Sample records for aerosol inorganic model

  1. Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2009-04-01

    Liquid aerosol particles are - from a physicochemical viewpoint - mixtures of inorganic salts, acids, water and a large variety of organic compounds (Rogge et al., 1993; Zhang et al., 2007). Molecular interactions between these aerosol components lead to deviations from ideal thermodynamic behavior. Strong non-ideality between organics and dissolved ions may influence the aerosol phases at equilibrium by means of liquid-liquid phase separations into a mainly polar (aqueous) and a less polar (organic) phase. A number of activity models exists to successfully describe the thermodynamic equilibrium of aqueous electrolyte solutions. However, the large number of different, often multi-functional, organic compounds in mixed organic-inorganic particles is a challenging problem for the development of thermodynamic models. The group-contribution concept as introduced in the UNIFAC model by Fredenslund et al. (1975), is a practical method to handle this difficulty and to add a certain predictability for unknown organic substances. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems (Zuend et al., 2008). This model enables the computation of vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semi-empirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of vapor-liquid and liquid

  2. AEROSOL INORGANICS AND ORGANICS MODEL (AIOM) WITH USER DEFINED PROPERTIES FOR ORGANIC COMPOUNDS

    EPA Science Inventory

    The Aerosol Inorganics Model (AIM) is widely used to calculate gas/liquid/solid phase equilibrium in aerosol systems containing the species H+-NH4+-SO42--NO3--H2O over a range of tropospheric ...

  3. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    NASA Astrophysics Data System (ADS)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  4. Evaluating Secondary Inorganic Aerosols in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-01-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3/NH4(+) partitioning which affects the HNO3/NO3(-) partitioning.

  5. Primary aerosol and secondary inorganic aerosol budget over the Mediterranean Basin during 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Guth, Jonathan; Marécal, Virginie; Josse, Béatrice; Arteta, Joaquim; Hamer, Paul

    2018-04-01

    In the frame of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), we analyse the budget of primary aerosols and secondary inorganic aerosols over the Mediterranean Basin during the years 2012 and 2013. To do this, we use two year-long numerical simulations with the chemistry-transport model MOCAGE validated against satellite- and ground-based measurements. The budget is presented on an annual and a monthly basis on a domain covering 29 to 47° N latitude and 10° W to 38° E longitude. The years 2012 and 2013 show similar seasonal variations. The desert dust is the main contributor to the annual aerosol burden in the Mediterranean region with a peak in spring, and sea salt being the second most important contributor. The secondary inorganic aerosols, taken as a whole, contribute a similar level to sea salt. The results show that all of the considered aerosol types, except for sea salt aerosols, experience net export out of our Mediterranean Basin model domain, and thus this area should be considered as a source region for aerosols globally. Our study showed that 11 % of the desert dust, 22.8 to 39.5 % of the carbonaceous aerosols, 35 % of the sulfate and 9 % of the ammonium emitted or produced into the study domain are exported. The main sources of variability for aerosols between 2012 and 2013 are weather-related variations, acting on emissions processes, and the episodic import of aerosols from North American fires. In order to assess the importance of the anthropogenic emissions of the marine and the coastal areas which are central for the economy of the Mediterranean Basin, we made a sensitivity test simulation. This simulation is similar to the reference simulation but with the removal of the international shipping emissions and the anthropogenic emissions over a 50 km wide band inland along the coast. We showed that around 30 % of the emissions of carbonaceous aerosols and 35 to 60 % of the exported carbonaceous aerosols originates from the marine and

  6. An SOA model for toluene oxidation in the presence of inorganic aerosols.

    PubMed

    Cao, Gang; Jang, Myoseon

    2010-01-15

    A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene

  7. Computation of Phase Equilibria, State Diagrams and Gas/Particle Partitioning of Mixed Organic-Inorganic Aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.

    2009-04-01

    The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part

  8. The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Carmichael, G. R.; Woo, J. H.; Qiang, Z.

    2014-12-01

    Recurrent particle matter episodes greatly influence air quality in Northeast Asia. According to many studies, a major reason is long-range transport of air pollutant. Large amount of emission of chemical compounds aggravate air pollution in the region. Emitted air pollutants mainly come from industrialized regions along the East China coast. It can be transported over downwind region by the prevailing westerlies. The long-rang transported fine particle certainly attributes to air quality in downwind region, but there are many unknowns on the quantity, transport pattern, and secondary aerosol production mechanism despite the fact with many studies have been performed. Major contributors of PM2.5 are inorganic secondary aerosols, sulfate, nitrate and ammonium, in Korea. Especially high relative contributions of inorganic secondary aerosols appear for westerly wind cases. The main pathway of production of inorganic secondary aerosols is produced by converting from SO2 and NOx during the long-range transport but the contribution varies dramatically depending on season and wind pattern. Sulfate is consistently the primary contributor of PM2.5 still now but we should more concern nitrate because that NOx emissions of China is increasing steeply since 2000 by leading powerplant, industry, and transport, despite downward trend of SO2. In order to better understand regional air quality modeling of the long-range transport, international study, MICS-Asia phase III, has been initiated with many researchers. We will present chemical characteristics of PM2.5 long-range transport during westerly wind cases focused on secondary aerosol, tracking their transport pattern, and production pathway. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  9. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H

  10. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO 3 − aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO 3 −) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na + and Ca 2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms bymore » multiphase reactions of HNO 3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH 4NO 3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO 3 on mineral aerosol supports the conclusion that aerosol NO 3 − is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO 3 − and HNO 3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  11. Final Report: Process Models of the Equilibrium Size & State of Organic/Inorganic Aerosols for the Development of Large Scale Atmospheric Models & the Analysis of Field Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wexler, Anthony Stein; Clegg, Simon Leslie

    2013-10-26

    Our work addressed the following elements of the Call for Proposals: (i) “to improve the theoretical representation of aerosol processes studied in ASP laboratory or field studies”, (ii) “to enhance the incorporation of aerosol process information into modules suitable for large-scale or global atmospheric models”, and (iii) “provide systematic experimental validation of process model predictions ... using data from targeted laboratory and field experiments”. Achievements to the end of 2012 are described in four previous reports, and include: new models of densities and surface tensions of pure (single solute) and mixed aqueous solutions of typical aerosol composition under all atmosphericmore » conditions (0 to 100% RH and T > 150 K); inclusion of these models into the widely used Extended Aerosol Inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php); the addition of vapor pressure calculators for organic compounds to the E-AIM website; the ability of include user-defined organic compounds and/or lumped surrogates in gas/aerosol partitioning calculations; the development of new equations to represent the properties of soluble aerosols over the entire concentration range (using methods based upon adsorption isotherms, and derived using statistical mechanics), including systems at close to zero RH. These results are described in publications 1-6 at the end of this report, and on the “News” page of the E-AIM website (http://www.aim.env.uea.ac.uk/aim/info/news.html). During 2012 and 2013 we have collaborated in a combined observation and lab-based study of the water uptake of the organic component of atmospheric aerosols (PI Gannet Hallar, of the Desert Research Institute). The aerosol samples were analyzed using several complementary techniques (GC/MS, FT-ICR MS, and ion chromatography) to produce a very complete organic “speciation” including both polar and non-polar compounds. Hygroscopic growth factors of the samples were

  12. Investigating hygroscopic behavior and phase separation of organic/inorganic mixed phase aerosol particles with FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Cziczo, D. J.

    2013-12-01

    Atmospheric aerosol particles can be composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have very well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. For example, the deliquescence relative humidity of pure ammonium sulfate is about 80% and its efflorescence point is about 35%. This behavior of ammonium sulfate is important to atmospheric chemistry because some reactions, such as the hydrolysis of nitrogen pentoxide, occur on aqueous but not crystalline surfaces. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosol are not typically a single inorganic salt, instead they often contain organic as well as inorganic species. Mixed inorganic/organic aerosol particles, while abundant in the atmosphere, have not been studied as extensively. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. This project investigates the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O:C ratios, including glycerol, 1,2,6-hexanetriol, 1,4-butanediol and 1,5-pentanediol have been investigated. This project aims to study gas-phase exchange in these aerosol systems to determine if exchange is impacted when phase separation occurs.

  13. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented

  14. Coupling of organic and inorganic aerosol systems and the effect on gas-particle partitioning in the southeastern US

    NASA Astrophysics Data System (ADS)

    Pye, Havala O. T.; Zuend, Andreas; Fry, Juliane L.; Isaacman-VanWertz, Gabriel; Capps, Shannon L.; Wyat Appel, K.; Foroutan, Hosein; Xu, Lu; Ng, Nga L.; Goldstein, Allen H.

    2018-01-01

    Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2 × sulfate, RN/2S ≈ 0.8 to 0.9) with approximately 70 % of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in µg m-3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid-liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic-organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH = 1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to

  15. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  16. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 overmore » YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.« less

  17. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  18. Development of an inorganic and organic aerosol model (CHIMERE 2017β v1.0): seasonal and spatial evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Couvidat, Florian; Bessagnet, Bertrand; Garcia-Vivanco, Marta; Real, Elsa; Menut, Laurent; Colette, Augustin

    2018-01-01

    A new aerosol module was developed and integrated in the air quality model CHIMERE. Developments include the use of the Model of Emissions and Gases and Aerosols from Nature (MEGAN) 2.1 for biogenic emissions, the implementation of the inorganic thermodynamic model ISORROPIA 2.1, revision of wet deposition processes and of the algorithms of condensation/evaporation and coagulation and the implementation of the secondary organic aerosol (SOA) mechanism H2O and the thermodynamic model SOAP. Concentrations of particles over Europe were simulated by the model for the year 2013. Model concentrations were compared to the European Monitoring and Evaluation Programme (EMEP) observations and other observations available in the EBAS database to evaluate the performance of the model. Performances were determined for several components of particles (sea salt, sulfate, ammonium, nitrate, organic aerosol) with a seasonal and regional analysis of results. The model gives satisfactory performance in general. For sea salt, the model succeeds in reproducing the seasonal evolution of concentrations for western and central Europe. For sulfate, except for an overestimation of sulfate in northern Europe, modeled concentrations are close to observations and the model succeeds in reproducing the seasonal evolution of concentrations. For organic aerosol, the model reproduces with satisfactory results concentrations for stations with strong modeled biogenic SOA concentrations. However, the model strongly overestimates ammonium nitrate concentrations during late autumn (possibly due to problems in the temporal evolution of emissions) and strongly underestimates summer organic aerosol concentrations over most of the stations (especially in the northern half of Europe). This underestimation could be due to a lack of anthropogenic SOA or biogenic emissions in northern Europe. A list of recommended tests and developments to improve the model is also given.

  19. Inorganic aerosols responses to emission changes in Yangtze River Delta, China.

    PubMed

    Dong, Xinyi; Li, Juan; Fu, Joshua S; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-08-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system

  1. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-05-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation

  2. SOA formation from partitioning and heterogeneous reactions: model study in the presence of inorganic species.

    PubMed

    Jang, Myoseon; Czoschke, Nadine M; Northcross, Amanda L; Cao, Gang; Shaof, David

    2006-05-01

    A predictive model for secondary organic aerosol (SOA) formation by both partitioning and heterogeneous reactions was developed for SOA created from ozonolysis of alpha-pinene in the presence of preexisting inorganic seed aerosols. SOA was created in a 2 m3 polytetrafluoroethylene film indoor chamber under darkness. Extensive sets of SOA experiments were conducted varying humidity, inorganic seed compositions comprising of ammonium sulfate and sulfuric acid, and amounts of inorganic seed mass. SOA mass was decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). The reaction rate constant for OM(H) production was subdivided into three categories (fast, medium, and slow) to consider different reactivity of organic products for the particle phase heterogeneous reactions. The influence of particle acidity on reaction rates was treated in a previous semiempirical model. Model OM(H) was developed with medium and strong acidic seed aerosols, and then extrapolated to OM(H) in weak acidic conditions, which are more relevant to atmospheric aerosols. To demonstrate the effects of preexisting glyoxal derivatives (e.g., glyoxal hydrate and dimer) on OM(H), SOA was created with a seed mixture comprising of aqueous glyoxal and inorganic species. Our results show that heterogeneous SOA formation was also influenced by preexisting reactive glyoxal derivatives.

  3. Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Ciarelli, Giancarlo; El-Haddad, Imad; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February-March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and

  4. Aerosol modelling and validation during ESCOMPTE 2001

    NASA Astrophysics Data System (ADS)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  5. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. F.

    2013-01-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN) ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling fits and goodness of fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  6. Coupling of organic and inorganic aerosol systems and the effect on gas–particle partitioning in the southeastern US

    PubMed Central

    Pye, Havala O. T.; Zuend, Andreas; Fry, Juliane L.; Isaacman-VanWertz, Gabriel; Capps, Shannon L.; Appel, K. Wyat; Foroutan, Hosein; Xu, Lu; Ng, Nga L.; Goldstein, Allen H.

    2018-01-01

    Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2× sulfate, RN/2S ≈ 0.8 to 0.9) with approximately 70% of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in μgm−3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid–liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic–organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH = 1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to

  7. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  8. Sensitivity of inorganic aerosol radiative effects to U.S. emissions

    NASA Astrophysics Data System (ADS)

    Holt, J. I.; Solomon, S.; Selin, N. E.

    2017-06-01

    Between 2005 and 2012, U.S. emissions of nitrogen oxides (NOx) and sulfur dioxide (SO2) decreased by 42% and 62%, respectively. These species, as well as ammonia (NH3), are precursors of inorganic fine aerosols, which scatter incoming shortwave radiation and thus affect climate. Scaling aerosol concentrations to emissions, as might be done for near-term climate projections, neglects nonlinear chemical interactions. To estimate the magnitude of these nonlinearities, we conduct a suite of simulations with a chemical transport model and an off-line radiative transfer model. We find that the direct radiative effect (DRE) over the North American domain decreases by 59 and 160 mW m-2 in winter and summer, respectively, between 2005 and 2012. The sensitivities of DRE to NOx and SO2 emissions increase, by 11% and 21% in summer, while sensitivity to NH3 emissions decreases. The wintertime sensitivity of DRE to NOx emissions is small in 2005 but is 5 times as large in 2012. Scaling radiative effects from 2005 to 2012 based on 2005 sensitivities overestimates the magnitude of the DRE of 7% and 6% of the U.S. attributable DRE in January and July, respectively. The difference between the changes in DRE and the changes in sensitivity suggests that scaling to SO2 emissions alone has so far been an accurate approximation, but it may not be in the near future. These values represent the level of accuracy that can be expected in adjusting aerosol radiative effects in climate models without chemistry.

  9. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    NASA Astrophysics Data System (ADS)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  10. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Flynn, M. J.; Harrison, R. M.; Yin, J.; Gallagher, M. W.; Coe, H.

    2014-07-01

    For the first time, the behaviour of non-refractory inorganic and organic submicron particulate through an entire annual cycle is investigated using measurements from an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) located at a UK urban background site in North Kensington, London. We show secondary aerosols account for a significant fraction of the submicron aerosol burden and that high concentration events are governed by different factors depending on season. Furthermore, we demonstrate that on an annual basis there is no variability in the extent of secondary organic aerosol (SOA) oxidation, as defined by the oxygen content, irrespective of amount. This result is surprising given the changes in precursor emissions and contributions as well as photochemical activity throughout the year; however it may make the characterisation of SOA in urban environments more straightforward than previously supposed. Organic species, nitrate, sulphate, ammonium, and chloride were measured during 2012 with average concentrations (±one standard deviation) of 4.32 (±4.42), 2.74 (±5.00), 1.39 (±1.34), 1.30 (±1.52) and 0.15 (±0.24) μg m-3, contributing 43, 28, 14, 13 and 2% to the total submicron mass, respectively. Components of the organic aerosol fraction are determined using positive matrix factorisation (PMF) where five factors are identified and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2). OOA1 and OOA2 represent more and less oxygenated OA with average concentrations of 1.27 (±1.49) and 0.14 (±0.29) μg m-3, respectively, where OOA1 dominates the SOA fraction (90%). Diurnal, monthly, and seasonal trends are observed in all organic and inorganic species, due to meteorological conditions, specific nature of the aerosols, and availability of precursors. Regional and transboundary pollution as well as other individual pollution events influence London

  11. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Flynn, M. J.; Harrison, R. M.; Yin, J.; Gallagher, M. W.; Coe, H.

    2015-06-01

    For the first time, the behaviour of non-refractory inorganic and organic submicron particulate through an entire annual cycle is investigated using measurements from an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) located at a UK urban background site in North Kensington, London. We show that secondary aerosols account for a significant fraction of the submicron aerosol burden and that high concentration events are governed by different factors depending on season. Furthermore, we demonstrate that on an annual basis there is no variability in the extent of secondary organic aerosol (SOA) oxidation, as defined by the oxygen content, irrespective of amount. This result is surprising given the changes in precursor emissions and contributions as well as photochemical activity throughout the year; however it may make the characterisation of SOA in urban environments more straightforward than previously supposed. Organic species, nitrate, sulphate, ammonium, and chloride were measured during 2012 with average concentrations (±1 standard deviation) of 4.32 (±4.42), 2.74 (±5.00), 1.39 (±1.34), 1.30 (±1.52), and 0.15 (±0.24) μg m-3, contributing 44, 28, 14, 13, and 2 % to the total non-refractory submicron mass (NR-PM1) respectively. Components of the organic aerosol fraction are determined using positive matrix factorisation (PMF), in which five factors are identified and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2). OOA1 and OOA2 represent more and less oxygenated OA with average concentrations of 1.27 (±1.49) and 0.14 (±0.29) μg m-3 respectively, where OOA1 dominates the SOA fraction (90%). Diurnal, monthly, and seasonal trends are observed in all organic and inorganic species due to meteorological conditions, specific nature of the aerosols, and availability of precursors. Regional and transboundary pollution as well as other individual

  12. The Effect of Organic Compounds on the Hygroscopic Properties of Inorganic Aerosol

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Zardini, A. A.; Marcolli, C.

    2006-12-01

    The hygroscopicity of the aerosols plays a major role for the direct and indirect effect on the climate. It is known that aerosols are often a mixture of inorganic and organic matter. A significant fraction of the organic matter is water soluble (WSOC) and affects light scattering, water uptake and phase transitions of multicomponent aerosols. Additionally, organic matter can act as a surfactant around an inorganic particle, affecting the evaporation-condensation time scale. This research project benefits from the combined measurements performed by two different instrumentations: the electrodynamic trap at IACETH, Zürich, Switzerland, and a Tandem Differential Mobility Analizer (TDMA) at the Paul Scherrer Institute, Switzerland. The Electrodynamic Trap consists of a chamber in which a levitated particle can experience all the atmospherically relevant conditions of temperature, pressure, and humidity. All these parameters can be continuously varied so that the hygroscopic curve of the aerosol particle can be measured. Additional tools help to better characterize the aerosol particle: 90 degrees angular scattering of lasers (for radius measurements) and intensity fluctuation of the scattered light with time (for phase changes detection). In this poster the results obtained through the electrodynamic balance technique will be shown and compared with the TDMA. In particular, bicomponent ammonium sulphate with adipic acid bicomponent particles are studied, with different mixing ratios. Particular emphasis is put on assessing the water uptake and the phase changes of the particles.

  13. Evaluation of biogenic emission flux and its impact on oxidants and inorganic aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Han, K. M.; Song, C. H.; Park, R. S.; Woo, J.; Kim, H.

    2010-12-01

    As a major precursor during the summer season, biogenic species are of primary importance in the ozone and SOAs (secondary organic aerosols) formations. Isoprene and mono-terpene also influence the level of inorganic aerosols (i.e. sulfate and nitrate) by controlling OH radicals. However, biogenic emission fluxes are highly uncertain in East Asia. While isoprene emission fluxes from the GEIA (Global Emissions Inventory Activity) and POET (Precursors of Ozone and their Effects in the Troposphere) inventories estimate approximately 20 Tg yr-1 in East Asia, those from the MEGAN (Model of Emissions of Gases and Aerosols from Nature) and MOHYCAN (MOdel for Hydrocarbon emissions by the CANopy) estimate approximately 10 Tg yr-1 and 5 Tg yr-1, respectively. In order to evaluate and/or quantify the magnitude of biogenic emission fluxes over East Asia, the tropospheric HCHO columns obtained from the GOME (Global Ozone Monitoring Experiment) observations were compared with the HCHO columns from the CMAQ (Community Multi-scale Air Quality) simulations over East Asia. In this study, US EPA Models-3/CMAQ v4.5.1 model simulation using the ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory for anthropogenic pollutants and GEIA, POET, MEGAN, and MOHYCAN emission inventories for biogenic species was carried out in conjunction with the Meteorological fields generated from the PSU/NCAR MM5 (Pennsylvania state University/National Center for Atmospheric Research Meso-scale Model 5) model for the summer episodes of the year 2002. In addition to an evaluation of the biogenic emission flux, we investigated the impact of the uncertainty in biogenic emission inventory on inorganic aerosol formations and variations of oxidants (OH, O3, and H2O2) in East Asia. In this study, when the GEIA and POET emission inventories are used, the CMAQ-derived HCHO columns are highly overestimated over East Asia, particularly South China compared with GOME-derived HCHO

  14. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    NASA Astrophysics Data System (ADS)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  15. Global Survey of Submicron Aerosol Acidity (pH)

    NASA Astrophysics Data System (ADS)

    Nault, B.; Day, D. A.; Campuzano Jost, P.; Hu, W.; Schroder, J. C.; Bian, H.; Chin, M.; Clegg, S. L.; Colarco, P. R.; Dibb, J. E.; Kim, M. J.; Kodros, J.; Marais, E. A.; Pierce, J. R.; Scheuer, E. M.; Wennberg, P. O.; Jimenez, J. L.

    2017-12-01

    Aerosol acidity (H+, often expressed as "pH" defined in various ways) is an important property that influences uptake and partitioning of gases, and homogeneous and surface aqueous reactions of key inorganic and organic compounds. As there is currently no rapid method to measure ambient aerosol acidity, a thermodynamic model, constrained by both inorganic aerosol species (e.g., NH4, NO3, SO4, Cl) and at least one inorganic gas (HNO3, NH3, or HCl), are currently understood to lead to the most reliable estimates of aerosol acidity. In this study, we calculated submicron (less than PM1) aerosol pH from the NASA ATom, "pole-to-pole," flights that covers both the Pacific and Atlantic ocean basins. The E-AIM thermodynamic model was used with measurements by an Aerodyne high-resolution time-of-flight aerosol-mass-spectrometer (HR-ToF-AMS) of inorganic aerosol species, along with inorganic gas measurements from other mass spectrometers and ion chromatography. We compare the results with those for the NASA KORUS-AQ, SEAC4RS, DC3, and ARCTAS campaigns, as well as several ground-based campaigns and recently-published studies. This provides an opportunity to compare the aerosol acidity in urban, rural, and remote regions, by season, and between the boundary layer and free troposphere. In addition, we compare the submicron aerosol acidity from these various localities with results from global models, such as GEOS-Chem, in order to investigate the ability of the global models to simulate aerosol acidity, and the processes it affects, such as nitrate, ammonium, and MSA partitioning.

  16. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-08-01

    Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this

  17. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability

  18. On the implications of aerosol liquid water and phase ...

    EPA Pesticide Factsheets

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM ∕ OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM ∕ OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH  >  SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM ∕ OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were hig

  19. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts.

    PubMed

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-10-26

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM 2.5 ) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO 2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m 3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM 2.5 pollution.

  20. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-10-01

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution.

  1. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts

    PubMed Central

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-01-01

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution. PMID:27782166

  2. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    NASA Astrophysics Data System (ADS)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  3. Secondary Inorganic Soluble Aerosol in Hong Kong: Continuous Measurements, Formation Mechanism Discussion and Improvement of an Observation-Based Model to Study Control Strategies

    NASA Astrophysics Data System (ADS)

    Xue, Jian

    Work in this thesis focuses on half-hourly or hourly measurements of PM2.5 secondary inorganic aerosols (SIA) in two locations in Hong Kong (HK) using a continuous system, PILS (Particle-into-Liquid System) coupled to two ion chromatographs. The high-resolution data sets allow the examination of SIA temporal dynamics in the scale of hours that the filter-based approach is incapable of providing. (1) Impacts of local emissions, regional transports and their interactions on chemical composition and concentrations of PM2.5 SIA and other ionic species were investigated at the Hong Kong University of Science and Technology (HKUST), a receptor site, under three synoptic conditions. (2) Chemical compositions and size characteristics of ionic species were investigated at Tung Chung, a new town area located in the Southwest part of HK. The sampling period was from 17 to 26 December 2009, covering both normal conditions and an aerosol episode. The three major secondary inorganic ions, SO42, NH4+ and NO 3-, accounted for 47 +/- 6% of PM2.5 mass. Further examination of size characteristics of NO3 - shows that fine mode NO3- is more likely to occur in environments when the fine particles are less acidic and the sea-salt aerosol contributions are low. (3) The ionic chemical composition of PM2.5 and meteorological parameters (e.g., temperature, RH) obtained at the HKUST site under all three different synoptic conditions are input into Aerosol Inorganic Model (AIM-III) for estimation of in situ pH through calculation of H+ amount and aerosol liquid water content (LWC). The second part of this thesis work is to improve an observation-based model (OBAMAP) for SIA, which was first developed by Dr. Zibing Yuan (2006) to evaluate the sensitivity of formation of nitrate ad sulfate to changes in the emissions of their precursors (i.e., NOx, SO2, and VOCs). The improvement work includes incorporating updated chemical mechanisms, thermodynamic equilibrium for gas-aerosol phase

  4. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China.

    PubMed

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Zhang, Yan-Lin

    2016-12-01

    To better characterize the chemical compositions and sources of fine particulate matter (i.e. PM 2.5 ) in Sanjiang Plain, Northeast China, total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions as well as stable carbon isotopic composition (δ 13 C) were measured in this study. Intensively open biomass burning episodes are identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass-burning episode, concentrations of PM 2.5 , OC, EC, and WSOC are increased by a factor of 4-12 compared to those during the non-biomass-burning period. Non-sea-salt potassium is strongly correlated with PM 2.5 , OC, EC and WSOC, demonstrating an important contribution from biomass-burning emissions. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, suggesting that biomass-burning aerosols in Sanjiang Plain are mostly fresh and less aged. In addition, the WSOC-to-OC ratio is lower than that reported in biomass-burning aerosols in tropical regions, further supporting that biomass-burning aerosols in Sanjiang Plain are mostly primary and secondary organic aerosols may be not significant. A lower average δ 13 C value (-26.2‰) is observed during the biomass-burning period, indicating a dominant contribution from combustion of C3 plants in the studied region. Copyright © 2015. Published by Elsevier B.V.

  5. A COMPARATIVE REVIEW OF INORGANIC AEROSOL THERMODYNAMIC EQUILIBRIUM MODULES: SIMILARITIES, DIFFERENCES, AND THEIR LIKELY CAUSES

    EPA Science Inventory

    A comprehensive comparison of five inorganic aerosol thermodynamic equilibrium modules, MARS-A, SEQUILIB, SCAPE2, EQUISOLV II, and AIM2, was conducted for a variety of atmospheric concentrations of particulate matter (PM) constituents, relative humidities (RHs), and temperatures....

  6. Modeling Gas-Aerosol Processes during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Chapman, E. G.; Easter, R. C.; Fast, J. D.; Flocke, F.; Kleinman, L. I.; Madronich, S.; Springston, S. R.; Voss, P. B.; Weinheimer, A.

    2007-12-01

    Significant gas-aerosol interactions are expected in the Mexico City outflow due to formation of various semi- volatile secondary inorganic and organic gases that can partition into the particulate phase and due to various heterogeneous chemical processes. A number of T0-T1-T2 Lagrangian transport episodes during the MILAGRO campaign provide focused modeling opportunities to elucidate the roles of various chemical and physical processes in the evolution of the primary trace gases and aerosol particles emitted in Mexico City over a period of 4-8 hours. Additionally, one long-range Lagrangian transport episode on March 18-19, 2006, as characterized by the Controlled Meteorological (CMET) balloon trajectories, presents an excellent opportunity to model evolution of Mexico City pollutants over 26 hours. The key tools in our analysis of these Lagrangian episodes include a comprehensive Lagrangian box-model and the WRF-chem model based on the new Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), which simulates gas-phase photochemistry, heterogeneous reactions, equilibrium particulate phase-state and water content, and dynamic gas-particle partitioning for size- resolved aerosols. Extensive gas, aerosol, and meteorological measurements onboard the G1 and C130 aircraft and T0, T1, and T2 ground sites will be used to initialize, constrain, and evaluate the models. For the long-range transport event, in-situ vertical profiles of wind vectors from repeated CMET balloon soundings in the Mexico City outflow will be used to nudge the winds in the WRF-chem simulation. Preliminary model results will be presented with the intention to explore further collaborative opportunities to use additional gas and particulate measurements to better constrain and evaluate the models.

  7. A TEST OF THERMODYNAMIC EQUILIBRIUM MODELS AND 3-D AIR QUALITY MODELS FOR PREDICTIONS OF AEROSOL NO3-

    EPA Science Inventory

    The inorganic species of sulfate, nitrate and ammonium constitute a major fraction of atmospheric aerosols. The behavior of nitrate is one of the most intriguing aspects of inorganic atmospheric aerosols because particulate nitrate concentrations depend not only on the amount of ...

  8. Spatial and Temporal Variations of Aerosols Around Beijing in the Summer 2006: Model Evaluation and Source Apportionment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Regional aerosol model calculations were made using the WRF-CMAQ and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in August and September 2006 when the CAREBEIJING-2006 campaign was conducted. Model calculations were compared with in-situ observations made at the urban site in Beijing and suburb site in Yufa, which is 50 km to the south of Beijing. In general, the two model calculations reproduced features of temporal variations of meteorological parameters and concentrations of elemental carbon (EC) and inorganic aerosols (sulfate, ammonium, and nitrate). Spatial distributions of aerosol optical depth (AOD) obtained by the MODISmore » satellite sensor are also generally well reproduced. Model calculations show that enhancements in inorganic aerosol concentrations simultaneously observed at the two sites 4 to 5 times during the one-month observation period were resulted by accumulation of pollutants under stagnated air condition. Because Beijing is located at the north border the high anthropogenic emission area (the Great North China Plain), northward motion of air under the influence of anti-cyclone system caused enhancements in fine aerosol concentrations at Beijing. Concentrations of primary aerosols, such as EC, are found to be generally controlled by emissions within 100 km around Beijing within previous 24 hours. On the other hand, emissions as far as 500 km within previous 3 days were found to affect concentrations of secondary aerosols, such as sulfate. Because of significant contributions of secondary aerosols in Beijing, regional emission controls are found to be necessary for improvement of air quality in Beijing.« less

  9. Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies.

    PubMed

    Pieber, Simone M; El Haddad, Imad; Slowik, Jay G; Canagaratna, Manjula R; Jayne, John T; Platt, Stephen M; Bozzetti, Carlo; Daellenbach, Kaspar R; Fröhlich, Roman; Vlachou, Athanasia; Klein, Felix; Dommen, Josef; Miljevic, Branka; Jiménez, José L; Worsnop, Douglas R; Baltensperger, Urs; Prévôt, André S H

    2016-10-04

    Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO 2 + fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO 2 + signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH 4 NO 3 ) causes a median CO 2 + interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P 10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH 4 NO 3 , while the ammonium sulfate ((NH 4 ) 2 SO 4 ) induced interference was 3-10 times lower. Propagation of the CO 2 + interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f 44 . The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.

  10. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3)more » and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.« less

  11. Variation in pH of Model Secondary Organic Aerosol during Liquid-Liquid Phase Separation.

    PubMed

    Dallemagne, Magda A; Huang, Xiau Ya; Eddingsaas, Nathan C

    2016-05-12

    The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid phase separation (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that phase separation has on the pH of the overall aerosols and the pH of the individual phases. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the phases, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich phase rather than simply an organic phase.

  12. Revising the hygroscopicity of inorganic sea salt particles

    PubMed Central

    Zieger, P.; Väisänen, O.; Corbin, J. C.; Partridge, D. G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U. K.; Leck, C.; Nenes, A.; Riipinen, I.; Virtanen, A.; Salter, M. E.

    2017-01-01

    Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth’s radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8–15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models. PMID:28671188

  13. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  14. Degradation of SO 2, NO 2 and NH 3 leading to formation of secondary inorganic aerosols: An environmental chamber study

    NASA Astrophysics Data System (ADS)

    Behera, Sailesh N.; Sharma, Mukesh

    2011-08-01

    We have examined the interactions of gaseous pollutants and primary aerosols that can produce secondary inorganic aerosols. The specific objective was to estimate degradation rates of precursor gases (NH 3, NO 2 and SO 2) responsible for formation of secondary inorganic aerosols. A Teflon-based outdoor environmental chamber facility (volume 12.5 m 3) was built and checked for wall losses, leaks, solar transparency and ability to simulate photochemical reactions. The chamber was equipped with state-of-the-art instrumentation to monitor concentration-time profiles of precursor gases, ozone, and aerosol. A total of 14 experimental runs were carried out for estimating the degradation of precursor gases. The following initial conditions were maintained in the chamber: NO 2 = 246 ± 104 ppb(v), NH 3 = 548 ± 83 ppb(v), SO 2 = 238 ± 107 ppb(v), O 3 = 50 ± 11 ppb(v), PM 2.5 aerosol = 283438 ± 60524 No./litre. The concentration-time profile of gases followed first-order decay and were used for estimating degradation rates (NO 2 = 0.26 ± 0.15 h -1, SO 2 = 0.31 ± 0.17 h -1, NH 3 = 0.35 ± 0.21 h -1). We observed that degradation rates showed a statistical significant positive correlation (at 5% level of significance) with the initial PM 2.5 levels in the chamber (coefficient of correlation: 0.63 for NO 2; 0.62 for NH 3 and 0.51 for SO 2), suggesting that the existing surface of the aerosol could play a significant role in degradation of precursor gases. One or more gaseous species can be adsorbed on to the existing particles and these may undergo heterogeneous or homogeneous chemical transformation to produce secondary inorganic aerosols. Through correlation analysis, we have observed that degradation rates of precursor gases were dependent on initial molar ratio of (NH 3)/(NO 2 + SO 2), indicative of ammonia-rich and ammonia-poor situations for eventual production of ammonium salts.

  15. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    EPA Science Inventory

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to org...

  16. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    NASA Astrophysics Data System (ADS)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.

  17. Aerosol Liquid Water Driven by Anthropogenic inorganic salts: Playing a key role in the winter haze formation over North China Plain

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Liu, Y.; Tan, T.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Hu, M.

    2017-12-01

    Aerosol liquid water influences ambient particulate matter mass concentrations and aerosol optical properties, and can serve as a reactor for multiphase reactions that perturb local photochemistry1. Our observations revealed that ambient relative humidity, inorganic fraction (sulfate, ammonium, nitrate), and PM2.5 mass concentration generally simultaneously elevated during haze episodes, resulting in the abundant anthropogenic aerosol water in the atmosphere of Beijing. The enrichment of aerosol liquid water may significantly affect the particle phase, which plays a key role in determining the reactive uptake, gas-particle partitioning, and heterogeneous chemical reactivity2. A newly-built three-arm impactor was used to detect the particle rebound fraction. The observations showed the increased RH and inorganic-rich particulate matter led to an increased aerosol liquid water content, and thus a liquid phase state during haze episode during wintertime. Here, we proposed that the transition to a liquid phase state marked the beginning of the haze episode and kicked off a positive feedback loop, wherein the liquid particles readily uptake pollutants that could react to form inorganics which could then uptake more water. The strict controlling strategy of sulfur emissions in China might lead to a decreased sulfate fraction and increased nitrate fraction in PM1. As a result, due to the lower deliquescence RH of nitrate, the feedback loop proposed could start at an even lower RH in the future. Reference1 Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto (2015), Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115(10), 4259-4334.2 M. Kuwata, S. T. Martin (2012), Phase of atmospheric secondary organic material affects its reactivity, Proceedings of the National Academy of Sciences of the United States of America, 109(43):17354-17359

  18. Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition.

    PubMed

    Hegde, Prashant; Kawamura, Kimitaka; Joshi, H; Naja, M

    2016-04-01

    The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ(13)C and δ(15)N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. -24.0‰), mostly originated from biomass burning of C4 plants. On the contrary, the aerosols in summer showed smaller δ(13)C values (-26.0‰), indicating that they are originated from vascular plants (mostly of C3 plants). The secondary ions (i.e., SO4 (2-), NH4 (+), and NO3 (-)) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.

  19. Characterization of the inorganic aerosol in Barcelona site during DAURE 2009 field campaigns

    NASA Astrophysics Data System (ADS)

    Plaza, Javier; Gómez-Moreno, Francisco J.; Aránzazu Revuelta, M.; Coz, Esther; Moreno, Natalia; Pujadas, Manuel; Artíñano, Begoña.

    2010-05-01

    Inorganic compounds account for a significant mass of the ambient aerosol. However this contribution varies with time and aerosol size fraction, depending on the influence of source emissions and ambient conditions, which can be relevant in the formation processes of secondary species. Time series of particulate nitrate, 10 m time resolution, have been obtained during the February-March and July 2009 DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean) field campaigns in the urban area of Barcelona by means of an R&P8400N monitor. Meteorological conditions during these periods were relevant for the photochemical formation and accumulation of secondary species. Ambient concentrations were higher in winter, specially coinciding with development of atmospheric stagnant episodes that enhanced the accumulation of pollutants including particulate nitrate that reached concentrations of 25 µgm-3 in some occasions, day or night, under these conditions. High humidity periods favored in occasions the formation of nitrates at submicronic scale. Variations in wind direction resulted in transport of particulate nitrate from near emission areas. Size segregated aerosol was sampled during the winter campaign with a micro-orifice uniform deposit impactor (MOUDI) using eleven size stages with aluminum substrates and a quartz fiber backup filter. Samples were collected twice per day for day/night periods. The first sampling period tried to collect secondary aerosol as it started after the early morning emission period. The second sample collected the night aerosol and the emission period. Soluble ions (sulfate, nitrate, ammonium and calcium) were later analyzed by IC. The nitrate mass was concentrated in two modes, the accumulation one around 0.75 µm and the coarse one around 3.90 µm. The sulfate and ammonium masses were concentrated in the accumulation mode, around 0.50 µm, although a small peak close to 5 µm

  20. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  1. Secondary Inorganic Aerosols over an Urban Location in North-Western Himalayan Region: Seasonal Variation in Composition and Formation Process(es)

    NASA Astrophysics Data System (ADS)

    Kaushal, D.; Tandon, A.

    2017-12-01

    Oxidative photo-chemical transformation of precursor gases, mainly of anthropogenic origin, produces secondary aerosols. Secondary inorganic aerosols constitute a significant fraction of total aerosol load over urban locations especially high altitude in wet-temperate climatic set-up. Towns situated in North-Western Himalayan region (NWHR) with sizable population and attractive tourist destinations have been facing ever increasing problem of gaseous and particulate air pollution from exponential increase in vehicular traffic and other anthropogenic emissions. The present study has been planned to investigate the seasonal variations in atmospheric processes responsible for the formation of Secondary Inorganic Aerosols (SIA) and to estimate contribution of SIA to PM­10 load over an Urban location, Dharamshala, in Dhauladhar region of NWHR. Twenty four hourly PM10 aerosol samples were collected, on quartz micro fibre filters in Dharamshala (1350 amsl) on weekly basis for complete one year time-period (February 2015 - January 2016). These samples were analyzed for Water Soluble Inorganic Ions (WSII) using Ion-Chromatographic System. On annual basis, SO42- ions contributed maximum (52%) followed by NO3- (13%) and NH4+ (12%) to WSII. Based upon Principal Component Analysis (PCA), dominant sources contributing to PM10 associated WSII were identified as: Fossil-Fuel and Bio-mass burning, Vehicular (mainly diesel) emissions and gaseous emissions from the microbial degradation of dead bio-mass. Throughout the year, significantly high proportion of SO42- and considerable thermodynamic stability of (NH4)2SO2 at ambient temperatures, made it the major contributor to SIA over NH4NO3 and NH4Cl. On seasonal basis, maximum contribution of SIA to PM10 was observed in monsoon followed by the winter season. Low ambient temperature in winter season favoured formation of NH4NO3 with significant contribution to SIA. It could be concluded that observed variability in the composition and

  2. Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony.

    PubMed

    Hinneburg, Detlef; Renner, Eberhard; Wolke, Ralf

    2009-01-01

    The fraction of ambient PM10 that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO2, NO, NO2, and SO2, the directly emitted primary particles, and additionally, an excess of 'free' sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO2 and SO2 are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles. The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium-sulfate-nitrate-water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols. Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM10

  3. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    DOE PAGES

    Quan, Jiannong; Liu, Yangang; Liu, Quan; ...

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM 2.5), nitrate (NO 3), sulfate (SO 4), ammonium (NH 4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO 2), and ozone (O 3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (N ratio) andmore » S from SO 2 to sulfate (S ratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO 2 to their corresponding particle phases in the late haze period. Further analysis shows that N ratio and S ratio increased with increasing RH, with N ratio and S ratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of N ratio and S ratio to O 3: the conversion ratios increase with decreasing O 3 concentration when O 3 concentration is lower than <15 ppb but increased with increasing O 3 when O 3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO 2 and

  4. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles.

    PubMed

    Estillore, Armando D; Morris, Holly S; Or, Victor W; Lee, Hansol D; Alves, Michael R; Marciano, Meagan A; Laskina, Olga; Qin, Zhen; Tivanski, Alexei V; Grassian, Vicki H

    2017-08-09

    Individual airborne sea spray aerosol (SSA) particles show diversity in their morphologies and water uptake properties that are highly dependent on the biological, chemical, and physical processes within the sea subsurface and the sea surface microlayer. In this study, hygroscopicity data for model systems of organic compounds of marine origin mixed with NaCl are compared to data for authentic SSA samples collected in an ocean-atmosphere facility providing insights into the SSA particle growth, phase transitions and interactions with water vapor in the atmosphere. In particular, we combine single particle morphology analyses using atomic force microscopy (AFM) with hygroscopic growth measurements in order to provide important insights into particle hygroscopicity and the surface microstructure. For model systems, a range of simple and complex carbohydrates were studied including glucose, maltose, sucrose, laminarin, sodium alginate, and lipopolysaccharides. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM). It is shown here that the E-AIM model describes well the deliquescence transition and hygroscopic growth at low mass ratios but not as well for high ratios, most likely due to a high organic volume fraction. AFM imaging reveals that the equilibrium morphology of these single-component organic particles is amorphous. When NaCl is mixed with the organics, the particles adopt a core-shell morphology with a cubic NaCl core and the organics forming a shell similar to what is observed for the authentic SSA samples. The observation of such core-shell morphologies is found to be highly dependent on the salt to organic ratio and varies depending on the nature and solubility of the organic component. Additionally, single particle organic volume fraction AFM analysis of NaCl : glucose and NaCl : laminarin mixtures shows that the ratio of salt to organics in solution does not correspond exactly for

  5. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. H. J.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.

    2014-07-01

    In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at European rural background sites have been used as reference for the model evaluation. To ensure the consistency of the used observational data stringent selection criteria were applied including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the day-to-day, seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulphur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both, the observations and the model show the largest part of the decline in the 1990's while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000-2009. Furthermore, the results confirm former studies showing that the observed trends in sulphate and total nitrate concentrations from 1990 to 2009 are significantly lower than the trends in precursor emissions and precursor concentrations. The model captured these non-linear responses to the emission changes well. Using the LOTOS-EUROS source apportionment module trends in formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulphate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the

  6. Aerosol and Inorganic Gaseous Iodine at Appledore Island, Maine During Summers 2004, 2005 and 2006

    NASA Astrophysics Data System (ADS)

    Pszenny, A.; Cotter, K.; Deegan, B.; Fischer, E.; Griffin, R.; Johnson, D.; Keene, W.; Maben, J.; Seidel, T.; Smith, A.; Ziemba, L.

    2006-12-01

    Iodine chemistry may affect the ozone budget in the marine atmosphere and has been hypothesized to play an important role in aerosol nucleation and/or growth in surface air, particularly in coastal regions where marine macrophytes are a prolific source of organoiodine gases. Total iodine was determined by neutron activation analysis in: 1) daytime and nighttime samples of bulk and size segregated aerosols (Iaer) and of inorganic gaseous iodine (Iig) collected on LiOH-impregnated filters during summer 2004, 2) daytime and nighttime samples of PM2.5 aerosol samples collected during summers 2005 and 2006, and 3) 1- to 3- hour duration PM2.5 samples collected over four diel cycles during summer 2006 at Appledore Island (AI), ME, approximately 10 km offshore from Portsmouth, NH. A parallel set of PM2.5 samples was collected in 2005 at Durham, NH, approximately 20 km inland from Portsmouth. The 2004 data indicated that the inorganic I pool at AI is mainly gaseous (average 88%) and that Iaer is mainly (average 88%) associated with sub-μm diameter particles. Concentrations in both phases were similar to those observed by others in the 1970s over the tropical and subtropical North Atlantic. Daytime Iaer and Iig concentrations both tended to be greater than respective nighttime concentrations. Iaer concentrations in 2005 and 2006 were significantly higher than in 2004 and displayed pronounced day/night differences. The diel cycle studies in 2006 confirmed that Iaer was low at night (average 3.3 ng m-3) and high (average 8.3 ng m-3) during the day. The timing of the daily maximum varied over the four days sampled. These data imply active multiphase photochemical processing of iodine in the vicinity of the AI site. Iaer concentrations at the Durham site inland were significantly lower than at AI and showed no significant day/night difference.

  7. Individual Aerosol Particles from Biomass Burning in Southern Africa Compositions and Aging of Inorganic Particles. 2; Compositions and Aging of Inorganic Particles

    NASA Technical Reports Server (NTRS)

    Li, Jia; Posfai, Mihaly; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen- bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  8. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  9. Hygroscopicity and volatility of semi-volatile organic components in optical levitated single organic/inorganic aqueous aerosol droplet

    NASA Astrophysics Data System (ADS)

    Cai, C.; Zhao, C.

    2017-12-01

    Quantifying the gas/particle partitioning of organic compounds is of great significance to the understanding of atmospheric aerosol indirect effect. Accurate determination of the hygroscopicities and vapor pressures of semi-volatile organic compounds (SVOC) is of crucial importance in studying their partitioning behavior into atmospheric aerosol, as current published vapor pressures results of compounds of interest (usually with vapor pressures smaller than 0.01 Pa) vary by several orders of magnitude. On the other hand, influences on SVOCs evaporation from participation of inorganic species remains ambiguous. In this study we present quantitative investigation of hygroscopicities and volatilities of single aerosol droplets in an aerosol optical tweezers. The trapped droplet (3-7 µm radii) in the aerosol optical tweezers acts as a micro cavity, which stimulates the cavity enhanced Raman spectroscopy (CERS) signal. Size and composition of the particle are calculated from Mie fit to the positions of the "whispering gallery modes" in the CERS fingerprint. Hygroscopic behaviors and SVOC pure component vapor pressure can then be extracted from the correlation between the changing droplet radius and solute concentration (derived from experimentally determined RI real part). We will further present the influences between mass transfer on the gas-particle interface and within the droplet.

  10. Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI Ultraviolet Aerosol Index

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; Li, Chi; Torres, Omar; Manning, Max; Boys, Brian L.

    2018-06-01

    Observations of aerosol scattering and absorption offer valuable information about aerosol composition. We apply a simulation of the Ultraviolet Aerosol Index (UVAI), a method of detecting aerosol absorption from satellite observations, to interpret UVAI values observed by the Ozone Monitoring Instrument (OMI) from 2005 to 2015 to understand global trends in aerosol composition. We conduct our simulation using the vector radiative transfer model VLIDORT with aerosol fields from the global chemical transport model GEOS-Chem. We examine the 2005-2015 trends in individual aerosol species from GEOS-Chem and apply these trends to the UVAI simulation to calculate the change in simulated UVAI due to the trends in individual aerosol species. We find that global trends in the UVAI are largely explained by trends in absorption by mineral dust, absorption by brown carbon, and scattering by secondary inorganic aerosol. Trends in absorption by mineral dust dominate the simulated UVAI trends over North Africa, the Middle East, East Asia, and Australia. The UVAI simulation resolves observed negative UVAI trends well over Australia, but underestimates positive UVAI trends over North Africa and Central Asia near the Aral Sea and underestimates negative UVAI trends over East Asia. We find evidence of an increasing dust source from the desiccating Aral Sea that may not be well represented by the current generation of models. Trends in absorption by brown carbon dominate the simulated UVAI trends over biomass burning regions. The UVAI simulation reproduces observed negative trends over central South America and West Africa, but underestimates observed UVAI trends over boreal forests. Trends in scattering by secondary inorganic aerosol dominate the simulated UVAI trends over the eastern United States and eastern India. The UVAI simulation slightly overestimates the observed positive UVAI trends over the eastern United States and underestimates the observed negative UVAI trends over

  11. IS THE SIZE DISTRIBUTION OF URBAN AEROSOLS DETERMINED BY THERMODYNAMIC EQUILIBRIUM? (R826371C005)

    EPA Science Inventory

    A size-resolved equilibrium model, SELIQUID, is presented and used to simulate the size–composition distribution of semi-volatile inorganic aerosol in an urban environment. The model uses the efflorescence branch of aerosol behavior to predict the equilibrium partitioni...

  12. PREDICTION OF MULTICOMPONENT INORGANIC ATMOSPHERIC AEROSOL BEHAVIOR. (R824793)

    EPA Science Inventory

    Many existing models calculate the composition of the atmospheric aerosol system by solving a set of algebraic equations based on reversible reactions derived from thermodynamic equilibrium. Some models rely on an a priori knowledge of the presence of components in certain relati...

  13. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    PubMed

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  14. Current state of aerosol nucleation parameterizations for air-quality and climate modeling

    NASA Astrophysics Data System (ADS)

    Semeniuk, Kirill; Dastoor, Ashu

    2018-04-01

    Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.

  15. Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Kawamura, K.; Umarji, G. S.; Tachibana, E.; Patil, R. S.; Gupta, P. K.

    2012-08-01

    To better understand the sources of PM10 samples from Mumbai, India, aerosol chemical compositions, i.e. total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied together with specific markers such as methanesulfonate (MSA), oxalic acid (C2), azelaic acid (C9), and levoglucosan. The results revealed that biofuel/biomass burning and fossil fuel combustion are the major sources of the Mumbai aerosols. Nitrogen-isotopic (δ15N) composition of aerosol total nitrogen, which ranged from 18.1 to 25.4‰, also suggest that biofuel/biomass burning is the dominant source in both summer and winter seasons. Aerosol mass concentrations of major species increased 3-4 times in winter compared to summer, indicating an enhanced emission from these sources in winter season. Photochemical production tracers, C2 diacid and nssSO42- do not show diurnal changes. Concentrations of C2 diacid and WSOC show a strong correlation (r2 = 0.95). In addition, WSOC to OC (or TC) ratios remain almost constant for day- (0.37 ± 0.06 (0.28 ± 0.04)) and nighttime (0.38 ± 0.07 (0.28 ± 0.06)), suggesting that mixing of fresh secondary organic aerosols is not significant rather the Mumbai aerosols are photochemically well processed. Concentrations of MSA and C9 diacid present a positive correlation (r2 = 0.75), indicating a marine influence on Mumbai aerosols in addition to local/regional influence. Backward air mass trajectory analyses further suggested that the Mumbai aerosols are largely influenced by long-range continental and regional transport. Stable C-isotopic ratios (δ13C) of TC ranged from -27.0 to -25.4‰ with slightly lower average (-26.5 ± 0.3‰) in summer than in winter (-25.9 ± 0.3‰). Positive correlation between WSOC/TC ratios and δ13C values suggested that the increment in δ13C of wintertime TC may be caused by prolonged photochemical processing of organic aerosols in this season. This study suggests

  16. Chemical composition of atmospheric aerosols resolved via positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael

    2017-04-01

    Atmospheric particulate matter is a complex mixture of various chemical species such as organic compounds, sulfates, nitrates, ammonia, chlorides, black carbon and sea salt. As aerosol chemical composition strongly influences aerosol climate effects (via cloud condensation nucleus activation, hygroscopic properties, aerosol optics, volatility and condensation) as well as health effects (toxicity, carcinogenicity, particle morphology), detailed understanding of atmospheric fine particle composition is widely beneficial for understanding these interactions. Unfortunately the comprehensive, detailed measurement of aerosol chemistry remains difficult due to the wide range of compounds present in the atmosphere as well as for the miniscule mass of the particles themselves compared to their carrier gas. Aerosol mass spectrometer (AMS; Canagaratna et al., 2007) is an instrument often used for characterization of non-refractive aerosol types: the near-universal vaporization and ionisation technique allows for measurement of most atmospheric-relevant compounds (with the notable exception of refractory matter such as sea salt, black carbon, metals and crustal matter). The downside of the hard ionisation applied is extensive fragmentation of sample molecules. However, the apparent loss of information in fragmentation can be partly offset by applying advanced statistical methods to extract information from the fragmentation patterns. In aerosol mass spectrometry statistical analysis methods, such as positive matrix factorization (PMF; Paatero, 1999) are usually applied for aerosol organic component only, to keep the number of factors to be resolved manageable, to retain the inorganic components for solution validation via correlation analysis, and to avoid inorganic species dominating the factor model. However, this practice smears out the interactions between organic and inorganic chemical components, and hinders the understanding of the connections between primary and

  17. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean

  18. Sensitivity of Aerosol Mass and Microphysics to Treatments of Condensational Growth of Secondary Organic Compounds in a Regional Model

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; Lowe, D.; McFiggans, G.; Zaveri, R. A.

    2016-12-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight.For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin volatility basis set (VBS) treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organic compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased.This work was supported by the Nature Environment

  19. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. J. H.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.

    2015-04-01

    In this study we present a dynamic model evaluation of chemistry transport model LOTOS-EUROS (LOng Term Ozone Simulation - EURopean Operational Smog) to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by RACMO2 (Regional Atmospheric Climate MOdel). Observations at European rural background sites have been used as a reference for the model evaluation. To ensure the consistency of the used observational data, stringent selection criteria were applied, including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulfur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both the observations and the model show the largest part of the decline in the 1990s, while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000 and 2009. Furthermore, the results confirm former studies showing that the observed trends in sulfate and total nitrate concentrations from 1990 to 2009 are lower than the trends in precursor emissions and precursor concentrations. The model captured well these non-linear responses to the emission changes. Using the LOTOS-EUROS source apportionment module, trends in the formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulfate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit

  20. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  1. Modeling Atmospheric Aerosols in WRF/Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Hu, X.-M.; Howell, G.

    2005-06-01

    In this study, three aerosol modules are tested and compared. The first module is the Modal Aerosol Dynamics Model for Europe (MADE) with the secondary organic aerosol model (SORGAM) (referred to as MADE/SORGAM). The second module is the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). The third module is the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID). The three modules differ in terms of size representation used, chemical species treated, assumptions and numerical algorithms used. Table 1 compares the major processes among the three aerosol modules.

  2. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; Croteau, Philip; Canagaratna, Manjula R.; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2017-08-01

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH4)2SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ˜ 200-800 °C) on the detected fragments, CE and size distributions are investigated. A Tv of 500-550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH4NO3) and comparable to or higher than the SV for less-volatile species (e.g. (NH4)2SO4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very large changes for the

  3. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  4. Sensitivity of Aerosol Mass and Microphysics to varying treatments of Condensational Growth of Secondary Organic Compounds in a regional model

    NASA Astrophysics Data System (ADS)

    Lowe, Douglas; Topping, David; McFiggans, Gordon

    2017-04-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight. For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin VBS treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organics compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased. This work was supported by the Natural Environment Research Council within

  5. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  6. Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Kawamura, K.; Umarji, G. S.; Tachibana, E.; Patil, R. S.; Gupta, P. K.

    2013-05-01

    To better understand the sources of PM10 samples in Mumbai, India, aerosol chemical composition, i.e., total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied together with specific markers such as methanesulfonate (MSA), oxalic acid (C2), azelaic acid (C9), and levoglucosan. The results revealed that biofuel/biomass burning and fossil fuel combustion are the major sources of the Mumbai aerosols. Nitrogen-isotopic (δ15N) composition of aerosol total nitrogen, which ranged from 18.1 to 25.4‰, also suggests that biofuel/biomass burning is a predominate source in both the summer and winter seasons. Aerosol mass concentrations of major species increased 3-4 times in winter compared to summer, indicating enhanced emission from these sources in the winter season. Photochemical production tracers, C2 diacid and nssSO42-, do not show diurnal changes. Concentrations of C2 diacid and WSOC show a strong correlation (r2 = 0.95). In addition, WSOC to OC (or TC) ratios remain almost constant for daytime (0.37 ± 0.06 (0.28 ± 0.04)) and nighttime (0.38 ± 0.07 (0.28 ± 0.06)), suggesting that mixing of fresh secondary organic aerosols is not significant and the Mumbai aerosols are photochemically well processed. Concentrations of MSA and C9 diacid present a positive correlation (r2 = 0.75), indicating a marine influence on Mumbai aerosols in addition to local/regional influence. Backward air mass trajectory analyses further suggested that the Mumbai aerosols are largely influenced by long-range continental and regional transport. Stable C-isotopic ratios (δ13C) of TC ranged from -27.0 to -25.4‰, with slightly lower average (-26.5 ± 0.3‰) in summer than in winter (-25.9 ± 0.3‰). Positive correlation between WSOC/TC ratios and δ13C values suggested that the relative increment in 13C of wintertime TC may be caused by prolonged photochemical processing of organic aerosols in this season. This

  7. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    USDA-ARS?s Scientific Manuscript database

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  8. Modeling the Absorbing Aerosol Index

    NASA Technical Reports Server (NTRS)

    Penner, Joyce; Zhang, Sophia

    2003-01-01

    We propose a scheme to model the absorbing aerosol index and improve the biomass carbon inventories by optimizing the difference between TOMS aerosol index (AI) and modeled AI with an inverse model. Two absorbing aerosol types are considered, including biomass carbon and mineral dust. A priori biomass carbon source was generated by Liousse et al [1996]. Mineral dust emission is parameterized according to surface wind and soil moisture using the method developed by Ginoux [2000]. In this initial study, the coupled CCM1 and GRANTOUR model was used to determine the aerosol spatial and temporal distribution. With modeled aerosol concentrations and optical properties, we calculate the radiance at the top of the atmosphere at 340 nm and 380 nm with a radiative transfer model. The contrast of radiance at these two wavelengths will be used to calculate AI. Then we compare the modeled AI with TOMS AI. This paper reports our initial modeling for AI and its comparison with TOMS Nimbus 7 AI. For our follow-on project we will model the global AI with aerosol spatial and temporal distribution recomputed from the IMPACT model and DAO GEOS-1 meteorology fields. Then we will build an inverse model, which applies a Bayesian inverse technique to optimize the agreement of between model and observational data. The inverse model will tune the biomass burning source strength to reduce the difference between modelled AI and TOMS AI. Further simulations with a posteriori biomass carbon sources from the inverse model will be carried out. Results will be compared to available observations such as surface concentration and aerosol optical depth.

  9. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  10. Effect of Inorganic Salts on the Volatility of Organic Acids

    PubMed Central

    2014-01-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  11. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  12. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; hide

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  13. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    PubMed

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  14. On the Complex Coupling Between the Production of Ozone and Secondary Organic Aerosol in Polluted Urban Regions

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Stockwell, W. R.; Morris, V. R.; Fitzgerald, R. M.

    2016-12-01

    The major photochemical processes that produce ozone and aerosols are coupled together strongly in the polluted urban atmosphere. Aerosols are either directly emitted or formed through the same kind of chemistry that leads to the production of ozone. The aerosols produced through atmospheric chemistry are known as secondary aerosols and they may be composed of inorganic (nitrates, sulfates) or organic compounds. Wind blown dust and soot are two examples of primary aerosols. The component of secondary inorganic aerosols includes compounds such as ammonium nitrate, ammonium bisulfate and ammonium sulfate. Secondary organic aerosols are a very important component of PM with strong implications for health. The formation of secondary organic aerosol is linked with ozone photochemistry through the reactions of volatile organic compounds (VOC). The oxidation of VOC produces radicals that convert nitric oxide to nitrogen dioxide that photolyze to produce ozone. Larger VOC (those with more carbon atoms) undergo a number of oxidation cycles that add oxygen atoms to large organic molecules. The vapor pressure of many of these highly oxidized compounds is sufficiently low that they condense to produce secondary organic aerosols. The Community Multi-scale Air Quality model (CMAQ) and other chemical simulations have been made to quantify the relationship between varying emissions of VOC and NOx and the production of inorganic and secondary organic aerosols. The results from this analysis will be presented.

  15. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    DOE PAGES

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; ...

    2017-08-15

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in themore » laboratory. Four standard species, NH 4NO 3, NaNO 3, (NH 4) 2SO 4 and NH 4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature ( T v ∼ 200–800 °C) on the detected fragments, CE and size distributions are investigated. A T v of 500–550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH 4NO 3) and comparable to or higher than the SV for less-volatile species (e.g. (NH 4) 2SO 4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO 3 and SO 4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO 2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH 4NO 3 and comparable to the SV for NaNO 3. . We observe an extremely consistent fragmentation for

  16. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in themore » laboratory. Four standard species, NH 4NO 3, NaNO 3, (NH 4) 2SO 4 and NH 4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature ( T v ∼ 200–800 °C) on the detected fragments, CE and size distributions are investigated. A T v of 500–550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH 4NO 3) and comparable to or higher than the SV for less-volatile species (e.g. (NH 4) 2SO 4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO 3 and SO 4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO 2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH 4NO 3 and comparable to the SV for NaNO 3. . We observe an extremely consistent fragmentation for

  17. Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai

    NASA Astrophysics Data System (ADS)

    Ding, X. X.; Kong, L. D.; Du, C. T.; Zhanzakova, A.; Fu, H. B.; Tang, X. F.; Wang, L.; Yang, X.; Chen, J. M.; Cheng, T. T.

    2017-10-01

    Size-segregated aerosol particles were collected with a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) at an urban site in Shanghai, China for four non-consecutive months representing four seasons from 2015 to 2016. Chemical composition, including water-soluble ions as well as organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC) of size-resolved (0.056-18 μm) atmospheric aerosols in four seasons and in different polluted cases were studied. The size distributions of sulfate, nitrate and ammonium (SNA) and carbonaceous aerosol (OC, EC and SOC) were discussed and the potential sources of PM1.8-associated secondary species (SO42-, NO3-, SNA and SOC) in different seasons were identified by potential source contribution function (PSCF) model. Results showed that atmospheric ultrafine and fine particle pollution in Shanghai were very serious during the study period. Most of the water-soluble ions tended to be enriched in fine particles, especially being abundant in the droplet mode in polluted cases. Compared with sulfate, size distributions of nitrate and ammonium presented more significant seasonal variations and showed distinctive characteristics in polluted days. Abundant nitrate was concentrated in fine particles in cold seasons (spring and winter), whereas it was enriched in coarse mode during summer and autumn. The droplet mode sulfate with high concentration did not result in the aggravation of air pollution, while the nucleation mode sulfate may have made a great contribution to the air pollution in urban Shanghai. It was also found that the formation of air pollution in urban Shanghai had a significant link with nitrate and ammonium, especially with nitrate and ammonium in condensation mode and droplet mode, and the contribution of sulfate to the pollution formation in Shanghai would somehow be surpassed by the increasing nitrate and ammonium. OC and EC concentrations from spring to winter were found to be 11.10, 7.10, 12

  18. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-07-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.

  19. Simplified aerosol modeling for variational data assimilation

    NASA Astrophysics Data System (ADS)

    Huneeus, N.; Boucher, O.; Chevallier, F.

    2009-11-01

    We have developed a simplified aerosol model together with its tangent linear and adjoint versions for the ultimate aim of optimizing global aerosol and aerosol precursor emission using variational data assimilation. The model was derived from the general circulation model LMDz; it groups together the 24 aerosol species simulated in LMDz into 4 species, namely gaseous precursors, fine mode aerosols, coarse mode desert dust and coarse mode sea salt. The emissions have been kept as in the original model. Modifications, however, were introduced in the computation of aerosol optical depth and in the processes of sedimentation, dry and wet deposition and sulphur chemistry to ensure consistency with the new set of species and their composition. The simplified model successfully manages to reproduce the main features of the aerosol distribution in LMDz. The largest differences in aerosol load are observed for fine mode aerosols and gaseous precursors. Differences between the original and simplified models are mainly associated to the new deposition and sedimentation velocities consistent with the definition of species in the simplified model and the simplification of the sulphur chemistry. Furthermore, simulated aerosol optical depth remains within the variability of monthly AERONET observations for all aerosol types and all sites throughout most of the year. Largest differences are observed over sites with strong desert dust influence. In terms of the daily aerosol variability, the model is less able to reproduce the observed variability from the AERONET data with larger discrepancies in stations affected by industrial aerosols. The simplified model however, closely follows the daily simulation from LMDz. Sensitivity analyses with the tangent linear version show that the simplified sulphur chemistry is the dominant process responsible for the strong non-linearity of the model.

  20. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  1. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  2. Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J.

    2011-12-01

    Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal

  3. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  4. A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error: Diagnosing Model Aerosol Forcing Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. L.; Feldman, D. R.; Freidenreich, S.

    A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. Thesemore » diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited (~1 W/m 2) and also varies spatially and with intrinsic aerosol optical properties. The findings presented here underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.« less

  5. A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error: Diagnosing Model Aerosol Forcing Error

    DOE PAGES

    Jones, A. L.; Feldman, D. R.; Freidenreich, S.; ...

    2017-12-07

    A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. Thesemore » diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited (~1 W/m 2) and also varies spatially and with intrinsic aerosol optical properties. The findings presented here underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.« less

  6. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  7. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  8. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-02-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps) are here revisited in view to reconstruct past aerosol load of the free European troposphere from prior World War II to present. The extended array of inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, HUmic LIke Substances, dissolved organic carbon, water insoluble organic carbon, and black carbon) compounds and fractions already investigated permit to examine the overall aerosol composition and its change over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). It is shown that not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarii dealing with climate forcing by atmospheric aerosol.

  9. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  10. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  11. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind

  12. Physical and Chemical Properties of Anthropogenic Aerosols: An Overview

    EPA Science Inventory

    Aerosol chemical composition is complex. Combustion aerosols can comprise tens of thousands of organic compounds, refractory brown and black carbon, heavy metals, cations, anions, salts, and other inorganic phases. Aerosol organic matter normally contains semivolatile material th...

  13. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  14. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  15. Fog scavenging of organic and inorganic aerosol in the Po Valley

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Massoli, P.; Giulianelli, L.; Rinaldi, M.; Paglione, M.; Pollini, F.; Lanconelli, C.; Poluzzi, V.; Carbone, S.; Hillamo, R.; Russell, L. M.; Facchini, M. C.; Fuzzi, S.

    2014-07-01

    The interaction of aerosol with atmospheric water affects the processing and wet removal of atmospheric particles. Understanding such interaction is mandatory to improve model description of aerosol lifetime and ageing. We analyzed the aerosol-water interaction at high relative humidity during fog events in the Po Valley within the framework of the Agenzia Regionale per la Prevenzione e l'Ambiente (ARPA) - Emilia Romagna supersite project. For the first time in this area, the changes in particle chemical composition caused by fog are discussed along with changes in particle microphysics. During the experiment, 14 fog events were observed. The average mass scavenging efficiency was 70% for nitrate, 68% for ammonium, 61% for sulfate, 50% for organics, and 39% for black carbon. After fog formation, the interstitial aerosol was dominated by particles smaller than 200 nm Dva (vacuum aerodynamic diameter) and enriched in carbonaceous aerosol, mainly black carbon and water-insoluble organic aerosol. For each fog event, the size-segregated scavenging efficiency of nitrate and organic aerosol (OA) was calculated by comparing chemical species size distribution before and after fog formation. For both nitrate and OA, the size-segregated scavenging efficiency followed a sigmoidal curve, with values close to zero below 100 nm Dva and close to 1 above 700 nm Dva. OA was able to affect scavenging efficiency of nitrate in particles smaller than 300 nm Dva. A linear correlation between nitrate scavenging and particle hygroscopicity (κ) was observed, indicating that 44-51% of the variability of nitrate scavenging in smaller particles (below 300 nm Dva) was explained by changes in particle chemical composition. The size-segregated scavenging curves of OA followed those of nitrate, suggesting that organic scavenging was controlled by mixing with water-soluble species. In particular, functional group composition and OA elemental analysis indicated that more oxidized OA was scavenged

  16. Introduction of the new concept: Potential Aerosol Mass (PAM) for Inorganic and Organic Secondary Aerosol

    NASA Astrophysics Data System (ADS)

    Kang, E.; Root, M. J.; Brune, W. H.

    2006-12-01

    A new concept, the Potential Aerosol Mass (PAM), is being developed and tested in the laboratory with the goal of deploying instruments to measure PAM in the atmosphere. PAM can be defined as the maximum aerosol mass that precursor gases can be oxidized to form. In the PAM concept, all precursor gases are oxidized to low volatile compounds with excessive amount of oxidants in a small continuous-flow Teflon cylinder, resulting in aerosol formation. Excessive amounts of OH and O3 are produced by a UV light that shines into the Teflon chamber. For our studies, the aerosol mass is then detected with a real-time aerosol mass measurement instrument, the Rupprecht and Patashnick Tapered Element Oscillating Microbalance (TEOM) and Filter Dynamic Measurement System (FDMS). As a test of the system, SO2 was oxidized to sulfate; the measured and calculated conversion ratios of sulfate aerosol mass to SO2 mass agree to within 10%. We will discuss the results of a series of laboratory tests that have been conducted with α-pinene to determine the variables that most affect its Secondary Organic Aerosol (SOA) yield. We will also discuss the results of some atmospheric measurement tests made at a site on the Penn State University campus.

  17. What Aerosol Water do Organic Compounds See?

    EPA Science Inventory

    Large amounts of aerosol water are associated with inorganic salts such as ammonium sulfate with generally smaller but important contributions from hydrophilic organics. Ambient aerosols can be externally or internally mixed in addition to containing one or multiple phases. The d...

  18. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  19. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  20. Aerosol composition and the contribution of SOA formation over Mediterranean forests

    NASA Astrophysics Data System (ADS)

    Freney, Evelyn; Sellegri, Karine; Chrit, Mounir; Adachi, Kouji; Brito, Joel; Waked, Antoine; Borbon, Agnès; Colomb, Aurélie; Dupuy, Régis; Pichon, Jean-Marc; Bouvier, Laetitia; Delon, Claire; Jambert, Corinne; Durand, Pierre; Bourianne, Thierry; Gaimoz, Cécile; Triquet, Sylvain; Féron, Anaïs; Beekmann, Matthias; Dulac, François; Sartelet, Karine

    2018-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), a series of aerosol and gas-phase measurements were deployed aboard the SAFIRE ATR42 research aircraft in summer 2014. The present study focuses on the four flights performed in late June early July over two forested regions in the south of France. We combine in situ observations and model simulations to aid in the understanding of secondary organic aerosol (SOA) formation over these forested areas in the Mediterranean and to highlight the role of different gas-phase precursors. The non-refractory particulate species measured by a compact aerosol time-of-flight mass spectrometer (cToF-AMS) were dominated by organics (60 to 72 %) followed by a combined contribution of 25 % by ammonia and sulfate aerosols. The contribution from nitrate and black carbon (BC) particles was less than 5 % of the total PM1 mass concentration. Measurements of non-refractory species from off-line transmission electron microscopy (TEM) showed that particles have different mixing states and that large fractions (35 %) of the measured particles were organic aerosol containing C, O, and S but without inclusions of crystalline sulfate particles. The organic aerosol measured using the cToF-AMS contained only evidence of oxidized organic aerosol (OOA), without a contribution of fresh primary organic aerosol. Positive matrix factorization (PMF) on the combined organic-inorganic matrices separated the oxidized organic aerosol into a more-oxidized organic aerosol (MOOA), and a less-oxidized organic aerosol (LOOA). The MOOA component is associated with inorganic species and had higher contributions of m/z 44 than the LOOA factor. The LOOA factor is not associated with inorganic species and correlates well with biogenic volatile organic species measured with a proton-transfer-reaction mass spectrometer, such as isoprene and its oxidation products (methyl vinyl ketone, MVK; methacroleine, MACR; and isoprene hydroxyhydroperoxides

  1. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  2. Phase Partitioning of Soluble Trace Gases with Size-Resolved Aerosols during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) Campaign

    NASA Astrophysics Data System (ADS)

    Young, A.; Keene, W. C.; Pszenny, A.; Sander, R.; Maben, J. R.; Warrick-Wriston, C.; Bearekman, R.

    2011-12-01

    During February and March 2011, size-resolved and bulk aerosol were sampled at 22 m above the surface over nominal 12-hour (daytime and nighttime) intervals from the Boulder Atmospheric Observatory tower (40.05 N, 105.01 W, 1584-m elevation). Samples were analyzed for major organic and inorganic ionic constituents by high performance ion chromatography (IC). Soluble trace gases (HCl, HNO3, NH3, HCOOH, and CH3COOH) were sampled in parallel over 2-hour intervals with tandem mist chambers and analyzed on site by IC. NH4+, NO3-, and SO42- were the major ionic components of aerosols (median values of 57.7, 34.5, and 7.3 nmol m-3 at STP, respectively, N = 45) with 86%, 82%, and 82%, respectively, associated with sub-μm size fractions. Cl- and Na+ were present at significant concentrations (median values of 6.8 and 6.6 nmol m-3, respectively) but were associated primarily with super-μm size fractions (75% and 78%, respectively). Median values (and ranges) for HCl, HNO3, and NH3 were 21 (<20-1257), 120 (<45-1638), and 5259 (<1432-48,583) pptv, respectively. Liquid water contents of size-resolved aerosols and activity coefficients for major ionic constituents were calculated with the Extended Aerosol Inorganic Model II and IV (E-AIM) based on the measured aerosol composition, RH, temperature, and pressure. Size-resolved aerosol pHs were inferred from the measured phase partitioning of HCl, HNO3, and NH3. Major controls of phase partitioning and associated chemical dynamics will be presented.

  3. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching

    2013-10-01

    PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.

  4. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  5. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  6. A hybrid formalism of aerosol gas phase interaction for 3-D global models

    NASA Astrophysics Data System (ADS)

    Benduhn, F.

    2009-04-01

    Aerosol chemical composition is a relevant factor to the global climate system with respect to both atmospheric chemistry and the aerosol direct and indirect effects. Aerosol chemical composition determines the capacity of aerosol particles to act as cloud condensation nuclei both explicitly via particle size and implicitly via the aerosol hygroscopic property. Due to the primary role of clouds in the climate system and the sensitivity of cloud formation and radiative properties to the cloud droplet number it is necessary to determine with accuracy the chemical composition of the aerosol. Dissolution, although a formally fairly well known process, may be subject to numerically prohibitive properties that result from the chemical interaction of the species engaged. So-far approaches to model the dissolution of inorganics into the aerosol liquid phase in the framework of a 3-D global model were based on an equilibrium, transient or hybrid equilibrium-transient approach. All of these methods present the disadvantage of a priori assumptions with respect to the mechanism and/or are numerically not manageable in the context of a global climate system model. In this paper a new hybrid formalism to aerosol gas phase interaction is presented within the framework of the H2SO4/HNO3/HCl/NH3 system and a modal approach of aerosol size discretisation. The formalism is distinct from prior hybrid approaches in as much as no a priori assumption on the nature of the regime a particular aerosol mode is in is made. Whether a particular mode is set to be in the equilibrium or the transitory regime is continuously determined during each time increment against relevant criteria considering the estimated equilibration time interval and the interdependence of the aerosol modes relative to the partitioning of the dissolving species. Doing this the aerosol composition range of numerical stiffness due to species interaction during transient dissolution is effectively eluded, and the numerical

  7. Analysis of the chemical and physical properties of combustion aerosols: Properties overview

    EPA Science Inventory

    Aerosol chemical composition is remarkably complex. Combustion aerosols can comprise tens of thousands of organic compounds and fragments, refractory carbon, metals, cations, anions, salts, and other inorganic phases and substituents [Hays et al., 2004]. Aerosol organic matter no...

  8. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-02-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements, which can lead to further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP "Supersite", Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-), were the dominating species (63%) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt, was the main component (73%) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17%) as providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where as smaller loadings at the site tended to be dominated by sea salt. As with other Western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely, that organic acids contributed to the charge

  9. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-07-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements which can provide further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows for the characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP supersite, Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-) were the dominating species (63 %) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt was the main component (73 %) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17 %) providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where smaller loadings at the site tended to be dominated by sea salt. As with other western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely that organic acids contributed to the charge balance. This study demonstrates the UK

  10. Hygroscopic Characteristics of Organic Laden Ambient Aerosols in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Malm, W. C.; Day, D. E.; Kreidenweis, S. M.; Collett, J. L.; Carrico, C. M.; Lee, T.; Bench, G.; Carrillo, J.

    2003-12-01

    Water absorption by inorganic compounds can be modeled with some degree of certainty; however, water uptake by ambient organic aerosols remains speculative. To improve the understanding of organic hygroscopicity, an aerosol characterization study was conducted at Yosemite National Park, California, starting in July and ending in the first week of September 2002. High time resolution measurement (15-minute time increments) of PM2.5 ionic species (Cl-, SO42-, NO3-, Na+, NH4+, K+, Mg2+, and Ca2+) were measured using PILS (Particle-Into-Liquid-System)/IC (Ion Chromatography). Commercially available annular denuders and a PM2.5 cyclone (URG) were used upstream of the PILS/IC to remove particles greater than 2.5 μm and acidic and basic gases. A dual wavelength aethalometer and an R&P particulate carbon monitor were used to measure carbon on a semi-continuous basis while a DRUM sampler allowed for semi-continuous estimates of concentrations of elements associated with crustal material. Standard IMPROVE type samplers were used to measure 24-hr integrated samples of these same aerosols. Two nephelometers operated in tandem, one dry and the other with a controlled humidity environment, were used to measure f(RH) = bscat(RH)/bscat,dry, where bscat(RH) is the scattering coefficient measured at some relative humidity and bscat,dry is the scattering coefficient measured at RH <10%. The aerosol composition was highly variable in time, with a strong diurnal cycle. Organic carbon mass was observed to be, on the average, 70% of the fine mass with days where its contribution was well over 95% of the mass. Measurements of carbon isotopes revealed the fraction of carbon from biogenic sources to range from approximately 73 to 95%. Water soluble potassium was highly correlated with carbon mass, suggesting the influence of wood smoke. The ionic fraction of the aerosol consisted primarily of ammonium sulfate and in most cases nitrate was in the form of sodium nitrate. Fine soil mass was

  11. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  12. Observations and Modeling of the Green Ocean Amazon 2014/15: Transmission Electron Microscopy Analysis of Aerosol Particles Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buseck, Peter

    2016-03-01

    During two Intensive Operational Periods (IOP), we collected samples at 3-hour intervals for transmission electron microscopy analysis. The resulting transmission electron microscopy images and compositions were analyzed for the samples of interest. Further analysis will be done especially for the plume of interest. We found solid spherical organic particles from rebounded samples collected with Professor Scot Martin’s group (Harvard University). Approximately 30% of the rebounded particles at 95% relative humidity were spherical organic particles. Their sources and formation process are not known, but such spherical particles could be solid and will have heterogeneous chemical reactions. We observed many organic particlesmore » that are internally mixed with inorganic elements such as potassium and nitrogen. They are either homogeneously mixed or have inorganic cores with organic aerosol coatings. Samples collected from the Manaus, Brazil, pollution plume included many nano-size soot particles mixed with organic material and sulfate. Aerosol particles from clean periods included organic aerosol particles, sulfate, sea salt, dust, and primary biogenic aerosol particles. There was more dust, primary biogenic aerosol, and tar balls in samples taken during IOP1 than those taken during IOP2. Many dust particles were found between March 2 and 3.« less

  13. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard A. Ferrare; David D. Turner

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  14. Size Distributions and Formation Pathways of Organic and Inorganic Constituents in Spring Aerosols from Okinawa Island in the Western North Pacific Rim: An Outflow Region of Asian Dusts

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Lazaar, M.; Kawamura, K.; Kunwar, B.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Size-segregated aerosols (9-stages) were collected at Okinawa Island in the western North Pacific Rim in spring 2008. The samples were analyzed for diacids (C2-C12), ω-oxoacids (ωC2-ωC9), a-dicarbonyls (C2-C3), organic carbon (OC), water-soluble OC (WSOC) and major ions to understand the sources and atmospheric processes in the outflow region of Asian pollutants. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids in all the size-segregated aerosols. ω-Oxoacids showed the predominance of glyoxylic acid (ωC2) whereas glyoxal (Gly) was more abundant than methylglyoxal in all the sizes. The abundant presence of sulfate as well as phthalic and adipic acids in Okinawa aerosols suggested a significant contribution of anthropogenic sources in East Asia via long-range atmospheric transport. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 µm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 µm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. An important mechanism for the formation of these organic species in Okinawa aerosols is probably gas phase oxidation of VOCs and subsequent in-cloud processing during long-range transport. Their characteristics size distribution implies that fine particles enriched with these organic and inorganic species could act as CCN to develop the cloud cover over the western North Pacific. The major peak of C9 and ωC9 on coarse mode suggest that they are produced by photooxidation of unsaturated fatty acids mainly derived from phytoplankton via heterogeneous reactions on sea spray particles. This study demonstrates that anthropogenic aerosols emitted from East Asia have significant influence on the compositions of organic and inorganic aerosols in the western North Pacific Rim.

  15. Aerosol-cloud interactions in a multi-scale modeling framework

    NASA Astrophysics Data System (ADS)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  16. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry

    PubMed Central

    Farmer, D. K.; Matsunaga, A.; Docherty, K. S.; Surratt, J. D.; Seinfeld, J. H.; Ziemann, P. J.; Jimenez, J. L.

    2010-01-01

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using fragment ratios, organonitrogen ions, ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species. PMID:20194777

  17. Aerosols in the CALIOPE air quality modelling system: evaluation and analysis of PM levels, optical depths and chemical composition over Europe

    NASA Astrophysics Data System (ADS)

    Basart, S.; Pay, M. T.; Jorba, O.; Pérez, C.; Jiménez-Guerrero, P.; Schulz, M.; Baldasano, J. M.

    2012-04-01

    The CALIOPE air quality modelling system is developed and applied to Europe with high spatial resolution (12 km × 12 km). The modelled daily-to-seasonal aerosol variability over Europe in 2004 is evaluated and analysed. Aerosols are estimated from two models, CMAQv4.5 (AERO4) and BSC-DREAM8b. CMAQv4.5 calculates biogenic, anthropogenic and sea salt aerosol and BSC-DREAM8b provides the natural mineral dust contribution from North African deserts. For the evaluation, we use daily PM10, PM2.5 and aerosol components data from 55 stations of the EMEP/CREATE network and total, coarse and fine aerosol optical depth (AOD) data from 35 stations of the AERONET sun photometer network. Annual correlations between modelled and observed values for PM10 and PM2.5 are 0.55 and 0.47, respectively. Correlations for total, coarse and fine AOD are 0.51, 0.63, and 0.53, respectively. The higher correlations of the PM10 and the coarse mode AOD are largely due to the accurate representation of the African dust influence in the forecasting system. Overall PM and AOD levels are underestimated. The evaluation of the aerosol components highlights underestimations in the fine fraction of carbonaceous matter (EC and OC) and secondary inorganic aerosols (SIA; i.e. nitrate, sulphate and ammonium). The scores of the bulk parameters are significantly improved after applying a simple model bias correction based on the observed aerosol composition. The simulated PM10 and AOD present maximum values over the industrialized and populated Po Valley and Benelux regions. SIA are dominant in the fine fraction representing up to 80% of the aerosol budget in latitudes north of 40° N. In southern Europe, high PM10 and AOD are linked to the desert dust transport from the Sahara which contributes up to 40% of the aerosol budget. Maximum seasonal ground-level concentrations (PM10 > 30 μg m-3) are found between spring and early autumn. We estimate that desert dust causes daily exceedances of the PM10 European

  18. Characterization of fine aerosol and its inorganic components at two rural locations in New York State.

    PubMed

    Sunder Raman, Ramya; Hopke, Philip K; Holsen, Thomas M

    2008-09-01

    Samples of PM(2.5) were collected to measure the concentrations of its chemical constituents at two rural locations, Potsdam and Stockton, NY from November 2002 to August 2005. These samples were collected on multiple filters at both sites, every third day for a 24-h interval with a speciation network sampler. The Teflo filters were analyzed for PM(2.5) mass by gravimetry, and elemental composition by X-ray fluorescence (XRF). Nylasorb filters and Teflo filters were leached with water and analyzed for anions and cations, respectively, by ion chromatography (IC). Fine particulate matter (PM(2.5)) mass and its inorganic component measurements were statistically characterized, and the temporal behavior of these species were assessed. Over the entire study period, PM(2.5) mass concentrations were lower at Potsdam (8.35 microg/m(3)) than at Stockton (10.24 microg/m(3)). At both locations, organic matter (OM) was the highest contributor to mass. Sulfate was the second highest contributor to mass at 27.0% at Potsdam, and 28.7% at Stockton. Nitrate contributions to mass of 8.9 and 9.5% at Potsdam and Stockton, respectively, were the third highest. At both locations, fine PM mass exhibited an annual cycle with a pronounced summer peak and indications of another peak during the winter, consistent with an overall increase in the rate of secondary aerosol formation during the summer, and increased partitioning of ammonium nitrate to the particle phase and condensation of other semi-volatiles during the winter, respectively. An ion-balance analysis indicated that at both locations, during the summers as well as in the winters, the aerosol was acidic. Lognormal frequency distribution fits to the measured mass concentrations on a seasonal basis indicated the overall increase in particle phase secondary aerosol (sulfate and SOA) concentrations during the summers compared to the winters at both locations.

  19. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-11-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1) shielding of inner monomers after particle consolidation or collapse with water uptake; (2) the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH) to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  20. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-07-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  1. Heterogeneous Uptake of HO2 Radicals onto Submicron Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; George, I. J.; Brooks, B.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2012-12-01

    OH and HO2 (HOx) radicals are closely coupled and OH is responsible for the majority of the oxidation in the troposphere and controls the concentrations of many trace species. Therefore, it is important to be able to accurately predict HOx concentrations. However, some field measurement studies have reported significantly lower HO2 radical concentrations than calculated by constrained box models using detailed chemical mechanisms. Although the inclusion of halogen chemistry into the mechanisms can explain much of the differences in the marine boundary layer (MBL) (1,2), HO2 uptake by aerosols has been suggested as a possible sink in the MBL (2), the Arctic troposphere (3) and the upper troposphere (4). There have been very few laboratory studies (5,6) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for a variety of atmospherically relevant inorganic and organic aerosols. The measurements were performed using an aerosol flow tube combined with a Fluorescence Assay by Gas Expansion (FAGE) detector. The sensitive FAGE cell allowed low HO2 concentrations (108-109 molecule cm-3) to be injected into the flow tube using a moveable injector. By moving the injector along the flow tube, position dependent HO2 decays were able to be recorded which when plotted against the total aerosol surface area allowed an uptake coefficient to be obtained. The aerosols were generated using an atomiser or by homogeneous nucleation and the total aerosol surface area was measured using a Scanning Mobility Particle Sizer. The HO2 uptake coefficient (γ) was measured at room temperature for dry inorganic salts and dry organics (γ< 0.004), wet inorganic salts and wet organics (γ= 0.002-0.005), wet copper doped ammonium sulfate aerosols (γ= 0.28± 0.05) and ammonium sulfate aerosols doped with different molar amounts of iron (γ= 0.003-0.06). The pH dependence of the HO2 uptake coefficient was investigated, however no

  2. Optical modeling of stratopheric aerosols - Present status

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Hofmann, D. J.

    1986-01-01

    A stratospheric aerosol optical model is developed which is based on a size distribution conforming to direct measurements. Additional constraints are consistent with large data sets of independently measured macroscopic aerosol properties such as mass and backscatter. The period under study covers background as well as highly disturbed volcanic conditions and an altitude interval ranging from the tropopause to about 30 km. The predictions of the model are used to form a basis for interpreting and intercomparing several diverse types of stratospheric aerosol measurement.

  3. Quantifying the response of the ORAC aerosol optical depth retrieval for MSG SEVIRI to aerosol model assumptions

    NASA Astrophysics Data System (ADS)

    Bulgin, Claire E.; Palmer, Paul I.; Merchant, Christopher J.; Siddans, Richard; Gonzi, Siegfried; Poulsen, Caroline A.; Thomas, Gareth E.; Sayer, Andrew M.; Carboni, Elisa; Grainger, Roy G.; Highwood, Eleanor J.; Ryder, Claire L.

    2011-03-01

    We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (MSG SEVIRI) to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 μm assuming a fixed aerosol optical depth of 0.5 by 10-15%, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution of the aerosol and find that this is unimportant in determining simulated radiance at 0.55 μm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol data set to correctly identify continental aerosol outflow from the African continent, and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban, and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2-1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50-70%.

  4. Background stratospheric aerosol and polar stratospheric cloud reference models

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.-H.; Pitts, M. C.

    1993-01-01

    A global aerosol climatology is evolving from the NASA satellite experiments SAM II, SAGE I, and SAGE II. In addition, polar stratospheric cloud (PSC) data have been obtained from these experiments over the last decade. An undated reference model of the optical characteristics of the background aerosol is described and a new aerosol reference model derived from the latest available data is proposed. The aerosol models are referenced to the height above the tropopause. The impact of a number of volcanic eruptions is described. In addition, a model describing the seasonal, longitudinal, and interannual variations in PSCs is presented.

  5. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  6. Aerosol as a player in the Arctic Amplification - an aerosol-climate model evaluation study

    NASA Astrophysics Data System (ADS)

    Schacht, Jacob; Heinold, Bernd; Tegen, Ina

    2017-04-01

    Climate warming is much more pronounced in the Arctic than in any other region on Earth - a phenomenon referred to as the "Arctic Amplification". This is closely related to a variety of specific feedback mechanisms, which relative importance, however, is not yet sufficiently understood. The local changes in the Arctic climate are far-reaching and affect for example the general atmospheric circulation and global energy transport. Aerosol particles from long-range transport and local sources play an important role in the Arctic system by modulating the energy balance (directly by interaction with solar and thermal infrared radiation and indirectly by changing cloud properties and atmospheric dynamics). The main source regions of anthropogenic aerosol are Europe and East Asia, but also local shipping and oil/gas extraction may contribute significantly. In addition, important sources are widespread, mainly natural boreal forest fires. Most of the European aerosol is transported through the lower atmospheric layers in wintertime. The Asian aerosol is transported through higher altitudes. Because of the usually pristine conditions in the Arctic even small absolute changes in aerosol concentration can have large impacts on the Arctic climate. Using global and Arctic-focused model simulations, we aim at investigating the sources and transport pathways of natural and anthropogenic aerosol to the Arctic region, as well as their impact on radiation and clouds. Here, we present first results from an aerosol-climate model evaluation study. Simulations were performed with the global aerosol-climate model ECHAM6-HAM2, using three different state-of-the-art emission inventories (ACCMIP, ACCMIP + GFAS emissions for wildfires and ECLIPSE). The runs were performed in nudged mode at T63 horizontal resolution (approximately 1.8°) with 47 vertical levels for the 10-year period 2006-2015. Black carbon (BC) and sulphate (SO4) are of particular interest. BC is highly absorbing in the

  7. pH Variance in Aerosols Undergoing Liquid-Liquid Phase Separation

    NASA Astrophysics Data System (ADS)

    Eddingsaas, N. C.; Dallemagne, M.; Huang, X.

    2014-12-01

    The water content of aerosols is largely governed by relative humidity (RH). As the relative humidity decreases, and thus the water content of aerosols, a number of processes occur including the shrinking of aerosols, the increase in concentration of components, and potentially the formation of liquid liquid phase separation (llps) due to the salting out of inorganic salts. The most ubiquitous salt in atmospheric aerosols is ammonium sulfate which results in many aerosols to be at least mildly acidic. However, during llps, the pH of the different phases is not necessarily the same. Many reactions that take place within atmospheric aerosols are acid catalyzed so a better understanding of the pH of the individual phases as well as the interface between the phases is important to understanding aerosol processing and aging. Through the use of pH sensitive dyes and confocal microscopy we have directly measured the pH of micron sized model aerosols during high RH where the aerosols are in a single phase, at intermediate while the aerosols are in llps, and low RH where the aerosols consist of one liquid phase and one solid phase. We will discuss the variation in RH during these different phase states in the presence and absence of excess sulfuric acid. We will also discuss how this variation in pH affects aging of aerosols.

  8. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  9. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  10. Seasonal dependence of aerosol processing in urban Philadelphia

    NASA Astrophysics Data System (ADS)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  11. Aerosol Optical Depth Over India

    NASA Astrophysics Data System (ADS)

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  12. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    PubMed

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  13. Observations and projections of visibility and aerosol optical thickness (1956-2100) in the Netherlands: impacts of time-varying aerosol composition and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Boers, R.; van Weele, M.; van Meijgaard, E.; Savenije, M.; Siebesma, A. P.; Bosveld, F.; Stammes, P.

    2015-01-01

    Time series of visibility and aerosol optical thickness for the Netherlands have been constructed for 1956-2100 based on observations and aerosol mass scenarios. Aerosol optical thickness from 1956 to 2013 has been reconstructed by converting time series of visibility to visible extinction which in turn are converted to aerosol optical thickness using an appropriate scaling depth. The reconstruction compares closely with remote sensing observations of aerosol optical thickness between 1960 and 2013. It appears that aerosol optical thickness was relatively constant over the Netherlands in the years 1955-1985. After 1985, visibility has improved, while at the same time aerosol optical thickness has decreased. Based on aerosol emission scenarios for the Netherlands three aerosol types have been identified: (1) a constant background consisting of sea salt and mineral dust, (2) a hydrophilic anthropogenic inorganic mixture, and (3) a partly hydrophobic mixture of black carbon (BC) and organic aerosols (OAs). A reduction in overall aerosol concentration turns out to be the most influential factor in the reduction in aerosol optical thickness. But during 1956-1985, an upward trend in hydrophilic aerosols and associated upward trend in optical extinction has partly compensated the overall reduction in optical extinction due to the reduction in less hydrophilic BC and OAs. A constant optical thickness ensues. This feature highlights the influence of aerosol hygroscopicity on time-varying signatures of atmospheric optical properties. Within the hydrophilic inorganic aerosol mixture there is a gradual shift from sulfur-based (1956-1985) to a nitrogen-based water aerosol chemistry (1990 onwards) but always modulated by the continual input of sodium from sea salt. From 2013 to 2100, visibility is expected to continue its increase, while at the same time optical thickness is foreseen to continue to decrease. The contribution of the hydrophilic mixture to the aerosol optical

  14. Reconstruction of Aerosol Concentration and Composition from Glacier Ice Cores

    NASA Astrophysics Data System (ADS)

    Vogel, Alexander; Dällenbach, Kaspar; El-Haddad, Imad; Wendl, Isabel; Eichler, Anja; Schwikowski, Margit

    2017-04-01

    Reconstruction of the concentration and composition of natural aerosol in an undisturbed atmosphere enables the evaluation of the understanding of aerosol-climate effects, which is currently based on highly uncertain emission inventories of the biosphere under pre-industrial conditions. Understanding of the natural state of the pre-industrial atmosphere and evaluating the atmospheric perturbations by anthropogenic emissions, and their potential feedbacks, is essential for accurate model predictions of the future climate (Boucher et al., 2013). Here, we present a new approach for the chemical characterization of the organic fraction preserved in cold-glacier ice cores. From this analysis historic trends of atmospheric organic aerosols are reconstructed, allowing new insights on organic aerosol composition and mass in the pre-industrial atmosphere, which can help to improve climate models through evaluation of our current understanding of aerosol radiative effects. We present results from a proof-of-principal study, analyzing an 800 year ice core record from the Lomonosovfonna glacier ice core, drilled in 2009 in Svalbard, Norway, using a setup that has until then only been applied on offline measurements of aerosol filter extracts (Dällenbach et al., 2016): The melted ice was nebulized and dried, such that aerosols are formed from the soluble and insoluble organic and inorganic compounds that are preserved in the ice. To improve the sensitivity, the aerosol stream was then enriched by the application of an online aerosol concentrator, before the aerosol was analyzed by electron ionization within a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We were able to demonstrate that this setup is a quantitative method toward nitrate and sulfate when internal inorganic standards of NH415NO3 and (NH4)234SO4 are added to the sample. Comparison between AMS and IC measurements of nitrate and sulfate resulted in an excellent agreement. The analysis of

  15. Structural models of inorganic fullerene-like structures

    NASA Astrophysics Data System (ADS)

    Ascencio, J. A.; Perez-Alvarez, M.; Molina, L. M.; Santiago, P.; José-Yacaman, M.

    2003-03-01

    In the study of fullerene-like structures, some of the more interesting systems are the inorganic cages, made of MoS 2 (usually named inorganic fullerenes), which have many important potential applications as lubricant and catalysts. In the present work, we report calculations for structural models of closed cage of inorganic fullerene-like structures for MoS 2 system. Three cage shapes were found to be the most stable: triangular pyramid, octahedron and dodecahedron. High resolution TEM images of MoS 2 cages structures were calculated to be compared with experimental data. Some examples of triangular pyramid and polyhedron in experimental MoS 2 samples are presented.

  16. Aerosols in the CALIOPE air quality modelling system: validation and analysis of PM levels, optical depths and chemical composition over Europe

    NASA Astrophysics Data System (ADS)

    Basart, S.; Pay, M. T.; Jorba, O.; Pérez, C.; Jiménez-Guerrero, P.; Schulz, M.; Baldasano, J. M.

    2011-07-01

    The CALIOPE high-resolution air quality modelling system is developed and applied to Europe (12 km × 12 km, 1 h). The modelled daily to seasonal aerosol variability over Europe in 2004 have been evaluated and analysed. The aerosols are estimated from two models, CMAQv4.5 (AERO4) and BSC-DREAM8b. CMAQv4.5 calculates biogenic, anthropogenic and sea salt aerosol and BSC-DREAM8b provides the natural mineral dust contribution from North African deserts. For the evaluation, we use daily PM10/PM2.5 and chemical composition data from 54 stations of the EMEP/CREATE network and coarse and fine aerosol optical depth (AOD) data from 35 stations of the AERONET sun photometer network. The model achieves daily PM10 and PM2.5 correlations of 0.57 and 0.47, respectively, and total, coarse and fine AOD correlations of 0.51, 0.63, and 0.53, respectively. The higher correlations of the PM10 and the coarse mode AOD are largely due to the accurate representation of the African dust influence in the forecasting system. Overall PM and AOD levels are underestimated. The evaluation of the chemical composition highlights underestimations of the modelled fine fractions particularly for carbonaceous matter (EC and OC) and secondary inorganic aerosols (SIA; i.e. nitrates, sulphates and ammonium). The scores of the bulk parameters are significantly improved after applying a simple model bias correction based on the chemical composition observations. SIA are dominant in the fine fractions representing up to 80 % of the aerosol budget in latitudes beyond 40° N. The highest aerosol concentrations are found over the industrialized and populated areas of the Po Valley and the Benelux regions. High values in southern Europe are linked to the transport of coarse particles from the Sahara desert which contributes up to 40 % of the total aerosol mass. Close to the surface, maxima dust seasonal concentrations (>30 μg m-3) are found between spring and early autumn. We estimate that desert dust causes

  17. Submicron aerosol organic functional groups, ions, and water content at the Centreville SEARCH site (Alabama), during SOAS campaign

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Ergin, G.; Modini, R. L.; Takahama, S.

    2013-12-01

    The SOAS campaign was conducted from June 1 to July 15 of 2013 in order to understand the relationship between biogenic and anthropogenic emissions in the South East US1,2. In this study, the organic and inorganic composition of submicron aerosol in the Centreville SEARCH site was measured by Fourier Transform Infrared Spectroscopy (FTIR) and the Ambient Ion Monitor (AIM; URG Corporation), whereas the aerosol water content was measured with a Dry Ambient Aerosol Size Spectrometer (DAASS)3. Organic functional group analysis was performed on PM1 aerosol selected by cyclone and collected on teflon filters with a time resolution of 4-12 hours, using one inlet heated to 50 °C and the other operated either at ambient temperature or 70 °C 4. The AIM measured both condensed and gas phase composition with a time resolution of 1 hour, providing partitioning behavior of inorganic species such as NH3/NH4+, HNO3/NO3-. These measurements collectively permit calculation of pure-component vapor pressures of candidate organic compounds and activity coefficients of interacting components in the condensed phase, using models such as SIMPOL.15, E-AIM6, and AIOMFAC7. From these results, the water content of the aerosol is predicted, and a comparison between modeled and measured partitioning of inorganic compounds and water vapor are discussed, in addition to organic aerosol volatility prediction based on functional group analysis. [1]- Goldstein, A.H., et al., Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(22), 8835-8840. [2]- Carlton, A.G., Turpin, B.J., 2013. Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmospheric Chemistry and Physics Discussions 13, 12743-12770. [3]- Khlystov, A., Stanier, C.O., Takahama, S., Pandis, S.N., 2005. Water content of ambient

  18. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    PubMed

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  19. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  20. ARM-Led Improvements Aerosols in Climate and Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghan, Steven J.; Penner, Joyce E.

    2016-07-25

    The DOE ARM program has played a foundational role in efforts to quantify aerosol effects on climate, beginning with the early back-of-the-envelope estimates of direct radiative forcing by anthropogenic sulfate and biomass burning aerosol (Penner et al., 1994). In this chapter we review the role that ARM has played in subsequent detailed estimates based on physically-based representations of aerosols in climate models. The focus is on quantifying the direct and indirect effects of anthropogenic aerosol on the planetary energy balance. Only recently have other DOE programs applied the aerosol modeling capability to simulate the climate response to the radiative forcing.

  1. A one-dimensional sectional aerosol model integrated with mesoscale meteorological data to study marine boundary layer aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Caffrey, Peter F.; Hoppel, William A.; Shi, Jainn J.

    2006-12-01

    The dynamics of aerosols in the marine boundary layer are simulated with a one-dimensional, multicomponent, sectional aerosol model using vertical profiles of turbulence, relative humidity, temperature, vertical velocity, cloud cover, and precipitation provided by 3-D mesoscale meteorological model output. The Naval Research Laboratory's (NRL) sectional aerosol model MARBLES (Fitzgerald et al., 1998a) was adapted to use hourly meteorological input taken from NRL's Coupled Ocean-Atmosphere Prediction System (COAMPS). COAMPS-generated turbulent mixing coefficients and large-scale vertical velocities determine vertical exchange within the marine boundary layer and exchange with the free troposphere. Air mass back trajectories were used to define the air column history along which the meteorology was retrieved for use with the aerosol model. Details on the integration of these models are described here, as well as a description of improvements made to the aerosol model, including transport by large-scale vertical motions (such as subsidence and lifting), a revised sea-salt aerosol source function, and separate tracking of sulfate mass from each of the five sources (free tropospheric, nucleated, condensed from gas phase oxidation products, cloud-processed, and produced from heterogeneous oxidation of S(IV) on sea-salt aerosol). Results from modeling air masses arriving at Oahu, Hawaii, are presented, and the relative contribution of free-tropospheric sulfate particles versus sea-salt aerosol from the surface to CCN concentrations is discussed. Limitations and benefits of the method are presented, as are sensitivity analyses of the effect of large-scale vertical motions versus turbulent mixing.

  2. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces.

    PubMed

    Davis, Ryan D; Tolbert, Margaret A

    2017-07-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions.

  3. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  4. Simulation of aerosol radiative properties with the ORISAM-RAD model during a pollution event (ESCOMPTE 2001)

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Pont, V.; Liousse, C.; Roger, J. C.; Dubuisson, P.

    The aim of this study is to present the organic and inorganic spectral aerosol module-radiative (ORISAM-RAD) module, allowing the 3D distribution of aerosol radiative properties (aerosol optical depth, single scattering albedo and asymmetry parameter) from the ORISAM module. In this work, we test ORISAM-RAD for one selected day (24th June) during the ESCOMPTE (expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions) experiment for an urban/industrial aerosol type. The particle radiative properties obtained from in situ and AERONET observations are used to validate our simulations. In a first time, simulations obtained from ORISAM-RAD indicate high aerosol optical depth (AOD)˜0.50-0.70±0.02 (at 440 nm) in the aerosol pollution plume, slightly lower (˜10-20%) than AERONET retrievals. In a second time, simulations of the single scattering albedo ( ωo) have been found to well reproduce the high spatial heterogeneities observed over this domain. Concerning the asymmetry parameter ( g), ORISAM-RAD simulations reveal quite uniform values over the whole ESCOMPTE domain, comprised between 0.61±0.01 and 0.65±0.01 (at 440 nm), in excellent agreement with ground based in situ measurements and AERONET retrievals. Finally, the outputs of ORISAM-RAD have been used in a radiative transfer model in order to simulate the diurnal direct radiative forcing at different locations (urban, industrial and rural). We show that anthropogenic aerosols strongly decrease surface solar radiation, with diurnal mean surface forcings comprised between -29.0±2.9 and -38.6±3.9 W m -2, depending on the sites. This decrease is due to the reflection of solar radiations back to space (-7.3±0.8<Δ FTOA<-12.3±1.2 W m -2) and to its absorption into the aerosol layer (21.1±2.1<Δ FATM<26.3±2.6 W m -2). These values are found to be consistent with those measured at local scale.

  5. Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data

    NASA Astrophysics Data System (ADS)

    Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina

    2017-06-01

    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.

  6. High Contributions of Secondary Inorganic Aerosols to PM2.5 under Polluted Levels at a Regional Station in Northern China.

    PubMed

    Li, Yang; Tao, Jun; Zhang, Leiming; Jia, Xiaofang; Wu, Yunfei

    2016-12-15

    Daily PM 2.5 samples were collected at Shangdianzi (SDZ) regional site in Beijing-Tianjin-Hebei (BTH) region in 2015. Samples were subject to chemical analysis for organic carbon (OC), elemental carbon (EC), and major water-soluble inorganic ions. The annual average PM 2.5 mass concentration was 53 ± 36 μg·m -3 with the highest seasonal average concentration in spring and the lowest in summer. Water-soluble inorganic ions and carbonaceous aerosols accounted for 34% ± 15% and 33% ± 9%, respectively, of PM 2.5 mass on annual average. The excellent, good, lightly polluted, moderately polluted, and heavily polluted days based on the Air Quality Index (AQI) of PM 2.5 accounted for 40%, 42%, 11%, 4%, and 3%, respectively, of the year. The sum of the average concentration of sulfate, nitrate, and ammonium (SNA) increased from 4.2 ± 2.9 μg·m -3 during excellent days to 85.9 ± 22.4 μg·m -3 during heavily polluted days, and their contributions to PM 2.5 increased from 15% ± 8% to 49% ± 10% accordingly. In contrast, the average concentration of carbonaceous aerosols increased from 9.2 ± 2.8 μg·m -3 to 51.2 ± 14.1 μg·m -3 , and their contributions to PM 2.5 decreased from 34% ± 6% to 29% ± 7%. Potential source contribution function (PSCF) analysis revealed that the major sources for high PM 2.5 and its dominant chemical components were within the area mainly covering Shandong, Henan, and Hebei provinces. Regional pollutant transport from Shanxi province and Inner Mongolia autonomous region located in the west direction of SDZ was also important during the heating season.

  7. Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China.

    PubMed

    Xu, Jing-Sha; Xu, Meng-Xia; Snape, Colin; He, Jun; Behera, Sailesh N; Xu, Hong-Hui; Ji, Dong-Sheng; Wang, Cheng-Jun; Yu, Huan; Xiao, Hang; Jiang, Yu-Jun; Qi, Bing; Du, Rong-Guang

    2017-07-01

    To investigate the seasonal and spatial variations of ion chemistry of fine particles in Northern Zhejiang Province (NZP), China, one year-long field sampling was conducted at four representative sites (two urban, one suburb, and one rural sites) in both cities of Hangzhou and Ningbo from December 2014 to November 2015. Twelve water soluble inorganic ions (WSII) were characterized in this comprehensive study. The annual average of PM 2.5 concentration in NZP as overall was 66.2 ± 37.7 μg m -3 , and urban sites in NZP were observed with more severe PM 2.5 pollution than the suburban and rural sites. The annual average concentration of total WSII at four sampling sites in NZP was 29.1 ± 19.9 μg m -3 , dominated by SO 4 2- (10.3 μg m -3 ), and followed by NO 3 - (8.9 μg m -3 ), NH 4 + (6.6 μg m -3 ), Cl - (1.3 μg m -3 ) and K + (0.7 μg m -3 ). Among all cations, NH 4 + was the predominant neutralizing ion with the highest neutralization factor (NF), while the remaining cations showed limited neutralization capacity. The highest and lowest sulfur oxidation ratio (SOR) values in this region were found in summer and winter, respectively; while the seasonal patterns for nitrogen oxidation ratio (NOR) were opposite to that of SOR. Principal component analysis (PCA) showed that the significant sources of WSII in NZP were industrial emissions, biomass burning, and formation of secondary inorganic aerosols. In addition, contribution from transboundary transport of polluted aerosols was also confirmed from the assessment through air mass backward trajectory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. High Contributions of Secondary Inorganic Aerosols to PM2.5 under Polluted Levels at a Regional Station in Northern China

    PubMed Central

    Li, Yang; Tao, Jun; Zhang, Leiming; Jia, Xiaofang; Wu, Yunfei

    2016-01-01

    Daily PM2.5 samples were collected at Shangdianzi (SDZ) regional site in Beijing–Tianjin–Hebei (BTH) region in 2015. Samples were subject to chemical analysis for organic carbon (OC), elemental carbon (EC), and major water-soluble inorganic ions. The annual average PM2.5 mass concentration was 53 ± 36 μg·m−3 with the highest seasonal average concentration in spring and the lowest in summer. Water-soluble inorganic ions and carbonaceous aerosols accounted for 34% ± 15% and 33% ± 9%, respectively, of PM2.5 mass on annual average. The excellent, good, lightly polluted, moderately polluted, and heavily polluted days based on the Air Quality Index (AQI) of PM2.5 accounted for 40%, 42%, 11%, 4%, and 3%, respectively, of the year. The sum of the average concentration of sulfate, nitrate, and ammonium (SNA) increased from 4.2 ± 2.9 μg·m−3 during excellent days to 85.9 ± 22.4 μg·m−3 during heavily polluted days, and their contributions to PM2.5 increased from 15% ± 8% to 49% ± 10% accordingly. In contrast, the average concentration of carbonaceous aerosols increased from 9.2 ± 2.8 μg·m−3 to 51.2 ± 14.1 μg·m−3, and their contributions to PM2.5 decreased from 34% ± 6% to 29% ± 7%. Potential source contribution function (PSCF) analysis revealed that the major sources for high PM2.5 and its dominant chemical components were within the area mainly covering Shandong, Henan, and Hebei provinces. Regional pollutant transport from Shanxi province and Inner Mongolia autonomous region located in the west direction of SDZ was also important during the heating season. PMID:27983711

  9. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  10. Aerosols at the Poles: An Aerocom Phase II Multi-Model Evaluation

    NASA Technical Reports Server (NTRS)

    Sand, Maria; Bauer, Susanne E.; Samset, Bjorn H.; Balkanski, Yves; Bellouin, Nicolas; Berntsen, Terje K.; Bian, Huisheng; Chin, Mian; Diehl, Thomas; Easter, Richard; hide

    2017-01-01

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (seasalt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60 degrees N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70 degrees S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m(exp. -2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments

  11. Response of different regional online coupled models to aerosol-radiation interactions

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  12. Size distribution of ions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Krivácsy, Z.; Molnár, Á.

    The aim of this paper is to present data about the concentration and size distribution of ions in atmospheric aerosol under slightly polluted urban conditions in Hungary. Concentration of inorganic cations (ammonium, sodium, potassium, calcium, magnesium), inorganic anions (sulfate, nitrate, chloride, carbonate) and organic acids (oxalic, malonic, succinic, formic and acetic acid) for 8 particle size range between 0.0625 and 16 μm were determined. As was the case for ammonium, sulfate and nitrate, the organic acids were mostly found in the fine particle size range. Potassium and chloride were rather uniformly distributed between fine and coarse particles. Sodium, calcium, magnesium and carbonate were practically observed in the coarse mode. The results obtained for the summer and the winter half-year were also compared. The mass concentrations were recalculated in equivalents, and the ion balance was found to be reasonable in most cases. Measurement of the pH of the aerosol extracts indicates that the aerosol is acidic in the fine mode, but alkaline in the coarse particle size range.

  13. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    NASA Astrophysics Data System (ADS)

    Chim, Man Mei; Cheng, Chiu Tung; Davies, James F.; Berkemeier, Thomas; Shiraiwa, Manabu; Zuend, Andreas; Nin Chan, Man

    2017-12-01

    Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4) droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5) hydroxyl functionalization product (C5H8O5) and a C4 fragmentation product (C4H6O3). These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon-carbon bond scission) of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model) coupled with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from 0.362 to 0.424; however, the

  14. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces

    PubMed Central

    Davis, Ryan D.; Tolbert, Margaret A.

    2017-01-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions. PMID:28776032

  15. Answering the Call for Model-Relevant Observations of Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3.We discuss the challenges in making observations that really address deficiencies in models, with some of the more relevant aspects being representativeness of the observations for climatological states, and whether a given model-measurement difference addresses a sampling or a model error.

  16. Characterization of urban aerosol in Cork City (Ireland) using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2012-11-01

    Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC), sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) and was also found to comprise organic matter as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and then chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA) comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA) comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA) comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA) but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively).

  17. Implementing Marine Organic Aerosols Into the GEOS-Chem Model

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2015-01-01

    Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  18. Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment

    NASA Astrophysics Data System (ADS)

    Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.

    2012-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability

  19. Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2013-05-01

    Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

  20. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; hide

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  1. On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Rothenberg, Daniel; Avramov, Alexander; Wang, Chien

    2018-06-01

    Interactions between aerosol particles and clouds contribute a great deal of uncertainty to the scientific community's understanding of anthropogenic climate forcing. Aerosol particles serve as the nucleation sites for cloud droplets, establishing a direct linkage between anthropogenic particulate emissions and clouds in the climate system. To resolve this linkage, the community has developed parameterizations of aerosol activation which can be used in global climate models to interactively predict cloud droplet number concentrations (CDNCs). However, different activation schemes can exhibit different sensitivities to aerosol perturbations in different meteorological or pollution regimes. To assess the impact these different sensitivities have on climate forcing, we have coupled three different core activation schemes and variants with the CESM-MARC (two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC) coupled with the National Center for Atmospheric Research's (NCAR) Community Earth System Model (CESM; version 1.2)). Although the model produces a reasonable present-day CDNC climatology when compared with observations regardless of the scheme used, ΔCDNCs between the present and preindustrial era regionally increase by over 100 % in zonal mean when using the most sensitive parameterization. These differences in activation sensitivity may lead to a different evolution of the model meteorology, and ultimately to a spread of over 0.8 W m-2 in global average shortwave indirect effect (AIE) diagnosed from the model, a range which is as large as the inter-model spread from the AeroCom intercomparison. Model-derived AIE strongly scales with the simulated preindustrial CDNC burden, and those models with the greatest preindustrial CDNC tend to have the smallest AIE, regardless of their ΔCDNC. This suggests that present-day evaluations of aerosol-climate models may not provide useful constraints on the magnitude of the AIE, which

  2. Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region

    NASA Astrophysics Data System (ADS)

    Gunsch, Matthew J.; May, Nathaniel W.; Wen, Miao; Bottenus, Courtney L. H.; Gardner, Daniel J.; VanReken, Timothy M.; Bertman, Steven B.; Hopke, Philip K.; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Long-range aerosol transport affects locations hundreds of kilometers from the point of emission, leading to distant particle sources influencing rural environments that have few major local sources. Source apportionment was conducted using real-time aerosol chemistry measurements made in July 2014 at the forested University of Michigan Biological Station near Pellston, Michigan, a site representative of the remote forested Great Lakes region. Size-resolved chemical composition of individual 0.5-2.0 µm particles was measured using an aerosol time-of-flight mass spectrometer (ATOFMS), and non-refractory aerosol mass less than 1 µm (PM1) was measured with a high-resolution aerosol mass spectrometer (HR-AMS). The field site was influenced by air masses transporting Canadian wildfire emissions and urban pollution from Milwaukee and Chicago. During wildfire-influenced periods, 0.5-2.0 µm particles were primarily aged biomass burning particles (88 % by number). These particles were heavily coated with secondary organic aerosol (SOA) formed during transport, with organics (average O/C ratio of 0.8) contributing 89 % of the PM1 mass. During urban-influenced periods, organic carbon, elemental carbon-organic carbon, and aged biomass burning particles were identified, with inorganic secondary species (ammonium, sulfate, and nitrate) contributing 41 % of the PM1 mass, indicative of atmospheric processing. With current models underpredicting organic carbon in this region and biomass burning being the largest combustion contributor to SOA by mass, these results highlight the importance for regional chemical transport models to accurately predict the impact of long-range transported particles on air quality in the upper Midwest, United States, particularly considering increasing intensity and frequency of Canadian wildfires.

  3. Effects of inorganic seeds on secondary organic aerosol formation from photochemical oxidation of acetone in a chamber

    NASA Astrophysics Data System (ADS)

    Ge, Shuangshuang; Xu, Yongfu; Jia, Long

    2017-12-01

    Photochemical oxidations of acetone were studied under different inorganic seed (NaCl, (NH4)2SO4 and NaNO3) conditions in a self-made chamber. The results show that no secondary organic aerosol (SOA) can be formed in the experiments either in the absence of artificially added seed particles or in the presence of solid status of the added particles. Liquid water content is the key factor for the formation of SOA in the experiments with seeds. The amount of SOA was only about 4-7 μg m-3 in the experiments with the initial acetone of ∼15 ppm under different seed conditions. The analysis of SOA compositions by Exactive-Orbitrap mass spectrometer equipped with electro-spray interface (ESI-MS) shows that chlorine-containing and sulfur-containing compounds were detected in SOA formed from the experiments with NaCl and (NH4)2SO4 seeds, respectively, which were not identified in SOA from those with NaNO3. The compositions of SOA were mainly esters, organonitrates, hydroperoxides, etc. It is concluded that inorganic seed particles participated into the formation of SOA. Acetone SOA was mainly formed in the aqueous phase in which dissolved SOA precursors underwent further oxidation reactions, esterification reactions and/or radical-radical reactions. Our experiments further demonstrate that low-molecular-weight VOCs, such as acetone, can form SOA under certain conditions in the atmosphere, although their contributions to SOA may not be large.

  4. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  5. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  6. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity

    NASA Astrophysics Data System (ADS)

    Gunthe, S. S.; King, S. M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D. K.; Jimenez, J. L.; Artaxo, P.; Andreae, M. O.; Martin, S. T.; Pöschl, U.

    2009-10-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ≍0.1-0.4 (0.16±0.06 arithmetic mean and standard deviation). The overall median value of κ≍0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≍0.1 at D≍50 nm; κ≍0.2 at D≍200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (forg) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≍200 nm). The κ values exhibited a negative linear correlation with forg (R2=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≍0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and κinorg≍0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=κorg×forg +κinorg×finorg). The CCN number concentrations predicted with κp were in fair agreement with the measurement results (~20% average deviation). The median CCN number concentrations at S=0

  7. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGES

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; ...

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  8. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  9. Simulating Aerosol Indirect Effects with Improved Aerosol-Cloud- Precipitation Representations in a Coupled Regional Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Leung, L. Ruby; Fan, Jiwen

    This is a collaborative project among North Carolina State University, Pacific Northwest National Laboratory, and Scripps Institution of Oceanography, University of California at San Diego to address the critical need for an accurate representation of aerosol indirect effect in climate and Earth system models. In this project, we propose to develop and improve parameterizations of aerosol-cloud-precipitation feedbacks in climate models and apply them to study the effect of aerosols and clouds on radiation and hydrologic cycle. Our overall objective is to develop, improve, and evaluate parameterizations to enable more accurate simulations of these feedbacks in high resolution regional and globalmore » climate models.« less

  10. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  11. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  12. Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond

    NASA Astrophysics Data System (ADS)

    Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko

    2013-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.

  13. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-09-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here 1-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size-segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~ 0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/([Na+] + 2[Ca2+]) × (1/Ke')) when Pn_fine is significant (> 10%). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined data sets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high-sulfate days while local formation

  14. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-01-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here one-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/[Na+] + 2[Ca2+]) × (1/Ke')). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined datasets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high sulfate days, while local formation processes contributed approximately

  15. Evaluating Organic Aerosol Model Performance: Impact of two Embedded Assumptions

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Giroux, E.; Roth, H.; Yin, D.

    2004-05-01

    Organic aerosols are important due to their abundance in the polluted lower atmosphere and their impact on human health and vegetation. However, modeling organic aerosols is a very challenging task because of the complexity of aerosol composition, structure, and formation processes. Assumptions and their associated uncertainties in both models and measurement data make model performance evaluation a truly demanding job. Although some assumptions are obvious, others are hidden and embedded, and can significantly impact modeling results, possibly even changing conclusions about model performance. This paper focuses on analyzing the impact of two embedded assumptions on evaluation of organic aerosol model performance. One assumption is about the enthalpy of vaporization widely used in various secondary organic aerosol (SOA) algorithms. The other is about the conversion factor used to obtain ambient organic aerosol concentrations from measured organic carbon. These two assumptions reflect uncertainties in the model and in the ambient measurement data, respectively. For illustration purposes, various choices of the assumed values are implemented in the evaluation process for an air quality model based on CMAQ (the Community Multiscale Air Quality Model). Model simulations are conducted for the Lower Fraser Valley covering Southwest British Columbia, Canada, and Northwest Washington, United States, for a historical pollution episode in 1993. To understand the impact of the assumed enthalpy of vaporization on modeling results, its impact on instantaneous organic aerosol yields (IAY) through partitioning coefficients is analysed first. The analysis shows that utilizing different enthalpy of vaporization values causes changes in the shapes of IAY curves and in the response of SOA formation capability of reactive organic gases to temperature variations. These changes are then carried into the air quality model and cause substantial changes in the organic aerosol modeling

  16. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  17. Interactive coupling of regional climate and sulfate aerosol models over eastern Asia

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Giorgi, Filippo

    1999-03-01

    The NCAR regional climate model (RegCM) is interactively coupled to a simple radiatively active sulfate aerosol model over eastern Asia. Both direct and indirect aerosol effects are represented. The coupled model system is tested for two simulation periods, November 1994 and July 1995, with aerosol sources representative of present-day anthropogenic sulfur emissions. The model sensitivity to the intensity of the aerosol source is also studied. The main conclusions from our work are as follows: (1) The aerosol distribution and cycling processes show substantial regional spatial variability, and temporal variability varying on a range of scales, from the diurnal scale of boundary layer and cumulus cloud evolution to the 3-10 day scale of synoptic scale events and the interseasonal scale of general circulation features; (2) both direct and indirect aerosol forcings have regional effects on surface climate; (3) the regional climate response to the aerosol forcing is highly nonlinear, especially during the summer, due to the interactions with cloud and precipitation processes; (4) in our simulations the role of the aerosol indirect effects is dominant over that of direct effects; (5) aerosol-induced feedback processes can affect the aerosol burdens at the subregional scale. This work constitutes the first step in a long term research project aimed at coupling a hierarchy of chemistry/aerosol models to the RegCM over the eastern Asia region.

  18. The Aerosol Models in MODTRAN: Incorporating Selected Measurements From Northern Australia

    DTIC Science & Technology

    2005-12-01

    biomass burning smoke aerosol is modelled assuming the particles are spherical and Mie scattering theory is used to calculate the extinction and...and therefore internally mixed aerosol particles are hygroscopic . Shettle and Fenn model the growth in the size of aerosol particles and changes in...by Sutherland and Khanna [21] was to obtain measurements of the optical properties of organic -based aerosols produced by burning vegetation.

  19. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design

    NASA Astrophysics Data System (ADS)

    Matsui, H.

    2017-08-01

    This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.

  20. A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Feldman, D. R.; Freidenreich, S.; Paynter, D.; Ramaswamy, V.; Collins, W. D.; Pincus, R.

    2017-12-01

    A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. These diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited ( 1 W/m2) and also varies spatially and with intrinsic aerosol optical properties. The findings underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.

  1. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Henze, D. K.; Seinfeld, J. H.; Shindell, D. T.

    2009-08-01

    Influences of specific sources of inorganic PM2.5 on peak and ambient aerosol concentrations in the US are evaluated using a combination of inverse modeling and sensitivity analysis. First, sulfate and nitrate aerosol measurements from the IMPROVE network are assimilated using the four-dimensional variational (4D-Var) method into the GEOS-Chem chemical transport model in order to constrain emissions estimates in four separate month-long inversions (one per season). Of the precursor emissions, these observations primarily constrain ammonia (NH3). While the net result is a decrease in estimated US~NH3 emissions relative to the original inventory, there is considerable variability in adjustments made to NH3 emissions in different locations, seasons and source sectors, such as focused decreases in the midwest during July, broad decreases throughout the US~in January, increases in eastern coastal areas in April, and an effective redistribution of emissions from natural to anthropogenic sources. Implementing these constrained emissions, the adjoint model is applied to quantify the influences of emissions on representative PM2.5 air quality metrics within the US. The resulting sensitivity maps display a wide range of spatial, sectoral and seasonal variability in the susceptibility of the air quality metrics to absolute emissions changes and the effectiveness of incremental emissions controls of specific source sectors. NH3 emissions near sources of sulfur oxides (SOx) are estimated to most influence peak inorganic PM2.5 levels in the East; thus, the most effective controls of NH3 emissions are often disjoint from locations of peak NH3 emissions. Controls of emissions from industrial sectors of SOx and NOx are estimated to be more effective than surface emissions, and changes to NH3 emissions in regions dominated by natural sources are disproportionately more effective than regions dominated by anthropogenic sources. NOx controls are most effective in northern states in

  2. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Henze, D. K.; Seinfeld, J. H.; Shindell, D. T.

    2008-08-01

    Influences of specific sources of inorganic PM2.5 on peak and ambient aerosol concentrations in the US are evaluated using a combination of inverse modeling and sensitivity analysis. First, sulfate and nitrate aerosol measurements from the IMPROVE network are assimilated using the four-dimensional variational (4D-Var) method into the GEOS-Chem chemical transport model in order to constrain emissions estimates in four separate month-long inversions (one per season). Of the precursor emissions, these observations primarily constrain ammonia (NH3). While the net result is a decrease in estimated US NH3 emissions relative to the original inventory, there is considerable variability in adjustments made to NH3 emissions in different locations, seasons and source sectors, such as focused decreases in the midwest during July, broad decreases throughout the US~in January, increases in eastern coastal areas in April, and an effective redistribution of emissions from natural to anthropogenic sources. Implementing these constrained emissions, the adjoint model is applied to quantify the influences of emissions on representative PM2.5 air quality metrics within the US. The resulting sensitivity maps display a wide range of spatial, sectoral and seasonal variability in the susceptibility of the air quality metrics to absolute emissions changes and the effectiveness of incremental emissions controls of specific source sectors. NH3 emissions near sources of sulfur oxides (SOx) are estimated to most influence peak inorganic PM2.5 levels in the East; thus, the most effective controls of NH3 emissions are often disjoint from locations of peak NH3 emissions. Controls of emissions from industrial sectors of SOx and NOx are estimated to be more effective than surface emissions, and changes to NH3 emissions in regions dominated by natural sources are disproportionately more effective than regions dominated by anthropogenic sources. NOx controls are most effective in northern states in

  3. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    DOE PAGES

    Sand, Maria; Samset, Bjorn H.; Balkanski, Yves; ...

    2017-10-13

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document themore » geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m -2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of

  4. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    NASA Astrophysics Data System (ADS)

    Sand, Maria; Samset, Bjørn H.; Balkanski, Yves; Bauer, Susanne; Bellouin, Nicolas; Berntsen, Terje K.; Bian, Huisheng; Chin, Mian; Diehl, Thomas; Easter, Richard; Ghan, Steven J.; Iversen, Trond; Kirkevåg, Alf; Lamarque, Jean-François; Lin, Guangxing; Liu, Xiaohong; Luo, Gan; Myhre, Gunnar; van Noije, Twan; Penner, Joyce E.; Schulz, Michael; Seland, Øyvind; Skeie, Ragnhild B.; Stier, Philip; Takemura, Toshihiko; Tsigaridis, Kostas; Yu, Fangqun; Zhang, Kai; Zhang, Hua

    2017-10-01

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes.The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m-2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of the Aero

  5. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, Maria; Samset, Bjorn H.; Balkanski, Yves

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document themore » geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m -2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of

  6. Isoprene derived secondary organic aerosol in a global aerosol chemistry climate model

    NASA Astrophysics Data System (ADS)

    Stadtler, Scarlet; Kühn, Thomas; Taraborrelli, Domenico; Kokkola, Harri; Schultz, Martin

    2017-04-01

    Secondary organic aerosol (SOA) impacts earth's climate and human health. Since its precursor chemistry and its formation are not fully understood, climate models cannot catch its direct and indirect effects. Global isoprene emissions are higher than any other non-methane hydrocarbons. Therefore, SOA from isoprene-derived, low volatile species (iSOA) is simulated using a global aerosol chemistry climate model ECHAM6-HAM-SALSA-MOZ. Isoprene oxidation in the chemistry model MOZ is following a novel semi-explicit scheme, embedded in a detailed atmospheric chemical mechanism. For iSOA formation four low volatile isoprene oxidation products were identified. The group method by Nanoonlal et al. 2008 was used to estimate their evaporation enthalpies ΔHvap. To calculate the saturation concentration C∗(T) the sectional aerosol model SALSA uses the gas phase concentrations simulated by MOZ and their corresponding ΔHvap to obtain the saturation vapor pressure p∗(T) from the Clausius Clapeyron equation. Subsequently, the saturation concentration is used to calculate the explicit kinetic partitioning of these compounds forming iSOA. Furthermore, the irreversible heterogeneous reactions of IEPOX and glyoxal from isoprene were included. The possibility of reversible heterogeneous uptake was ignored at this stage, leading to an upper estimate of the contribution of glyoxal to iSOA mass.

  7. A Global Aerosol Model Forecast for the ACE-Asia Field Experiment

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-01-01

    We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large

  8. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    NASA Astrophysics Data System (ADS)

    Couvidat, F.; Sartelet, K.

    2015-04-01

    In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly

  9. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-03-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using Andersen impactor sampler with 5 size bins: <1.1, 1.1-2.0, 2.0-3.3, 3.3-7.0, >7.0 μm. Samples were analyzed for the molecular compositions of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectory and chemical tracers, we found that during campaign, the air masses were arrived from Siberia (biomass burning source region) on 8-9 August, China (anthropogenic source region) on 9-10 August and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions, i.e., SO42-, NH42+ and K+ were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO4aerosols from Siberia (mean: 252 ng m-3) were more abundant than those in the aerosols from China (209 ng m-3) and ocean (142 ng m-3) whereas SO42- concentrations maximized in the aerosols from China (mean: 3970 ng m-3) followed by marine- (2946 ng m-3) and biomass burning-influenced (1978 ng m-3) aerosols. Higher loadings of WSOC (2428 ng m-3) and OC (4358 ng m-3) were found on the fine mode, where biomass-burning products such as levoglucosan is abundant. This paper presents a case study that biomass burning episodes in Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.

  10. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.

    PubMed

    Ben-David, Avishai; Embury, Janon F; Davidson, Charles E

    2006-09-10

    A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.

  11. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2013-11-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propogate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high latitude clean air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance

  12. Assessment of the aerosol distribution over Indian subcontinent in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sanap, S. D.; Ayantika, D. C.; Pandithurai, G.; Niranjan, K.

    2014-04-01

    This paper examines the aerosol distribution over Indian subcontinent as represented in 21 models from Coupled Model Inter-comparison Project Phase 5 (CMIP5) simulations, wherein model simulated aerosol optical depth (AOD) is compared with Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite observations. The objective of the study is to provide an assessment of the capability of various global models, participating in CMIP5 project, in capturing the realistic spatial and temporal distribution of aerosol species over the Indian subcontinent. Results from our analysis show that majority of the CMIP5 models (excepting HADGEM2-ES, HADGEM2-CC) seriously underestimates the spatio-temporal variability of aerosol species over the Indian subcontinent, in particular over Indo-Gangetic Plains (IGP). Since IGP region is dominated by anthropogenic activities, high population density, and wind driven transport of dust and other aerosol species, MODIS observations reveal high AOD values over this region. Though the representation of black carbon (BC) loading in many models is fairly good, the dust loading is observed to be significantly low in majority of the models. The presence of pronounced dust activity over northern India and dust being one of the major constituent of aerosol species, the biases in dust loading has a great impact on the AOD of that region. We found that considerable biases in simulating the 850 hPa wind field (which plays important role in transport of dust from adjacent deserts) would be the possible reason for poor representation of dust AOD and in turn total AOD over Indian region in CMIP5 models. In addition, aerosol radiative forcing (ARF) underestimated/overestimated in most of the models. However, spatial distribution of ARF in multi-model ensemble mean is comparable reasonably well with observations with bias in magnitudes. This analysis emphasizes the fundamental need to improve the representation of aerosol species in current state of

  13. Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.

    PubMed

    Liang, Xiaowen; Wang, Haolu; Grice, Jeffrey E; Li, Li; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S

    2016-02-10

    A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.

  14. Evaluation of Aerosol Optical Depth and Aerosol Models from VIIRS Retrieval Algorithms over North China Plain

    NASA Technical Reports Server (NTRS)

    Zhu, Jun; Xia, Xiangao; Wang, Jun; Che, Huizheng; Chen, Hongbin; Zhang, Jinqiang; Xu, Xiaoguang; Levy, Robert; Oo, Min; Holz, Robert; hide

    2017-01-01

    The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The MODIS-like VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the dark-target algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA

  15. Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain.

    PubMed

    Zhu, Jun; Xia, Xiangao; Wang, Jun; Che, Huizheng; Chen, Hongbin; Zhang, Jinqiang; Xu, Xiaoguang; Levy, Robert; Oo, Min; Holz, Robert; Ayoub, Mohammed

    2017-01-01

    The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The "MODIS-like" VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the "dark-target" algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012 - 31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of

  16. [Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City].

    PubMed

    Zhang, Qiu-Chen; Zhu, Bin; Su, Ji-Feng; Wang, Hong-Lei

    2012-06-01

    In order to compare aerosol water-soluble inorganic species in different air-pollution periods, samples of PM10, PM2.1, PM1.1 and the main water-soluble ions (NH4+, Mg2+, Ca2+, Na+, K+, NO2(-), F(-), NO3(-), Cl(-), SO4(2-)) were measured, which were from 3 air-pollution incidents (continued pollution in October 16-30 of 2009, sandstorm pollution in April 27-30 of 2010, and crop burning pollution in June 14 of 2010. The results show that aerosol pollution of 3 periods is serious. The lowest PM2.1/PM10 is only 0.27, which is from sandstorm pollution period, while the largest is 0. 7 from crop burning pollution period. In continued pollution periods, NO3(-) and SO4(2-) are the dominant ions, and the total anions account for an average of 18.62%, 32.92% and 33.53% of PM10, PM2.1 and PM1.1. Total water-soluble ions only account for 13.36%, 23.72% and 28.54% of PM10, PM2.1 and PM1.1 due to the insoluble species is increased in sandstorm pollution period. The mass concentration of Ca2+ in sandstorm pollution period is higher than the other two pollution periods, and which is mainly in coarse particles with diameter larger than 1 microm. All the ten water-soluble ions are much higher in crop burning pollution especially K+ which is the tracer from crop burning. The peak mass concentrations of NO3(-), SO4(2-) and NH4+ are in 0.43-0.65 microm.

  17. Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2014-05-01

    Satellite instruments are nowadays successfully utilised for measuring atmospheric aerosol in many applications as well as in research. Therefore, there is a growing need for rigorous error characterisation of the measurements. Here, we introduce a methodology for quantifying the uncertainty in the retrieval of aerosol optical thickness (AOT). In particular, we concentrate on two aspects: uncertainty due to aerosol microphysical model selection and uncertainty due to imperfect forward modelling. We apply the introduced methodology for aerosol optical thickness retrieval of the Ozone Monitoring Instrument (OMI) on board NASA's Earth Observing System (EOS) Aura satellite, launched in 2004. We apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness retrieval by propagating aerosol microphysical model selection and forward model error more realistically. For the microphysical model selection problem, we utilise Bayesian model selection and model averaging methods. Gaussian processes are utilised to characterise the smooth systematic discrepancies between the measured and modelled reflectances (i.e. residuals). The spectral correlation is composed empirically by exploring a set of residuals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud-free, over-land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques introduced here. The method and improved uncertainty characterisation is demonstrated by several examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara desert dust. The statistical methodology presented is general; it is not restricted to this particular satellite retrieval application.

  18. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES

    Gantt, B.; Johnson, M. S.; Crippa, M.; ...

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  19. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  20. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-07-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp<1.1, 1.1-2.0, 2.0-3.3, 3.3-7.0, >7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region) on 8-9 August, from China (an anthropogenic source region) on 9-10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42-, NH4+ and K+) were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO3- showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m-3) were more abundant than those in the aerosols originating from China (209 ng m-3) and ocean (142 ng m-3), whereas SO42- concentrations were highest in the aerosols from China (mean: 3970 ng m-3) followed by marine- (2950 ng m-3) and biomass burning-influenced (1980 ng m-3) aerosols. Higher loadings of WSOC (2430 ng m-3) and OC (4360 ng m-3) were found in the fine mode, where biomass-burning products such as levoglucosan are abundant. This paper presents a case study of long-range transported aerosols illustrating that biomass burning episodes in the Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.

  1. Springtime variations of organic and inorganic constituents in submicron aerosols (PM1.0) from Cape Hedo, Okinawa

    NASA Astrophysics Data System (ADS)

    Kunwar, Bhagawati; Torii, K.; Zhu, Chunmao; Fu, Pingqing; Kawamura, Kimitaka

    2016-04-01

    During the spring season with enhanced Asian outflow, we collected submicron aerosol (PM1.0) samples at Cape Hedo, Okinawa Island in the western North Pacific Rim. We analyzed the filter samples for diacids, oxoacids, pyruvic acid, α-dicarbonyls and fatty acids to better understand the sources and atmospheric processes in the outflow regions of Asian pollutants. Molecular distributions of diacids show a predominance of oxalic acid (C2) followed by malonic (C3) and succinic (C4) acids. Total diacids strongly correlated with secondary source tracers such as SO42- (r = 0.87), NH4+ (0.90) and methanesulfonate (MSA-) (0.84), suggesting that diacids are secondarily formed from their precursor compounds. We also found good correlations among C2, organic carbon (OC) and elemental carbon (EC) in the Okinawa aerosols, suggesting that diacids are mainly derived from anthropogenic sources. However, a weak correlation of diacids with levoglucosan, a biomass burning tracer, suggests that biomass buring is not the main source of diacids, rather diacids are secondarily formed by photochemical oxidation of organic precursors derived from fossil fuel combustion. We found a strong correlation (r = 0.98) between inorganic nitrogen (NO3-N + NH4-N) and total nitrogen (TN), to which organic nitrogen (ON) contributed 23%. Fatty acids were characterized by even carbon number predominance, suggesting that they are derived from biogenic sources. The higher abundances of short chain fatty acids (C20) further suggest that fatty acids are largely derived from marine phytoplankton during spring bloom.

  2. Modelling absorbing aerosol with ECHAM-HAM: Insights from regional studies

    NASA Astrophysics Data System (ADS)

    Tegen, Ina; Heinold, Bernd; Schepanski, Kerstin; Banks, Jamie; Kubin, Anne; Schacht, Jacob

    2017-04-01

    Quantifying distributions and properties of absorbing aerosol is a basis for investigations of interactions of aerosol particles with radiation and climate. While evaluations of aerosol models by field measurements can be particularly successful at the regional scale, such results need to be put into a global context for climate studies. We present an overview over studies performed at the Leibniz Institute for Tropospheric Research aiming at constraining the properties of mineral dust and soot aerosol in the global aerosol model ECHAM6-HAM2 based on different regional studies. An example is the impact of different sources for dust transported to central Asia, which is influenced, by far-range transport of dust from Arabia and the Sahara together with dust from local sources. Dust types from these different source regions were investigated in the context of the CADEX project and are expected to have different optical properties. For Saharan dust, satellite retrievals from MSG SEVIRI are used to constrain Saharan dust sources and optical properties. In the Arctic region, on one hand dust aerosol is simulated in the framework of the PalMod project. On the other hand aerosol measurements that will be taken during the DFG-funded (AC)3 field campaigns will be used to evaluate the simulated transport pathways of soot aerosol from European, North American and Asian sources, as well as the parameterization of soot ageing processes in ECHAM6-HAM2. Ultimately, results from these studies will improve the representation of aerosol absorption in the global model.

  3. PARAGON: A Systematic, Integrated Approach to Aerosol Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Kahn, Ralph A.; Braverman, Amy J.; Davies, Roger; Martonchik, John V.; Menzies, Robert T.; Ackerman, Thomas P.; Seinfeld, John H.; Anderson, Theodore L.; Charlson, Robert J.; hide

    2004-01-01

    Aerosols are generated and transformed by myriad processes operating across many spatial and temporal scales. Evaluation of climate models and their sensitivity to changes, such as in greenhouse gas abundances, requires quantifying natural and anthropogenic aerosol forcings and accounting for other critical factors, such as cloud feedbacks. High accuracy is required to provide sufficient sensitivity to perturbations, separate anthropogenic from natural influences, and develop confidence in inputs used to support policy decisions. Although many relevant data sources exist, the aerosol research community does not currently have the means to combine these diverse inputs into an integrated data set for maximum scientific benefit. Bridging observational gaps, adapting to evolving measurements, and establishing rigorous protocols for evaluating models are necessary, while simultaneously maintaining consistent, well understood accuracies. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept represents a systematic, integrated approach to global aerosol Characterization, bringing together modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies to provide the machinery necessary for achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term data record.

  4. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  5. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, Jane; Walters, David; Bellouin, Nicolas; Milton, Sean

    2014-05-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. Inclusion of the indirect aerosol effects has significant impacts on the SW radiation particularly at high latitudes due to lower cloud amounts in high latitude clean air regions. This leads to improved surface radiation biases at the North Slope of Alaska ARM site. Verification of temperature and height forecasts is also improved in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. This study highlights the importance of including a more realistic treatment of aerosol-cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex

  6. Seasonal cycles on Titan from a Coupled Aerosol Microphysical and Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, Owen B.

    2010-04-01

    Understanding the aerosols on Titan is imperative for understanding the atmosphere as a whole. The aerosols affect the albedo, optical depth, and heating and cooling rates which in turn affects the winds on Titan. Correctly representing them in atmospheric models is crucial to understanding this atmosphere. Several groups have used GCMs to model Titan's atmosphere. Hourdin et al. (1995) were able to reproduce the super-rotating prograde winds. Rannou et al. (2004) found the aerosols accumulated at the poles, which increased the temperature gradient. The increased temperature gradient intensified the zonal winds. Friedson et al. (2009) produced a three- dimensional model for Titan using the NCAR CAM3 model, to which we coupled the aerosol microphysics model CARMA. Until now, there has not been a three- dimensional model that couples radiation, dynamics and aerosol microphysics to study the atmospheric properties of Titan. We have also made the aerosols produced by CARMA interactive with the radiation code in CAM. Preliminary results show that this model is capable of reproducing the seasonal changes in aerosols on Titan and many of the associated phenomena. For instance, the radiatively interactive aerosols are lifted more in the summer hemisphere than the non-interactive aerosols, which is necessary to reproduce the observed seasonal cycle of the albedo (Hutzell et al 1996). However, treating aerosols as spheres with Mie theory is inconsistent with laboratory and observational data that suggest the aerosols are fractal aggregates. We are currently incorporating fractal particle physics into the model. Changing the particles to fractals will affect the radiative properties of the particles, their distribution in the atmosphere, and should improve our fits to the data.

  7. Chemical, microphysical and optical properties of the aerosols during foggy and nonfoggy day over a typical location in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Tripathi, S. N.; Gupta, T.

    2012-04-01

    An extensive experimental measurement was carried out from January 16, 2010 to February 20, 2010 at Kanpur to study the chemical, microphysical and optical properties of the aerosols. A Micro-Pulse Lidar Network (MPLNET), a part of National Aeronautic Space Administration (NASA), was used for identification of fog duration. PM1 samples and fogwater were collected to examine the organic and inorganic species of aerosol and fogwater. Organic Carbon (OC), Elemental Carbon (EC) and water soluble organic carbon analysis were carried out by an EC-OC analyzer and a TOC analyzer, respectively. Trace gases and solar flux measurement were carried out by gas analyzers and a pyranometer (a part of NASA Aeronet), respectively, to identify the photo-chemical activity. Meteorological data were measured by atmospheric weather station. The microphysical properties such as aerosol size distribution were measured using a scanning mobility particle sizer (SMPS). Optical properties were measured by a photo-acoustic soot spectrometer (PASS). Organic and inorganic species are processed by fog droplets such as production of secondary organic aerosol through aqueous mechanism (Kaul et al., 2011) and scavenging of various water soluble species. The concentrations of almost all the ionic species and organic carbon were higher in aerosols during foggy day. Presence of numerous ionic species and organic carbon in the fogwater indicates their wet scavenging and removal from the atmosphere by the fog droplets. Most of the aerosol is composed of inorganic component, ~80% during foggy day and ~85.5 % during clear day. Biomass burning contribution to PM1 mass concentration was considerably higher during clear days and lower during foggy days; lower concentration during foggy day could be due to wet scavenging of biomass generated aerosols. The study average higher number concentration of aerosol during foggy day during late evening and overnight was due to lower boundary layer height and subsequent

  8. Model-Derived Global Aerosol Climatology for MISR Analysis ("Clim-Likely" Data Set)

    Atmospheric Science Data Center

    2018-04-19

    Model-Derived Global Aerosol Climatology for MISR Analysis Multi-angle Imaging ... (MISR) monthly, global 1° x 1° "Clim-Likely" aerosol climatology, derived from 'typical-year' aerosol transport model results are available for individual 1° x 1° boxes or ...

  9. RECENT DEVELOPMENTS IN THE CMAQ MODEL AEROSOL MODULE

    EPA Science Inventory

    This poster describes changes that were made to the aerosol module between CMAQ v4.4 and v4.5, as well as the effects of these changes on CMAQ model results. New aerosol diagnostic tools released with CMAQ v4.5 are also described and some illustrative results are provided

  10. The Impact of Aerosol Microphysical Representation in Models on the Direct Radiative Effect

    NASA Astrophysics Data System (ADS)

    Ridley, D. A.; Heald, C. L.

    2017-12-01

    Aerosol impacts the radiative balance of the atmosphere both directly and indirectly. There is considerable uncertainty remaining in the aerosol direct radiative effect (DRE), hampering understanding of the present magnitude of anthropogenic aerosol forcing and how future changes in aerosol loading will influence climate. Computationally expensive explicit aerosol microphysics are usually reserved for modelling of the aerosol indirect radiative effects that depend upon aerosol particle number. However, the direct radiative effects of aerosol are also strongly dependent upon the aerosol size distribution, especially particles between 0.2µm - 2µm diameter. In this work, we use a consistent model framework and consistent emissions to explore the impact of prescribed size distributions (bulk scheme) relative to explicit microphysics (sectional scheme) on the aerosol radiative properties. We consider the difference in aerosol burden, water uptake, and extinction efficiency resulting from the two representations, highlighting when and where the bulk and sectional schemes diverge significantly in their estimates of the DRE. Finally, we evaluate the modelled size distributions using in-situ measurements over a range of regimes to provide constraints on both the accumulation and coarse aerosol sizes.

  11. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  12. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    DTIC Science & Technology

    2006-09-30

    model integrated with mesoscale meterological data to study marine boundary layer aerosol dynamics, J. Geophys. Res., in press, 2006. Hoppel, W. A...W.A. Hoppel, J.J. Shi: A one-dimensional sectional aerosol model integrated with mesoscale meterological data to study marine boundary layer aerosol

  13. Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all

  14. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  15. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE PAGES

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  16. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity

    NASA Astrophysics Data System (ADS)

    Gunthe, S. S.; King, S. M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D. K.; Jimenez, J. L.; Artaxo, P.; Andreae, M. O.; Martin, S. T.; Pöschl, U.

    2009-02-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ=0.05-0.45. The overall median value of κ≍0.15 was only half of the value typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≍0.1 at D≍50 nm; κ≍0.2 at D≍200 nm). The CCN measurement results were fully consistent with aerosol mass spectrometry (AMS) data, which showed that the organic mass fraction (Xm,org) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≍200 nm). The κ values exhibited a close linear correlation with Xm,org and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≍0.1 which is consistent with laboratory measurements of secondary organic aerosols and κinorg≍0.6 which is characteristic for ammonium sulfate and related salts. Both the size-dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=0.1 Xm,org+0.6 Xm,inorg), and the CCN number concentrations predicted with κp were in fair agreement with the measurement results. The median CCN number concentrations at S=0.1-0.82% ranged from NCCN,0.10≍30 cm-3 to NCCN,0.82≍150 cm-3, the median concentration of aerosol particles larger than 30 nm was NCN,30≍180 cm-3, and the corresponding integral CCN efficiencies were in the range of NCCN,0

  17. Trace Gas/Aerosol Interactions and GMI Modeling Support

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan

    2005-01-01

    Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.

  18. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    NASA Astrophysics Data System (ADS)

    Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.

    2012-11-01

    The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all

  19. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.

    PubMed

    Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément

    2018-06-05

    Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in

  20. Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.

  1. Simulation of the Pinatubo aerosol cloud in general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, Byron A.; Holton, James R.; Mote, Philip W.

    1991-01-01

    The global transport and dispersion of the Pinatubo aerosol cloud are simulated by means of a high-resolution stratospheric version of the NCAR Community Climate Model (CCM2) with an annual cycle. A passive tracer was injected into the model stratosphere over the Philippine Islands on June 15, and the transport was simulated for 180 d using an accurate semi-Lagrangian advection scheme. The simulated volcanic aerosol cloud initially drifted westward and expanded in longitude and latitude. The bulk of the aerosol cloud dispersed zonally to form a continuous belt in longitude, and remained confined to the tropics, centered near the 20-mb level for the entire 180-d model run, although a small amount was transported episodically into the upper troposphere in association with convective disturbances. Aerosol transported to the troposphere was dispersed within a few weeks into the Northern Hemisphere extratropics. In the Southern Hemisphere, the aerosol was mixed into the region equatorward of the core of the polar night jet during the first 50 d, but penetration into southern polar latitudes was delayed until the final warming in November.

  2. Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling: Quantifying Aerosol Subgrid Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangxing; Qian, Yun; Yan, Huiping

    One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis.more » The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).« less

  3. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  4. Organic nitrogen in PM2.5 aerosol at a forest site in the Southeast US

    EPA Science Inventory

    There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facilit...

  5. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  6. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  7. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.

    PubMed

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  8. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  9. Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations

    NASA Technical Reports Server (NTRS)

    DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.

    2013-01-01

    Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.

  10. UManSysProp: An online and open-source facility for molecular property prediction and atmospheric aerosol calculations

    NASA Astrophysics Data System (ADS)

    Topping, David; Barley, Mark; McFiggans, Gordon; Aumont, Bernard

    2016-04-01

    The many thousands of individual aerosol components ensure that explicit manual calculation of properties that influence their environmental impacts is laborious and time-consuming. The emergence of explicit automatic mechanism generation techniques, including up to many millions of individual gas phase products as aerosol precursors, renders manual calculations impossible and automation is necessary. It can be difficult to establish what factors are responsible for the outcome of a model prediction. This is particularly true when the number of components might be high in, for example, SOA mass partitioning simulations. It then becomes difficult for others in the community to assess the results presented. This might be complicated by the need to include pure component vapour pressures or activity coefficient predictions for a wide range of highly multifunctional compounds. It isn't clear to what extent replication of results is ever achieved for a range of aerosol simulations. Whilst this might also be an issue with results from instrumentation, the development of community driven software at least enables modellers to tackle this problem directly. Here we describe the development and application of a new web based facility, UManSysProp, to tackle such issues. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles with associated Kappa-Kohler values; absorptive partitioning calculations with/without a treatment of non-ideality. The website can be found here: http://umansysprop.seaes.manchester.ac.uk/

  11. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE PAGES

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm −3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  12. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  13. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  14. Using satellites and global models to investigate aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  15. Characteristics of inorganic aerosol formation over ammonia-poor and ammonia-rich areas in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Shasha; Huang, Zhijiong; Zheng, Junyu; Huang, Xiaobo; Chen, Duohong; Tan, Haobo

    2018-03-01

    A well-evaluated Comprehensive Air quality Model with extensions (CAMx) was used to simulate concentrations of secondary inorganic aerosols in fine particulate matter (PM2.5) over Pearl River Delta (PRD) region during two separate months (April and October) in 2013. An indicator of adjusted gas ratio (AdjGR) was used to characterize PM chemistry under both NH3-poor (NP) and NH3-rich (NR) conditions as well as to identify their respective spatiotemporal patterns at different PM2.5 levels. The results were as follows: (1) Based on both observed molar ratio of [NH4+]/[SO42-] and modeled AdjGR, NR and NP conditions exhibited diurnal, daily, and seasonal variations. (2) A larger area in PRD had NP conditions over the two months when pollution was apparent; this NP region tended to occur downwind of PRD in October and the central region of PRD in April, with high PM2.5 concentrations in both. (3) This wider NP distribution could be related to higher nitrogen oxidation ratio (NOR), with more NOx converting to nitrate. Under conditions of higher pollution, there were relative lower degree of sulfate neutralization (DSN) and particle neutralization ratio (PNR). This supports the claim that NH3 may not be fully neutralized by SO42-. (4) Modeled AdjGR displayed clear hourly variations, with the lowest levels occurring in the afternoon. Reducing NH3 emission is not as efficient as NOx at increasing evening nitrate concentrations. (5) To mitigate PM2.5 pollution even further, a greater reduction of NH3 should be suggested in chemical regions transiting to NR condition when there are lower SO2 and NOx emissions.

  16. Temporal variability in aerosol composition at an urban site, Varanasi in the eastern Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Norra, Stefan; Yuan, Chen; Venkata Satish, Rangu; Rastogi, Neeraj

    2017-04-01

    PM2.5 aerosol samples (n=31) were collected from an urban site, Varanasi (25° 28'N, 83°0' E) in the eastern Indo-Gangetic Plain during May 2015 to March 2016 using a mini-volume sampler (Leckel GmbH, Germany) at a flow rate of 200 l/hr. The PM2.5 samples were integrated for 7 days and were analyzed for organic and elemental carbon (OC & EC), water-soluble OC (WSOC), organic and inorganic nitrogen (ON & IN) and water-soluble inorganic species (WSIS) to study the geochemical behavior of aerosols. The mass concentration of OC and EC varies from 4.2 to 105.2 (average: 32.8) μg m-3 and 1.2 to 7.0 (average: 4.6) μg m-3 during the study period with total carbonaceous aerosols (TCA=1.6*OC+EC), on an average, accounting for ˜59% of PM2.5 mass. Relatively high WSOC/OC ratio (average: 0.55±0.18; range 0.18-0.86) indicate a significant contribution from the secondary organic aerosols at Varanasi. The concentration of ON varies from less than detection limit to 5.3 (average: 2.4) μg m-3 which contribute to ˜12% of WSOC highlighting the presence of nitro-organic compounds in aerosols at Varanasi. The average WSIS contribution to PM2.5 is only 17% with a strong seasonal variability (range: 4-36%). Generally, carbonaceous and inorganic aerosol concentration is higher during winter, fall and post-monsoon that those in the summer when dust aerosol contribution is significant (as high as 75% of PM2.5 mass). This study highlights the role of nitro-organic compounds in secondary organic aerosols which is lacking in Indian aerosols. Furthermore, these aerosol samples could be very important for the study of particle morphology and composition using scanning-electron Microscope-Energy Dispersive X-ray due to lower impaction in the mini-volume sampler.

  17. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmanoski, Maja; Box, Michael A.; Schmid, Beat

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2000 (SAFARI 2000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3–1.5 μm wavelength range to assumptions regarding the mixing scenario. We considered two modelsmore » for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell–Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (~0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81–0.91 at λ=0.50 μm). Finally, the difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.« less

  18. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, B. J.; Zhang, Y.; Zuo, X.; Martinez, R. E.; Walker, M. J.; Kreisberg, N. M.; Goldstein, A. H.; Docherty, K. S.; Jimenez, J. L.

    2015-12-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG

  19. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  20. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    DOE PAGES

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; ...

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO + ( m/z 30), NO 2 + ( m/z 46), SO + ( m/z 48), and SO 2 + ( m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO 2 + ( m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to

  1. The chemical composition of aerosols from Wildland fires: Current state of the science and possible new directions.

    EPA Science Inventory

    Wildland fire emits a substantial quantity of aerosol to the atmosphere. These aerosols typically comprise a complex mixture of organic matter and refractory elemental or black carbon with a relatively minor contribution of inorganic matter from soils and plant micronutrients. Id...

  2. Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2014-05-01

    The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the

  3. Evaluation of Observed and Modelled Aerosol Lifetimes Using Radioactive Tracers of Opportunity and an Ensemble of 19 Global Models

    NASA Technical Reports Server (NTRS)

    Kristiansen, N. I.; Stohl, A.; Olivie, D. J. L.; Croft, B.; Sovde, O. A.; Klein, H.; Christoudias, T.; Kunkel, D.; Leadbetter, S. J.; Lee, Y. H.; hide

    2016-01-01

    Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 (Cs-137) and xenon-133 (Xe-133) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to their available aerosol surface area. Cs-137 size distribution measurements taken close to the power plant suggested that accumulation mode (AM) sulfate aerosols were the main carriers of cesium. Hence, Cs-137 can be used as a proxy tracer for the AM sulfate aerosol's fate in the atmosphere. In contrast, the noble gas Xe-133 behaves almost like a passive transport tracer. Global surface measurements of the two radioactive isotopes taken over several months after the release allow the derivation of a lifetime of the carrier aerosol. We compare this to the lifetimes simulated by 19 different atmospheric transport models initialized with identical emissions of Cs-137that were assigned to an aerosol tracer with each model's default properties of AM sulfate, and Xe-133 emissions that were assigned to a passive tracer. We investigate to what extent the modelled sulfate tracer can reproduce the measurements, especially with respect to the observed loss of aerosol mass with time. Modelled Cs-137and Xe-133 concentrations sampled at the same location and times as station measurements allow a direct comparison between measured and modelled aerosol lifetime. The e-folding lifetime e, calculated from station measurement data taken between 2 and 9 weeks after the start of the emissions, is 14.3 days (95

  4. Inorganic trace element content of aerosols at puy de Dôme, France

    NASA Astrophysics Data System (ADS)

    Vlastelic, I.; Sellegri, K.; Colomb, A.; Suchroski, K.; Bouvier, L.; Nauret, F.

    2012-04-01

    The puy de Dôme research station is located at 1465 m above sea level in central France (45° 46' N, 2° 57' E, 1465 m a.s.l.). The station is surrounded by a protected area where agriculture and forests are predominant. The city of Clermont-Ferrand (150 000 inhabitants) is located 16 km east of the station. At the pdD site, the dominant westerly winds bring background or aged air masses. Despite its relatively low elevation, long-term records of gases and meteorological parameters indicate that in winter the site is mainly located in the free troposphere. Aerosol physical and chemical properties (particle size, black carbon mass), and gas-phase mixing ratios (SO2, CO, CO2, O3, NO, and NO2) are measured continuously throughout the year. Since October 2011, inorganic trace element content of aerosols is also monitored weekly. Precisely measured air volumes (typically from 15 to 20 m3) are filtered during two consecutive days and two consecutive nights on high purity teflon filters (47 mm diameter and 1.0 micrometer porosity). The Teflon filters are leached in savillex beakers using HNO3(0.4M) - HF (0.05M) and trace elements concentrations are analyzed by ICPMS (Agilent 7500, Laboratoire Magmas et Volcans). Preliminary data were analyzed in logarithmic plots sorting elements according to their decreasing abundance in the upper continental crust. A first group of elements (Al, Na, Fe, Mg, Ti, Mn, Ba, Sr, Zr, V, Cr, Rb, Li, Y, Ga, Co, Sc, Nb, Th, Hf, Cs, U, Be, Ta and Rare Earth Elements) shows a progressive decreasing trend, which suggests a crustal origin. A second group of elements (Zn, Ni, Cu, B, Pb, As, Sn, W, Ge, Mo, Tl, Sb, Bi, Se, Cd, In and Ag) shows strong positive anomalies that superimpose on the smooth trend. With the exception of Ni, all elements from this second group are volatile to some degree. The excess element concentration (i.e., unsupported by crustal input) decreases in the following order: Zn (7.75 ng/m3), B (1.2 ng/m3), Ni (0.44 ng/m3), Pb (0

  5. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    (RH) at a certain RH divided by sp at a dry value, was used to evaluate the aerosol hygroscopicity. Different empirical fits were evaluated using the f(RH) data. The widely used gamma model was found inappropriate, as it overestimates f(RH) for RH<75%. Abetter empirical fit with two power-law curve-fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass (OMC) and the species that are affected by RH and f(RH) was also studied and categorized between the sites. A second experiment is reported where the first two elements of the scattering matrix of laboratory generated particles were studied under different humidity conditions. The non-spherical particles generated were ammonium sulfate, sodium chloride, and ammonium nitrate. The optical measurements were performed with a polarized imaging nephelometer (PI-Neph) installed in series with the humidifier dryer apparatus. The inorganic salts experienced low (80%) RH levels so that the observations could contrast the differences when the salts were crystallized (low RH) and when the particles turned to aqueous solutions after deliquesence (high RH). The measurements with the PI-Neph produce the aerosol phase function and the polarized phase function in a range of angles that go from 3 to 177. The results showed significant changes in the phase function and polarized phase function due to the hygroscopic growth. Although the inorganic salts used inthe experiments were non-spherical, the dry measurements were successfully reproduced with the Mie theory using literature values for the dry index of refraction. Moreover, the changes in the particle size distribution and index of refraction were evaluated through classic thermodynamic equilibrium theory producing comparable results with the simulations performed with Mie formalism. The final experiment consisted in the measurements of phase function and degree of linear polarization of ambient aerosols

  6. Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Quaas, J.; Ming, Y.; Menon, S.; Takemura, T.; Wang, M.; Penner, J. E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, O.; Sayer, A. M.; Thomas, G. E.; McComiskey, A.; Feingold, G.; Hoose, C.; Kristjánsson, J. E.; Liu, X.; Balkanski, Y.; Donner, L. J.; Ginoux, P. A.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, I.; Bauer, S. E.; Koch, D.; Grainger, R. G.; Kirkevåg, A.; Iversen, T.; Seland, Ø.; Easter, R.; Ghan, S. J.; Rasch, P. J.; Morrison, H.; Lamarque, J.-F.; Iacono, M. J.; Kinne, S.; Schulz, M.

    2009-11-01

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld-τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR-τa relationship show a strong positive correlation between τa and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation

  7. Evaluation of VIIRS AOD over North China Plain: biases from aerosol models

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Wang, J.; Chen, H.; Zhang, J.; Oo, M. M.; Holz, R.

    2014-12-01

    With the launch of the Visible Infrared Imaging Radiometer Suit (VIIRS) instrument onboard Suomi National Polar-orbiting Partnership(S-NPP) in late 2011, the aerosol products of VIIRS are receiving much attention.To date, mostevaluations of VIIRS aerosol productswere carried out about aerosol optical depth (AOD). To further assess the VIIRS AOD in China which is a heavy polluted region in the world,we made a comparison between VIIRS AOD and CE-318 radiometerobservation at the following three sites overNorth China Plain (NCP): metropolis-Beijing (AERONET), suburbs-XiangHe (AERONET) and regional background site- Xinglong (CARSNET).The results showed the VIIRS AOD at 550 nm has a positive mean bias error (MBE) of 0.14-0.15 and root mean square error (RMBE) 0.20. Among three sites, Beijing is mainly a source of bias with MBE 0.17-0.18 and RMBE 0.23-0.24, and this bias is larger than some recent global statics recently published in the literature. Further analysis shows that this large bias in VIIRS AOD overNCP may be partly caused by the aerosol model selection in VIIRS aerosol inversion. According to the retrieval of sky radiance from CE-318 at three sites, aerosols in NCP have high mean real part of refractive indices (1.52-1.53), large volume mean radius (0.17-0.18) and low concentration (0.04-0.09) of fine aerosol, and small mean radius (2.86-2.92) and high concentration (0.06-0.16) of coarse mode aerosol. These observation-based aerosol single scattering properties and size of fine and coarse aerosols differ fromthe aerosol properties used in VIIRSoperational algorithm.The dominant aerosol models used in VIIRS algorithm for these three sites are less polluted urban aerosol in Beijing and low-absorption smoke in other two sites, all of which don't agree with the high imaginary part of refractive indices from CE-318 retrieval. Therefore, the aerosol models in VIIRS algorithm are likely to be refined in NCP region.

  8. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    NASA Astrophysics Data System (ADS)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  9. Quantification of model uncertainty in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-09-01

    We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.

  10. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  11. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  12. Detecting Aerosol Effect on Deep Precipitation Systems: A Modeling Study

    NASA Astrophysics Data System (ADS)

    Li, X.; Tao, W.; Khain, A.; Kummerow, C.; Simpson, J.

    2006-05-01

    Urban cities produce high concentrations of anthropogenic aerosols. These aerosols are generally hygroscopic and may serve as Cloud Condensation Nuclei (CCN). This study focuses on the aerosol indirect effect on the deep convective systems over the land. These deep convective systems contribute to the majority of the summer time rainfall and are important for local hydrological cycle and weather forecast. In a companion presentation (Tao et al.) in this session, the mechanisms of aerosol-cloud-precipitation interactions in deep convective systems are explored using cloud-resolving model simulations. Here these model results will be analyzed to provide guidance to the detection of the impact of aerosols as CCN on summer time, deep convections using the currently available observation methods. The two-dimensional Goddard Cumulus Ensemble (GCE) model with an explicit microphysical scheme has been used to simulate the aerosol effect on deep precipitation systems. This model simulates the size distributions of aerosol particles, as well as cloud, rain, ice crystals, snow, graupel, and hail explicitly. Two case studies are analyzed: a midlatitude summer time squall in Oklahoma, and a sea breeze convection in Florida. It is shown that increasing the CCN number concentration does not affect the rainfall structure and rain duration in these two cases. The total surface rainfall rate is reduced in the squall case, but remains essentially the same in the sea breeze case. For the long-lived squall system with a significant portion of the stratiform rain, the surface rainfall PDF (probability density function) distribution is more sensitive to the change of the initial CCN concentrations compared with the total surface rainfall. The possibility of detecting the aerosol indirect effect in deep precipitation systems from the space is also studied in this presentation. The hydrometeors fields from the GCE model simulations are used as inputs to a microwave radiative transfer model

  13. Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization

    PubMed Central

    Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard

    2013-01-01

    Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542

  14. Characteristics of aerosol acidity in Hong Kong

    NASA Astrophysics Data System (ADS)

    Pathak, Ravi Kant; Louie, Peter K. K.; Chan, Chak K.

    The ammonium-to-sulfate ratio ([NH 4+]/[SO 42-]) and the strong acidity have been generally used as parameters to describe the acidic nature of atmospheric aerosols. However, both parameters do not provide the in situ acidic characteristics of atmospheric aerosols, which are more relevant to the reactivity and the environmental impacts of the aerosols. In this study, the in situ free acid concentrations and the in situ pH of aerosols are investigated to understand the acidic characteristics of atmospheric aerosols in Hong Kong (HK). Over 182 datasets on 24 h Respirable Suspended Particles (RSP) samples collected in 2001 from seven air-quality-monitoring sites run by the Hong Kong Environmental Protection Department are analyzed. Simulations using the Aerosol Inorganic Model (AIM2) reveal that the in situ acidity, i.e., the free acid concentration ([H +] free), is only a minor fraction (˜23%) of the estimated strong acidity in the fine particles because of the presence of bisulfate ions. The acidity characteristics of fine particles are a function of mainly RH and ammonium to sulfate ratio. The in situ free acid concentration, the normalized water content ([H 2O] AIM2/[SO 42-]), and the dissociation of bisulfate to free acid in the aerosols decrease as the [NH 4+]/[SO 42-] ratio increases and the Relative Humidity (RH) decreases. The acidic fine mode particles have average molar [NH 4+]/[SO 42-] ratio of 1.42, strong acidity of 51 nmol m -3, in situ acidity of 11 nmol m -3, and in situ pH of 0.25 on average. Our findings suggest that even the more neutralized ([NH 4+]/[SO 42-] >1.5) particles, such as those found when HK is under the influence of continental air masses from the Chinese mainland, can have high in situ acidity and low pH when the RH is low. This study calls for more investigation of the acidity of aerosols in HK, incorporating the concepts of in situ acidity and pH.

  15. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue

    The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.

  16. Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models

    DOE PAGES

    Kristiansen, N. I.; Stohl, A.; Olivie, D. J. L.; ...

    2016-03-17

    Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 ( 137Cs) and xenon-133 ( 133Xe) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to theirmore » available aerosol surface area. 137Cs size distribution measurements taken close to the power plant suggested that accumulation-mode (AM) sulfate aerosols were the main carriers of cesium. Hence, 137Cs can be used as a proxy tracer for the AM sulfate aerosol's fate in the atmosphere. In contrast, the noble gas 133Xe behaves almost like a passive transport tracer. Global surface measurements of the two radioactive isotopes taken over several months after the release allow the derivation of a lifetime of the carrier aerosol. We compare this to the lifetimes simulated by 19 different atmospheric transport models initialized with identical emissions of 137Cs that were assigned to an aerosol tracer with each model's default properties of AM sulfate, and 133Xe emissions that were assigned to a passive tracer. We investigate to what extent the modelled sulfate tracer can reproduce the measurements, especially with respect to the observed loss of aerosol mass with time. Modelled 137Cs and 133Xe concentrations sampled at the same location and times as station measurements allow a direct comparison between measured and modelled aerosol lifetime. The e-folding lifetime τ e, calculated from station measurement data taken between 2 and 9 weeks after the start of the emissions, is 14.3 days

  17. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found thatmore » the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on

  18. COARSEMAP: synthesis of observations and models for coarse-mode aerosols

    NASA Astrophysics Data System (ADS)

    Wiedinmyer, C.; Lihavainen, H.; Mahowald, N. M.; Alastuey, A.; Albani, S.; Artaxo, P.; Bergametti, G.; Batterman, S.; Brahney, J.; Duce, R. A.; Feng, Y.; Buck, C.; Ginoux, P. A.; Chen, Y.; Guieu, C.; Cohen, D.; Hand, J. L.; Harrison, R. M.; Herut, B.; Ito, A.; Losno, R.; Gomez, D.; Kanakidou, M.; Landing, W. M.; Laurent, B.; Mihalopoulos, N.; Mackey, K.; Maenhaut, W.; Hueglin, C.; Milando, C.; Miller, R. L.; Myriokefaitakis, S.; Neff, J. C.; Pandolfi, M.; Paytan, A.; Perez Garcia-Pando, C.; Prank, M.; Prospero, J. M.; Tamburo, E.; Varrica, D.; Wong, M.; Zhang, Y.

    2017-12-01

    Coarse mode aerosols influence Earth's climate and biogeochemistry by interacting with long-wave radiation, promoting ice nucleation, and contributing important elements to biogeochemical cycles during deposition. Yet coarse mode aerosols have received less emphasis in the scientific literature. Here we present first efforts to globally synthesize available mass concentration, composition and optical depth data and modeling for the coarse mode aerosols (<10 µm) in a new project called "COARSEMAP" (http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/mahowald/COARSEMAP/). We seek more collaborators who have observational data, especially including elemental or composition data, and/or who are interested in detailed modeling of the coarse mode. The goal will be publications synthesizing data with models, as well as providing synthesized results to the wider community.

  19. Hygroscopicity of organic surrogate compounds from biomass burning and their effect on the efflorescence of ammonium sulfate in mixed aerosol particles

    NASA Astrophysics Data System (ADS)

    Lei, Ting; Zuend, Andreas; Cheng, Yafang; Su, Hang; Wang, Weigang; Ge, Maofa

    2018-01-01

    Hygroscopic growth factors of organic surrogate compounds representing biomass burning and mixed organic-inorganic aerosol particles exhibit variability during dehydration experiments depending on their chemical composition, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). We observed that levoglucosan and humic acid aerosol particles release water upon dehumidification in the range from 90 to 5 % relative humidity (RH). However, 4-Hydroxybenzoic acid aerosol particles remain in the solid state upon dehumidification and exhibit a small shrinking in size at higher RH compared to the dry size. For example, the measured growth factor of 4-hyroxybenzoic acid aerosol particles is ˜ 0.96 at 90 % RH. The measurements were accompanied by RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and Extended Aerosol Inorganics Model (E-AIM), the Zdanovskii-Stokes-Robinson (ZSR) relation, and a fitted hygroscopicity expression. We observed several effects of organic components on the hygroscopicity behavior of mixtures containing ammonium sulfate (AS) in relation to the different mass fractions of organic compounds: (1) a shift of efflorescence relative humidity (ERH) of ammonium sulfate to higher RH due to the presence of 25 wt % levoglucosan in the mixture. (2) There is a distinct efflorescence transition at 25 % RH for mixtures consisting of 25 wt % of 4-hydroxybenzoic acid compared to the ERH at 35 % for organic-free AS particles. (3) There is indication for a liquid-to-solid phase transition of 4-hydroxybenzoic acid in the mixed particles during dehydration. (4) A humic acid component shows no significant effect on the efflorescence of AS in mixed aerosol particles. In addition, consideration of a composition-dependent degree of dissolution of crystallization AS (solid-liquid equilibrium) in the AIOMFAC and E-AIM models leads to a

  20. Climatic influence of background and volcanic stratosphere aerosol models

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Herman, M.; Lenoble, J.; Tanre, D.

    1982-01-01

    A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.

  1. Description and Evaluation of IAP-AACM: A Global-regional Aerosol Chemistry Model for the Earth System Model CAS-ESM

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Chen, X.

    2017-12-01

    We present a first description and evaluation of the IAP Atmospheric Aerosol Chemistry Model (IAP-AACM) which has been integrated into the earth system model CAS-ESM. In this way it is possible to research into interaction of clouds and aerosol by its two-way coupling with the IAP Atmospheric General Circulation Model (IAP-AGCM). The model has a nested global-regional grid based on the Global Environmental Atmospheric Transport Model (GEATM) and the Nested Air Quality Prediction Modeling System (NAQPMS). The AACM provides two optional gas chemistry schemes, the CBM-Z gas chemistry as well as a sulfur oxidize box designed specifically for the CAS-ESM. Now the model driven by AGCM has been applied to a 1-year simulation of tropospheric chemistry both on global and regional scales for 2014, and been evaluated against various observation datasets, including aerosol precursor gas concentration, aerosol mass and number concentrations. Furthermore, global budgets in AACM are compared with other global aerosol models. Generally, the AACM simulations are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of gases and particles concentration both on global and regional scales.

  2. Evaluation of a Three-Dimensional Chemical Transport Model (PMCAMx) in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2007-05-01

    Atmospheric aerosols have adverse effects on human health, contribute to the visibility reduction and influence the energy balance of the planet. A three-dimensional chemical transport model (PMCAMx) (Gaydos et al., 2007) is used to simulate the particular matter (PM) mass composition distribution in the Mexico City Metropolitan Area (MCMA). PMCAMx uses the framework of CAMx (ENVIRON, 2002) modelling the processes of horizontal and vertical advection, horizontal and vertical dispersion, wet and dry deposition, and gas-phase chemistry. In addition to the above, PMCAMx includes three detailed aerosol modules: inorganic aerosol growth (Gaydos et al., 2003; Koo et al., 2003a), aqueous-phase chemistry (Fahey and Pandis, 2001), and secondary organic aerosol formation and growth (Koo et al., 2004). The aerosol thermodynamic model ISORROPIA has been improved as it now simulates explicitly the chemistry of Ca, Mg, and K salts and is linked to PMCAMx. The hybrid approach (Koo et al., 2003b) for modelling aerosol dynamics is applied in order to accurately simulate the inorganic components in coarse mode. This approach assumes that the smallest particles are in equilibrium while the condensation/evaporation equation is solved for the larger ones. The new CMU organic aerosol model, which is based on the splitting of the organic aerosol volatility range in discrete bins, is also used. The model predictions are evaluated against the PM and vapour concentration measurements from the MCMA-2003 Campaign (Molina et al., 2007). References Gaydos, T., Pinder, R., Koo, B., Fahey, Κ., Yarwood, G., and Pandis, S. N., (2007). Development and application of a three-dimensional Chemical Transport Model, PMCAMx. Atmospheric Environment, in press. ENVIRON (2002). User's guide to the comprehensive air quality model with extensions (CAMx). Version 3.10. Report prepared by ENVIRON International corporation, Novato, CA Gaydos, T., Koo, B., and Pandis, S. N., (2003). Development and application of

  3. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is foundmore » that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the

  4. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  5. Chemical transport model simulations of organic aerosol in ...

    EPA Pesticide Factsheets

    Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data

  6. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    PubMed

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  7. MODELING THE FORMATION OF SECONDARY ORGANIC AEROSOL WITHIN A COMPREHENSIVE AIR QUALITY MODEL SYSTEM

    EPA Science Inventory

    The aerosol component of the CMAQ model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdistributions, called modes. The proces...

  8. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-04

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  9. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  10. Comparison of SPECT aerosol deposition data with a human respiratory tract model.

    PubMed

    Fleming, John S; Epps, Ben P; Conway, Joy H; Martonen, Ted B

    2006-01-01

    Three-dimensional (3D) radionuclide imaging provides detailed information on the distribution of inhaled aerosol material within the body. Analysis of the data can provide estimates of the deposition per airway generation. In this study, two different nebulizers have been used to deliver radiolabeled aerosols of different particle size to 12 human subjects. Medical imaging has been used to assess the deposition in the body. The deposition pattern has also been estimated using the International Commission on Radiological Protection (ICRP) empirical model and compared to values obtained by experiment. The results showed generally good agreement between model and experiment for both aerosols for the deposition in the extrathoracic and conducting airways. However, there were significant differences in the fate of the remainder of the aerosol between the amount deposited in the alveolar region and that exhaled. The inter-subject variability of deposition predicted by the model was significantly less than that measured, for all regions of the body. The model predicted quite well the differences in deposition distribution pattern between the two aerosols. In conclusion, this study has shown that the ICPR model of inhaled aerosol deposition shows areas of good agreement with results from experiment. However, there are also areas of disagreement, which may be explained by hygroscopic particle growth and individual variation in airway anatomy.

  11. Comparative thermodynamic studies of aqueous glutaric acid, ammonium sulfate and sodium chloride aerosol at high humidity.

    PubMed

    Hanford, Kate L; Mitchem, Laura; Reid, Jonathan P; Clegg, Simon L; Topping, David O; McFiggans, Gordon B

    2008-10-02

    Aerosol optical tweezers are used to simultaneously characterize and compare the hygroscopic properties of two aerosol droplets, one containing inorganic and organic solutes and the second, referred to as the control droplet, containing a single inorganic salt. The inorganic solute is either sodium chloride or ammonium sulfate and the organic component is glutaric acid. The time variation in the size of each droplet (3-7 microm in radius) is recorded with 1 s time resolution and with nanometre accuracy. The size of the control droplet is used to estimate the relative humidity with an accuracy of better than +/-0.09%. Thus, the Kohler curve of the multicomponent inorganic/organic droplet, which characterizes the variation in equilibrium droplet size with relative humidity, can be determined directly. The measurements presented here focus on high relative humidities, above 97%, in the limit of dilute solutes. The experimental data are compared with theoretical treatments that, while ignoring the interactions between the inorganic and organic components, are based upon accurate representations of the activity-concentration relationships of aqueous solutions of the individual salts. The organic component is treated by a parametrized fit to experimental data or by the UNIFAC model and the water activity of the equilibrium solution droplet is calculated using the approach suggested by Clegg, Seinfeld and Brimblecombe or the Zdanovskii-Stokes-Robinson approximation. It is shown that such an experimental strategy, comparing directly droplets of different composition, enables highly accurate measurements of the hygroscopic properties, allowing the theoretical treatments to be rigorously tested. Typical deviations of the experimental measurements from theoretical predictions are shown to be around 1% in equilibrium size, comparable to the variation between the theoretical frameworks considered.

  12. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-03-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Sensitivity experiments are carried out to analyse the effects of these improvements in the process representation on the simulated aerosol properties and global distribution. The new parameterizations that have largest impact on the global mean aerosol optical depth and radiative effects turn out to be the water uptake scheme and cloud microphysics. The former leads to a significant decrease of aerosol water contents in the lower troposphere, and consequently smaller optical depth; the latter results in higher aerosol loading and longer lifetime due to weaker in-cloud scavenging. The combined effects of the new/updated parameterizations are demonstrated by comparing the new model results with those from the earlier version, and against observations. Model simulations are evaluated in terms of aerosol number concentrations against measurements collected from twenty field campaigns as well as from fixed measurement sites, and in terms of optical properties against the AERONET measurements. Results indicate a general improvement with respect to the earlier version. The aerosol size distribution and spatial-temporal variance simulated by HAM2 are in better agreement with the observations. Biases in the earlier model version in aerosol optical depth and in the Ångström parameter have been reduced. The paper also points out the remaining model deficiencies that need to be

  13. Satellite observations and EMAC model calculations of sulfate aerosols from Kilauea: a study of aerosol formation, processing, and loss

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Brühl, Christoph; Dörner, Steffen; Pozzer, Andrea; Wagner, Thomas

    2016-04-01

    The currently most active volcano on Earth is Mount Kilauea on Hawaii, as it has been in a state of continuous eruption since 1983. The opening of a new vent in March 2008 caused half a year of strongly increased SO2 emissions, which in turn led to the formation of a sulfate plume with an extent of at least two thousand kilometers. The plume could be clearly identified from satellite measurements from March to November, 2008. The steady trade winds in the region and the lack of interfering sources allowed us to determine the life time of SO2 from Kilauea using only satellite-based measurements (no a priori or model information). The current investigation focuses on sulfate aerosols: their formation, processing and subsequent loss. Using space-based aerosol measurements by MODIS, we study the evolution of aerosol optical depth, which first increases as a function of distance from the volcano due to aerosol formation from SO2 oxidation, and subsequently decreases as aerosols are deposited to the surface. The outcome is compared to results from calculations using the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to test the state of understanding of the sulfate aerosol life cycle. For this comparison, a particular focus is on the role of clouds and wet removal processes.

  14. Three Dimensional Modeling Analysis of the Transpacific Transport of Aerosols During PACDEX

    NASA Astrophysics Data System (ADS)

    Carmichael, G. R.; Adhikary, B.; Hatch, C.; Kulkarni, S.; Moen, J.; Mena, M.

    2007-12-01

    Mineral dust and aerosols emitted from Asia are known to traverse long distances across the Pacific Ocean and can reach North America within a few days. A pilot field study, the PACific Dust Experiment (PACDEX), was carried out in April and May of 2007, during the peak East Asian dust emission season. The NSF/NCAR-HIAPER (High Performance Instrumented Airborne Platform for Environmental Research) platform allowed for sampling the evolution of mineral aerosol/pollution plumes and their physical and chemical characteristics as they traverse the Pacific Ocean and interact with the Pacific cloud systems en route to North America in both the upper and lower troposphere. A comprehensive 3-dimensional regional-scale model developed at The University of Iowa (Sulfur Transport dEposition Model, STEM) has been used for the analysis of aerosol interactions to help define key measurement strategies during the mission and to help interpret observations from the HIAPER platform. In this study we will present model aerosol distribution inter-comparison with cloud fields and aircraft observations. Model analysis provides further insight into cloud/pollution/dust interactions as East Asian emissions transit the Pacific Ocean en route to North America. Trajectory analysis and emission markers are used to help understand the air mass history and aerosol aging processes of the aerosols sampled by the HIAPER platform. Estimates of the fluxes of aerosol dust, BC and sulfate due to transpacific transport will also be presented.

  15. Explicit Cloud Nucleation from Arbitrary Mixtures of Aerosol Types and Sizes Using an Ultra-Efficient In-Line Aerosol Bin Model in High-Resolution Simulations of Hurricanes

    NASA Astrophysics Data System (ADS)

    Walko, R. L.; Ashby, T.; Cotton, W. R.

    2017-12-01

    The fundamental role of atmospheric aerosols in the process of cloud droplet nucleation is well known, and there is ample evidence that the concentration, size, and chemistry of aerosols can strongly influence microphysical, thermodynamic, and ultimately dynamic properties and evolution of clouds and convective systems. With the increasing availability of observation- and model-based environmental representations of different types of anthropogenic and natural aerosols, there is increasing need for models to be able to represent which aerosols nucleate and which do not in supersaturated conditions. However, this is a very complex process that involves competition for water vapor between multiple aerosol species (chemistries) and different aerosol sizes within each species. Attempts have been made to parameterize the nucleation properties of mixtures of different aerosol species, but it is very difficult or impossible to represent all possible mixtures that may occur in practice. As part of a modeling study of the impact of anthropogenic and natural aerosols on hurricanes, we developed an ultra-efficient aerosol bin model to represent nucleation in a high-resolution atmospheric model that explicitly represents cloud- and subcloud-scale vertical motion. The bin model is activated at any time and location in a simulation where supersaturation occurs and is potentially capable of activating new cloud droplets. The bins are populated from the aerosol species that are present at the given time and location and by multiple sizes from each aerosol species according to a characteristic size distribution, and the chemistry of each species is represented by its absorption or adsorption characteristics. The bin model is integrated in time increments that are smaller than that of the atmospheric model in order to temporally resolve the peak supersaturation, which determines the total nucleated number. Even though on the order of 100 bins are typically utilized, this leads only

  16. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    NASA Technical Reports Server (NTRS)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF

  17. Morphologies of aerosol particles consisting of two liquid phases

    NASA Astrophysics Data System (ADS)

    Song, Mijung; Marcolli, Claudia; Krieger, Ulrich; Peter, Thomas

    2013-04-01

    Recent studies have shown that liquid-liquid phase separation (LLPS) might be a common feature in mixed organic/ammonium sulfate (AS)/H2O particles. Song et al. (2012) observed that in atmospheric relevant organic/AS/H2O mixtures LLPS always occurred for organic aerosol compositions with O:C < 0.56, depended on the specific functional groups of organics in the range of 0.56 < O:C < 0.80 and never appeared for O:C > 0.80. The composition of the organic fraction and the mixing state of aerosol particles may influence deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of inorganic salts during RH cycles and also aerosol morphology. In order to determine how the deliquescence and efflorescence of AS in mixed organic/AS/H2O particles is influenced by LLPS and to identify the corresponding morphologies of the particles, we subjected organic/AS/H2O particles deposited on a hydrophobically coated substrate to RH cycles and observed the phase transitions using optical microscopy and Raman spectroscopy. In this study, we report results from 21 organic/AS/H2O systems with O:C ranging from 0.55 - 0.85 covering aliphatic and aromatic oxidized compounds. Eight systems did not show LLPS for all investigated organic-to-inorganic ratios, nine showed core-shell morphology when present in a two-liquid-phases state and four showed both, core-shell or partially engulfed configurations depending on the organic-to-inorganic ratio. While AS in aerosol particles with complete LLPS showed almost constant values of ERH = 44 ± 4 % and DRH = 77 ± 2 %, a strong reduction or complete inhibition of efflorescence occurred for mixtures that did not exhibit LLPS. To confirm these findings, we performed supplementary experiments on levitated particles in an electrodynamic balance and compared surface and interfacial tensions of the investigated mixtures. Reference Song, M., C. Marcolli, U. K. Krieger, A. Zuend, and T. Peter (2012), Liquid-liquid phase separation in

  18. A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment

    NASA Astrophysics Data System (ADS)

    Nishant, Nidhi; Sherwood, Steven C.

    2017-06-01

    In convective clouds, satellite-observed deepening or increased amount of clouds with increasing aerosol concentration has been reported and is sometimes interpreted as aerosol-induced invigoration of the clouds. However, such correlations can be affected by meteorological factors that affect both aerosol and clouds, as well as observational issues. In this study, we examine the behavior in a 660 × 660 km2 region of the South Pacific during June 2007, previously found by Koren et al. (2014) to show strong correlation between cloud fraction, cloud top pressure, and aerosols, using a cloud-resolving model with meteorological boundary conditions specified from a reanalysis. The model assumes constant aerosol loading, yet reproduces vigorous clouds at times of high real-world aerosol concentrations. Days with high- and low-aerosol loading exhibit deep-convective and shallow clouds, respectively, in both observations and the simulation. Synoptic analysis shows that vigorous clouds occur at times of strong surface troughs, which are associated with high winds and advection of boundary layer air from the Southern Ocean where sea-salt aerosol is abundant, thus accounting for the high correlation. Our model results show that aerosol-cloud relationships can be explained by coexisting but independent wind-aerosol and wind-cloud relationships and that no cloud condensation nuclei effect is required.

  19. Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications.

    PubMed

    Ou, Canlin; Sangle, Abhijeet L; Datta, Anuja; Jing, Qingshen; Busolo, Tommaso; Chalklen, Thomas; Narayan, Vijay; Kar-Narayan, Sohini

    2018-06-13

    Thermoelectric materials, capable of interconverting heat and electricity, are attractive for applications in thermal energy harvesting as a means to power wireless sensors, wearable devices, and portable electronics. However, traditional inorganic thermoelectric materials pose significant challenges due to high cost, toxicity, scarcity, and brittleness, particularly when it comes to applications requiring flexibility. Here, we investigate organic-inorganic nanocomposites that have been developed from bespoke inks which are printed via an aerosol jet printing method onto flexible substrates. For this purpose, a novel in situ aerosol mixing method has been developed to ensure uniform distribution of Bi 2 Te 3 /Sb 2 Te 3 nanocrystals, fabricated by a scalable solvothermal synthesis method, within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. The thermoelectric properties of the resulting printed nanocomposite structures have been evaluated as a function of composition, and the power factor was found to be maximum (∼30 μW/mK 2 ) for a nominal loading fraction of 85 wt % Sb 2 Te 3 nanoflakes. Importantly, the printed nanocomposites were found to be stable and robust upon repeated flexing to curvatures up to 300 m -1 , making these hybrid materials particularly suitable for flexible thermoelectric applications.

  20. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-08-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry-climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry-climate model for the period 1960-2009 against extensive ground-based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009), aerosol size distributions (2008-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2), aerosol number concentrations (N30 NMBF = -0.85; N50 NMBF = -0.65; and N100 NMBF = -0.96) and AOD (NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68 % (-78 %), SPM of -42 % (-20 %), PM10 of -9 % (-8 %) and AOD of -11 % (-14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  1. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  2. Enhanced ozone loss by active inorganic bromine chemistry in the tropical troposphere

    NASA Astrophysics Data System (ADS)

    Le Breton, Michael; Bannan, Thomas J.; Shallcross, Dudley E.; Khan, M. Anwar; Evans, Mathew J.; Lee, James; Lidster, Richard; Andrews, Stephen; Carpenter, Lucy J.; Schmidt, Johan; Jacob, Daniel; Harris, Neil R. P.; Bauguitte, Stephane; Gallagher, Martin; Bacak, Asan; Leather, Kimberley E.; Percival, Carl J.

    2017-04-01

    Bromine chemistry, particularly in the tropics, has been suggested to play an important role in tropospheric ozone loss although a lack of measurements of active bromine species impedes a quantitative understanding of its impacts. Recent modelling and measurements of bromine monoxide (BrO) by Wang et al. (2015) have shown current models under predict BrO concentrations over the Pacific Ocean and allude to a missing source of BrO. Here, we present the first simultaneous aircraft measurements of atmospheric bromine monoxide, BrO (a radical that along with atomic Br catalytically destroys ozone) and the inorganic Br precursor compounds HOBr, BrCl and Br2 over the Western Pacific Ocean from 0.5 to 7 km. The presence of 0.17-1.64 pptv BrO and 3.6-8 pptv total inorganic Br from these four species throughout the troposphere causes 10-20% of total ozone loss, and confirms the importance of bromine chemistry in the tropical troposphere; contributing to a 6 ppb decrease in ozone levels due to halogen chemistry. Observations are compared with a global chemical transport model and find that the observed high levels of BrO, BrCl and HOBr can be reconciled by active multiphase oxidation of halide (Br- and Cl-) by HOBr and ozone in cloud droplets and aerosols. Measurements indicate that 99% of the instantaneous free Br in the troposphere up to 8 km originates from inorganic halogen photolysis rather than from photolysis of organobromine species.

  3. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in

  4. Direct radiative effects of aerosols over South Asia from observations and modeling

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Chin, Mian

    2017-08-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter (DRESUR = -28 ± 12 W m-2 and DREATM = +19.6 ± 9 W m-2) to spring (DRESUR = -33.7 ± 12 W m-2 and DREATM = +27 ± 9 W m-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as 1 K day-1 during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 ± 7 W m-2) during spring overwhelms that of black carbon DRE (+11.8 ± 6 W m-2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  5. The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddington, C. L.; Carslaw, K. S.; Stier, P.

    The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, tomore » create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.« less

  6. The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty

    DOE PAGES

    Reddington, C. L.; Carslaw, K. S.; Stier, P.; ...

    2017-09-01

    The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, tomore » create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.« less

  7. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  8. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  9. Organic Aerosols as Cloud Condensation Nuclei

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.

    2002-05-01

    The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of

  10. Radiative absorption enhancement from coatings on black carbon aerosols.

    PubMed

    Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao; Chen, Bing; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2016-05-01

    The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4±0.8m(2)g(-1) was enhanced to 9.6±1.8m(2)g(-1) at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (EMAC) rises from 1.4±0.3 in fresh combustion emissions to ~3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25±0.55, and sulfates were primary drivers of the enhanced BC absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  12. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  13. Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Griffiths, P. T.; Pope, F. D.; Reid, J. P.; Kalberer, M.

    2017-04-01

    The chemical composition of organic aerosols profoundly influences their atmospheric properties, but a detailed understanding of heterogeneous and in-particle reactivity is lacking. We present here a combined experimental and modeling study of the ozonolysis of oleic acid particles. An online mass spectrometry (MS) method, Extractive Electrospray Ionization (EESI), is used to follow the composition of the aerosol at a molecular level in real time; relative changes in the concentrations of both reactants and products are determined during aerosol aging. The results show evidence for multiple non-first-order reactions involving stabilized Criegee intermediates, including the formation of secondary ozonides and other oligomers. Offline liquid chromatography MS is used to confirm the online MS assignment of the monomeric and dimeric products. We explain the observed EESI-MS chemical composition changes, and chemical and physical data from previous studies, using a process-based aerosol chemistry simulation, the Pretty Good Aerosol Model (PG-AM). In particular, we extend previous studies of reactant loss by demonstrating success in reproducing the time dependence of product formation and the evolving particle size. This advance requires a comprehensive chemical scheme coupled to the partitioning of semivolatile products; relevant reaction and evaporation parameters have been refined using our new measurements in combination with PG-AM.

  14. Synchronised Aerosol Mass Spectrometer Measurements across Europe

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko

    2010-05-01

    sites concentrations of inorganic precursor gases (e.g. NH3, HNO3, SO2) were measured simultaneously, mainly with a denuder based wet chemistry technique. The database provides a powerful dataset against which to compare the performance of European scale Chemistry and Transport Models (CTMs) in reproducing transport patterns, thermodynamics (e.g. daytime vs. night-time concentrations and gas/aerosol partitioning) and organic aerosol partitioning (e.g. primary versus oxidised aerosol). Future analysis will include a detailed analysis of the organic aerosol composition, through statistical factor analysis and based on the high mass resolution data provided by a subset of the AMS instruments.

  15. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  16. Downscaling Aerosols and the Impact of Neglected Subgrid Processes on Direct Aerosol Radiative Forcing for a Representative Global Climate Model Grid Spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I.; Qian, Yun; Fast, Jerome D.

    2011-07-13

    Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less

  17. Primary carbonaceous aerosols and climate modeling: Classifications, global emission inventories, and observations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Bond, T.

    2004-12-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), make up a large fraction of the atmospheric aerosols and affect the radiative balance of the earth either by directly scattering and absorbing solar radiation or through indirect influence on cloud optical properties and cloud lifetimes. The major sources of BC and OC emissions are from combustion processes, mainly.fossil-fuel burning, biofuels burning, and open biomass burning. OC is nearly always emitted with BC. Because different combustion practices contribute to the emission of BC and OC to the atmosphere, the magnitude and characteristics of carbonaceous aerosols vary between regions. Since OC mainly scatters light and BC absorbs it, it is possible that OC can oppose the warming effect of BC, so that the net climatic effect of carbonaceous aerosols is not known. There is presently disagreement on whether carbonaceous aerosols produce a net warming or cooling effect on climate. Some differences in model prediction may result from model differences, such as dynamics and treatment of cloud feedbacks. However, large differences also result from initial assumptions about the properties of BC and OC: optical properties, size distribution, and interaction with water. Although there are hundreds of different organic species in atmospheric aerosols, with widely varying properties, global climate models to date have treated organics as one ¡°compound.¡± In addition, emissions of OC are often derived by multiplying BC emissions by a constant factor, so that the balance between these different compounds is assumed. Addressing these critical model assumptions is a necessary step toward estimating the net climatic impact of carbonaceous aerosols, and different human activities. We aim to contribute to this effort by tabulating important climate-relevant properties of both emissions and ambient measurements. Since one single organic ¡°compound¡± is not sufficient to represent all the

  18. Evaluating Model Parameterizations of Submicron Aerosol Scattering and Absorption with in situ Data from ARCTAS 2008

    NASA Technical Reports Server (NTRS)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; hide

    2016-01-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9- 02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 percent, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GCRT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  19. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    NASA Astrophysics Data System (ADS)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien

    2016-07-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  20. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.

    2012-09-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host

  1. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.

    2013-03-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus

  2. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  3. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  4. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  5. Comparison of five bacteriophages as models for viral aerosol studies.

    PubMed

    Turgeon, Nathalie; Toulouse, Marie-Josée; Martel, Bruno; Moineau, Sylvain; Duchaine, Caroline

    2014-07-01

    Bacteriophages are perceived to be good models for the study of airborne viruses because they are safe to use, some of them display structural features similar to those of human and animal viruses, and they are relatively easy to produce in large quantities. Yet, only a few studies have investigated them as models. It has previously been demonstrated that aerosolization, environmental conditions, and sampling conditions affect viral infectivity, but viral infectivity is virus dependent. Thus, several virus models are likely needed to study their general behavior in aerosols. The aim of this study was to compare the effects of aerosolization and sampling on the infectivity of five tail-less bacteriophages and two pathogenic viruses: MS2 (a single-stranded RNA [ssRNA] phage of the Leviviridae family), Φ6 (a segmented double-stranded RNA [dsRNA] phage of the Cystoviridae family), ΦX174 (a single-stranded DNA [ssDNA] phage of the Microviridae family), PM2 (a double-stranded DNA [dsDNA] phage of the Corticoviridae family), PR772 (a dsDNA phage of the Tectiviridae family), human influenza A virus H1N1 (an ssRNA virus of the Orthomyxoviridae family), and the poultry virus Newcastle disease virus (NDV; an ssRNA virus of the Paramyxoviridae family). Three nebulizers and two nebulization salt buffers (with or without organic fluid) were tested, as were two aerosol sampling devices, a liquid cyclone (SKC BioSampler) and a dry cyclone (National Institute for Occupational Safety and Health two-stage cyclone bioaerosol sampler). The presence of viruses in collected air samples was detected by culture and quantitative PCR (qPCR). Our results showed that these selected five phages behave differently when aerosolized and sampled. RNA phage MS2 and ssDNA phage ΦX174 were the most resistant to aerosolization and sampling. The presence of organic fluid in the nebulization buffer protected phages PR772 and Φ6 throughout the aerosolization and sampling with dry cyclones. In this

  6. Comparison of Five Bacteriophages as Models for Viral Aerosol Studies

    PubMed Central

    Turgeon, Nathalie; Toulouse, Marie-Josée; Martel, Bruno; Moineau, Sylvain

    2014-01-01

    Bacteriophages are perceived to be good models for the study of airborne viruses because they are safe to use, some of them display structural features similar to those of human and animal viruses, and they are relatively easy to produce in large quantities. Yet, only a few studies have investigated them as models. It has previously been demonstrated that aerosolization, environmental conditions, and sampling conditions affect viral infectivity, but viral infectivity is virus dependent. Thus, several virus models are likely needed to study their general behavior in aerosols. The aim of this study was to compare the effects of aerosolization and sampling on the infectivity of five tail-less bacteriophages and two pathogenic viruses: MS2 (a single-stranded RNA [ssRNA] phage of the Leviviridae family), Φ6 (a segmented double-stranded RNA [dsRNA] phage of the Cystoviridae family), ΦX174 (a single-stranded DNA [ssDNA] phage of the Microviridae family), PM2 (a double-stranded DNA [dsDNA] phage of the Corticoviridae family), PR772 (a dsDNA phage of the Tectiviridae family), human influenza A virus H1N1 (an ssRNA virus of the Orthomyxoviridae family), and the poultry virus Newcastle disease virus (NDV; an ssRNA virus of the Paramyxoviridae family). Three nebulizers and two nebulization salt buffers (with or without organic fluid) were tested, as were two aerosol sampling devices, a liquid cyclone (SKC BioSampler) and a dry cyclone (National Institute for Occupational Safety and Health two-stage cyclone bioaerosol sampler). The presence of viruses in collected air samples was detected by culture and quantitative PCR (qPCR). Our results showed that these selected five phages behave differently when aerosolized and sampled. RNA phage MS2 and ssDNA phage ΦX174 were the most resistant to aerosolization and sampling. The presence of organic fluid in the nebulization buffer protected phages PR772 and Φ6 throughout the aerosolization and sampling with dry cyclones. In this

  7. Simulating Titan's aerosols in a three dimensional general circulation model

    NASA Astrophysics Data System (ADS)

    Larson, Erik J. L.; Toon, Owen B.; Friedson, Andrew J.

    2014-11-01

    We present results from a new three dimensional GCM with a complete microphysics treatment of the aerosols. We used the Titan Community Atmospheres Model (CAM), to which we have coupled the Community Aerosol and Radiation Model for Atmospheres (CARMA). This model was unable to reproduce superrotating winds without an ad hoc forcing of the zonal winds. Our model was validated by comparing the extinction, optical depth, phase functions, and number densities with data from Cassini and Huygens, as well as other space based and ground based observations. These comparisons allowed us to constrain the microphysical properties of Titan's haze in the tropics at the time of the Huygens descent. Our best fit of the free aerosol parameters include a haze production rate of 1 × 10-14 g cm-2 s-1 and a charge to radius ratio on the particles of 7.5 e-/μm. Despite recent evidence of equatorial precipitation on Titan, we find the aerosols are only slowly removed by rainfall, less than once in 50 Earth years. One way to fit the wavelength dependence of the optical depth is to model the haze as fractal particles with a changing fractal dimension of 2 above 80 km that increases to 2.8 below 30 km. We investigate the spatial and seasonal variability of Titan's haze in our model. We find that the haze particle size and number density responds to the dynamics and creates a seasonal cycle in Titan's albedo.

  8. Modeling aerosol suspension from soils and oceans as sources of micropollutants to air.

    PubMed

    Qureshi, Asif; MacLeod, Matthew; Hungerbühler, Konrad

    2009-10-01

    Soil and marine aerosol suspension are two physical mass transfer processes that are not usually included in models describing fate and transport of environmental pollutants. Here, we review the literature on soil and marine aerosol suspension and estimate aerosol suspension mass transfer velocities for inclusion in multimedia models, as a global average and on a 1 x 1 scale. The yearly, global average mass transfer velocity for soil aerosol suspension is estimated to be 6 x 10(-10)mh(-1), approximately an order of magnitude smaller than marine aerosol suspension, which is estimated to be 8 x 10(-9)mh(-1). Monthly averages of these velocities can be as high as 10(-7)mh(-1) and 10(-5)mh(-1) for soil and marine aerosol suspension, respectively, depending on location. We use a unit-world multimedia model to analyze the relevance of these two suspension processes as a mechanism that enhances long-range atmospheric transport of pollutants. This is done by monitoring a metric of long-range transport potential, phi-one thousand (phi1000), that denotes the fraction of modeled emissions to air, water or soil in a source region that reaches a distance of 1000 km in air. We find that when the yearly, globally averaged mass transfer velocity is used, marine aerosol suspension increases phi1000 only fractionally for both emissions to air and water. However, enrichment of substances in marine aerosols, or speciation between ionic and neutral forms in ocean water may increase the influence of this surface-to-air transfer process. Soil aerosol suspension can be the dominant process for soil-to-air transfer in an emission-to-soil scenario for certain substances that have a high affinity to soil. When a suspension mass transfer velocity near the maximum limit is used, soil suspension remains important if the emissions are made to soil, and marine aerosol suspension becomes important regardless of if emissions are made to air or water compartments. We recommend that multimedia models

  9. Diel Variability of Total and Speciated Water-Soluble Inorganic Iodine in PM2.5 Aerosol at a Southern California Coastal Site

    NASA Astrophysics Data System (ADS)

    Pszenny, A.; Cotter, K.; Deegan, B.; Fischer, E.; Johnson, D.

    2007-12-01

    PM2.5 aerosol was sampled over nominal 3-hour intervals at the head of Zuma Beach in Malibu, California (USA) from 6 to 24 October 2006 by filtration at 1.13 m3 min-1 (STP) through 20 x 25 cm cellulose fiber (Whatman 41) filters that had been rinsed with deionized water (DIW). Exposed filters were removed from support cartridges as soon as possible after retrieval (usually within 2 hours), immediately sealed in clean polyethylene bags, and stored frozen until further processing. Following the field campaign one quarter of each filter was pressed into a pellet (2.0 cm diameter x 0.5 cm thick) and analyzed by neutron activation for total concentrations of I and several other trace elements. Our preliminary analyses indicate that sodium and iodine show a clear diel variation characterized by higher concentrations from late morning to early evening. We hypothesize that this diel variability is related to a persistent land/sea breeze circulation associated with the nearby coastal region. Other elements are indicative of variability in other aerosol sources such as soil dust (Al, Mn) and fossil fuel combustion (V). Second quarters are currently being extracted in DIW and analyzed in two ways: 1) for iodide by ion chromatography, and 2) for inorganic iodine in higher oxidation states (i.e., V to 0) by chemical reduction with ascorbic acid followed by determination of iodide by ion chromatography. Results of the trace element and speciated iodine analyses will be presented.

  10. Direct Radiative Effects of Aerosols Over South Asia From Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, Krishna K.; Chin, Mian

    2016-01-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter DRE(sub SUR) = -28 +/- 12 W m(exp -2) and DRE(sub ATM) = +19.6 +/- 9 W m(exp -2) to spring DRE(sub SUR) = -33.7 +/- 12 W m(exp -2) and DRE(sub ATM) = +27 +/- 9 W m(exp-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as approximately 1 K day(exp -1) during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 +/- 7 W m(exp 2) during spring overwhelms that of black carbon DRE (+11.8 +/- 6 W m(exp -2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  11. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    PubMed

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.

  12. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  13. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  14. Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Pleim, J.; Wong, D.; Hogrefe, C.; Xing, J.; Wei, C.; Gan, M.

    2013-12-01

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challenging. A detailed investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. Anthropogenic emissions of primary aerosol and gaseous precursors have witnessed dramatic changes over the past two decades across the northern hemisphere. During the period 1990-2010, SO2 and NOx emissions across the US have reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA). In contrast, anthropogenic emissions have increased dramatically in many developing regions during this period. We conduct a systematic investigation of changes in anthropogenic emissions of primary aerosols and gaseous precursors over the past two decades, their impacts on trends and spatial heterogeneity in anthropogenic aerosol loading across the northern hemisphere troposphere, and subsequent impacts on regional radiation budgets. The coupled WRF-CMAQ model is applied for selected time periods spanning the period 1990-2010 over a domain covering the northern hemisphere and a nested finer resolution continental U.S. domain. The model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation. Additionally, treatment of aerosol indirect effects on clouds has also recently been implemented. A methodology is developed to consistently estimate U.S. emission inventories for the 20-year period accounting for air quality regulations as well as

  15. Online Simulations and Forecasts of the Global Aerosol Distribution in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2006-01-01

    We present an analysis of simulations of the global aerosol system in the NASA GEOS-5 transport, radiation, and chemistry model. The model includes representations of all major tropospheric aerosol species, including dust, sea salt, black carbon, particulate organic matter, and sulfates. The aerosols are run online for the period 2000 through 2005 in a simulation driven by assimilated meteorology from the NASA Goddard Data Assimilation System. Aerosol surface mass concentrations are compared with existing long-term surface measurement networks. Aerosol optical thickness is compared with ground-based AERONET sun photometry and space-based retrievals from MODIS, MISR, and OMI. Particular emphasis is placed here on consistent sampling of model and satellite aerosol optical thickness to account for diurnal variations in aerosol optical properties. Additionally, we illustrate the use of this system for providing chemical weather forecasts in support of various NASA and community field missions.

  16. Coupled turbulence and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model

    NASA Astrophysics Data System (ADS)

    Wang, Yan Jason; Zhang, K. Max

    2012-11-01

    This paper presents the development and evaluation of an environmental turbulent reacting flow model, the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model. CTAG is designed to simulate transport and transformation of multiple air pollutants, e.g., from emission sources to ambient background. For the on-road and near-road applications, CTAG explicitly couples the major turbulent mixing processes, i.e., vehicle-induced turbulence (VIT), road-induced turbulence (RIT) and atmospheric boundary layer turbulence with gas-phase chemistry and aerosol dynamics. CTAG's transport model is referred to as CFD-VIT-RIT. This paper presents the evaluation of the CTAG model in simulating the dynamics of individual plumes in the “tailpipe-to-road” stage, i.e., VIT behind a moving van and aerosol dynamics in the wake of a diesel car by comparing the modeling results against the respective field measurements. Combined with sensitivity studies, we analyze the relative roles of VIT, sulfuric acid induced nucleation, condensation of organic compounds and presence of soot-mode particles in capturing the dynamics of exhaust plumes as well as their implications in vehicle emission controls.

  17. Modeling of the dispersion of depleted uranium aerosol.

    PubMed

    Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M

    2003-04-01

    Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models.

  18. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2012-12-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  19. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2013-03-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  20. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  1. Laboratory and field based evaluation of chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA)

    EPA Science Inventory

    The Monitor for AeRosols and GAses in ambient air (MARGA) is an on-line ion-chromatography-based instrument designed for speciation of the inorganic gas and aerosol ammonium-nitrate-sulfate system. Previous work to characterize the performance of the MARGA has been primarily base...

  2. Consistency between satellite-derived and modeled estimates of the direct aerosol effect.

    PubMed

    Myhre, Gunnar

    2009-07-10

    In the Intergovernmental Panel on Climate Change Fourth Assessment Report, the direct aerosol effect is reported to have a radiative forcing estimate of -0.5 Watt per square meter (W m(-2)), offsetting the warming from CO2 by almost one-third. The uncertainty, however, ranges from -0.9 to -0.1 W m(-2), which is largely due to differences between estimates from global aerosol models and observation-based estimates, with the latter tending to have stronger (more negative) radiative forcing. This study demonstrates consistency between a global aerosol model and adjustment to an observation-based method, producing a global and annual mean radiative forcing that is weaker than -0.5 W m(-2), with a best estimate of -0.3 W m(-2). The physical explanation for the earlier discrepancy is that the relative increase in anthropogenic black carbon (absorbing aerosols) is much larger than the overall increase in the anthropogenic abundance of aerosols.

  3. The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.

    2014-08-01

    Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the

  4. Externally mixed aerosol : simulation of ice nucleation in a parcel model

    NASA Astrophysics Data System (ADS)

    Anquetil-Deck, Candy; Hoose, Corinna; Conolly, Paul

    2014-05-01

    The effect of different aerosol (mineral dust, bacteria and soot) acting as immersion ice nuclei is investigated using ACPIM (AerosolCloud Precipitation Interaction Model) [1]. ACPIM is a powerful tool which can be used in two different ways. This box model can be, either, driven by experimental data (experiments carried out at the AIDA cloud chamber facility) or used as an air parcel in order to examine different ice nucleation parameterizations under specific conditions. This adiabatic air parcel model was employed for the simulation of a convective cloud. The study consists here in the investigation of how two externally mixed aerosols interact with one another. The initial study concentrates on mineral dust aerosol and biological aerosol without any background in order to fully understand the interaction between the different types of aerosol. Immersion freezing is described for the mineral dust aerosol by Niemand et al. 's parameterization [2], which was derived from laboratory studies in AIDA and is an extension of surface site density approach suggested by Connolly et al. [1]. Regarding bioaerosol, we introduce Hummel et al. 's parameterization [3] : f(in) = f(max)(1 - exp(- Ap *n(s)(T))) With an empirically fitted ice nucleation active site density n s based on AIDA measurements of Pseudomonas syringae bacteria [4]. This initial study is conducted for different proportion of each aerosol (the total number of aerosol being constant throughout all the simulation runs) at different vertical velocities. We then extented this study with different backgrounds (urban, marine, rural) in order to get a full picture. We found that there is not only a CCN competition but an IN competition as well. References : [1] Connolly, P. J., Möhler O., Field P. R., Saathoff H., Burgess, R., Choularton, T. and Gallagher, M., Atmos. Chem. Phys 9, 2805-2824 (2009). [2] Niemand, M., Möhler, O., Vogel B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H., De

  5. Modelling the background aerosol climatologies (1989-2010) for the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Jerez, Sonia

    2014-05-01

    Aerosol levels and composition are influenced by multiple atmospheric physico-chemical processes that can affect them from its release point (as primary aerosol), or via gas-to-particle conversion processes that give rise to secondary aerosols. The contribution of the various aerosol sources, the role of long-range transport and the contribution of primary and secondary particulate matter to the ambient aerosol concentrations over Europe are not well known (Kulmala et al., 2009). Focusing on the Mediterranean, Querol et al. (2009) point out that there is a lack of studies on the variability of particulate matter (PM) along the Mediterranean basin, necessary for understanding the special features that differentiate aerosol processes between the western, eastern and central Mediterranean basins. In this perspective, modelling systems based on state-of-science chemistry transport models (CTMs) are fundamental elements to investigate the transport and chemistry of pollutants behaviour at different scales and to assess the impact of emissions in aerosol levels and composition. Therefore, this study aims to summarise the results on the levels and chemical composition of aerosols along the Mediterranean basin, highlighting the marked gradient between the western-central-eastern coasts. Special attention is paid to the analysis of the seasonality of PM composition and levels. For this purpose, the regional modelling system WRF-CHIMERE-EMEP has been implemented for conducting a full transient simulation for the ERA-Interim period (1989-2010) using year-to-year changing EMEP emissions. The domain of study covers Europe with a horizontal resolution of 25 km and a vertical resolution of 23 layers in the troposphere; however the analysis focuses on the Mediterranean area. The PM levels and composition are compared to the measured values reported by the EMEP network, showing a good agreement with observations for both western and eastern Mediterranean. The modelling results for

  6. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    NASA Astrophysics Data System (ADS)

    Horowitz, Hannah M.; Garland, Rebecca M.; Thatcher, Marcus; Landman, Willem A.; Dedekind, Zane; van der Merwe, Jacobus; Engelbrecht, Francois A.

    2017-11-01

    The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts

  7. Monthly and diurnal variations in aerosol size distributions, downwind of the Seoul metropolitan area

    NASA Astrophysics Data System (ADS)

    Kim, B. S.; Choi, Y.; Ghim, Y. S.

    2014-12-01

    The size distribution of aerosols is a physical property. However, since major aerosol types such as mineral dust, secondary inorganic ions, and carbonaceous aerosols are typically in specific size ranges, we can estimate the chemical composition of aerosols from the size distribution. We measured the mass size distribution of aerosols using an optical particle counter (Grimm Model 1.109) for a year from February 2013 to February 2014 at intervals of 10 minutes. The optical particle counter measures number concentrations between 0.25 and 32 μm in 31 bins and converts them into mass concentrations assuming a sphere and densities of aerosols in urban environment which originate from traffic and other combustion sources and are secondarily formed from photochemical reactions. The measurement site is at the rooftop of the five-story building on the hill (37.34 °N, 127.27 °E, 167 m above sea level), about 35 km southeast of downtown Seoul, the downwind area of which is affected by prevailing northwesterlies. There are no major emission sources nearby except a 4-lane road running about 1.4 km to the west. We tried to characterize the bimodal property of the mass size distribution, consisting of fine and coarse modes, in terms of mass concentration and mean diameter. Monthly and diurnal variations in mass concentration and mean diameter of each mode were investigated to estimate major aerosol types as well as major factors causing those variations.

  8. Vertical structure of aerosol distribution and radiative properties over Svalbard - observations and modelling

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Markowicz, Krzysztof; Jefimow, Maciej

    2015-04-01

    In the scope of the iAREA projects (Impact of absorbing aerosols on radiative forcing in the European Arctic - http://www.igf.fuw.edu.pl/iAREA) a field campaign was undertaken in March and April 2014 on Spitzbergen. Analysis of measurements was supported by the GEM-AQ model simulations. The GEM-AQ model is a chemical weather model. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). Numerical experiments were performed with the computational grid resolution of ˜15 km. The emission inventory developed by NILU in the ECLIPSE project was used. Preliminary analysis revealed small but systematic overestimation of modelled AOD and background BC levels. We will present the analysis of the vertical distribution of different aerosol species and its contribution to AOD for two stations on Svalbard. Also, changes of modelled chemical composition of aerosols with altitude will be analyzed.

  9. Aerosol concentrations and composition in the North Pacific marine boundary layer

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Rhee, Tae Siek; Collett, Jeffrey L.; Park, Taehyun; Park, Seung-Myung; Seo, Beom-Keun; Park, Gyutae; Park, Keyhong; Lee, Taehyoung

    2017-12-01

    Ship-borne measurements of inorganic and organic aerosols, including methanesulfonic acid (MSA), were conducted over the Northern Pacific using a High Resolution Time of Flight Aerosol Mass Spectrometer (AMS). This study, conducted aboard the Korean ice breaker R/V Araon, was part of the SHIP-borne Pole-to-Pole Observations (SHIPPO) project. Based on air mass source region, the cruise track could be divided into five sections. Overall, the South Asia and Northern Japan ship transects showed higher aerosol concentrations due to continental pollution and biomass burning sources, respectively. In all five regions, the average mass concentrations of sulfate and organic aerosols (OA) were much higher than concentrations of nitrate and ammonium. Positive matrix factorization (PMF) analysis distinguished two organic aerosol factors as hydrocarbon-like and oxidized OA (HOA and OOA). HOA peaked in South Asia under the influence of anthropogenic pollution source areas, such as China and Korea, and generally decreased with increasing latitude across the full study region. OOA concentrations peaked in Northern Japan near the Tsugaru Strait and appear to reflect fine particle contributions from biomass burning. The mean HOA concentration in the clean marine area (Aleutian Island to Siberia) was 0.06 μg/m3 and comprised approximately 8% of the OA mass fraction. The highest MSA concentrations peaked in the Aleutian Islands at nearly 15 μg/m3, suggesting influence from higher dimethyl sulfide (DMS) emissions resulting from biological nutrient uptake during summer. The MSA/sulfate ratio, an indicator of the relative fine particle contributions of DMS and anthropogenic sources, revealed a sharp gradient as the ship approached the clean marine areas where the dominance of DMS increased. The patterns in OOA, HOA, and MSA concentrations found in this study provide a better understanding of the characteristics of inorganic and organic aerosols in the Northern Pacific Ocean.

  10. Review of brown carbon aerosols: Recent progress and perspectives.

    PubMed

    Yan, Juping; Wang, Xiaoping; Gong, Ping; Wang, Chuanfei; Cong, Zhiyuan

    2018-09-01

    Brown carbon (BrC), a carbonaceous aerosol which absorbs solar radiation over a broad range of wavelengths, is beginning to be seen as an important contributor to global warming. BrC absorbs both inorganic and organic pollutants, leading to serious effects on human health. We review the fundamental features of BrC, including its sources, chemical composition, optical properties and radiative forcing effects. We detail the importance of including photochemical processes related to BrC in the GEOS-Chem transport model for the estimation of aerosol radiative forcing. Calculation methods for BrC emission factors are examined, including the problems and limitations of current measurement methods. We provide some insight into existing publications and recommend areas for future research, such as further investigations into the reaction mechanisms of the aging of secondary BrC, calculations of the emission factors for BrC from different sources, the absorption of large and long-lived BrC molecules and the construction of an enhanced model for the simulation of radiative forcing. This review will improve our understanding of the climatic and environmental effects of BrC. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gas-particle partitioning of alcohol vapors on organic aerosols.

    PubMed

    Chan, Lap P; Lee, Alex K Y; Chan, Chak K

    2010-01-01

    Single particle levitation using an electrodynamic balance (EDB) has been found to give accurate and direct hygroscopic measurements (gas-particle partitioning of water) for a number of inorganic and organic aerosol systems. In this paper, we extend the use of an EDB to examine the gas-particle partitioning of volatile to semivolatile alcohols, including methanol, n-butanol, n-octanol, and n-decanol, on levitated oleic acid particles. The measured K(p) agreed with Pankow's absorptive partitioning model. At high n-butanol vapor concentrations (10(3) ppm), the uptake of n-butanol reduced the average molecular-weight of the oleic acid particle appreciably and hence increased the K(p) according to Pankow's equation. Moreover, the hygroscopicity of mixed oleic acid/n-butanol particles was higher than the predictions given by the UNIFAC model (molecular group contribution method) and the ZSR equation (additive rule), presumably due to molecular interactions between the chemical species in the mixed particles. Despite the high vapor concentrations used, these findings warrant further research on the partitioning of atmospheric organic vapors (K(p)) near sources and how collectively they affect the hygroscopic properties of organic aerosols.

  12. Sensitivity of atmospheric correction to loading and model of the aerosol

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Braga, Federica; Bresciani, Mariano; Giardino, Claudia; Adamo, Maria; Ananasso, Cristina; Alberotanza, Luigi

    2013-04-01

    The physically-based atmospheric correction requires knowledge of the atmospheric conditions during the remotely data acquisitions [Guanter et al., 2007; Gao et al., 2009; Kotchenova et al. 2009; Bassani et al., 2010]. The propagation of solar radiation in the atmospheric window of visible and near-infrared spectral domain, depends on the aerosol scattering. The effects of solar beam extinction are related to the aerosol loading, by the aerosol optical thickness @550nm (AOT) parameter [Kaufman et al., 1997; Vermote et al., 1997; Kotchenova et al., 2008; Kokhanovsky et al. 2010], and also to the aerosol model. Recently, the atmospheric correction of hyperspectral data is considered sensitive to the micro-physical and optical characteristics of aerosol, as reported in [Bassani et al., 2012]. Within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) project, funded by Italian Space Agency (ASI), the role of the aerosol model on the accuracy of the atmospheric correction of hyperspectral image acquired over water target is investigated. In this work, the results of the atmospheric correction of HICO (Hyperspectral Imager for the Coastal Ocean) images acquired on Northern Adriatic Sea in the Mediterranean are presented. The atmospheric correction has been performed by an algorithm specifically developed for HICO sensor. The algorithm is based on the equation presented in [Vermote et al., 1997; Bassani et al., 2010] by using the last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2008; Vermote et al., 2009]. The sensitive analysis of the atmospheric correction of HICO data is performed with respect to the aerosol optical and micro-physical properties used to define the aerosol model. In particular, a variable mixture of the four basic components: dust- like, oceanic, water-soluble, and soot, has been considered. The water reflectance

  13. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China

    NASA Astrophysics Data System (ADS)

    Li, Shenshen; Yu, Chao; Chen, Liangfu; Tao, Jinhua; Letu, Husi; Ge, Wei; Si, Yidan; Liu, Yang

    2016-09-01

    China's large aerosol emissions have major impacts on global climate change as well as regional air pollution and its associated disease burdens. A detailed understanding of the spatiotemporal patterns of aerosol components is necessary for the calculation of aerosol radiative forcing and the development of effective emission control policy. Model-simulated and satellite-retrieved aerosol components can support climate change research, PM2.5 source appointment and epidemiological studies. This study evaluated the total and componential aerosol optical depth (AOD) from the GEOS-Chem model (GC) and the Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART), and the Multiangle Imaging Spectroradiometer (MISR) from 2006 to 2009 in China. Linear regression analysis between the GC and AErosol RObotic NETwork (AERONET) in China yielded similar correlation coefficients (0.6 daily, 0.71 monthly) but lower slopes (0.41 daily, 0.58 monthly) compared with those in the U.S. This difference was attributed to GC's underestimation of water-soluble AOD (WAOD) west of the Heihe-Tengchong Line, the dust AOD (DAOD) in the fall and winter, and the soot AOD (SAOD) throughout the year and throughout the country. GOCART exhibits the strongest dust estimation capability among all datasets. However, the GOCART soot distribution in the Northeast and Southeast has significant errors, and its WAOD in the polluted North China Plain (NCP) and the South is underestimated. MISR significantly overestimates the water-soluble aerosol levels in the West, and does not capture the high dust loadings in all seasons and regions, and the SAOD in the NCP. These discrepancies can mainly be attributed to the uncertainties in the emission inventories of both models, the poor performance of GC under China's high aerosol loading conditions, the omission of certain aerosol tracers in GOCART, and the tendency of MISR to misidentify dust and non-dust mixtures.

  14. Biomass burning aerosol over Romania using dispersion model and Calipso data

    NASA Astrophysics Data System (ADS)

    Nicolae, Victor; Dandocsi, Alexandru; Marmureanu, Luminita; Talianu, Camelia

    2018-04-01

    The purpose of the study is to analyze the seasonal variability, for the hot and cold seasons, of biomass burning aerosol observed over Romania using forward dispersion calculations based on FLEXPART model. The model was set up to use as input the MODIS fire data with a degree of confidence over 25% after transforming the emitted power in emission rate. The modelled aerosols in this setup was black carbon coated by organics. Distribution in the upper layers were compared to Calipso retrieval.

  15. Chemical Composition of African Biomass Burning Aerosols Over the Southeast Atlantic: Aerosol Mass Spectrometer Results from the 2016 and 2017 ORACLES Field Campaigns.

    NASA Astrophysics Data System (ADS)

    Dobracki, A. N.; Howell, S. G.; Freitag, S.; Smirnow, N.; Podolske, J. R.

    2017-12-01

    Biomass burning (BB) is one of the largest contributors of anthropogenic aerosols in the atmosphere. During BB events, organic and inorganic gases and particles are emitted into the atmosphere. Because of their abundance, particle size, and radiative properties, BB aerosols play an important role in global climate. Southern Africa produces 30% of the Earth's BB aerosol particles. Organics, Nitrates, sulfates, and refractory black carbon, along with other chemical species are lofted into the free troposphere and transported over the Southeast Atlantic Ocean. However, considerate uncertainty remains in the chemical composition of these plumes with its large variety of organic and inorganic species. As part of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 airborne field campaigns, an Aerosol Mass Spectrometer (AMS) was used to sample the chemical composition and chemical structure of the aerosol in this region. Results show constant vertical stratification within the plume over the course of the campaign (August 2017 / September 2016). Using nitrate (NO3) and organic carbon (OC) as two tracers, the structure of the September 2016 plume had a ratio of 1:8 (NO3:OC) in the upper plume (3km-5km), while the lower plume (1km-2.5km) had a ratio of 1:12 (NO3:OC). AMS measurements were supported by carbon monoxide (CO) and carbon dioxide (CO2) measurements. This data revealed a modified combustion efficiency (MCE= ΔCO2/ΔCO2 + ΔCO) of <0.97 in the upper plume, and a higher MCE > 0.97 in the lower plume. An MCE above 0.9 represents efficient burning processes. Additionally, concentrations of C2(H2O)2 (m/z60), a common chemical fragment from breaking up carbohydrates (primarily levoglucosan) emitted by burning biomass only represented <1% of total organics throughout the campaign. These low concentrations are due to efficient combustion rather than oxidation during transport. These results are consistent with earlier studies of

  16. Semicontinuous measurements of organic carbon and acidity during the Pittsburgh air quality study: implications for acid-catalyzed organic aerosol formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Takahama; C.I. Davidson; S.N. Pandis

    2006-04-01

    Laboratory evidence suggests that inorganic acid seed particles may increase secondary organic aerosol yields secondary organic aerosol (SOA) through heterogeneous chemistry. Additional laboratory studies, however, report that organic acidity generated in the same photochemical process by which SOA is formed may be sufficient to catalyze these heterogeneous reactions. Understanding the interaction between inorganic acidity and SOA mass is important when evaluating emission controls to meet PM2.5 regulations. Semicontinuous measurements of organic carbon (OC), elemental carbon (EC), and inorganic species from the Pittsburgh Air Quality Study were examined to determine if coupling in the variations of inorganic acidity and OC couldmore » be detected. Significant enhancements of SOA production could not be detected due to inorganic acidity in Western Pennsylvania most of the time, but its signal might have been lost in the noise. If a causal relationship between inorganic acidity and OC is assumed, reductions in OC for Western Pennsylvania that might result from drastic reductions in inorganic acidity were estimated to be 2 {+-} 4% by a regression technique, and an upper bound for this geographic area was estimated to be 5 {+-} 8% based on calculations from laboratory measurements. 48 refs., 7 figs., 3 tabs.« less

  17. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia.

    PubMed

    Behera, Sailesh N; Cheng, Jinping; Balasubramanian, Rajasekhar

    2015-10-01

    The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H(+)]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4(2-), NO3(-), Cl(-), K(+) and Na(+), whereas concentrations of NH4(+), Ca(2+) and Mg(2+) showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4(2-)) to 10.5 (for K(+)) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.

  18. Evaluating aerosol influence on cloud models using in-situ measurements during the INUPIAQ campaign

    NASA Astrophysics Data System (ADS)

    Farrington, R.; Connolly, P.; Choularton, T.; Bower, K.; Lloyd, G.; Flynn, M.; Crosier, J.; Field, P.

    2014-12-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) initiate the nucleation of ice under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures around -20°C (e.g. Sassen et al. 2003), however the cause of ice nucleation at temperatures of around -5°C is less certain. Coupled with the limited representation of aerosol and cloud processes in large-scale weather and climate models, the need for improved in-situ measurements of aerosol properties and cloud micro-physical processes to drive the improvement of aerosol-clouds processes in models is evident. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in early 2013 and early 2014. Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl). Using data from the 2013 campaign and modelling simulations from the Weather Research and Forecasting model (WRF), an upwind site, located at Schilthorn (2970m asl), was determined for measuring aerosol properties out of cloud during the 2014 campaign. Further measurements of the cloud and aerosols properties were taken remotely using a doppler LiDAR located at Kleine Scheidegg (2061m asl). The aim of this project is to determine whether detailed aerosol information is important to determining cloud and precipitation properties downwind. To this end WRF was run using the aerosol number concentrations and size distributions measured at the Schilthorn site to compare modelled ice number concentrations with measurements taken at Jungfraujoch using state of the science cloud ice probes, including the Three-View Cloud Particle Imager (3V-CPI) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL), with the results of the comparison presented and discussed at this meeting. References

  19. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  20. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Li, W.

    2016-12-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces absorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the arctic atmosphere, which need to be incorporated into atmospheric chemical models in the arctic troposphere.

  1. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs.

    PubMed

    Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue

    2017-01-01

    Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals.

  2. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs

    PubMed Central

    Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue

    2017-01-01

    Objective Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Methods Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Results Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). Conclusion These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals. PMID:28414730

  3. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  4. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 2. Model application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, James W.; Hoppel, William A.; Frick, Glendon M.

    1998-07-01

    The dynamics of aerosols in the marine boundary layer (MBL) are simulated with the marine boundary layer aerosol model (MARBLES), a one-dimensional, multicomponent sectional aerosol model [{ital Fitzgerald} {ital et al.}, this issue; {ital Gelbard} {ital et al.}, this issue]. First, to illustrate how the various aerosol processes influence the particle size distribution, the model was run with one or two processes operating on the same initial size distribution. Because of current interest in the effects of cloud processing of aerosols and exchange of aerosols with the free troposphere (FT) on marine aerosol size distributions, these two processes are examinedmore » in considerable detail. The simulations show that the effect of cloud processing (characteristic double-peaked size distribution) in the upper part of the MBL is manifested at the surface on a timescale that is much faster than changes due to exchange with the FT, assuming a typical exchange velocity of 0.6 cmthinsps{sup {minus}1}. The model predicts that the FT can be a significant source of particles for the MBL in the size range of the cloud-processing minimum, between the unactivated interstitial particles and the cloud condensation nuclei (CCN) which have grown as a result of conversion of dissolved SO{sub 2} to sulfate in cloud droplets. The model was also used to simulate the evolution of the aerosol size distribution in an air mass advecting from the east coast of the United States out over the ocean for up to 10 days. The modification of a continental aerosol size distribution to one that is remote marine in character occurs on a timescale of 6{endash}8 days. Nucleation was not observed in the base case 10-day advection simulation which assumed rather typical meteorological conditions. However, significant nucleation was predicted under a more favorable (albeit, atypical) combination of conditions which included significant precipitation scavenging (5 mmthinsph{sup {minus}1} of rain for 12

  5. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) <0.03. Data analysis shows that episodic free tropospheric transport of smoke is underpredicted by the Goddard Earth Observing System- with Chemistry (GEOS-Chem) model. Spatial distributions of CATCH-derived aerosol types for the North American model domain during July/August 2014 show that aerosol type-specific AOD values occurred over representative locations: urban over areas with large population, maritime over oceans, smoke, and fresh smoke over typical biomass burning regions. This study demonstrates that model-generated information on aerosol chemical composition can be translated into aerosol types analogous to those retrieved from remote sensing methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  6. New in situ Aerosol Spectral Optical Measurements over 300-700 nm, Extinction and Total Absorption, Paired with Absorption from Water- and Methanol-soluble Aerosol Extracts

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Stauffer, R. M.; Lamb, B.; Novak, M. G.; Mannino, A.; Hudgins, C.; Thornhill, K. L., II; Crosbie, E.; Winstead, E.; Anderson, B.; Martin, R.; Shook, M.; Ziemba, L. D.; Beyersdorf, A. J.; Corr, C.

    2017-12-01

    A new in situ spectral aerosol extinction instrument (custom built, SpEx) built to cover the 300-700 nm range at 1 nm spectral resolution and temporal resolution of 4 minutes was deployed on the top deck ( 10 m above the water surface) of the R/V Onnuri during the KORUS-OC research cruise around South Korea in spring 2016. This new instrument was one component of a suite of in situ aerosol optical measurements that included 3-visible-wavelength scattering (Airphoton IN101 Nephelometer, at 450, 532, & 632 nm) and absorption (Brechtel Tricolor Absorption Photometer Model 2901, at 467, 528, & 652 nm) with sub-minute temporal resolution; two sets of filters (Teflon and glass fiber, both collected over 3 hour daytime and 12 hour overnight intervals) to provide aerosol absorption spectra over the same wavelength range as SpEx. The glass fiber filters were placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer) to measure total aerosol absorption spectra via an established method used by the ocean color community to obtain absorption spectra from particles suspended in sea water. Adapting this methodology for atmospheric aerosol measurements provides a new avenue to obtain spectral total aerosol absorption, particularly useful for expanding in situ measurement capabilities into the UV range. The Teflon filters were cut in half with one half extracted in deionized water and the other half extracted in methanol. The solutions were filtered and injected into a liquid waveguide capillary cell (World Precision Instruments LWCC-3100, 100 cm pathlength) to measure the absorption spectra for each solution. In addition, the water extracts were measured via ion chromatography (Dionex ICS-3000 Ion Chromatography System) to obtain water-soluble inorganic ion concentrations, as well as via aerosol mass spectrometry (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer

  7. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  8. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  9. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  10. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  11. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith

    2011-02-01

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less

  12. Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Singla, V.; Mukherjee, S.; Safai, P. D.; Meena, G. S.; Dani, K. K.; Pandithurai, G.

    2017-06-01

    The cloud condensation nuclei (CCN) closure study was performed to exemplify the effect of aerosol chemical composition on the CCN activity of aerosols at Mahabaleshwar, a high altitude background site in the Western Ghats, India. For this, collocated aerosol, CCN, Elemental Carbon (EC), Organic Carbon (OC), sub-micron aerosol chemical speciation for the period from 3rd June to 19th June 2015 was used. The chemical composition of non-refractory particulate matter (<1 μm) as measured by Time of Flight - Aerosol Chemical Speciation Monitor (ToF-ACSM) was dominated by organics with average concentration of 3.81 ± 1.6, 0.32 ± 0.06, 0.15 ± 0.02, 0.13 ± 0.03 and 0.95 ± 0.12 μg m-3 for organics, ammonium, chloride, nitrate and sulphate, respectively. The PM1 number concentration as obtained by Wide Range Aerosol Spectrometer (WRAS) varied from 750 to 6480 cm-3. The average mass concentration of elemental carbon (EC) as measured by OC-EC analyzer was 1.16 ± 0.4 μg m-3. The average CCN concentrations obtained from CCN counter (CCNC) at five super-saturations (SS's) was 118 ± 58 cm-3 (0.1% SS), 873 ± 448 cm-3 (0.31% SS), 1308 ± 603 cm-3 (0.52% SS), 1610 ± 838 cm-3 (0.73% SS) and 1826 ± 985 cm-3 (0.94% SS). The CCN concentrations were predicted using Köhler theory on the basis of measured aerosol particle number size distribution, size independent NR-PM1 chemical composition and calculated hygroscopicity. The CCN closure study was evaluated for 3 scenarios, B-I (all soluble inorganics), B-IO (all soluble organics and inorganics) and B-IOOA (all soluble inorganic and soluble oxygenated organic aerosol, OOA). OOA component was derived from the positive matrix factorization (PMF) analysis of organic aerosol mass spectra. Considering the bulk composition as internal mixture, CCN closure study was underestimated by 16-39% for B-I and overestimated by 47-62% for B-IO. The CCN closure result was appreciably improved for B-IOOA where the knowledge of OOA fraction was

  13. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2008-09-30

    novel method of simultaneous real- time measurements of ice-nucleating particle concentrations and size- resolved chemical composition of individual...is to develop a practical predictive capability for visibility and weather effects of aerosol particles for the entire globe for timely use in...prediction follows that used in numerical weather prediction, namely real- time assessment for initialization of first-principles models. The Naval

  14. A Model Simulation of Pinatubo Volcanic Aerosols in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao , Jing-xia; Turco, Richard P.; Toon, Owen B.

    1995-01-01

    A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. Our model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H2SO4/H2O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO2 emissions. The large amounts of SO2 (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H2SO4/H2O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reach their stabilized sizes with effective radii in a range between 0.3 and 0.5 micron approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion.

  15. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-10-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7) between accumulation mode and coarse mode emission fluxes of aerosol number concentration. This

  16. Dynamics and Properties of Global Aerosol using MODIS, AERONET and GOCART Model

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Chin, Mian; Reme, Lorraine; Tanre, Didier; Mattoo, Shana

    2002-01-01

    Recently produced daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean in a special issue in GRL now in press. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model to test and adjust source and sink strengths in the model and to study the effect of clouds on the representation of the satellite data.

  17. Remote sensing of aerosol plumes: a semianalytical model

    NASA Astrophysics Data System (ADS)

    Alakian, Alexandre; Marion, Rodolphe; Briottet, Xavier

    2008-04-01

    A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5 μm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0° and 60° whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

  18. Remote sensing of aerosol plumes: a semianalytical model.

    PubMed

    Alakian, Alexandre; Marion, Rodolphe; Briottet, Xavier

    2008-04-10

    A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5 microm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0 degrees and 60 degrees whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

  19. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  20. Prediction of health effects of cross-border atmospheric pollutants using an aerosol forecast model.

    PubMed

    Onishi, Kazunari; Sekiyama, Tsuyoshi Thomas; Nojima, Masanori; Kurosaki, Yasunori; Fujitani, Yusuke; Otani, Shinji; Maki, Takashi; Shinoda, Masato; Kurozawa, Youichi; Yamagata, Zentaro

    2018-08-01

    Health effects of cross-border air pollutants and Asian dust are of significant concern in Japan. Currently, models predicting the arrival of aerosols have not investigated the association between arrival predictions and health effects. We investigated the association between subjective health symptoms and unreleased aerosol data from the Model of Aerosol Species in the Global Atmosphere (MASINGAR) acquired from the Japan Meteorological Agency, with the objective of ascertaining if these data could be applied to predicting health effects. Subjective symptom scores were collected via self-administered questionnaires and, along with modeled surface aerosol concentration data, were used to conduct a risk evaluation using generalized estimating equations between October and November 2011. Altogether, 29 individuals provided 1670 responses. Spearman's correlation coefficients were determined for the relationship between the proportion of the participants reporting the maximum score of two or more for each symptom and the surface concentrations for each considered aerosol species calculated using MASINGAR; the coefficients showed significant intermediate correlations between surface sulfate aerosol concentration and respiratory, throat, and fever symptoms (R = 0.557, 0.454, and 0.470, respectively; p < 0.01). In the general estimation equation (logit link) analyses, a significant linear association of surface sulfate aerosol concentration, with an endpoint determined by reported respiratory symptom scores of two or more, was observed (P trend = 0.001, odds ratio [OR] of the highest quartile [Q4] vs. the lowest [Q1] = 5.31, 95% CI = 2.18 to 12.96), with adjustment for potential confounding. The surface sulfate aerosol concentration was also associated with throat and fever symptoms. In conclusion, our findings suggest that modeled data are potentially useful for predicting health risks of cross-border aerosol arrivals. Copyright © 2018 Elsevier Ltd

  1. Year-round records of sea salt, gaseous, and particulate inorganic bromine in the atmospheric boundary layer at coastal (Dumont d'Urville) and central (Concordia) East Antarctic sites

    NASA Astrophysics Data System (ADS)

    Legrand, Michel; Yang, Xin; Preunkert, Susanne; Theys, Nicolas

    2016-01-01

    Multiple year-round records of bulk and size-segregated compositions of aerosol were obtained at the coastal Dumont d'Urville (DDU) and inland Concordia sites located in East Antarctica. They document the sea-salt aerosol load and composition including, for the first time in Antarctica, the bromide depletion of sea-salt aerosol relative to sodium with respect to seawater. In parallel, measurements of bromide trapped in mist chambers and denuder tubes were done to investigate the concentrations of gaseous inorganic bromine species. These data are compared to simulations done with an off-line chemistry transport model, coupled with a full tropospheric bromine chemistry scheme and a process-based sea-salt production module that includes both sea-ice-sourced and open-ocean-sourced aerosol emissions. Observed and simulated sea-salt concentrations sometime differ by up to a factor of 2 to 3, particularly at DDU possibly due to local wind pattern. In spite of these discrepancies, both at coastal and inland Antarctica, the dominance of sea-ice-related processes with respect to open ocean emissions for the sea-salt aerosol load in winter is confirmed. For summer, observations and simulations point out sea salt as the main source of gaseous inorganic bromine species. Investigations of bromide in snow pit samples do not support the importance of snowpack bromine emissions over the Antarctic Plateau. To evaluate the overall importance of the bromine chemistry over East Antarctica, BrO simulations were also discussed with respect data derived from GOME-2 satellite observations over Antarctica.

  2. Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Kita, K.; Miyazaki, Y.; Hu, M.; Chang, S.; Blake, D. R.; Fast, J. D.; Zaveri, R. A.; Streets, D. G.; Zhang, Q.; Zhu, T.

    2009-12-01

    Regional aerosol model calculations were made using the WRF-CMAQ and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in the summer of 2006, when the CAREBEIJING-2006 intensive campaign was conducted. Model calculations captured temporal variations of primary (such as elemental carbon, EC) and secondary (such as sulfate) aerosols observed in and around Beijing. The spatial distributions of aerosol optical depth observed by the MODIS satellite sensors were also reproduced over northeast China. Model calculations showed distinct differences in spatial distributions between primary and secondary aerosols in association with synoptic-scale meteorology. Secondary aerosols increased in air around Beijing on a scale of about 1000 x 1000 km2 under an anticyclonic pressure system. This airmass was transported northward from the high anthropogenic emission area extending south of Beijing with continuous photochemical production. Subsequent cold front passage brought clean air from the north, and polluted air around Beijing was swept to the south of Beijing. This cycle was repeated about once a week and was found to be responsible for observed enhancements/reductions of aerosols at the intensive measurement sites. In contrast to secondary aerosols, the spatial distributions of primary aerosols (EC) reflected those of emissions, resulting in only slight variability despite the changes in synoptic-scale meteorology. In accordance with these results, source apportionment simulations revealed that primary aerosols around Beijing were controlled by emissions within 100 km around Beijing within the preceding 24 hours, while emissions as far as 500 km and within the preceding 3 days were found to affect secondary aerosols.

  3. Tracing of aerosol sources in an urban environment using chemical, Sr isotope, and mineralogical characterization.

    PubMed

    Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Ribeiro, Sara; Santos, José Francisco; Patinha, Carla; da Silva, Eduardo Ferreira; Soares, Rosário; Duarte, Armando C

    2017-04-01

    In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM 2.5 ) was sampled for 17 months at an urban location in the Western European Coast. The PM 2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope ( 87 Sr/ 86 Sr) composition. Organic matter dominates the identifiable urban PM 2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87 Sr/ 86 Sr ratios were measured on both the labile and residual PM 2.5 fractions as well as on the bulk PM 2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87 Sr/ 86 Sr ratios are comparable to that of seawater. The 87 Sr/ 86 Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period.

  4. Enhancement of PM2.5 Concentrations by Aerosol-Meteorology Interactions Over China

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Qiang; Hong, Chaopeng; Zheng, Yixuan; Geng, Guannan; Tong, Dan; Zhang, Yuxuan; Zhang, Xiaoye

    2018-01-01

    Aerosol-meteorology interactions can change surface aerosol concentrations via different mechanisms such as altering radiation budget or cloud microphysics. However, few studies investigated the impacts of different mechanisms on temporal and spatial distribution of PM2.5 concentrations over China. Here we used the fully coupled Weather Research and Forecasting model with online chemistry (WRF-Chem) to quantify the enhancement of PM2.5 concentrations by aerosol-meteorology feedback in China in 2014 for different seasons and separate the relative impacts of aerosol radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). We found that ARIs and ACIs could increase population-weighted annual mean PM2.5 concentration over China by 4.0 μg/m3 and 1.6 μg/m3, respectively. We found that ARIs play a dominant role in aerosol-meteorology interactions in winter, while the enhancement of PM2.5 concentration by ARIs and ACIs is comparable in other three seasons. ARIs reduced the wintertime monthly mean wind speed and planetary boundary layer (PBL) height by up to 0.1 m/s and 160 m, respectively, but increased the relative humidity by up to 4%, leading to accumulation of pollutants within PBL. Also, ARIs reduced dry deposition velocity of aerosols by up to 20%, resulting in an increase in PM2.5 lifetime and concentrations. ARIs can increase wintertime monthly mean surface PM2.5 concentration by a maximum of 30 μg/m3 in Sichuan Basin. ACIs can also increase PM2.5 concentration with more significant impacts in wet seasons via reduced wet scavenging and enhanced in-cloud chemistry. Dominant processes in PM2.5 enhancement are also clarified in different seasons. Results show that physical process is more important than chemical processes in winter in ARIs, while chemical process of secondary inorganic aerosols production may be crucial in wet seasons via ACIs.

  5. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  6. An Observing System Simulation Experiment (OSSE) Investigating the OMI Aerosol Products Using Simulated Aerosol and Atmospheric Fields from the NASA GEOS-5 Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Gasso, S.; Jethva, H. T.; Buchard, V.; Ahn, C.; Torres, O.; daSilva, A.

    2016-12-01

    Output from the NASA Goddard Earth Observing System, version 5 (GEOS-5) Earth system model is used to simulate the top-of-atmosphere 354 and 388 nm radiances observed by the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft. The principle purpose of developing this simulator tool is to compute from the modeled fields the so-called OMI Aerosol Index (AI), which is a more fundamental retrieval product than higher level products such as the aerosol optical depth (AOD) or absorbing aerosol optical depth (AAOD). This lays the groundwork for eventually developing a capability to assimilate either the OMI AI or its radiances, which would provide further constraint on aerosol loading and absorption properties for global models. We extend the use of the simulator capability to understand the nature of the OMI aerosol retrieval algorithms themselves in an Observing System Simulation Experiment (OSSE). The simulated radiances are used to calculate the AI from the modeled fields. These radiances are also provided to the OMI aerosol algorithms, which return their own retrievals of the AI, AOD, and AAOD. Our assessment reveals that the OMI-retrieved AI can be mostly harmonized with the model-derived AI given the same radiances provided a common surface pressure field is assumed. This is important because the operational OMI algorithms presently assume a fixed pressure field, while the contribution of molecular scattering to the actual OMI signal in fact responds to the actual atmospheric pressure profile, which is accounted for in our OSSE by using GEOS-5 produced atmospheric reanalyses. Other differences between the model and OMI AI are discussed, and we present a preliminary assessment of the OMI AOD and AAOD products with respect to the known inputs from the GEOS-5 simulation.

  7. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  8. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass

  9. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-10-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment pseudo-modal aerosol dynamics approach rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulfate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulfuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulfate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  10. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-05-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment modal aerosol scheme rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulphate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulphuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulphate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  11. In Silico Models of Aerosol Delivery to the Respiratory Tract – Development and Applications

    PubMed Central

    Longest, P. Worth; Holbrook, Landon T.

    2011-01-01

    This review discusses the application of computational models to simulate the transport and deposition of inhaled pharmaceutical aerosols from the site of particle or droplet formation to deposition within the respiratory tract. Traditional one-dimensional (1-D) whole-lung models are discussed briefly followed by a more in-depth review of three-dimensional (3-D) computational fluid dynamics (CFD) simulations. The review of CFD models is organized into sections covering transport and deposition within the inhaler device, the extrathoracic (oral and nasal) region, conducting airways, and alveolar space. For each section, a general review of significant contributions and advancements in the area of simulating pharmaceutical aerosols is provided followed by a more in-depth application or case study that highlights the challenges, utility, and benefits of in silico models. Specific applications presented include the optimization of an existing spray inhaler, development of charge-targeted delivery, specification of conditions for optimal nasal delivery, analysis of a new condensational delivery approach, and an evaluation of targeted delivery using magnetic aerosols. The review concludes with recommendations on the need for more refined model validations, use of a concurrent experimental and CFD approach for developing aerosol delivery systems, and development of a stochastic individual path (SIP) model of aerosol transport and deposition throughout the respiratory tract. PMID:21640772

  12. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    ]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  13. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  14. WRF/Chem-MADRID: Incorporation of an Improved Aerosol Module into WRF/Chem and Its Initial Application to the TexAQS2000 Episode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Pan, Ying; Wang, K.

    2010-09-17

    The Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID) with three improved gas/particle mass transfer approaches (i.e., bulk equilibrium (EQUI), hybrid (HYBR), and kinetic (KINE)) has been incorporated into the Weather Research and Forecast/Chemistry Model (WRF/Chem) (referred to as WRF/Chem-MADRID) and evaluated with a 5-day episode from the 2000 Texas Air Quality Study (TexAQS2000). WRF/Chem-MADRID demonstrates an overall good skill in simulating surface/aloft meteorological parameters and chemical concentrations, tropospheric O3 residuals, and aerosol optical depths. The discrepancies can be attributed to inaccuracies in meteorological predictions (e.g., overprediction in mid-day boundary layer height), inaccurate total emissions or their hourly variationsmore » (e.g., HCHO, olefins, other inorganic aerosols), and uncertainties in initial and boundary conditions for some species (e.g., other inorganic aerosols and O3) at surface and aloft. Major differences in the results among the three gas/particle mass transfer approaches occur over coastal areas, where EQUI predicts higher PM2.5 than HYBR and KINE due to improperly redistributing condensed nitrate from chloride depletion process to fine PM mode. The net direct, semi-direct, and indirect effects of PM2.5 decreased domain wide shortwave radiation by 11.2-14.4 W m-2 (or 4.1-5.6%), decreased near-surface temperature by 0.06-0.14 °C (or 0.2-0.4%), led to 125 to 796 cm-3 cloud condensation nuclei at a supersaturation of 0.1%, produced cloud droplet numbers as high as 2064 cm-3, and reduced domain wide mean precipitation by 0.22-0.59 mm day-1.« less

  15. On the Implications of aerosol liquid water and phase separation for modeled organic aerosol mass

    EPA Science Inventory

    Current chemical transport models assume that organic aerosol (OA)-forming compounds partition mostly to a water-poor, organic-rich phase in accordance with their vapor pressures. However, in the southeast United States, a significant fraction of ambient organic compounds are wat...

  16. Humidity influence on gas-particle phase partitioning of α-pinene + O3 secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Prisle, N. L.; Engelhart, G. J.; Bilde, M.; Donahue, N. M.

    2010-01-01

    Water vapor uptake to particles could potentially affect organic-aerosol mass in three ways: first, water in the organic phase could reduce organic (equilibrium) partial pressures according to Raoult's law; second, an aqueous phase could attract water soluble organics according to Henry's law; finally, deliquescence of inorganic particle cores could mix the organic and inorganic particle phases, significantly diluting the organics and again reducing organic partial pressures according to Raoult's law. We present experiments using initially dry α-pinene + ozone secondary organic aerosol (SOA) on ammonium sulfate (AS) seeds at atmospheric concentrations in a smog chamber. After SOA formation, the chamber relative humidity is increased steadily by addition of steam to near 100%. Little subsequent SOA mass growth is observed, suggesting that none of these potential effects play a strong role in this system.

  17. Sources and Variability of Aerosols and Aerosol-Cloud Interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, B.; Taylor, P. C.; Moore, R.; Barahona, D.; Fairlie, T. D.; Chen, G.; Ham, S. H.; Kato, S.

    2017-12-01

    Arctic sea ice in recent decades has significantly declined. This requires understanding of the Arctic surface energy balance, of which clouds are a major driver. However, the mechanisms for the formation and evolution of clouds in the Arctic and the roles of aerosols therein are highly uncertain. Here we conduct data analysis and global model simulations to examine the sources and variability of aerosols and aerosol-cloud interactions in the Arctic. We use the MERRA-2 reanalysis data (2006-present) from the NASA Global Modeling and Assimilation Office (GMAO) to (1) quantify contributions of different aerosol types to the aerosol budget and aerosol optical depths in the Arctic, (2) ­examine aerosol distributions and variability and diagnose the major pathways for mid-latitude pollution transport to the Arctic, including their seasonal and interannual variability, and (3) characterize the distribution and variability of clouds (cloud optical depth, cloud fraction, cloud liquid and ice water path, cloud top height) in the Arctic. We compare MERRA-2 aerosol and cloud properties with those from C3M, a 3-D aerosol and cloud data product developed at NASA Langley Research Center and merged from multiple A-Train satellite (CERES, CloudSat, CALIPSO, and MODIS) observations. We also conduct perturbation experiments using the NASA GEOS-5 chemistry-climate model (with GOCART aerosol module coupled with two-moment cloud microphysics), and discuss the roles of various types of aerosols in the formation and evolution of clouds in the Arctic.

  18. Improvement of Aerosol Optical Depth Retrieval from MODIS Spectral Reflectance over the Global Ocean Using New Aerosol Models Archived from AERONET Inversion Data and Tri-axial Ellipsoidal Dust Database

    NASA Technical Reports Server (NTRS)

    Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.

    2012-01-01

    New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.

  19. Numerical simulations of Asian dust storms using a coupled climate-aerosol microphysical model

    NASA Astrophysics Data System (ADS)

    Su, Lin; Toon, Owen B.

    2009-07-01

    We have developed a three-dimensional coupled microphysical/climate model based on the National Center for Atmospheric Research Community Atmospheres Model and the University of Colorado/NASA Community Aerosol and Radiation Model for Atmospheres. We have used the model to investigate the sources, removal processes, transport, and optical properties of Asian dust aerosol and its impact on downwind regions. The model simulations are conducted primarily during the time frame of the Aerosol Characterization Experiment-Asia field experiment (March-May 2001) since considerable in situ data are available at that time. Our dust source function follows Ginoux et al. (2001). We modified the dust source function by using the friction velocity instead of the 10-m wind based on wind erosion theory, by adding a size-dependent threshold friction velocity following Marticorena and Bergametti (1995) and by adding a soil moisture correction. A Weibull distribution is implemented to estimate the subgrid-scale wind speed variability. We use eight size bins for mineral dust ranging from 0.1 to 10 μm radius. Generally, the model reproduced the aerosol optical depth retrieved by the ground-based Aerosol Robotic Network (AERONET) Sun photometers at six study sites ranging in location from near the Asian dust sources to the Eastern Pacific region. By constraining the dust complex refractive index from AERONET retrievals near the dust source, we also find the single-scattering albedo to be consistent with AERONET retrievals. However, large regional variations are observed due to local pollution. The timing of dust events is comparable to the National Institute for Environmental Studies (NIES) lidar data in Beijing and Nagasaki. However, the simulated dust aerosols are at higher altitudes than those observed by the NIES lidar.

  20. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  1. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    improved definition in the 870nm wavelength absorption weighting due to the increased absorption in the near-infrared wavelengths, while the 440nm wavelength provided better definition when black carbon mixed with dust. Utilization of this particle type scheme provides necessary information for remote sensing applications, which needs a priori knowledge of aerosol type to model the retrieved properties especially over semi-bright surfaces. In fact, this analysis reveals that the aerosol types occurred in mixtures with varying magnitudes of absorption and requires the use of more than one assumed aerosol mixture model. Furthermore, this technique will provide the aerosol transport model community a data set for validating aerosol type.

  2. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  3. Sea Spray Aerosol Production over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P.

    2017-12-01

    Breaking waves on the ocean surface generate air bubbles that scavenge organic matter from the surrounding seawater. When injected into the atmosphere, these bubbles burst, yielding sea spray aerosol (SSA), a mixture of organic and inorganic compounds with the organic matter enriched relative to seawater. SSA mass is well documented as the dominant component of aerosol light scattering over the remote oceans. The importance of SSA number to marine boundary layer cloud condensation nuclei (CCN) is much less certain. During the Western Atlantic Climate Study cruises (WACS-1 - August 2012 and WACS-2 - May-June 2014) and the North Atlantic Aerosols and Marine Ecosystem Study cruises (NAAMES-1 - November 2015, NAAMES-2 - May 2016, and NAAMES-3 - September 2017), we generated and measured freshly emitted SSA using the Sea Sweep SSA generator. During the 2017 cruise we also generated SSA with a Marine Aerosol Reference Tank (MART). Using the data generated on these 5 cruises and a large database of remote marine boundary layer aerosol measurements we will address three questions during this presentation: 1 - Do phytoplankton ecosystems affect the organic enrichment of freshly emitted SSA?, 2 - Do plankton ecosystems affect the number production flux of SSA?, and 3 - Is SSA a significant source of atmospheric CCN?

  4. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan - Implication of aerosol aging during long-range transport

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Engling, Guenter; Chang, Shih-Yu; Chang, Shuenn-Chin; Sheu, Guey-Rong; Lin, Neng-Huei; Sopajaree, Khajornsak; Chang, You-Jia; Hong, Guo-Jun

    2016-07-01

    The transport of biomass burning (BB) aerosol from Indochina may cause a potential effect on climate change in Southeast Asia, East Asia, and the Western Pacific. Up to now, the understanding of BB aerosol composition modification during long-range transport (LRT) is still very limited due to the lack of observational data. In this study, atmospheric aerosols were collected at the Suthep/Doi Ang Khang (DAK) mountain sites in Chiang Mai, Thailand and the Lulin Atmospheric Background Station (Mt. Lulin) in central Taiwan from March to April 2010 and from February to April 2013, respectively. During the study period, an upwind and downwind relationship between the Suthep/DAK and Lulin sites (2400 km apart) was validated by backward trajectories. Comprehensive aerosol properties were resolved for PM2.5 water-soluble inorganic ions, carbonaceous content, water-soluble/insoluble organic carbon (WSOC/WIOC), dicarboxylic acids and their salts (DCAS), and anhydrosugars. A Modification Factor (MF) is proposed by employing non-sea-salt potassium ion (nss-K+) or fractionalized elemental carbon evolved at 580 °C after pyrolized OC correction (EC1-OP) as a BB aerosol tracer to evaluate the mass fraction changes of aerosol components from source to receptor regions during LRT. The MF values of nss-SO42-, NH4+, NO3-, OC1 (fractionalized organic carbon evolved from room temperature to 140 °C), OP (pyrolized OC fraction), DCAS, and WSOC were above unity, which indicated that these aerosol components were enhanced during LRT as compared with those in the near-source region. In contrast, the MF values of anhydrosugars ranged from 0.1 to 0.3, indicating anhydrosugars have degraded during LRT.

  5. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  6. Investigation of Biomass Burning Aerosol Hygroscopicity Using a New Tandem Differential Mobility Analyzer and New Inversion Routine.

    NASA Astrophysics Data System (ADS)

    Oxford, C. R.; Williams, B. J.

    2017-12-01

    Biomass burning aerosol (BBA) constitutes a significant fraction of atmospheric aerosol and impacts health, visibility, and radiative forcing. The nature and scale of these impacts are influenced by the size distribution of the aerosol. Hygroscopicity governs the water content of an aerosol at elevated relative humidity, and thus determines the size distribution of the hydrated aerosol. Characterization of BBA during the second Fire Lab At Missoula Experiment (FLAME-II) determined that BBA with high inorganic concentrations did not have a single hygroscopicity, but exhibited a bimodal nature. Mechanisms contributing to this bimodality could include condensation of hygrophilic inorganics, release of hygrophobic soot aerosol, presence of non-spherical morphologies, and condensation of volatile organic compounds with low hygroscopicity. Conclusions from FLAME-II attribute the bimodality to externally mixed BBA at a given diameter. Other authors, using different fuels, attribute differences in BBA hygroscopicity to non-spherical morphologies. We measured the hygroscopicity of BBA emitted from the burning of grasses obtained from western Montana in a laboratory burn chamber. The investigation used a newly built Tandem Differential Mobility Analyzer (TDMA) and a Scanning Mobility Particle Sizer together with a new TDMA inversion routine specifically designed for the analysis of multi-charged phenomena. Additionally, we used Transmission Electron Microscopy (TEM) to assess particle morphology. Outputs from the inversion routine along with images from TEM were used to evaluate reasons for hygroscopicity dependence on mobility diameter.

  7. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are listed with a brief comment as to the research performed. The publications titles are: The effects of particle size and nitric acid uptake on the homogenous freezing of sulfate aerosols; Parameterization of an aerosol physical chemistry model (APCM) for the NH3/H2SO4/HNO3/H2O system at cold temperatures; and The onset, extent and duration of dehydration in the Southern Hemisphere polar vortex.

  8. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.

    2008-01-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  9. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    DOE PAGES

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practicalmore » methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.« less

  10. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    NASA Astrophysics Data System (ADS)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  11. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  12. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  13. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    PubMed Central

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-01-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles. PMID:28240258

  14. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles.

    PubMed

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-02-27

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.

  15. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2017-02-01

    While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.

  16. Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Kita, K.; Miyazaki, Y.; Hu, M.; Chang, S.-Y.; Blake, D. R.; Fast, J. D.; Zaveri, R. A.; Streets, D. G.; Zhang, Q.; Zhu, T.

    2009-01-01

    Regional aerosol model calculations were made using the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in the summer of 2006, when the Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing) intensive campaign was conducted. Model calculations captured temporal variations of primary (such as elemental carbon (EC)) and secondary (such as sulfate) aerosols observed in and around Beijing. The spatial distributions of aerosol optical depth observed by the MODIS satellite sensors were also reproduced over northeast China. Model calculations showed distinct differences in spatial distributions between primary and secondary aerosols in association with synoptic-scale meteorology. Secondary aerosols increased in air around Beijing on a scale of about 1000 × 1000 km2 under an anticyclonic pressure system. This air mass was transported northward from the high anthropogenic emission area extending south of Beijing with continuous photochemical production. Subsequent cold front passage brought clean air from the north, and polluted air around Beijing was swept to the south of Beijing. This cycle was repeated about once a week and was found to be responsible for observed enhancements/reductions of aerosols at the intensive measurement sites. In contrast to secondary aerosols, the spatial distributions of primary aerosols (EC) reflected those of emissions, resulting in only slight variability despite the changes in synoptic-scale meteorology. In accordance with these results, source apportionment simulations revealed that primary aerosols around Beijing were controlled by emissions within 100 km around Beijing within the preceding 24 h, while emissions as far as 500 km and within the preceding 3 days were found to affect secondary aerosols.

  17. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  18. The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Hamill, P.; Kiang, C. S.; Whitten, R. C.

    1979-01-01

    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided.

  19. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  20. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.

    PubMed

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T

    2015-01-01

    Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.

  1. Nested Source Apportionment of Secondary Inorganic Aerosol over Yangtze River Delta during Heavy Haze Episodes

    NASA Astrophysics Data System (ADS)

    Luo, L.; Cheng, Z.

    2017-12-01

    Secondary inorganic aerosols (SNA), i.e., sulfate, nitrate and ammonium, account for over 50% of fine particulate matter (PM2.5) during heavy haze episodes over Yangtze River Delta (YRD) region of China. Understanding the origin and transport of SNA is crucial for alleviating haze pollution over YRD. The long range transport from outer-YRD regions had significant influence on SNA during haze episodes over YRD, especially in winter. However, previous studies only using single domain for source analysis are limited on quantifying the local and transported sources in province scale altogether. In this study, the Integrated Source Apportionment Method (ISAM) based on the Weather Research and Forecasting and Community Multi-scale Air Quality (WRF-CMAQ) models was performed to two nested domains, one covering east of China and the other embracing YRD, for source apportionment of SNA in YRD during January, 2015. The results indicated that the outer-YRD transport mainly from upwind northwestern provinces, Shandong and Henan, was the dominant contributor accounting for 36.2% of sulfate during pollution episodes. For nitrate, inner-YRD and outer-YRD transport were the two evenly major regional sources, contributing 51.9% of nitrate during hazes. However, local accumulation was the first contributor accounting for 73.9% of ammonium. The long lifetime of formation process for sulfate and nitrate caused the conspicuous transport effect driven by wind when adjacent regions under severe pollution. Although the total effects of long and short distant transport played a major role for the level of sulfate and nitrate, the extent of contribution from local accumulation was similar with them even larger in province scale. Industry followed by power plant were two principal sources of sulfate for all three types of regional contribution. The main sectoral sources of nitrate were industry and transport for local accumulation while power plant besides them for inner-YRD and outer

  2. A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions: AEROSOL EFFECTS ON EAST ASIAN CLIMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Huiping; Qian, Yun; Zhao, Chun

    2015-09-09

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. Themore » relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.« less

  3. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  4. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant

  5. A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A.; Remer, Lorraine A.; Loeb, Norman G.; Cahalan, Robert F.

    2008-07-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3-D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper only addresses the cloud-clear sky radiative transfer interaction part. It provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. This assumption leads to a larger increase of AOT for shorter wavelengths, or to a "bluing" of aerosols near clouds. The assumption that contribution from molecular scattering dominates over aerosol scattering and surface reflection is justified for the case of shorter wavelengths, dark surfaces, and an aerosol layer below the cloud tops. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  6. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  7. Source Attribution of Observed Absorption Profiles During the Two Column Aerosol Project (TCAP) Using a Regional Model

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Berg, L. K.; Chand, D.; Ferrare, R. A.; Flynn, C. J.; Hostetler, C. A.; Redemann, J.; Sedlacek, A. J., III; Shilling, J.; Shinozuka, Y.; Tomlinson, J. M.; Zelenyuk, A.

    2015-12-01

    Relatively large uncertainties remain in climate model predictions of absorption resulting from black carbon (BC) and brown carbon (BrC). In this study, we focus on comparing simulated profiles of BC, biomass burning aerosols, absorption, and other aerosol optical properties obtained from the regional WRF-Chem model with in situ and remote sensing measurements made during the Department of Energy's Two-Column Aerosol Project (TCAP). TCAP was designed to investigate changes in aerosol mixing state, aerosol radiative forcing, CCN concentration, and cloud-aerosol interactions in two atmospheric columns: one over Cape Cod, Massachusetts and another located approximately 200 km to the east over the ocean. Measurements from the NASA second-generation airborne High Resolution Spectral Lidar reveal the presence distinct aerosol layers associated with the marine boundary layer, residual layer transported over the ocean and in the free troposphere. Analyses of SP2 and aerosol optical measurements indicate that particles in the free troposphere were more 'aged' and had a lower single scattering albebo than for aerosol layers at lower altitudes; however, BC concentrations aloft were lower in the free troposphere. Instead, particle classes derived from the miniSPLAT single particle measurements suggest that the increased absorption aloft may be due biomass burning aerosols. The model suggests that ambient winds likely transported smoke from large wildfires in central Canada as well as smoke from other fires into the sampling domain. The simulated percentage of biomass burning aerosols was consistent with the miniSPLAT data, but the model currently treats all organic matter as non-absorbing. Therefore, we perform sensitivity simulations to examine how the model's absorption and AOD responds to assumptions used for BrC associated with biomass burning and whether the predicted profiles agree with absorption data and wavelength dependent AOD data from 4STAR.

  8. Biosynthetic inorganic chemistry.

    PubMed

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  9. A new technique for measuring aerosols with moonlight observations and a sky background model

    NASA Astrophysics Data System (ADS)

    Jones, Amy; Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Szyszka, Ceszary; Unterguggenberger, Stefanie

    2014-05-01

    There have been an ample number of studies on aerosols in urban, daylight conditions, but few for remote, nocturnal aerosols. We have developed a new technique for investigating such aerosols using our sky background model and astronomical observations. With a dedicated observing proposal we have successfully tested this technique for nocturnal, remote aerosol studies. This technique relies on three requirements: (a) sky background model, (b) observations taken with scattered moonlight, and (c) spectrophotometric standard star observations for flux calibrations. The sky background model was developed for the European Southern Observatory and is optimized for the Very Large Telescope at Cerro Paranal in the Atacama desert in Chile. This is a remote location with almost no urban aerosols. It is well suited for studying remote background aerosols that are normally difficult to detect. Our sky background model has an uncertainty of around 20 percent and the scattered moonlight portion is even more accurate. The last two requirements are having astronomical observations with moonlight and of standard stars at different airmasses, all during the same night. We had a dedicated observing proposal at Cerro Paranal with the instrument X-Shooter to use as a case study for this method. X-Shooter is a medium resolution, echelle spectrograph which covers the wavelengths from 0.3 to 2.5 micrometers. We observed plain sky at six different distances (7, 13, 20, 45, 90, and 110 degrees) to the Moon for three different Moon phases (between full and half). Also direct observations of spectrophotometric standard stars were taken at two different airmasses for each night to measure the extinction curve via the Langley method. This is an ideal data set for testing this technique. The underlying assumption is that all components, other than the atmospheric conditions (specifically aerosols and airglow), can be calculated with the model for the given observing parameters. The scattered

  10. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.

    PubMed

    Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2018-03-07

    Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

  11. Development of Atmospheric Chemistry-Aerosol Transport Model for Bioavailable Iron From Dust and Combustion Source

    NASA Astrophysics Data System (ADS)

    Ito, A.; Feng, Y.

    2009-12-01

    An accurate prediction of bioavailable iron fraction for ocean biota is hampered by uncertainties in modeling soluble iron fractions in atmospheric aerosols. It has been proposed that atmospheric processing of mineral aerosols by anthropogenic pollutants may be a key pathway to transform insoluble iron into soluble forms. The dissolution of dust minerals strongly depends on solution pH, which is sensitive to the heterogeneous uptake of soluble gases by the dust particle. Due to the complexity, previous model assessments generally use a common assumption in thermodynamical equilibrium between gas and aerosol phases. Here, we compiled an emission inventory of iron from combustion and dust source, and incorporated a dust iron dissolution scheme in a global chemistry-aerosol transport model (IMPACT). We will examine and discuss the uncertainties in estimation of dissolved iron as well as comparisons of the model results with available observations.

  12. Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Dhomse, S. S.; Emmerson, K. M.; Mann, G. W.; Bellouin, N.; Carslaw, K. S.; Chipperfield, M. P.; Hommel, R.; Abraham, N. L.; Telford, P.; Braesicke, P.; Dalvi, M.; Johnson, C. E.; O'Connor, F.; Morgenstern, O.; Pyle, J. A.; Deshler, T.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    We have enhanced the capability of a microphysical aerosol-chemistry module to simulate the atmospheric aerosol and precursor gases for both tropospheric and stratospheric conditions. Using the Mount Pinatubo eruption (June 1991) as a test case, we evaluate simulated aerosol properties in a composition-climate model against a range of satellite and in-situ observations. Simulations are performed assuming an injection of 20 Tg SO2 at 19-27 km in tropical latitudes, without any radiative feedback from the simulated aerosol. In both quiescent and volcanically perturbed conditions, simulated aerosol properties in the lower stratosphere show reasonable agreement with the observations. The model captures the observed timing of the maximum aerosol optical depth (AOD) and its decay timescale in both tropics and Northern Hemisphere (NH) mid-latitudes. There is also good qualitative agreement with the observations in terms of spatial and temporal variation of the aerosol effective radius (Reff), which peaks 6-8 months after the eruption. However, the model shows significant biases against some observational data sets. Simulated AOD and Surface Area Density (SAD) in the tropics are substantially higher than the gap-filled satellite data products during the first 6 months after the eruption. The model shows consistently weaker enhancement in Reff compared to satellite and in-situ measurements. Simulated aerosol particle size distribution is also compared to NH mid-latitude in-situ balloon sounding measurements of size-resolved number concentrations. Before the eruption, the model captures the observed profiles of lower stratospheric particle number concentrations with radii larger than 5, 150 and 250 nm (N5, N150 and N250) very well. However, in the first 6 months after the eruption, the model shows high bias in N5 concentrations in the lower stratosphere, suggesting too strong nucleation. Following particle growth via condensation and coagulation, this bias in the finest

  13. A 3-D Model Study of Aerosol Composition and Radiative Forcing in the Asian-Pacific Region

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xuepeng; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model will be used in analyzing the aerosol data in the ACE-Asia program. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosol and the processes that control these properties over the Asian-Pacific region, (2) to determine the aerosol radiative forcing over the Asian-Pacific region, and (3) to investigate the interaction between aerosol and tropospheric chemistry. We will present the GOCART aerosol simulations of sulfate, dust, carbonaceous, and sea salt concentrations, their optical thicknesses, and their radiative effects. We will also show the comparisons of model results with data taken from previous field campaigns, ground-based sun photometer measurements, and satellite observations. Finally, we will present our plan for the ACE-Asia study.

  14. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  15. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of aerosol coatings

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Lewis, K.; Moosmüller, H.

    2009-06-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno Nevada made during the very smoky summer month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption at wavelengths of 405 nm and 870 nm, revealing a strong variation of the aerosol light absorption with wavelength. Coated sphere calculations were used to show that Ångström exponents of absorption (AEA) as large as 1.6 are possible even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA. Insight on fuels burned is gleaned from comparison of AEA versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non absorbing organic and inorganic matter.

  16. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  17. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  18. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  19. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met

    NASA Astrophysics Data System (ADS)

    Markovic, M. Z.; Hayden, K. L.; Murphy, J. G.; Makar, P. A.; Ellis, R. A.; Chang, R. Y.-W.; Slowik, J. G.; Mihele, C.; Brook, J.

    2011-04-01

    The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3- at the ground site (observed mean (Mobs) = 0.50 μg m-3; modelled mean (Mmod) = 0.58 μg m-3; root mean square error (RSME) = 1.27 μg m-3) was better than aloft (Mobs = 0.32 μg m-3; Mmod = 0.09 μg m-3; RSME = 0.48 μg m-3). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g) + pNH4+ - 2 · pSO42-) are responsible for the poor agreement between modelled and measured values.

  20. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in Southwestern Ontario during BAQS-Met

    NASA Astrophysics Data System (ADS)

    Markovic, M. Z.; Hayden, K. L.; Murphy, J. G.; Makar, P. A.; Ellis, R. A.; Chang, R. Y.-W.; Slowik, J. G.; Mihele, C.; Brook, J.

    2010-10-01

    The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on regional air quality in Southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, the Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3- at the ground site (observed mean (M_obs) = 0.50 μg m-3; modelled mean (M_mod) = 0.58 μg m-3; root mean square error (RSME) = 1.27 μg m-3) was better than aloft (M_obs = 0.32 μg m-3; M_mod = 0.09 μg m-3; RSME = 0.48 μg m-3). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g) + NH4+ - SO42-) are responsible for the poor agreement between modelled and measured values.

  1. Inorganic ions in ambient fine particles over a National Park in central India: Seasonality, dependencies between SO42-, NO3-, and NH4+, and neutralization of aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kumar, Samresh; Sunder Raman, Ramya

    2016-10-01

    Twelve hour integrated ambient fine particles (PM2.5) were collected over an Van Vihar National Park (VVNP), in Bhopal, Central India. Samples were collected on filter substrates every-other-day for two years (2012 and 2013). In addition to PM2.5 mass concentration, water soluble inorganic ions (WSIIs) were also measured. Further, on-site meteorological parameters including temperature, wind speed, wind direction, relative humidity, rainfall and atmospheric pressure were recorded. During 2012, the average PM2.5 concentration was 40 ± 31 μgm-3 while during 2013 it was 48 ± 50 μgm-3. Further, in about 20% of the samples the 12 h integrated fine PM mass exceeded the daily (24 h) average standards (60 μgm-3). This observation suggests that the PM2.5 mass concentration at the study site is likely to be in violation of the National Ambient Air Quality Standard (NAAQS), India. During the study period the sum of three major ions (SO42-, NO3-, and NH4+) accounted for 19.4% of PM2.5 mass on average. Air parcel back trajectory ensembles revealed that emissions from thermal power plants were likely to be the main regional source of particulate SO42- and NO3- measured over VVNP. Further, local traffic activities appeared to have no significant impact on the concentrations of PM2.5 and its WSIIs constituents, as revealed by a day-of-the-week analysis. PM2.5 mass, SO42-, NO3-, and NH4+ showed a pronounced seasonal trend with winter (Jan, Feb) and post-monsoon (Oct, Nov, Dec) highs and pre-monsoon (Mar, Apr, May) and monsoon (Jun, Jul, Aug, Sep) lows, during both 2012 and 2013. Further, when the sum of SO42- and NO3- constituted greater than 90% of water soluble inorganic anions by mass, they were linearly dependent on one another and moderately anti-correlated (r2 = 0.60). The molar ratios of NH4+ and non-sea salt SO42- were examined to understand the aerosol neutralization mechanisms and particulate NO3- formation. An assessment of these ratios and subsequent analyses

  2. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.

    PubMed

    Ben-David, Avishai; Davidson, Charles E; Embury, Janon F

    2008-11-01

    We introduced a two-dimensional radiative transfer model for aerosols in the thermal infrared [Appl. Opt.45, 6860-6875 (2006)APOPAI0003-693510.1364/AO.45.006860]. In that paper we superimposed two orthogonal plane-parallel layers to compute the radiance due to a two-dimensional (2D) rectangular aerosol cloud. In this paper we revisit the model and correct an error in the interaction of the two layers. We derive new expressions relating to the signal content of the radiance from an aerosol cloud based on the concept of five directional thermal contrasts: four for the 2D diffuse radiance and one for direct radiance along the line of sight. The new expressions give additional insight on the radiative transfer processes within the cloud. Simulations for Bacillus subtilis var. niger (BG) bioaerosol and dustlike kaolin aerosol clouds are compared and contrasted for two geometries: an airborne sensor looking down and a ground-based sensor looking up. Simulation results suggest that aerosol cloud detection from an airborne platform may be more challenging than for a ground-based sensor and that the detection of an aerosol cloud in emission mode (negative direct thermal contrast) is not the same as the detection of an aerosol cloud in absorption mode (positive direct thermal contrast).

  3. Uncertainties of aerosol retrieval from neglecting non-sphericity of dust aerosols

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xue, Yong; Yang, Leiku; Guang, Jie

    2013-04-01

    The Mie theory is conventionally applied to calculate aerosol optical properties in satellite remote sensing applications, while dust aerosols cannot be well modeled by the Mie calculation for their non-sphericity. It has been cited in Mishchenko et al. (1995; 1997) that neglecting non-sphericity can severely influence aerosol optical depth (AOD, ?) retrieval in case of dust aerosols because of large difference of phase functions under spherical and non-spherical assumptions, whereas this uncertainty has not been thoroughly studied. This paper aims at a better understanding of uncertainties on AOD retrieval caused by aerosol non-sphericity. A dust aerosol model with known refractive index and size distribution is generated from long-term AERONET observations since 1999 over China. Then aerosol optical properties, such as the extinction, phase function, single scattering albedo (SSA) are calculated respectively in the assumption of spherical and non-spherical aerosols. Mie calculation is carried out for spherical assumption, meanwhile for non-spherical aerosol modeling, we adopt the pre-calculated scattering kernels and software package presented by Dubovik et al. (2002; 2006), which describes dust as a shape mixture of randomly oriented polydisperse spheroids. Consequently we generate two lookup tables (LUTspheric and LUTspheroid) from simulated satellite received reflectance at top of atmosphere (TOA) under varieties of observing conditions and aerosol loadings using Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV) code. All the simulations are made at 550 nm, and for simplicity the Lambertian surface is assumed. Using the obtained LUTs we examine the differences of TOA reflectance (Δ?TOA = ?spheric - ?spheroid) under different surface reflectance and aerosol loadings. Afterwards AOD is retrieved using LUTspheric from the simulated TOA reflectance by LUTspheroid in order to detect the retrieval errors (Δ? = ?retreived -?input) induced

  4. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  5. Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-to-Mesenchymal Transition (EMT).

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Guo, Lin; Li, Guangke; Sang, Nan

    2017-10-03

    Secondary inorganic aerosols (SIA), particularly sulfate aerosols, are central particulate matter (PM) constituents of severe haze formation in China and exert profound impacts on human health; however, our understanding of the mechanisms by which sulfate aerosols cause malignancy in lung carcinogenesis remains incomplete. Here, we show that exposure to secondary inorganic aerosols induced the invasion and migration of lung epithelial cells, and that (NH 4 ) 2 SO 4 exerted the most serious effects in vitro and promoted lung tumor metastasis in vivo. This action was associated with alterations of phenotype markers in the epithelial-to-mesenchymal transition (EMT), such as the up-regulation of fibronectin (Fn1) and the down-regulation of E-cadherin (E-cad). Hypoxia-inducible factor 1α (HIF-1α)-Snail signaling, regulated by the generation of reactive oxygen species (ROS), was involved in the (NH 4 ) 2 SO 4 -induced EMT, and the potent antioxidant N-acetylcysteine (NAC) inhibited the activation of HIF-1α-Snail and blocked the EMT, cell invasion, and migration in response to (NH 4 ) 2 SO 4 . Additionally, CpG hypermethylation in the E-cad promoter regions partly contributed to the (NH 4 ) 2 SO 4 -regulated E-cad repression, and the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) restored the (NH 4 ) 2 SO 4 -induced down-regulation of E-cad. Our findings reveal a potential mechanistic basis for exploring the association between sulfate aerosol exposure and increased malignancy during lung carcinogenesis, and suggest new approaches for the treatment, improvement, and prevention of lung cancer resulting from sulfate aerosol exposure in severe haze-fog.

  6. Air quality modelling over the Eastern Mediterranean using the WRF/Chem model: Comparison of gas-phase chemistry and aerosol mechanisms

    NASA Astrophysics Data System (ADS)

    Georgiou, George K.; Christoudias, Theodoros; Proestos, Yiannis; Kushta, Jonilda; Hadjinicolaou, Panos; Lelieveld, Jos

    2017-04-01

    A comprehensive analysis of the performance of three coupled gas-phase chemistry and aerosol mechanisms included in the WRF/Chem model has been performed over the Eastern Mediterranean focusing on Cyprus during the CYPHEX campaign in 2014, using high temporal and spatial resolution. The model performance was evaluated by comparing calculations to measurements of gas phase species (O3, CO, NOx, SO2) and aerosols (PM10, PM2.5) from 13 ground stations. Initial results indicate that the calculated day-to-day and diurnal variations of the aforementioned species show good agreement with observations. The model was set up with three nested grids, downscaling to 4km over Cyprus. The meteorological boundary conditions were updated every 3 hours throughout the simulation using the Global Forecast System (GFS), while chemical boundary conditions were updated every 6 hours using the MOZART global chemical transport model. Biogenic emissions were calculated online by the the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Anthropogenic emissions were based on the EDGAR HTAP v2 global emission inventory, provided on a horizontal grid resolution of 0.1o × 0.1o. Three simulations were performed employing different chemistry and aerosol mechanisms; i) RADM2 chemical mechanism and MADE/SORGAM aerosols, ii) CBMZ chemical mechanism and MOSAIC aerosols, iii) MOZART chemical mechanism and MOSAIC aerosols. Results show that the WRF/Chem model satisfactorily estimates the trace gases relative concentrations at the background sites but not at the urban and traffic sites, while some differences appear between the simulated concentrations by the three mechanisms. The resulting discrepancies between the model outcome and measurements, especially at the urban and traffic sites, suggest that a higher resolution anthropogenic emission inventory might help improve fine resolution, regional air quality modelling. Differences in the simulated concentrations by the

  7. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; hide

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  8. A Comprehensive Breath Plume Model for Disease Transmission via Expiratory Aerosols

    NASA Astrophysics Data System (ADS)

    Halloran, S. K.; Wexler, A. S.; Ristenpart, W. D.

    2012-11-01

    The peak in influenza incidence during wintertime represents a longstanding unresolved scientific question. One hypothesis is that the efficacy of airborne transmission via aerosols is increased at low humidity and temperature, conditions that prevail in wintertime. Recent experiments with guinea pigs suggest that transmission is indeed maximized at low humidity and temperature, a finding which has been widely interpreted in terms of airborne influenza virus survivability. This interpretation, however, neglects the effect of the airflow on the transmission probability. Here we provide a comprehensive model for assessing the probability of disease transmission via expiratory aerosols between test animals in laboratory conditions. The spread of aerosols emitted from an infected animal is modeled using dispersion theory for a homogeneous turbulent airflow. The concentration and size distribution of the evaporating droplets in the resulting ``Gaussian breath plume'' are calculated as functions of downstream position. We demonstrate that the breath plume model is broadly consistent with the guinea pig experiments, without invoking airborne virus survivability. Moreover, the results highlight the need for careful characterization of the airflow in airborne transmission experiments.

  9. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies

    PubMed Central

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T.

    2015-01-01

    Background Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic “face” surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. Aim To compare mask to “face” seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Methods Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the “face.” Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. Results The soft “face” significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft “face” was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard “face.” Conclusions The material and pliability of the model “face” surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies. PMID:26090661

  10. Chemical evolution of multicomponent aerosol particles during evaporation

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete

    2010-05-01

    Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols

  11. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  12. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  13. A modeling approach for aerosol optical depth analysis during forest fire events

    NASA Astrophysics Data System (ADS)

    Aube, Martin P.; O'Neill, Normand T.; Royer, Alain; Lavoue, David

    2004-10-01

    Measurements of aerosol optical depth (AOD) are important indicators of aerosol particle behavior. Up to now the two standard techniques used for retrieving AOD are; (i) sun photometry which provides measurements of high temporal frequency and sparse spatial frequency, and (ii) satellite based approaches such as DDV (Dense Dark Vegetation) based inversion algorithms which yield AOD over dark targets in remotely sensed imagery. Although the latter techniques allow AOD retrieval over appreciable spatial domains, the irregular spatial pattern of dark targets and the typically low repeat frequencies of imaging satellites exclude the acquisition of AOD databases on a continuous spatio-temporal basis. We attempt to fill gaps in spatio-temporal AOD measurements using a new assimilation methodology that links AOD measurements and the predictions of a particulate matter Transport Model. This modelling package (AODSEM V2.0 for Aerosol Optical Depth Spatio-temporal Evolution Model) uses a size and aerosol type segregated semi-Lagrangian trajectory algorithm driven by analysed meteorological data. Its novelty resides in the fact that the model evolution may be tied to both ground based and satellite level AOD measurement and all physical processes have been optimized to track this important and robust parameter. We applied this methodology to a significant smoke event that occurred over the eastern part of North America in July 2002.

  14. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.

    PubMed

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-28

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  15. The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations

    NASA Astrophysics Data System (ADS)

    Kleinschmitt, Christoph; Boucher, Olivier; Bekki, Slimane; Lott, François; Platt, Ulrich

    2017-09-01

    Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget as well as atmospheric chemistry, and the capabilities to simulate them interactively within global models are continuously improving. It is important to represent accurately both aerosol microphysical and atmospheric dynamical processes because together they affect the size distribution and the residence time of the aerosol particles in the stratosphere. The newly developed LMDZ-S3A model presented in this article uses a sectional approach for sulfate particles in the stratosphere and includes the relevant microphysical processes. It allows full interaction between aerosol radiative effects (e.g. radiative heating) and atmospheric dynamics, including e.g. an internally generated quasi-biennial oscillation (QBO) in the stratosphere. Sulfur chemistry is semi-prescribed via climatological lifetimes. LMDZ-S3A reasonably reproduces aerosol observations in periods of low (background) and high (volcanic) stratospheric sulfate loading, but tends to overestimate the number of small particles and to underestimate the number of large particles. Thus, it may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate anthropogenic injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.

  16. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  17. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    classification. The harmonization of the aerosol typing procedures is a fundamental need in aerosol studies for long-term perspectives, satellite validation, and accuracy. However, the possibilities and limits in defining a common set of aerosol types for satellite missions and ground-based measurements depends on different information content among measurement techniques and for different retrieval conditions (e.g. for low aerosol content there is smaller satellite aerosol type retrieval sensitivity), as well as different historical choices. The concept of aReference database for aerosol typing (REDAT) is developed with the specific purpose of providing a dataset suitable for the comparison of typing procedures (from ground-based, and satellite measurements) and to be used as reference dataset for the modelling community. It will also allow the definition of translating rules between the different aerosol typing nomenclature, information strongly needed for the more and more increased audience of scientific data with no scientific background, as well as policy and decision makers. Acknowledgments: The research leading to these results is partially funded by ACTRIS2 Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under the grant agreement n. 654169.

  18. Surface Dimming by the 2013 Rim Fire Simulated by a Sectional Aerosol Model

    NASA Technical Reports Server (NTRS)

    Yu, Pengfei; Toon, Owen B.; Bardeen, Charles G; Bucholtz, Anthony; Rosenlof, Karen; Saide, Pablo E.; Da Silva, Arlindo M.; Ziemba, Luke D.; Thornhill, Kenneth L.; Jimenez, Jose-Luis; hide

    2016-01-01

    The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number and particle size distribution are within variability of data obtained from multiple airborne in-situ measurements. Simulations suggest Rim Fire smoke may block 4-6 of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m(exp -2) per unit aerosol optical depth in the mid-visible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at mid-visible by 0.04 suggests the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with one-degree resolution with overall good skill, though that resolution is still not sufficient to resolve the smoke peak near the source region.

  19. Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model.

    PubMed

    Yu, Pengfei; Toon, Owen B; Bardeen, Charles G; Bucholtz, Anthony; Rosenlof, Karen H; Saide, Pablo E; Da Silva, Arlindo; Ziemba, Luke D; Thornhill, Kenneth L; Jimenez, Jose-Luis; Campuzano-Jost, Pedro; Schwarz, Joshua P; Perring, Anne E; Froyd, Karl D; Wagner, N L; Mills, Michael J; Reid, Jeffrey S

    2016-06-27

    The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m -2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

  20. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign

    NASA Astrophysics Data System (ADS)

    Johnson, Ben T.; Haywood, James M.; Langridge, Justin M.; Darbyshire, Eoghan; Morgan, William T.; Szpek, Kate; Brooke, Jennifer K.; Marenco, Franco; Coe, Hugh; Artaxo, Paulo; Longo, Karla M.; Mulcahy, Jane P.; Mann, Graham W.; Dalvi, Mohit; Bellouin, Nicolas

    2016-11-01

    We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA) and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementation of the Global Model for Aerosol Processes (GLOMAP-mode) modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size distribution, composition, and optical properties, giving increased accuracy in the representation of aerosol properties and physical-chemical processes over the Coupled Large-scale Aerosol Scheme for Simulations in Climate Models (CLASSIC) bulk aerosol scheme previously used in HadGEM2. Although both models give similar regional distributions of carbonaceous aerosol mass and aerosol optical depth (AOD), GLOMAP-mode is better able to capture the observed size distribution, single scattering albedo, and Ångström exponent across different tropical biomass burning source regions. Both aerosol schemes overestimate the uptake of water compared to recent observations, CLASSIC more so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD, and single scattering albedo at high relative humidity. Observed aerosol vertical distributions were well captured when biomass burning aerosol emissions were injected uniformly from the surface to 3 km. Finally, good agreement between observed and modelled AOD was gained only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. We attribute this difference in scaling factor mainly to different assumptions for the water uptake and growth of aerosol mass during ageing via oxidation and condensation of organics. We also note that similar agreement

  1. Impacts of Mt Pinatubo volcanic aerosol on the tropical stratosphere in chemistry-climate model simulations using CCMI and CMIP6 stratospheric aerosol data

    NASA Astrophysics Data System (ADS)

    Revell, Laura E.; Stenke, Andrea; Luo, Beiping; Kremser, Stefanie; Rozanov, Eugene; Sukhodolov, Timofei; Peter, Thomas

    2017-11-01

    To simulate the impacts of volcanic eruptions on the stratosphere, chemistry-climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based lidar measurements for gap-filling immediately after the 1991 Mt Pinatubo eruption, when the stratosphere was too optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses measurements from CLAES (Cryogenic Limb Array Etalon Spectrometer) on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt Pinatubo eruption instead of ground-based lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry-climate model simulations of the recent past (1986-2005) to investigate the impact of the Mt Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the tropical lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated tropical temperature anomalies in

  2. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat

    2017-04-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of < 3 days for regional fires and 11 days for African plumes arriving at ATTO during the wet season. The model performance of long-range transport of African plumes is also evaluated with observations from AERONET, MODIS, and CALIOP. Simulated absorption aerosol optical depth (AAOD) averaged over the wet season is lower than 0.0015 over the central Amazon, including the ATTO site. We find that more than 50% of total absorption at 550 nm is from BC, except for the northeastern Amazon and the Guianas, where the influence of dust becomes significant (up to 35 %). The brown carbon contribution is generally between 20 and 30 %. The distribution of absorption Ångström exponents (AAE) suggests more influence from fossil fuel combustion in the southern part of the basin (AAE 1) but more open fire and dust influence in the northern part

  3. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.

    PubMed

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-01-01

    Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.

  4. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  5. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe--sensitivity to changes in climate, anthropogenic emissions, population and building stock.

    PubMed

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E; Skjøth, Carsten Ambelas; Brandt, Jørgen

    2015-03-04

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  6. Comprehensive characterisation of atmospheric aerosols in Budapest, Hungary: physicochemical properties of inorganic species

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Maenhaut, Willy; Zemplén-Papp, Éva; Záray, Gyula

    As part of an air pollution project in Budapest, aerosol samples were collected by stacked filter units and cascade impactors at an urban background site, two downtown sites, and within a road tunnel in field campaigns conducted in 1996, 1998 and 1999. Some criteria pollutants were also measured at one of the downtown sites. The aerosol samples were analysed by one or more of the following methods: instrumental neutron activation analysis, particle-induced X-ray emission analysis, a light reflection technique, gravimetry, thermal profiling carbon analysis and capillary electrophoresis. The quantities measured or derived include atmospheric concentrations of elements (from Na to U), of particulate matter, of black and elemental carbon, and total carbonaceous fraction, of some ionic species (e.g., nitrate and sulphate) in the fine ( <2 μm equivalent aerodynamic diameter, EAD) or in both coarse (10- 2 μm EAD) and fine size fractions, atmospheric concentrations of NO, NO 2, SO 2, CO and total suspended particulate matter, and meteorological parameters. The analytical results were used for characterisation of the concentration levels, elemental composition, time trends, enrichment of and relationships among the aerosol species in coarse and fine size fractions, for studying their fine-to-coarse concentration ratios, spatial and temporal variability, for determining detailed elemental mass size distributions, and for examining the extent of chemical mass closure.

  7. Modeling aerosol water uptake in the arctic based on the κ-Kohler theory

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Ekman, A.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Tunved, P.; Riipinen, I.

    2013-05-01

    Water uptake or hygroscopicity is one of the most fundamental properties of atmospheric aerosols. Aerosol particles containing soluble materials can grow in size by absorbing water in ambient atmosphere. This property is measured by a parameter known as growth factor (GF), which is defined as the ratio of the wet diameter to the dry diameter. Hygroscopicity controls the size of an aerosol particle and therefore its optical properties in the atmosphere. Hygroscopic growth depends on the dry size of the particle, its chemical composition and the relative humidity in the ambient air (Fitzgerald, 1975; Pilinis et al., 1995). One of the typical problems in aerosol studies is the lack of measurements of aerosol size distributions and optical properties in ambient conditions. The gap between dry measurements and the real humid atmosphere is filled in this study by utilizing a hygroscopic model which calculates the hygroscopic growth of aerosol particles at Mt Zeppelin station, Ny Ålesund, Svalbard during 2008.

  8. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  9. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Pesticide Factsheets

    The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of sea salt aerosol emission size distribution, and the model's parameterization of the sea salt emission factor as a function of sea surface temperature. This dataset is associated with the following publication:Gantt , B., J. Kelly , and J. Bash. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2. Geoscientific Model Development. Copernicus Publications, Katlenburg-Lindau, GERMANY, 8: 3733-3746, (2015).

  10. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; hide

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  11. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    NASA Astrophysics Data System (ADS)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  12. How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum

    NASA Astrophysics Data System (ADS)

    Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.

    2017-12-01

    Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the

  13. Volcano and Ship Tracks Indicate Excessive Aerosol-Induced Cloud Water Increases in a Climate Model

    NASA Astrophysics Data System (ADS)

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-01

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational data set and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  14. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale.

  15. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; hide

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  16. Maritime Aerosol Network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Losno, R.; Sciare, J.; Voss, K. J.; Kinne, S.; Nalli, N. R.; Joseph, E.; Krishna Moorthy, K.; Covert, D. S.; Gulev, S. K.; Milinevsky, G.; Larouche, P.; Belanger, S.; Horne, E.; Chin, M.; Remer, L. A.; Kahn, R. A.; Reid, J. S.; Schulz, M.; Heald, C. L.; Zhang, J.; Lapina, K.; Kleidman, R. G.; Griesfeller, J.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurements areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  17. Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Losno, R.; Sciare, J.; Voss, K. J.; Kinne, S.; Nalli, N. R.; Joseph, E.; Krishna Moorthy, K.; Covert, D. S.; Gulev, S. K.; Milinevsky, G.; Larouche, P.; Belanger, S.; Horne, E.; Chin, M.; Remer, L. A.; Kahn, R. A.; Reid, J. S.; Schulz, M.; Heald, C. L.; Zhang, J.; Lapina, K.; Kleidman, R. G.; Griesfeller, J.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-03-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  18. Aerosol impacts on deep convective storms in the tropics: A combination of modeling and observations

    NASA Astrophysics Data System (ADS)

    Storer, Rachel Lynn

    It is widely accepted that increasing the number of aerosols available to act as cloud condensation nuclei (CCN) will have significant effects on cloud properties, both microphysical and dynamical. This work focuses on the impacts of aerosols on deep convective clouds (DCCs), which experience more complicated responses than warm clouds due to their strong dynamical forcing and the presence of ice processes. Several previous studies have seen that DCCs may be invigorated by increasing aerosols, though this is not the case in all scenarios. The precipitation response to increased aerosol concentrations is also mixed. Often precipitation is thought to decrease due to a less efficient warm rain process in polluted clouds, yet convective invigoration would lead to an overall increase in surface precipitation. In this work, modeling and observations are both used in order to enhance our understanding regarding the effects of aerosols on DCCs. Specifically, the area investigated is the tropical East Atlantic, where dust from the coast of Africa frequently is available to interact with convective storms over the ocean. The first study investigates the effects of aerosols on tropical DCCs through the use of numerical modeling. A series of large-scale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as CCN. Polluted simulations contained more deep convective clouds, wider storms, higher cloud tops and more convective precipitation across the entire domain. Differences in the warm cloud microphysical processes were largely consistent with aerosol indirect theory, and the average precipitation produced in each DCC column decreased with increasing aerosol concentration. A detailed microphysical budget analysis showed that the reduction in collision and coalescence largely dominated the trend in surface precipitation; however the production of rain through the melting of ice, though it also

  19. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results: AEROSOL PROFILES IN AEROCOM II GCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koffi, Brigitte; Schulz, Michael; Bréon, François-Marie

    2016-06-27

    The ability of eleven models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model inter-comparison initiative (AeroCom II) is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded dataset of aerosol extinction profiles built on purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 sub-continental regions show that five models improved whereas three degraded in reproducing the Zα 0-6 km mean extinction height diagnostic, which is computed over the 0-6 km altitude rangemore » for each studied region and season. While the models’ performance remains highly variable, it has generally improved in terms of inter-regional diversity and seasonality. The biases in Zα 0-6 km have notably decreased in the U.S. and European industrial and downwind maritime regions, whereas the timing of the Zα 0-6 km peak season has improved for all but two models. However, most of the models now show a Zα 0-6 km underestimation over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Zα 0-6 km latitudinal variability over ocean than over land. Hypotheses for the (changes in the) the performance of the individual models and for the inter-model diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties that can contribute to the differences between the simulations and observations.« less

  20. Responses of phytoplankton community to the input of different aerosols in the East China Sea

    NASA Astrophysics Data System (ADS)

    Meng, X.; Chen, Y.; Wang, B.; Ma, Q. W.; Wang, F. J.

    2016-07-01

    Atmospheric deposition can affect marine phytoplankton by supplying macronutrients and trace elements. We conducted mesocosm experiments by adding aerosols with different composition (dominated by mineral dust, biomass burning and high Cu, and secondary aerosol, respectively) to the surface seawater of the East China Sea. Chlorophyll a concentrations were found to be the highest and lowest after adding aerosols containing the highest Fe and dissolved inorganic nitrogen (DIN), respectively. The relative abundance of Haptophyceae increased significantly after adding mineral dust, whereas diatom, Dinophyceae and Cryptophyceae reached the maximum accompanied with the highest DIN. Our results suggest that Fe may be more important than DIN in promoting primary productivity in the sampled seawater. The input of mineral dust and anthropogenic aerosols may result in distinct changes of phytoplankton community structure.

  1. Impacts of aerosol mitigation on Chinese rice photosynthesis: An integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, T.; Yue, X.; Yang, X.

    2017-12-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ an integrated process-based modeling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. This response pattern and threshold are similar with observations, even through more data are needed in future investigation. As a net effect, rice yields were estimated to significantly increase by 0.8-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  2. Simulating Aerosol Optical Properties With the Aerosol Simulation Program (ASP): Closure Studies Using ARCTAS Data

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Macintyre, H. L.; Bian, H.; Chin, M.; Wang, C.

    2012-12-01

    The scattering and absorption of ultraviolet and visible radiation by aerosols can significantly alter actinic fluxes and photolysis rates. Accurate modeling of aerosol optical properties is thus essential to simulating atmospheric chemistry, air quality, and climate. Here we evaluate the aerosol optical property predictions of the Aerosol Simulation Program (ASP) with in situ data on aerosol scattering and absorption gathered during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The model simulations are initialized with in situ data on the aerosol size distribution and composition. We perform a set of sensitivity studies (e.g., internal vs. external mixture, core-in-shell versus Maxwell-Garnett, fraction of the organic carbon mass that is light-absorbing "brown carbon," etc.) to determine the model framework and parameters most consistent with the observations. We compare the ASP results to the aerosol optical property lookup tables in FAST-JX and suggest improvements that will better enable FAST-JX to simulate the impact of aerosols on photolysis rates and atmospheric chemistry.

  3. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed thatmore » both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.« less

  4. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  5. The Messy Aerosol Submodel MADE3 (v2.0b): Description and a Box Model Test

    NASA Technical Reports Server (NTRS)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, N.; Zaveri, R. A.; Metzger, S.; Aquila, Valentina

    2014-01-01

    We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl)chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealized marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HClCl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse particles. MADE3 and PartMC- MOSAIC show substantial differences in the fine particle size distributions (sizes about 2 micrometers) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  6. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  7. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  8. Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Swietlicki, E.; Schurgers, G.; Arneth, A.; Lehtinen, K. E. J.; Boy, M.; Kulmala, M.

    2011-06-01

    The aim of this work was to develop a model suited for detailed studies of aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1 × 1 km2) to regional scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM). The model treats both vertical and horizontal dispersion perpendicular to an air mass trajectory (2-space dimensions). The Lagrangian approach enables a more detailed representation of the aerosol dynamics, gas and particle phase chemistry and a finer spatial and temporal resolution compared to that of available regional 3D-CTMs. These features make it among others well suited for urban plume studies. The aerosol dynamics model includes Brownian coagulation, dry deposition, wet deposition, in-cloud processing, condensation, evaporation, primary particle emissions and homogeneous nucleation. The organic mass partitioning was either modeled with a 2-dimensional volatility basis set (2D-VBS) or with the traditional two-product model approach. In ADCHEM these models consider the diffusion limited and particle size dependent condensation and evaporation of 110 and 40 different organic compounds respectively. The gas phase chemistry model calculates the gas phase concentrations of 61 different species, using 130 different chemical reactions. Daily isoprene and monoterpene emissions from European forests were simulated separately with the vegetation model LPJ-GUESS, and included as input to ADCHEM. ADCHEM was used to simulate the ageing of the urban plumes from the city of Malmö in southern Sweden (280 000 inhabitants). Several sensitivity tests were performed concerning the number of size bins, size structure method, aerosol dynamic processes, vertical and horizontal mixing, coupled or uncoupled condensation and the secondary organic aerosol formation. The simulations show that the full-stationary size structure gives accurate results

  9. A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Thomas, G. E.; Grainger, R. G.

    2010-07-01

    A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  10. A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Thomas, G. E.; Grainger, R. G.

    2010-03-01

    A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  11. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Fast, J. D.; PöSchl, U.; Garland, R. M.; Andreae, M. O.; Wiedensohler, A.; Sugimoto, N.; Zhu, T.

    2010-11-01

    Model calculations were conducted using the Weather Research and Forecasting model coupled with chemistry (WRF-chem) for the region around Beijing, China, in the summer of 2006, when the CAREBeijing-2006 intensive campaign was conducted. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. The model calculations generally captured the observed variability of various surface and column aerosol optical parameters in and around Beijing. At the surface, the spatial and temporal variations of aerosol absorption and scattering coefficients corresponded well to those of elemental carbon and sulfate mass concentrations, respectively, and were controlled by local-scale (<100 km and <24 hours) and regional-scale (<500 km and <3 days) emissions, respectively. The contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer. This variation led to a considerable increase in column aerosol optical depth and was responsible for the differences in regional and temporal variations between surface and column aerosol optical properties around Beijing. These processes are expected to be common in other megacity regions as well. Model calculations, however, underestimated or overestimated the absolute levels of aerosol optical properties in and around Beijing by up to 60%. Sensitivity studies showed that these discrepancies were mostly due to the uncertainties in aerosol mixing state and aerosol density (affecting mass extinction efficiency) in the model calculations. Good agreement with measurements is achieved when these aerosol properties are accurately predicted or assumed; however, significant bias can result when these properties are inadequately treated, even if total aerosol mass concentrations are reproduced well in the model calculations.

  12. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  13. Climatology of the Aerosol Optical Depth by Components from the Multi-Angle Imaging Spectroradiometer (MISR) and Chemistry Transport Models

    NASA Technical Reports Server (NTRS)

    Lee, Huikyo; Kalashnikova, Olga V.; Suzuki, Kentaroh; Braverman, Amy; Garay, Michael J.; Kahn, Ralph A.

    2016-01-01

    The Multi-angle Imaging Spectroradiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skew-nesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  14. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  15. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  16. Acidity of Aerosols during Winter Heavy Haze Events in Beijing and Gucheng, China

    NASA Astrophysics Data System (ADS)

    Chi, Xiyuan; He, Pengzhen; Jiang, Zhuang; Yu, Xiawei; Yue, Fange; Wang, Longquan; Li, Bokun; Kang, Hui; Liu, Cheng; Xie, Zhouqing

    2018-02-01

    We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO4 2-, NO3 -, and NH4 + concentrations were 8.3, 12.5, and 14.1 μg m-3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m-3, respectively, at the rural site. The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity (with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events. The ISORROPIA II model was used to predict the aerosol pH, which had a mean (range) of 5.0 (4.9-5.2) and 5.3 (4.6-6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO4 2- and NO3 - in haze. We also analyzed the sensitivity of the aerosol pH to changes in the concentrations of SO4 2-, NO3 -, and NH4 + under haze conditions. The aerosol pH was more sensitive to the SO4 2- and NH4 + concentrations with opposing trends, than to the NO3 - concentrations. The sensitivity of the pH was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.

  17. UManSysProp: an online facility for molecular property prediction and atmospheric aerosol calculations

    NASA Astrophysics Data System (ADS)

    Topping, D.; Barley, M. H.; Bane, M.; Higham, N.; Aumont, B.; McFiggans, G.

    2015-11-01

    In this paper we describe the development and application of a new web based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles; absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES strings and UManSysProp will automatically extract the relevant information for calculations. Built using open source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web-interface, or can be accessed using the user's own code via a JSON API. In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.

  18. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  19. Simulation of Aerosols and Chemistry with a Unified Global Model

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    This project is to continue the development of the global simulation capabilities of tropospheric and stratospheric chemistry and aerosols in a unified global model. This is a part of our overall investigation of aerosol-chemistry-climate interaction. In the past year, we have enabled the tropospheric chemistry simulations based on the GEOS-CHEM model, and added stratospheric chemical reactions into the GEOS-CHEM such that a globally unified troposphere-stratosphere chemistry and transport can be simulated consistently without any simplifications. The tropospheric chemical mechanism in the GEOS-CHEM includes 80 species and 150 reactions. 24 tracers are transported, including O3, NOx, total nitrogen (NOy), H2O2, CO, and several types of hydrocarbon. The chemical solver used in the GEOS-CHEM model is a highly accurate sparse-matrix vectorized Gear solver (SMVGEAR). The stratospheric chemical mechanism includes an additional approximately 100 reactions and photolysis processes. Because of the large number of total chemical reactions and photolysis processes and very different photochemical regimes involved in the unified simulation, the model demands significant computer resources that are currently not practical. Therefore, several improvements will be taken, such as massive parallelization, code optimization, or selecting a faster solver. We have also continued aerosol simulation (including sulfate, dust, black carbon, organic carbon, and sea-salt) in the global model to cover most of year 2002. These results have been made available to many groups worldwide and accessible from the website http://code916.gsfc.nasa.gov/People/Chin/aot.html.

  20. How well do satellite observations and models capture diurnal variation in aerosols over the Korean Peninsula?

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Xian, P.; Campbell, J. R.

    2016-12-01

    Aerosol sources, sinks, and transport processes have important variations over the diurnal cycle. Advances in geostationary satellite observation have made it possible to retrieve aerosol properties over a larger fraction of the diurnal cycle in many areas. However, the conditions for retrieval of aerosol from space also have systematic diurnal variation, which must be considered when interpreting satellite data. We used surface PM2.5 observations from the Korean National Institute for Environmental Research, together with the dense network of AERONET sun photometers deployed in Korea for the KORUS-AQ mission in spring 2016, to examine diurnal variations in aerosol conditions and quantify the effect of systematic diurnal processes on daily integrated aerosol quantities of forcing and PM2.5 24-hour exposure. Time-resolved observations of aerosols from in situ data were compared to polar and geostationary satellite observations to evaluate these questions: 1) How well is diurnal variation observed in situ captured by satellite products? 2) Do the satellite products show evidence of systematic biases related to diurnally varying observing conditions? 3) What is the implication of diurnal variation for aerosol forcing estimates based on observations near solar noon? The diurnal variation diagnosed from observations was also compared to the output of the Navy Aerosol Analysis and Prediction System (NAAPS), to examine the ability of this model to capture aerosol diurnal variation. Finally, we discuss the implications of the observed diurnal variation for assimilation of aerosol observations into forecast models.