. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    PubMed

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  13. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

    PubMed Central

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-01-01

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324

  14. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  15. Anthropogenic influence on the distribution of tropospheric sulphate aerosol

    NASA Astrophysics Data System (ADS)

    Langner, J.; Rodhe, H.; Crutzen, P. J.; Zimmermann, P.

    1992-10-01

    HUMAN activities have increased global emissions of sulphur gases by about a factor of three during the past century, leading to increased sulphate aerosol concentrations, mainly in the Northern Hemisphere. Sulphate aerosols can affect the climate directly, by increasing the backscattering of solar radiation in cloud-free air, and indirectly, by providing additional cloud condensation nuclei1-4. Here we use a global transport-chemistry model to estimate the changes in the distribution of tropospheric sulphate aerosol and deposition of non-seasalt sulphur that have occurred since pre-industrial times. The increase in sulphate aerosol concentration is small over the Southern Hemisphere oceans, but reaches a factor of 100 over northern Europe in winter. Our calculations indicate, however, that at most 6% of the anthropogenic sulphur emissions is available for the formation of new aerosol particles. This is because about one-half of the sulphur dioxide is deposited on the Earth's surface, and most of the remainder is oxidized in cloud droplets so that the sulphate becomes associated with pre-existing particles. Even so, the rate of formation of new sulphate particles may have doubled since pre-industrial times.

  16. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow

    NASA Astrophysics Data System (ADS)

    Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel

    2017-11-01

    Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the

  17. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  18. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S.; Mathur, R.; Pleim, J.

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF–CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN,more » and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM 2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF–CMAQ/CAM (WRF–CMAQ/RRTMG), respectively. The evaluation of PM 2.5 chemical composition reveals that in August, WRF–CMAQ/CAM (WRF–CMAQ/RRTMG) consistently underestimated the observed SO 4 2- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF–CMAQ/CAM, WRF–CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model

  19. Sensitivity of nocturnal boundary layer temperature to tropospheric aerosol surface radiative forcing under clear-sky conditions

    NASA Astrophysics Data System (ADS)

    Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk

    2011-01-01

    Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.

  20. Impact of anomalous forest fire on aerosol radiative forcing and snow cover over Himalayan region

    NASA Astrophysics Data System (ADS)

    Bali, Kunal; Mishra, Amit Kumar; Singh, Sachchidanand

    2017-02-01

    Forest fires are very common in tropical region during February-May months and are known to have significant impact on ecosystem dynamics. Moreover, aerosols emitted from these burning activities significantly modulate the Earth's radiation budget. In present study, we investigated the anomalous forest fire events and their impact on atmospheric radiation budget and glaciated snow cover over the Himalayan region. We used multiple dataset derived from satellites [Moderate Resolution Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] and reanalysis models [Global Fire Assimilation System (GFAS), Second Modern-Era Retrospective analysis for Research and Application (MERRA-2) and ERA-interim] to evaluate the effect of biomass burning aerosols on radiation budget. April 2016 is associated with anomalous fire activities over lower Himalayan region in the last fourteen years (2003-2016). The model estimated organic carbon (OC) and black carbon (BC) emission reaches up to ∼3 × 104 and ∼2 × 103 μg/m2/day, respectively during the biomass burning period of April 2016. The meteorological data analysis accompanied with CALIOP aerosol vertical profile shows that these carbonaceous aerosols could reach up to ∼5-7 km altitude and could be transported towards glaciated region of upper Himalayas. The large amount of BC/OC from biomass burning significantly modulates the atmospheric radiation budget. The estimated columnar heating rate shows that these carbonaceous aerosols could heat up the atmosphere by ∼0.04-0.06 K/day in April-2016 with respect to non-burning period (2015). The glaciated snow cover fractions are found to be decreasing by ∼5-20% in 2016 as compared to long term mean (2003-2016). The combined analyses of various climatic factors, fires and associated BC emissions show that the observed snow cover decrease could be results of increased surface/atmospheric temperature due to combined effect of

  1. Quantifying the radiative and microphysical impacts of fire aerosols on cloud dynamics in the tropics using temporally offset satellite observations

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Diner, D. J.; Garay, M. J.; Kalashnikova, O.

    2013-12-01

    Anthropogenic fires in Southeast Asia and Central America emit smoke that affects cloud dynamics, meteorology, and climate. We measured the cloud response to direct and indirect forcing from biomass burning aerosols using aerosol retrievals from the Multi-angle Imaging SpectroRadiometer (MISR) and non-synchronous cloud retrievals from the MODerate resolution Imaging Spectroradiometer (MODIS) from collocated morning and afternoon overpasses. Level 2 data from thirty-one individual scenes acquired between 2006 and 2010 were used to quantify changes in cloud fraction, cloud droplet size, cloud optical depth and cloud top temperature from morning (10:30am local time) to afternoon (1:30pm local time) in the presence of varying aerosol burdens. We accounted for large-scale meteorological differences between scenes by normalizing observed changes to the mean difference per individual scene. Elevated AODs reduced cloud fraction and cloud droplet size and increased cloud optical depths in both Southeast Asia and Central America. In mostly cloudy regions, aerosols significantly reduced cloud fraction and cloud droplet sizes, but in clear skies, cloud fraction, cloud optical thickness and cloud droplet sizes increased. In clouds with vertical development, aerosols reduced cloud fraction via semi-direct effects but spurred cloud growth via indirect effects. These results imply a positive feedback loop between anthropogenic burning and cloudiness in both Central America and Southeast Asia, and are consistent with previous studies linking smoke aerosols to both cloud reduction and convective invigoration.

  2. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  3. Towards a Global Aerosol Climatology: Preliminary Trends in Tropospheric Aerosol Amounts and Corresponding Impact on Radiative Forcing between 1950 and 1990

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko

    1999-01-01

    A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.

  4. A multi-satellite analysis of the direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Christopher, S. A.

    2015-12-01

    Radiative effects of absorbing aerosols above liquid water clouds in the southeast Atlantic as a function of fire sources are investigated using A-Train data coupled with the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi NPP). Both the VIIRS Active Fire product and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies product (MYD14) are used to identify the biomass burning fire origin in southern Africa. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used to assess the aerosol type, aerosol altitude, and cloud altitude. We use back trajectory information, wind data, and the Fire Locating and Modeling of Burning Emissions (FLAMBE) product to infer the transportation of aerosols from the fire source to the CALIOP swath in the southeast Atlantic during austral winter.

  5. Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models?

    NASA Astrophysics Data System (ADS)

    He, Jian; Glotfelty, Timothy; Yahya, Khairunnisa; Alapaty, Kiran; Yu, Shaocai

    2017-04-01

    Nudging (data assimilation) is used in many regional integrated meteorology-air quality models to reduce biases in simulated climatology. However, in such modeling systems, temperature changes due to nudging could compete with temperature changes induced by radiatively active and hygroscopic short-lived tracers leading to two interesting dilemmas: when nudging is continuously applied, what are the relative sizes of these two radiative forces at regional and local scales? How do these two forces present in the free atmosphere differ from those present at the surface? This work studies these two issues by converting temperature changes due to nudging into pseudo radiative effects (PRE) at the surface (PRE_sfc), in troposphere (PRE_atm), and at the top of atmosphere (PRE_toa), and comparing PRE with the reported aerosol radiative effects (ARE). Results show that the domain-averaged PRE_sfc is smaller than ARE_sfc estimated in previous studies and this work, but could be significantly larger than ARE_sfc at local scales. PRE_atm is also much smaller than ARE_atm. These results indicate that appropriate nudging methodology could be applied to the integrated models to study aerosol radiative effects at continental/regional scales, but it should be treated with caution for local scale applications.

  6. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  7. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  8. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  9. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  10. ATTENUATION OF SOLAR UV RADIATION BY AEROSOLS DURING AIR POLLUTION EPISODES

    EPA Science Inventory

    Increase in the amount of solar UV radiation reaching the surface due to decrease in stratospheric ozone continues to be a major concern (WMO, 1998). However, recent studies show that absorption and smattering by aerosols during air pollution episode decreases the amount of radi...

  11. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  12. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Schmid, B.; Livingston, J. M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net short-wave flux at the tropopause by combining satellite-derived aerosol optical depth (AOD) maps with model aerosol properties determined via closure analyses in TARFOX and ACE 2. We exclude African dust, primarily by restricting latitudes to 25-60 N. The analyses use in situ aerosol composition measurements and air- and ship-borne sun-photometer measurements of AOD spectra. The aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. Its midvisible single-scattering albedo is 0.9. which is in the range obtained from in situ measurements of scattering and absorption in both TARFOX and ACE 2. Combining satellite-derived AOD maps with the aerosol model yields maps of 24-hour average net radiative flux changes. For simultaneous AVHRR, radiance measurements exceeded the sunphotometer AODs by about 0.04. However. shipboard sunphotometer and AVHRR AODs agreed Within 0.02 for data acquired during satellite overflights on two other days. We discuss attempts to demonstrate column closure within the MBL by comparing shipboard sunphotometer AODs and values calculated from simultaneous shipboard in-situ aerosol size distribution measurements. These comparisons were mostly unsuccessful, but they illustrate the difficulties inherent in this type of closure analysis. Specifically, AODs derived from near-surface in-situ size distribution measurements are extremely sensitive to the assumed hygroscopic growth model that itself requires an assumption of particle composition as a function of height and size, to the radiosonde-measured relative humidity, and to the vertical profile of particle number. We investigate further the effects of hygroscopic particle growth within the MBL by using shipboard lidar aerosol backscatter profiles together with the sunphotometer AOD.

  13. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  14. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    PubMed

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Global direct radiative forcing by process-parameterized aerosol optical properties

    NASA Astrophysics Data System (ADS)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  16. Impact of aerosols and clouds on decadal trends in all-sky solar radiation over the Netherlands (1966-2015)

    NASA Astrophysics Data System (ADS)

    Boers, Reinout; Brandsma, Theo; Pier Siebesma, A.

    2017-07-01

    A 50-year hourly data set of global shortwave radiation, cloudiness and visibility over the Netherlands was used to quantify the contribution of aerosols and clouds to the trend in yearly-averaged all-sky radiation (1.81 ± 1.07 W m-2 decade-1). Yearly-averaged clear-sky and cloud-base radiation data show large year-to-year fluctuations caused by yearly changes in the occurrence of clear and cloudy periods and cannot be used for trend analysis. Therefore, proxy clear-sky and cloud-base radiations were computed. In a proxy analysis hourly radiation data falling within a fractional cloudiness value are fitted by monotonic increasing functions of solar zenith angle and summed over all zenith angles occurring in a single year to produce an average. Stable trends can then be computed from the proxy radiation data. A functional expression is derived whereby the trend in proxy all-sky radiation is a linear combination of trends in fractional cloudiness, proxy clear-sky radiation and proxy cloud-base radiation. Trends (per decade) in fractional cloudiness, proxy clear-sky and proxy cloud-base radiation were, respectively, 0.0097 ± 0.0062, 2.78 ± 0.50 and 3.43 ± 1.17 W m-2. To add up to the all-sky radiation the three trends have weight factors, namely the difference between the mean cloud-base and clear-sky radiation, the clear-sky fraction and the fractional cloudiness, respectively. Our analysis clearly demonstrates that all three components contribute significantly to the observed trend in all-sky radiation. Radiative transfer calculations using the aerosol optical thickness derived from visibility observations indicate that aerosol-radiation interaction (ARI) is a strong candidate to explain the upward trend in the clear-sky radiation. Aerosol-cloud interaction (ACI) may have some impact on cloud-base radiation, but it is suggested that decadal changes in cloud thickness and synoptic-scale changes in cloud amount also play an important role.

  17. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  18. Transport of Aerosols from Asia and Their Radiative Effects Over the Western Pacific: A 3-D Model Study for ACE-Asia Experiment During Spring 2001

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Flatau, Piotr; Anderson, Tad; Masonis, Sarah; Russell, Phil; Schmid, Beat; Livingston, John; Redemann, Jens; Kahn, Ralph; hide

    2001-01-01

    The Aerosol Characterization Experiment-Asia (ACE-Asia) took place in Spring 2001 in the East Asia-West Pacific Ocean. During the ACE-Asia intensive field operation period, high concentrations of dust and anthropogenic aerosols were observed over the Yellow Sea and the Sea of Japan, which were transported out from the Asian continent, with the plume often extending to 6-8 km altitude. The multi-component aerosols originated from Asia are expected to exert a significant radiative forcing over the Pacific region. We present here results from the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model of aerosol transport and radiative forcing in the context of ACE-Asia. The model calculated aerosol concentrations, extinctions, optical thickness, size distributions, and vertical profiles are compared with the aircraft and ship measurements, and the distributions of aerosols are compared with satellite data. The model will be used to understand the origins of the aerosols observed in ACE-Asia, estimate the contributions from anthropogenic and natural aerosols to the total aerosol optical thickness, investigate the effects of humidification and clouds on aerosol properties, and assess the radiative forcing of Asian aerosols over the Pacific region and in the northern hemisphere.

  19. Regression model for estimating inactivation of microbial aerosols by solar radiation.

    PubMed

    Ben-David, Avishai; Sagripanti, Jose-Luis

    2013-01-01

    The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  20. Scattering and Absorption of E&M radiation by small particles-applications to study impact of biomass aerosols on climate

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon

    2015-03-01

    The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.

  1. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputsmore » is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E

  2. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  3. Sensitivity of Boreal-Summer Circulation and Precipitation to Atmospheric Aerosols in Selected Regions. Part 2; The Americas

    NASA Technical Reports Server (NTRS)

    Wilcox, E. M.; Sud, Y. C.; Walker, G.

    2009-01-01

    Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4) general circulation model (GCM) to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively). Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982 1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern America, an increase in precipitation over Central America

  4. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  5. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2016-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  6. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Tatiana B.; Kabanov, Dmitriy M.; Nasrtdinov, Ilmir M.; Russkova, Tatiana V.; Sakerin, Sergey M.; Smirnov, Alexander; Holben, Brent N.

    2017-01-01

    Microphysical and optical properties of aerosol were studied during a mega-fire event in summer 2012 over Siberia using ground-based measurements of spectral solar radiation at the AERONET site in Tomsk and satellite observations. The data were analysed using multi-year (2003-2013) measurements of aerosol characteristics under background conditions and for less intense fires, differing in burning biomass type, stage of fire, remoteness from observation site, etc. (ordinary smoke). In June-August 2012, the average aerosol optical depth (AOD, 500 nm) had been 0.95 ± 0.86, about a factor of 6 larger than background values (0.16 ± 0.08), and a factor of 2.5 larger than in ordinary smoke. The AOD values were extremely high on 24-28 July and reached 3-5. A comparison with satellite observations showed that ground-based measurements in the region of Tomsk not only reflect the local AOD features, but are also characteristic for the territory of Western Siberia as a whole. Single scattering albedo (SSA, 440 nm) in this period ranged from 0.91 to 0.99 with an average of ˜ 0.96 in the entire wavelength range of 440-1020 nm. The increase in absorptance of aerosol particles (SSA(440 nm) = 0.92) and decrease in SSA with wavelength observed in ordinary smoke agree with the data from multi-year observations in analogous situations in the boreal zone of USA and Canada. Volume aerosol size distribution in extreme and ordinary smoke had a bimodal character with significant prevalence of fine-mode particles, but in summer 2012 the mean median radius and the width of the fine-mode distribution somewhat increased. In contrast to data from multi-year observations, in summer 2012 an increase in the volume concentration and median radius of the coarse mode was observed with growing AOD. The calculations of the average radiative effects of smoke and background aerosol are presented. Compared to background conditions and ordinary smoke, under the extreme smoke conditions the

  7. Validating and improving long-term aerosol data records from SeaWiFS

    NASA Astrophysics Data System (ADS)

    Bettenhausen, C.; Hsu, N. C.; Sayer, A. M.; Huang, J.; Gautam, R.

    2011-12-01

    Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (SeaWiFS). SeaWiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into long-term variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to SeaWiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.

  8. Validating and Improving Long-Term Aerosol Data Records from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Bettenhausen, Corey; Hsu, N. Christina; Sayer, Andrew; Huang, Jinhfeng; Gautam, Ritesh

    2011-01-01

    Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (Sea WiFS). Sea WiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into longterm variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to Sea WiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.

  9. Application of Satellite and Ground-based Data to Investigate the UV Radiative Effects of Australian Aerosols

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don

    2007-01-01

    An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340

  10. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    PubMed Central

    Xia, Xiangao

    2015-01-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310

  11. Seasonal variation of columnar aerosol optical properties and radiative forcing over Beijing, China

    NASA Astrophysics Data System (ADS)

    Yu, Xingna; Lü, Rui; Liu, Chao; Yuan, Liang; Shao, Yixing; Zhu, Bin; Lei, Lu

    2017-10-01

    Long-term seasonal characteristics of aerosol optical properties and radiative forcing at Beijing (during March 2001-March 2015) were investigated using a combination of ground-based Sun/sky radiometer retrievals from the AERONET and a radiative transfer model. Aerosol optical depth (AOD) showed a distinct seasonal variation with higher values in spring and summer, and relatively lower values in fall and winter. Average Angstrom exponent (AE) in spring was lower than other seasons, implying the significant impact of dust episodes on aerosol size distribution. AE mainly distributed between 1.0 and 1.4 with an obvious uni-peak pattern in each season. The observation data showed that high AODs (>1.0) were clustered in the fine mode growth wing and the coarse mode. Compared to AOD, seasonal variation in single scattering albedo (SSA) showed an opposite pattern with larger values in summer and spring, and smaller ones in winter and fall. The highest volume size distribution and median radius of fine mode particles occurred in summer, while those of coarse mode particles in spring. The averaged aerosol radiative forcing (ARF) at the top of the atmosphere (TOA) in spring, summer, fall and winter were -33 ± 22 W m-2, -35 ± 22 W m-2, -28 ± 20 W m-2, and -24 ± 23 W m-2 respectively, and these differences were mainly due to the SSA seasonal variation. The largest positive ARF within atmosphere occurred in spring, implying strong warming in the atmosphere. The low heating ratio in summer was caused by the increase in water vapor content, which enhanced light scattering capacity (i.e., increased SSA).

  12. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions

    EPA Science Inventory

    Organic aerosols (OA) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OA are not or poorly represented in current climate m...

  13. Estimating trace gas and aerosol emissions over South America: Relationship between fire radiative energy released and aerosol optical depth observations

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriel; Freitas, Saulo R.; Moraes, Elisabete Caria; Ferreira, Nelson Jesus; Shimabukuro, Yosio Edemir; Rao, Vadlamudi Brahmananda; Longo, Karla M.

    2009-12-01

    Contemporary human activities such as tropical deforestation, land clearing for agriculture, pest control and grassland management lead to biomass burning, which in turn leads to land-cover changes. However, biomass burning emissions are not correctly measured and the methods to assess these emissions form a part of current research area. The traditional methods for estimating aerosols and trace gases released into the atmosphere generally use emission factors associated with fuel loading and moisture characteristics and other parameters that are hard to estimate in near real-time applications. In this paper, fire radiative power (FRP) products were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Geostationary Operational Environmental Satellites (GOES) fire products and new South America generic biomes FRE-based smoke aerosol emission coefficients were derived and applied in 2002 South America fire season. The inventory estimated by MODIS and GOES FRP measurements were included in Coupled Aerosol-Tracer Transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) and evaluated with ground truth collected in Large Scale Biosphere-Atmosphere Smoke, Aerosols, Clouds, rainfall, and Climate (SMOCC) and Radiation, Cloud, and Climate Interactions (RaCCI). Although the linear regression showed that GOES FRP overestimates MODIS FRP observations, the use of a common external parameter such as MODIS aerosol optical depth product could minimize the difference between sensors. The relationship between the PM 2.5μm (Particulate Matter with diameter less than 2.5 μm) and CO (Carbon Monoxide) model shows a good agreement with SMOCC/RaCCI data in the general pattern of temporal evolution. The results showed high correlations, with values between 0.80 and 0.95 (significant at 0.5 level by student t test), for the CATT-BRAMS simulations with PM 2.5μm and CO.

  14. Persistent Daily Aerosol Nucleation Events at Mountain-Top Location

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; Wiedinmyer, C.; Lowenthal, D. H.

    2009-12-01

    Atmospheric aerosols are of great consequence since they can impact climate through direct and indirect forcing, degrade air quality and visibility, and have detrimental effects on human health. Thus, an important phenomenon is atmospheric aerosol formation, the production of nanometer-size particles by nucleation and their growth to detectable sizes. Storm Peak Laboratory (3210 m AMSL), owned and operated by the Desert Research Institute (DRI), is located on the west summit of Mt. Werner in the Park Range near Steamboat Springs in northwestern Colorado. This site has been used in aerosol studies for more than 20 years. Daily nucleation events have been observed Storm Peak Laboratory between 2002 and 2009 with a TSI Scanning Mobility Particle Sizer (SMPS) (model 3936) coupled with a TSI model 3022 condensation particle counter (CPC). This instrument was set to measure particles with diameters between 8 and 335 nm. These events were observed during all measurement periods in the spring, summer and winter months. Nucleation was consistently seen in the mid-afternoon each day. This study includes 422 days of data; in 320 of these days nucleation events were observed. Thus, the nucleation events occurred during 76% of the measurement days, including during cloud events, and appear to be associated with elevated levels of ultraviolet radiation. This work will compare and contrast days with and without nucleation events, by investigating the radiation and meteorological conditions present. The results presented will provide further insight to the insitu production of aerosols via nucleation.

  15. Long-term variability of aerosol optical properties and radiative effects in Northern Finland

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Hyvärinen, Antti; Asmi, Eija; Hatakka, Juha; Viisanen, Yrjö

    2017-04-01

    We introduce long term dataset of aerosol scattering and absorption properties and combined aerosol optical properties measured in Pallas Atmosphere-Ecosystem Supersite in Norhern Finland. The station is located 170 km north of the Arctic Circle. The station is affected by both pristine Arctic air masses as well as long transported air pollution from northern Europe. We studied the optical properties of aerosols and their radiative effects in continental and marine air masses, including seasonal cycles and long-term trends. The average (median) scattering coefficient, backscattering fraction, absorption coefficient and single scattering albedo at the wavelength of 550 nm were 7.9 (4.4) 1/Mm, 0.13 (0.12), 0.74 (0.35) 1/Mm and 0.92 (0.93), respectively. We observed clear seasonal cycles in these variables, the scattering coefficient having high values during summer and low in fall, and absorption coefficient having high values during winter and low in fall. We found that the high values of the absorption coefficient and low values of the single scattering albedo were related to continental air masses from lower latitudes. These aerosols can induce an additional effect on the surface albedo and melting of snow. We observed the signal of the Arctic haze in marine (northern) air masses during March and April. The haze increased the value of the absorption coefficient by almost 80% and that of the scattering coefficient by about 50% compared with the annual-average values. We did not observe any long-term trend in the scattering coefficient, while our analysis showed a clear decreasing trend in the backscattering fraction and scattering Ångström exponent during winter. We also observed clear relationship with temperature and aerosol scattering coefficient. We will present also how these different features affects to aerosol direct radiative forcing.

  16. Radiative efficiencies for fluorinated esters: indirect global warming potentials of hydrofluoroethers.

    PubMed

    Bravo, Iván; Díaz-de-Mera, Yolanda; Aranda, Alfonso; Moreno, Elena; Nutt, David R; Marston, George

    2011-10-14

    Density Functional Theory (DFT) has been used with an empirically-derived correction for the wavenumbers of vibrational band positions to predict the infrared spectra of several fluorinated esters (FESs). Radiative efficiencies (REs) were then determined using the method of Pinnock et al. and these were used with atmospheric lifetimes from the literature to determine the direct global warming potentials of FESs. FESs, in particular fluoroalkylacetates, alkylfluoroacetates and fluoroalkylformates, are potential greenhouse gases and their likely long atmospheric lifetimes and relatively large REs, compared to their parent HFEs, make them active contributors to global warming. Here, we use the concept of indirect global warming potential (indirect GWP) to assess the contribution to the warming of several commonly used HFEs emitted from the Earth's surface, explicitly taking into account that these HFEs will be converted into the corresponding FESs in the troposphere. The indirect GWP can be calculated using the radiative efficiencies and lifetimes of the HFE and its degradation FES products. We found that the GWPs of those studied HFEs which have the smallest direct GWP can be increased by 100-1600% when taking account of the cumulative effect due to the secondary FESs formed during HFE atmospheric oxidation. This effect may be particularly important for non-segregated HFEs and some segregated HFEs, which may contribute significantly more to global warming than can be concluded from examination of their direct GWPs.

  17. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans

    NASA Astrophysics Data System (ADS)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K.

    2018-01-01

    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 < AOT < 0.3 is identified as the sensitive regime of the conventional first AIE where CDER is more susceptible to AOT than the other cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT < 0.08). Aerosol invigoration signature is also revealed by the concurrent increase of CDER, COD, and CWP with increasing AOT for a polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. The sensitive regime of the conventional AIE identified in this observational study is likely associated with the

  18. Aerosol Direct Radiative Effect at the Top of the Atmosphere Over Cloud Free Ocean Derived from Four Years of MODIS Data

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.

    2006-01-01

    A four year record of MODIS spaceborne data provides a new measurement tool to assess the aerosol direct radiative effect at the top of the atmosphere. MODIS derives the aerosol optical thickness and microphysical properties from the scattered sunlight at 0.55-2.1 microns. The monthly MODIS data used here are accumulated measurements across a wide range of view and scattering angles and represent the aerosol s spectrally resolved angular properties. We use these data consistently to compute with estimated accuracy of +/-0.6W/sq m the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial resolution (0.5 km) allows observation of the aerosol impact between clouds that can be missed by other sensors with larger footprints. We found that over the clear-sky global ocean the aerosol reflected 5.3+/-0.6W/sq m with an average radiative efficiency of 49+/-2W/sq m per unit optical thickness. The seasonal and regional distribution of the aerosol radiative effects are discussed. The analysis adds a new measurement perspective to a climate change problem dominated so far by models.

  19. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign.

    PubMed

    Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia

    2009-08-01

    Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.

  20. Trends in surface solar radiation in Spain since the 1980s: the role of the changes in the radiative effects of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Mateos, David; Wild, Martin; Calbó, Josep; Antón, Manuel; Enriquez-Alonso, Aaron; Sanchez-Romero, Alex

    2014-05-01

    There is a growing interest in the study of decadal variations in surface solar radiation, although the analyses of long-term time series in some areas with major gaps in observations, such as in Spain, are still pending. In the first part of this work, a previously published surface solar radiation dataset in Spain is described (for more details, see Sanchez-Lorenzo et al., 2013) based on the longest series with ground-based records of global and diffuse solar radiation, most of them starting in the early 1980s and ending in 2012. Particular emphasis is placed upon the homogenization of this dataset in order to ensure the reliability of the trends. The linear trend in the mean annual series of global solar radiation shows a significant increase since 1981 of 4.0 Wm-2 (or 2.4 %) per decade. These results are in line with the increase of global solar radiation (i.e. brightening period) reported at many worldwide observation sites (Wild, 2009). In addition, the annual mean diffuse solar radiation series shows a significant decrease during the last three decades, but it is disturbed by strong increases in 1983 and 1991-1992, which might reflect the effects of the El Chichón and Pinatubo volcanic eruptions as a result of enhanced scattering of the aerosols emitted during these large volcanic eruptions. As clouds and aerosols are the main sources of uncertainty in the determination of the energy balance of the Earth, there is a growing interest in the evaluation of their radiative effects and their impact on the decadal variability of the surface solar radiation. Hence, in the second part of this work, the changes of the combined radiative effects of clouds and aerosols in Spain since the 1980s are investigated (for more details, see Mateos et al., 2013). In particular, the global solar radiation data above mentioned and radiative transfer simulations fed with reanalysis data of ozone, water vapour and surface albedo, are used to evaluate the cloud and aerosol

  1. "Investigation of Trends in Aerosol Direct Radiative Effects over North America Using a Coupled Meteorology-Chemistry Model"

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radi...

  2. Microphysical, Macrophysical and Radiative Signatures of Volcanic Aerosols in Trade Wind Cumulus Observed by the A-Train

    NASA Technical Reports Server (NTRS)

    Yuan, T.; Remer, L. A.; Yu, H.

    2011-01-01

    Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.

  3. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Paul

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign andmore » much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol

  4. Aerosols increase upper tropospheric humidity over the North Western Pacific

    NASA Astrophysics Data System (ADS)

    Riuttanen, Laura; Bister, Marja; John, Viju; Sundström, Anu-Maija; Dal Maso, Miikka; Räisänen, Jouni; de Leeuw, Gerrit; Kulmala, Markku

    2014-05-01

    Water vapour in the upper troposphere is highly important for the global radiative transfer. The source of upper tropospheric humidity is deep convection, and aerosol effects on them have got attention only recently. E.g., aerosol effects on deep convective clouds have been missing in general circulation models (Quaas et al., 2009). In deep convection, aerosol effect on cloud microphysics may lead to more ice precipitation and less warm rain (Khain et al., 2005), and thus more water vapour in upper troposphere (Bister & Kulmala, 2011). China outflow region over the Pacific Ocean was chosen as a region for a more detailed study, with latitudes 25-45 N and three longitude slots: 120-149 E, 150-179 E and 150-179 W. In this study, we used satellite measurements of aerosol optical depth (AOD) and upper tropospheric humidity (UTH). AOD was obtained from the MODIS instrument onboard Terra satellite, that crosses the equator southward at 10:30 AM local solar time (Remer et al., 2005). UTH was obtained from a microwave humidity sounder (MHS) onboard MetOp-A satellite, with passing time at 9:30 PM local solar time. It measures relative humidity of a layer extending approximately from 500 to 200 hPa. We binned the AOD and UTH data according to daily rainfall product 3B42 from Tropical Rainfall Measuring Mission (TRMM) satellite. Binning the data according to the amount of precipitation gives us a new way to account for the possible aerosol invigoration effect on convection and to alleviate the contamination and causality problems in aerosol indirect effect studies. In this study, we show for the first time, based on satellite data, that there is a connection between upper tropospheric humidity and aerosols. Anthropogenic aerosols from China increase upper tropospheric humidity, which causes a significant positive local radiative forcing in libRadtran radiative transfer model (Mayer & Kylling, 2005). References: Bister, M. & Kulmala, M. (2011). Atmos. Chem. Phys., 11, 4577

  5. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  6. Radiative Energetics of Mineral Dust Aerosols from Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hansell, Richard A.

    2011-01-01

    Airborne dust aerosols worldwide contribute a significant part to air quality problems and, to some extent, regional climatic issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in oceans). Evaluating the direct solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large SIN ratio in broadband irradiance measurements. The longwave (LW) impact, on the other hand, is rather difficult to ascertain since the measured dust signal level (approx.10 W/sq m) is on the same order as the instrumental uncertainties. Although the magnitude of the LW impact is much smaller than that of the shortwave (SW), it can still have a noticeable influence on the energy distribution of Earth-atmosphere system, particularly due to the strong light-absorptive properties commonly found in many terrestrial minerals. The current effort is part of an ongoing research study to perform a global assessment of dust direct aerosol radiative effects (DARE) during major field deployments of key dust source regions worldwide. In this work we present results stemming from two previous field deployments: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years, both utilizing NASA Goddard's mobile ground-based facility. The former study focused on transported Saharan dust at Sal (16.73degN, 22.93degW), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye (39.082degN, 100.276degE), China near the source between the Taklimakan and Gobi deserts. Due to the compelling variability in spatial and temporal scale of dust properties during field experiments, a deterministic I-D radiative transfer model constrained by local measurements (i.e., spectral photometry/interferometry and lidar for physical/microphysical, mineralogy, and single-scattering properties) is employed to evaluate dust's local instantaneous SW/LW DARE both at the surface and at the top of

  7. Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yawen; Zhang, Kai; Qian, Yun

    Aerosols from fire emissions can potentially have large impact on clouds and radiation. However, fire aerosol sources are often intermittent, and their effect on weather and climate is difficult to quantify. Here we investigated the short-term effective radiative forcing of fire aerosols using the global aerosol–climate model Community Atmosphere Model version 5 (CAM5). Different from previous studies, we used nudged hindcast ensembles to quantify the forcing uncertainty due to the chaotic response to small perturbations in the atmosphere state. Daily mean emissions from three fire inventories were used to consider the uncertainty in emission strength and injection heights. The simulated aerosolmore » optical depth (AOD) and mass concentrations were evaluated against in situ measurements and reanalysis data. Overall, the results show the model has reasonably good predicting skills. Short (10-day) nudged ensemble simulations were then performed with and without fire emissions to estimate the effective radiative forcing. Results show fire aerosols have large effects on both liquid and ice clouds over the two selected regions in April 2009. Ensemble mean results show strong negative shortwave cloud radiative effect (SCRE) over almost the entirety of southern Mexico, with a 10-day regional mean value of –3.0 W m –2. Over the central US, the SCRE is positive in the north but negative in the south, and the regional mean SCRE is small (–0.56 W m –2). For the 10-day average, we found a large ensemble spread of regional mean shortwave cloud radiative effect over southern Mexico (15.6 % of the corresponding ensemble mean) and the central US (64.3 %), despite the regional mean AOD time series being almost indistinguishable during the 10-day period. Moreover, the ensemble spread is much larger when using daily averages instead of 10-day averages. In conclusion, this demonstrates the importance of using a large ensemble of simulations to estimate the short

  8. Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles

    DOE PAGES

    Liu, Yawen; Zhang, Kai; Qian, Yun; ...

    2018-01-03

    Aerosols from fire emissions can potentially have large impact on clouds and radiation. However, fire aerosol sources are often intermittent, and their effect on weather and climate is difficult to quantify. Here we investigated the short-term effective radiative forcing of fire aerosols using the global aerosol–climate model Community Atmosphere Model version 5 (CAM5). Different from previous studies, we used nudged hindcast ensembles to quantify the forcing uncertainty due to the chaotic response to small perturbations in the atmosphere state. Daily mean emissions from three fire inventories were used to consider the uncertainty in emission strength and injection heights. The simulated aerosolmore » optical depth (AOD) and mass concentrations were evaluated against in situ measurements and reanalysis data. Overall, the results show the model has reasonably good predicting skills. Short (10-day) nudged ensemble simulations were then performed with and without fire emissions to estimate the effective radiative forcing. Results show fire aerosols have large effects on both liquid and ice clouds over the two selected regions in April 2009. Ensemble mean results show strong negative shortwave cloud radiative effect (SCRE) over almost the entirety of southern Mexico, with a 10-day regional mean value of –3.0 W m –2. Over the central US, the SCRE is positive in the north but negative in the south, and the regional mean SCRE is small (–0.56 W m –2). For the 10-day average, we found a large ensemble spread of regional mean shortwave cloud radiative effect over southern Mexico (15.6 % of the corresponding ensemble mean) and the central US (64.3 %), despite the regional mean AOD time series being almost indistinguishable during the 10-day period. Moreover, the ensemble spread is much larger when using daily averages instead of 10-day averages. In conclusion, this demonstrates the importance of using a large ensemble of simulations to estimate the short

  9. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  10. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  11. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    NASA Technical Reports Server (NTRS)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  12. On Effective Radiative Forcing of Partial Internally and Externally Mixed Aerosols and Their Effects on Global Climate

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Zhang, Hua; Zhao, Shuyun; Li, Jiangnan

    2018-01-01

    The total effective radiative forcing (ERF) due to partial internally mixed (PIM) and externally mixed (EM) anthropogenic aerosols, as well as their climatic effects since the year of 1850, was evaluated and compared using the aerosol-climate online coupled model of BCC_AGCM2.0_CUACE/Aero. The influences of internal mixing (IM) on aerosol hygroscopicity parameter, optical properties, and concentration were considered. Generally, IM could markedly weaken the negative ERF and cooling effects of anthropogenic aerosols. The global annual mean ERF of EM anthropogenic aerosols from 1850 to 2010 was -1.87 W m-2, of which the aerosol-radiation interactive ERF (ERFari) and aerosol-cloud interactive ERF (ERFaci) were -0.49 and -1.38 W m-2, respectively. The global annual mean ERF due to PIM anthropogenic aerosols from 1850 to 2010 was -1.23 W m-2, with ERFari and ERFaci of -0.23 and -1.01 W m-2, respectively. The global annual mean surface temperature and water evaporation and precipitation were reduced by 1.74 K and 0.14 mm d-1 for EM scheme and 1.28 K and 0.11 mm d-1 for PIM scheme, respectively. However, the relative humidity near the surface was slightly increased for both mixing cases. The Intertropical Convergence Zone was southwardly shifted for both EM and PIM cases but was less southwardly shifted in PIM scheme due to the less reduction in atmospheric temperature in the midlatitude and low latitude of the Northern Hemisphere.

  13. Effects of aerosol from biomass burning on the global radiation budget

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  14. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not

  15. Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian; hide

    2014-01-01

    Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.

  16. Aerosol Direct Radiative Effects Over the Northwest Atlantic, Northwest Pacific, and North Indian Oceans: Estimates Based on In-situ Chemical and Optical Measurements and Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2005-12-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are

  17. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer

  18. Radiative Properties of Smoke and Aerosol Over Land Surfaces

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.

  19. Quantifying the sensitivity of aerosol optical depths retrieved from MSG SEVIRI to a priori data

    NASA Astrophysics Data System (ADS)

    Bulgin, C. E.; Palmer, P. I.; Merchant, C. J.; Siddans, R.; Poulsen, C.; Grainger, R. G.; Thomas, G.; Carboni, E.; McConnell, C.; Highwood, E.

    2009-12-01

    Radiative forcing contributions from aerosol direct and indirect effects remain one of the most uncertain components of the climate system. Satellite observations of aerosol optical properties offer important constraints on atmospheric aerosols but their sensitivity to prior assumptions must be better characterized before they are used effectively to reduce uncertainty in aerosol radiative forcing. We assess the sensitivity of the Oxford-RAL Aerosol and Cloud (ORAC) optimal estimation retrieval of aerosol optical depth (AOD) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) to a priori aerosol data. SEVIRI is a geostationary satellite instrument centred over Africa and the neighbouring Atlantic Ocean, routinely sampling desert dust and biomass burning outflow from Africa. We quantify the uncertainty in SEVIRI AOD retrievals in the presence of desert dust by comparing retrievals that use prior information from the Optical Properties of Aerosol and Cloud (OPAC) database, with those that use measured aerosol properties during the Dust Outflow and Deposition to the Ocean (DODO) aircraft campaign (August, 2006). We also assess the sensitivity of retrieved AODs to changes in solar zenith angle, and the vertical profile of aerosol effective radius and extinction coefficient input into the retrieval forward model. Currently the ORAC retrieval scheme retrieves AODs for five aerosol types (desert dust, biomass burning, maritime, urban and continental) and chooses the most appropriate AOD based on the cost functions. We generate an improved prior aerosol speciation database for SEVIRI based on a statistical analysis of a Saharan Dust Index (SDI) determined using variances of different brightness temperatures, and organic and black carbon tracers from the GEOS-Chem chemistry transport model. This database is described as a function of season and time of day. We quantify the difference in AODs between those chosen based on prior information from the SDI and GEOS

  20. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment