Science.gov

Sample records for aerosol jet printing

  1. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  2. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    NASA Astrophysics Data System (ADS)

    Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul

    2016-08-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  3. Selective light sintering of Aerosol-Jet printed silver nanoparticle inks on polymer substrates

    SciTech Connect

    Schuetz, K. E-mail: hoerber@faps.uni-erlangen.de Hoerber, J. E-mail: hoerber@faps.uni-erlangen.de Franke, J. E-mail: hoerber@faps.uni-erlangen.de

    2014-05-15

    Printing silver nanoparticle inks to generate conductive structures for electronics on polymer substrates has gained increasing relevance in recent years. In this context, the Aerosol-Jet Technology is well suited to print silver ink on 3D-Molded Interconnect Devices (MID). The deposited ink requires thermal post-treatment to obtain sufficient electrical conductivity and adhesion. However, commonly used oven sintering cannot be applied for many thermoplastic substrates due to low melting temperatures. In this study a new sintering technology, selective light sintering, is presented, based on the focused, continuous light beam of a xenon lamp. Sintering experiments were conducted with Aerosol-Jet printed structures on various polycarbonate (PC) substrates. Especially on neat, light transparent PC, silver tracks were evenly sintered with marginal impact to the substrate. Electrical conductivities significantly exceed the values obtained with conventional oven sintering. Adhesive strength is sufficient for conductive tracks. Experiments with non-transparent PC substrates led to substrate damage due to increased light absorption. Therefore a concept for a variation of light sintering was developed, using optical filters. First experiments showed significant reduction of substrate damage and good sintering qualities. The highly promising results of the conducted experiments provide a base for further investigations to increase adhesion and qualifying the technology for MID applications and a broad spectrum of thermoplastic substrates.

  4. Selective light sintering of Aerosol-Jet printed silver nanoparticle inks on polymer substrates

    NASA Astrophysics Data System (ADS)

    Schuetz, K.; Hoerber, J.; Franke, J.

    2014-05-01

    Printing silver nanoparticle inks to generate conductive structures for electronics on polymer substrates has gained increasing relevance in recent years. In this context, the Aerosol-Jet Technology is well suited to print silver ink on 3D-Molded Interconnect Devices (MID). The deposited ink requires thermal post-treatment to obtain sufficient electrical conductivity and adhesion. However, commonly used oven sintering cannot be applied for many thermoplastic substrates due to low melting temperatures. In this study a new sintering technology, selective light sintering, is presented, based on the focused, continuous light beam of a xenon lamp. Sintering experiments were conducted with Aerosol-Jet printed structures on various polycarbonate (PC) substrates. Especially on neat, light transparent PC, silver tracks were evenly sintered with marginal impact to the substrate. Electrical conductivities significantly exceed the values obtained with conventional oven sintering. Adhesive strength is sufficient for conductive tracks. Experiments with non-transparent PC substrates led to substrate damage due to increased light absorption. Therefore a concept for a variation of light sintering was developed, using optical filters. First experiments showed significant reduction of substrate damage and good sintering qualities. The highly promising results of the conducted experiments provide a base for further investigations to increase adhesion and qualifying the technology for MID applications and a broad spectrum of thermoplastic substrates.

  5. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device

    NASA Astrophysics Data System (ADS)

    Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg

    2016-04-01

    In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.

  6. Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction.

    PubMed

    Williams, Bryce A; Mahajan, Ankit; Smeaton, Michelle A; Holgate, Collin S; Aydil, Eray S; Francis, Lorraine F

    2015-06-01

    A three-step method to create dense polycrystalline semiconductor thin films from nanocrystal liquid dispersions is described. First, suitable substrates are coated with nanocrystals using aerosol-jet printing. Second, the porous nanocrystal coatings are compacted using a weighted roller or a hydraulic press to increase the coating density. Finally, the resulting coating is annealed for grain growth. The approach is demonstrated for making polycrystalline films of copper zinc tin sulfide (CZTS), a new solar absorber composed of earth-abundant elements. The range of coating morphologies accessible through aerosol-jet printing is examined and their formation mechanisms are revealed. Crack-free albeit porous films are obtained if most of the solvent in the aerosolized dispersion droplets containing the nanocrystals evaporates before they impinge on the substrate. In this case, nanocrystals agglomerate in flight and arrive at the substrate as solid spherical agglomerates. These porous coatings are mechanically compacted, and the density of the coating increases with compaction pressure. Dense coatings annealed in sulfur produce large-grain (>1 μm) polycrystalline CZTS films with microstructure suitable for thin-film solar cells. PMID:25989610

  7. Aerosol-jet-printed, 1 volt H-bridge drive circuit on plastic with integrated electrochromic pixel.

    PubMed

    Ha, Mingjing; Zhang, Wei; Braga, Daniele; Renn, Michael J; Kim, Chris H; Frisbie, C Daniel

    2013-12-26

    In this report, we demonstrate a printed, flexible, and low-voltage circuit that successfully drives a polymer electrochromic (EC) pixel as large as 4 mm(2) that is printed on the same substrate. All of the key components of the drive circuitry, namely, resistors, capacitors, and transistors, were aerosol-jet-printed onto a plastic foil; metallic electrodes and interconnects were the only components prepatterned on the plastic by conventional photolithography. The large milliampere drive currents necessary to switch a 4 mm(2) EC pixel were controlled by printed electrolyte-gated transistors (EGTs) that incorporate printable ion gels for the gate insulator layers and poly(3-hexylthiophene) for the semiconductor channels. Upon application of a 1 V input pulse, the circuit switches the printed EC pixel ON (red) and OFF (blue) two times in approximately 4 s. The performance of the circuit and the behavior of the individual resistors, capacitors, EGTs, and the EC pixel are analyzed as functions of the printing parameters and operating conditions.

  8. Aerosol jet printed p- and n-type electrolyte-gated transistors with a variety of electrode materials: exploring practical routes to printed electronics.

    PubMed

    Hong, Kihyon; Kim, Se Hyun; Mahajan, Ankit; Frisbie, C Daniel

    2014-11-12

    Printing electrically functional liquid inks is a promising approach for achieving low-cost, large-area, additive manufacturing of flexible electronic circuits. To print thin-film transistors, a basic building block of thin-film electronics, it is important to have several options for printable electrode materials that exhibit high conductivity, high stability, and low-cost. Here we report completely aerosol jet printed (AJP) p- and n-type electrolyte-gated transistors (EGTs) using a variety of different electrode materials including highly conductive metal nanoparticles (Ag), conducting polymers (polystyrenesulfonate doped poly(3,4-ethylendedioxythiophene, PEDOT:PSS), transparent conducting oxides (indium tin oxide), and carbon-based materials (reduced graphene oxide). Using these source-drain electrode materials and a PEDOT:PSS/ion gel gate stack, we demonstrated all-printed p- and n-type EGTs in combination with poly(3-hexythiophene) and ZnO semiconductors. All transistor components (including electrodes, semiconductors, and gate insulators) were printed by AJP. Both kinds of devices showed typical p- and n-type transistor characteristics, and exhibited both low-threshold voltages (<2 V) and high hole and electron mobilities. Our assessment suggests Ag electrodes may be the best option in terms of overall performance for both types of EGTs.

  9. Run-time Ink Stability in Pneumatic Aerosol Jet Printing Using a Split Stream Solvent Add Back System

    NASA Astrophysics Data System (ADS)

    Wadhwa, Arjun

    Aerosol Jet printing is a non-contact process capable of printing nano-ink patterns on conformal and flexible surfaces. Aqueous or solvent nano-inks are pneumatically atomized by the flow of nitrogen gas. The flow of atomizing gas into and out of the cup leads to evaporation and removal of volatile solvent(s). As the solid loading fraction of the ink increases, the rheological changes eventually lead to instabilities in print output. A potential solution to this problem is to moisten the atomizing ink by running it through a bubbler. In this study, neat co-solvent solutions of ethanol and ethylene glycol at 85: 15 and 30:70 mixing ratios were atomized using nitrogen flow rates ranging from 600 to 1000 ccm. It was observed that ethanol, being the more volatile solvent, was depleted from the neat solution. When using a bubbler solvent add-back system, an excessive amount of ethanol was returned to the neat solution. The rate of solvent loss from an ethanol rich neat solution (80%) was higher compared to an ethylene glycol rich neat solution. A mixture of dry and wet (ethanol moistened) nitrogen gas was used to equalize the rate of ethanol evaporation. Ethanol equilibrium in neat solutions with higher ethylene glycol loading (70%) was achieved with a 40-60% wet nitrogen component while neat solutions with higher ethanol loading (85%) were stable with 85 -90% wet nitrogen gas. The results were validated with copper nano ink with similar co-solvent ratios. The solid content of the ink remained constant over four hours of printing when the optimal dry: wet nitrogen gas ratios were used. Copper ink with 85% ethanol being atomized at 1000 ccm exhibited increase in copper loading (3%) despite the dry: wet solvent add back system.

  10. Silver Ink For Jet Printing

    NASA Technical Reports Server (NTRS)

    Vest, R. W.; Singaram, Saraswathi

    1989-01-01

    Metallo-organic ink containing silver (with some bismuth as adhesion agent) applied to printed-circuit boards and pyrolized in air to form electrically conductive patterns. Ink contains no particles of silver, does not have to be mixed during use to maintain homogeneity, and applied to boards by ink-jet printing heads. Consists of silver neodecanoate and bismuth 2-ethylhexanoate dissolved in xylene and/or toluene.

  11. Advances in thermal ink-jet printing

    NASA Astrophysics Data System (ADS)

    Pan, Alfred I.

    1998-06-01

    In recent years, ink jet has emerged as one of the mainstream printing technologies. Since its market inception in 1985, Hewlett-Packard's thermal ink jet technology (TIJ) has evolved progressively from a 12 nozzle 96 dpi print head to a 300 nozzle 600 dpi print head. TIJ has made rapid progress enabling it to print text output on plain paper that challenges laser printers, and realistic photographic images that rival silver halide, at a low consumer price. Thermal ink jet technology continues to enjoy a greater unit market share than any other digital printing technology and all other ink jet technologies combined. The driving forces for the advancement of TIJ have been better, faster, and cheaper printers for consumers. These goals involve key attributes such as ink performance (gamut, sharpness, fastness), minimum deliverable colorant (drop volume), rate of colorant delivery (firing frequency, nozzle integration, firing chamber volume), and print engine cost per unit throughput. In this paper, key technology challenges for TIJ will be outlined. New materials and new processes that are required for the advancement of thermal ink jet printing are discussed. Recently, competing ink jet methods have (re-)emerged, notably piezoelectric ink jet. References will be made to piezoelectric ink jet when appropriate.

  12. Biosurface engineering through ink jet printing.

    PubMed

    Khan, Mohidus Samad; Fon, Deniece; Li, Xu; Tian, Junfei; Forsythe, John; Garnier, Gil; Shen, Wei

    2010-02-01

    The feasibility of thermal ink jet printing as a robust process for biosurface engineering was demonstrated. The strategy investigated was to reconstruct a commercial printer and take advantage of its colour management interface. High printing resolution was achieved by formulating bio-inks of viscosity and surface tension similar to those of commercial inks. Protein and enzyme denaturation during thermal ink jet printing was shown to be insignificant. This is because the time spent by the biomolecules in the heating zone of the printer is negligible; in addition, the air and substrate of high heat capacity absorb any residual heat from the droplet. Gradients of trophic/tropic factors can serve as driving force for cell growth or migration for tissue regeneration. Concentration gradients of proteins were printed on scaffolds to show the capability of ink jet printing. The printed proteins did not desorb upon prolonged immersion in aqueous solutions, thus allowing printed scaffold to be used under in vitro and in vivo conditions. Our group portrait was ink jet printed with a protein on paper, illustrating that complex biopatterns can be printed on large area. Finally, patterns of enzymes were ink jet printed within the detection and reaction zones of a paper diagnostic.

  13. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stephen R; McGraw, Gregory

    2013-12-24

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  14. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stephen; McGraw, Gregory

    2016-02-02

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  15. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stepehen R; McGraw, Gregory

    2015-01-27

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  16. Mod silver metallization: Screen printing and ink-jet printing

    NASA Technical Reports Server (NTRS)

    Vest, R. W.; Vest, G. M.

    1985-01-01

    Basic material efforts have proven to be very successful. Adherent and conductive films were achieved. A silver neodecanoate/bismuth 2-ethylhexanoate mixture has given the best results in both single and double layer applications. Another effort is continuing to examine the feasibility of applying metallo-organic deposition films by use of an ink jet printer. Direct line writing would result in a saving of process time and materials. So far, some well defined lines have been printed.

  17. Ink-jet printing of silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1986-01-01

    The status of the ink-jet printing program at Purdue University is described. The drop-on-demand printing system was modified to use metallo-organic decomposition (MOD) inks. Also, an IBM AT computer was integrated into the ink-jet printer system to provide operational functions and contact pattern configuration. The integration of the ink-jet printing system, problems encountered, and solutions derived were described in detail. The status of ink-jet printing using a MOD ink was discussed. The ink contained silver neodecanate and bismuth 2-ethylhexanoate dissolved in toluene; the MOD ink decomposition products being 99 wt% AG, and 1 wt% Bi.

  18. Inkjet printing - the physics of manipulating liquid jets and drops

    NASA Astrophysics Data System (ADS)

    Martin, G. D.; Hoath, S. D.; Hutchings, I. M.

    2008-03-01

    Over the last 30 years inkjet printing technology has been developed for many applications including: product date codes, mailing shots, desktop printing, large-area graphics and, most recently, the direct writing of materials to form electronic, biological, polymeric and metallic devices. The new non-graphical applications require higher print rates, better resolution and higher reliability while printing more complex, non-Newtonian and heavily solids-loaded liquids. This makes the understanding of the physics involved in the precise manipulation of liquid jets and drops ever more important. The proper understanding and control of jet formation and subsequent motion of the jetted materials requires physical studies into material properties at very high shear rates, acoustic modes in print heads, instabilities of jets, drop formation, drop motion, stretching of fluid ligaments, the role of polymers in jet break up, electrical charging of drops and the aerodynamic and electrostatic interaction of jets and drops in flight. Techniques for observation, measurement and analysis are evolving to assist these studies. This paper presents some examples of the application of physics to understanding and implementing inkjet printing, including recent work at the Cambridge Inkjet Research Centre.

  19. Plasma jet printing for flexible substrates

    NASA Astrophysics Data System (ADS)

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.; Nordlund, Dennis; Koehne, Jessica; Meyyappan, M.

    2016-03-01

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and found to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.

  20. Nozzle geometry for organic vapor jet printing

    DOEpatents

    Forrest, Stephen R; McGraw, Gregory

    2015-01-13

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  1. Recent trends in ink-jet printing inks and papers

    NASA Astrophysics Data System (ADS)

    Nakamura, Kohichi

    1993-06-01

    Ink-jet printers (IJ) were developed in the early 1980s and recently, their use has spread in the fields of business applications and computer graphics. IJs feature a faster printing speed than a thermal transfer printer. The printing quality of IJs has been improved to 400 DPI. It is said that even 600 DPI can be realized. Accordingly, almost the same level of printing quality as that of a laser beam printer (LBP) is possible. A compact model requires space of less than 50% of an LBP and smaller power consumption also should expand the demand of IJs for business application. In addition, with the extension of computer graphics, IJ color printers have been increasing remarkably lately. IJs have many advantages compared with the conventional electro photographic system. In the use of color ink-jet printers, an image quality is important and it is influenced by the applied ink and paper. In this connection, the recent trends are explained.

  2. INK-JET PRINTING OF PF6 FOR OLED APPLICATIONS

    SciTech Connect

    Burrasca, G.; Fasolino, T.; Miscioscia, R.; Nenna, G.; Vacca, P.; Villani, F.; Minarini, C.; Della Sala, D.

    2008-08-28

    In the last years there has been much interest in applying ink-jet printing (IJP) technology to the deposition of several materials for organic electronics applications, including metals, polymers and nanoparticles dispersions on flexible substrates. The aim of this work is to study the effect of ink-jet deposition of polymer films in the manufacturing of OLED devices comparing their performances to standard technologies. The ink-jet printed polymer is introduced in an hybrid structure in which other layers are deposited by vacuum thermal evaporation. The electrical and optical properties of the obtained devices are investigated.OLEDs with the same structure were fabricated by spin-coating a polymer film by the same solution used as ink. Results have been compared to the above ones to determine how the deposition method affects the device optoelectronic properties.

  3. Ink jet printing of silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1985-01-01

    Progress was made in the continuing development of the ink jet printing system for thick film circuits. The unit being used is a prototype ink jet printer. One of the first tasks completed was the complete documentation of this ink jet printing system as it existed. It was determined that this was an essential step in deciding what modifications were needed to the system and how these modifications would be implemented. Design modification studies were started for electronic, mechanical, and programming aspects of the ystem. The areas needeing improvement were discussed and applicable changes decided upon. Some improvments were completed. Although the general areas needing improving were identified and some changes decided upon, the exact details of how other changes can be implemented are yet been decided.

  4. Aerosol printing of colloidal nanocrystals by aerodynamic focusing

    NASA Astrophysics Data System (ADS)

    Qi, Lejun

    Colloidal semiconductor nanocrystals, or quantum dots, have shown promise as the active material in electronic and optoelectronic applications, because of their high quantum yield, narrow spectral emission band, size-tunable bandgap, chemical stability, and easy processibility. Meanwhile, it is still challenging to print patterns of nanocrystal films with desired linewidth and thickness, which is a critical step in fabrication of nanocrystal-based devices. In this thesis, a direct-write method of colloidal semiconductor nanocrystals has been developed. Like other direct-write techniques, this aerosol based method simplifies printing process and reduces the manufacturing cost, as it avoids mask screening, lithography, and pre-patterning of the substrate. Moreover, the aerosol printing with aerodynamic lenses needs neither microscale nozzles nor sheath gases, and is able to incorporate into the vacuum systems currently used in microelectronic fabrication. This thesis research presents systematic efforts to develop an aerosol-based method to directly write patterns of semiconductor nanocrystals from colloidal dispersions by aerodynamic focusing. First, the synthesized colloidal nanocrystals in hexane were nebulized into compact and spherical agglomerates suspending in the carrier gas. The details about the impact dynamics of individual aerosolized nanocrystal agglomerates were investigated. As building blocks of printed nanocrystal films, the agglomerate exhibited cohesive and granular behaviors during impact deformation on the substrate. The strength of cohesion between nanocrystals in the agglomerates could be adjusted by tuning the number concentration of colloidal nanocrystal dispersion. Second, ultrathin films of nanocrystals were obtained by printing monodisperse nanocrystal agglomerates. As the result of the granular property of nanocrystal agglomerates, it was found that the thickness of deposited agglomerates strongly depended on the size of agglomerates. A

  5. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  6. An Ink-Jet Printed Eddy Current Position Sensor

    PubMed Central

    Jeranče, Nikola; Bednar, Nikola; Stojanović, Goran

    2013-01-01

    An eddy current sensor with an ink-jet printed flexible inductor has been designed and fabricated. The inductor has been designed by means of software developed in-house. It has been fabricated by ink-jet printing with silver ink on a flexible substrate. The inductor is a part of the oscillator circuit whose oscillating frequency is measured by a microcontroller. The sensor characteristics have been analyzed for two types of application. The first considered application is the displacement of a large conductive target in a direction perpendicular to the inductor plane. The second considered application is the displacement of a small steel ball parallel to the inductor plane. Inductance and oscillating frequency have been measured in order to completely characterize the sensor. The obtained results validate the use of the sensor for both considered applications, and are in good agreement with the simulations. The advantages of this type of sensor are low cost, the possibility for the inductor to match any curved surface and flexibility and precision of the inductor design. PMID:23598504

  7. An ink-jet printed eddy current position sensor.

    PubMed

    Jeranče, Nikola; Bednar, Nikola; Stojanović, Goran

    2013-01-01

    An eddy current sensor with an ink-jet printed flexible inductor has been designed and fabricated. The inductor has been designed by means of software developed in-house. It has been fabricated by ink-jet printing with silver ink on a flexible substrate. The inductor is a part of the oscillator circuit whose oscillating frequency is measured by a microcontroller. The sensor characteristics have been analyzed for two types of application. The first considered application is the displacement of a large conductive target in a direction perpendicular to the inductor plane. The second considered application is the displacement of a small steel ball parallel to the inductor plane. Inductance and oscillating frequency have been measured in order to completely characterize the sensor. The obtained results validate the use of the sensor for both considered applications, and are in good agreement with the simulations. The advantages of this type of sensor are low cost, the possibility for the inductor to match any curved surface and flexibility and precision of the inductor design.

  8. Electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet

    SciTech Connect

    Lee, Dae-Young; Shin, Yun-Soo; Park, Sung-Eun; Yu, Tae-U; Hwang, Jungho

    2007-02-19

    As a direct write technology, the electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet is introduced. In this letter, two categorized types of examples of two-dimensional patterning were printed by using the electrohydrodynamic printing method. A spiral-type inductor was printed to demonstrate the feasibility of the electrohydrodynamic printing as a fabrication process. The printed spiral inductor produced 9.45 {mu}H and exhibited approximately five times larger resistivity (9.5 {mu}{omega} cm) than that of bulk silver after the sintering process. Then, complex geometries having square- and round-shape patterns were also printed.

  9. Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Zha, Wen; Feng, Li; Ma, Qian; Liu, Xianming; Yang, Ning; Xu, Zheng; Zhao, Xiaojun; Liang, Junsheng; Ren, Tongqun; Wang, Xiaodong

    2016-04-01

    This paper reports the use of electrohydrodynamic jet (E-jet) printing technique for producing a wide range of graphene micro-scale structures. Ethyl cellulose-dispersed graphene ink and Nafion-dispersed graphene ink were prepared and used for E-Jet printing. A glass slide and PDMS substrate were used for E-Jet printing of graphene ink. The E-jet printed graphene micro-scale structures using ethyl cellulose-dispersed graphene ink presented a feature of center arrayed graphene surrounded by the track of evaporated solution. However, the E-Jet printed graphene structures using Nafion-dispersed graphene ink exhibited uniform arranged features. It was observed that the resistivity of the graphene structures printed from the ethyl cellulose-dispersed graphene ink was much lower than that from the Nafion-dispersed graphene ink. In addition, the graphene micro-scale electrodes were E-Jet printed for preliminary electrochemical applications. The results showed that the graphene micro-scale electrodes had a distinct response for the lead ion. Furthermore, a Pt/graphene composite electrode was formed and an electrochemistry test was conducted. It was found that the Pt /graphene composite electrode had a more sensitive response compared with the pure Pt electrode for electrochemical sensing.

  10. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.

    PubMed

    Zhang, Zhengyi; Xiong, Ruitong; Mei, Renwei; Huang, Yong; Chrisey, Douglas B

    2015-06-16

    Matrix-assisted pulsed-laser evaporation direct-write (MAPLE DW) has been successfully implemented as a promising laser printing technology for various fabrication applications, in particular, three-dimensional bioprinting. Since most bioinks used in bioprinting are viscoelastic, it is of importance to understand the jetting dynamics during the laser printing of viscoelastic fluids in order to control and optimize the laser printing performance. In this study, MAPLE DW was implemented to study the jetting dynamics during the laser printing of representative viscoelastic alginate bioinks and evaluate the effects of operating conditions (e.g., laser fluence) and material properties (e.g., alginate concentration) on the jet formation performance. Through a time-resolved imaging approach, it is found that when the laser fluence increases or the alginate concentration decreases, the jetting behavior changes from no material transferring to well-defined jetting to well-defined jetting with an initial bulgy shape to jetting with a bulgy shape to pluming/splashing. For the desirable well-defined jetting regimes, as the laser fluence increases, the jet velocity and breakup length increase while the breakup time and primary droplet size decrease. As the alginate concentration increases, the jet velocity and breakup length decrease while the breakup time and primary droplet size increase. In addition, Ohnesorge, elasto-capillary, and Weber number based phase diagrams are presented to better appreciate the dependence of jetting regimes on the laser fluence and alginate concentration.

  11. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    SciTech Connect

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.; Basti, Mufeed M.

    2016-01-01

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutions was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.

  12. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    DOE PAGES

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.; Basti, Mufeed M.

    2016-01-01

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutionsmore » was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.« less

  13. Spreading on and penetration into thin, permeable print media: application to ink-jet printing.

    PubMed

    Daniel, Richard C; Berg, John C

    2006-11-16

    This paper examines spreading and penetration of surfactant-laden drops on thin-permeable media with reference to ink-jet printing. A detailed review of the interaction of both pure liquids and surfactant containing solutions with porous substrates is given for individual spreading and penetration and for the combined processes. A new model based on energy arguments is derived and compared to current hydrodynamic equations used to describe simultaneous spreading and penetration. Three studies of how surfactant solutions interact with thin commercial ink-jet photographic quality papers are presented. Here, two relevant systems are examined: Tergitol 15-S-5 and 1,2-octanediol. The first study examines the spreading and penetration profiles for surfactant solutions over a range of concentrations spanning their critical micelle concentration. As expected, these profiles depend on the concentration of surfactant and the chemistry of the medium with which it interacts. In many cases, partial vertical penetration of the region directly beneath the drop dominates at low interaction times and will be significant in ink-jet applications. The second study consists of a parametric investigation of the energy-based model derived herein. It shows that the model can capture all of the behaviors observed in the first study. In the final study, the ability of the energy-based model to fully predict the spreading behavior of Tergitol 15-S-5 solutions is tested. It is found that the model produces good quantitative agreement at the highest concentrations and, as such, will be useful in screening spreading dynamics concentrated systems like ink-jet inks. Agreement at low to intermediate concentrations is often limited by finite induction periods prior to significant spreading and penetration. Possible corrections that could improve the agreement for weakly concentrated solutions are discussed, and directions for future studies of simultaneous spreading and penetration are proposed.

  14. Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Seong, Baekhoon; Yoo, Hyunwoong; Dat Nguyen, Vu; Jang, Yonghee; Ryu, Changkook; Byun, Doyoung

    2014-09-01

    Invisible Ag mesh transparent electrodes (TEs), with a width of 7 μm, were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing. With a 100 μm pitch, the EHD jet printed the Ag mesh on the convex glass which had a sheet resistance of 1.49 Ω/□. The printing speed was 30 cm s-1 using Ag ink, which had a 10 000 cPs viscosity and a 70 wt% Ag nanoparticle concentration. We further showed the performance of a 3-D transparent heater using the Ag mesh transparent electrode. The EHD jet printed an invisible Ag grid transparent electrode with good electrical and optical properties with promising applications on printed optoelectronic devices.

  15. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    PubMed

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics. PMID:20811121

  16. Confined Aerosol Jet in Fiber Classification and Dustiness Measurement

    NASA Astrophysics Data System (ADS)

    Dubey, Prahit

    The focus of this dissertation is the numerical analysis of confined aerosol jets used in fiber classification and dustiness measurement. Of relevance to the present work are two devices, namely, the Baron Fiber Classifier (BFC), and the Venturi Dustiness Tester (VDT). The BFC is a device used to length-separate fibers, important for toxicological research. The Flow Combination Section (FCS) of this device consists of an upstream region, where an aerosol of uncharged fibers is introduced in the form of an annular jet, in-between two sheath flows. Length-separation occurs by dielectrophoresis, downstream of the FCS in the Fiber Classification Section (FClS). In its standard operation, BFC processes only small quantities of fibers. In order to increase its throughput, higher aerosol flow rates must be considered. The goal of the present investigation is to understand the interaction of sheath and aerosol flows inside the FCS, and to identify possible limits to increasing aerosol flow rates using Computational Fluid Dynamics (CFD). Simulations involve solution of Navier-Stokes equations for axisymmetric and 3D models of the FCS for six different flow rates, and a pure aerodynamic treatment of the aerosol jet. The results show that the geometry of the FCS, and the two sheath flows, are successful in preventing the emergence of vortices in the FCS for aerosol-to-sheath flow inlet velocity ratios below ≈ 50. For larger aerosol-to-sheath flow inlet velocity ratios, two vortices are formed, one near the inner cylinder and one near the outer cylinder. The VDT is a novel device for measuring the dustiness of powders, relevant for dust management and controlling hazardous exposure. It uses just 10 mg of the test powder for its operation, during which the powder is aerosolized and turbulently dispersed (Re = 19,900) for 1.5s into a 5.7 liter chamber; the aerosol is then gently sampled (Re = 2050) for 240s through two filters located at the chamber top. Pump-driven suction at

  17. Demonstration of digital radiographs by means of ink jet-printed paper copies: pilot study.

    PubMed

    Kirkhorn, T; Kehler, M; Nilsson, J; Lyttkens, K; Andersson, B; Holmer, N G

    1992-11-01

    Different digital medical images have been printed on paper with a continuous ink jet printer, and the quality has been evaluated. The emphasis has been on digital chest radiographs from a computed radiography system. The ink jet printing technique is described as well as the handling of the image data from image source to printer. Different versions of paper prints and viewing conditions were compared to find the optimum alternative. The evaluation has been performed to maximize the quality of the paper images to make them conform with the corresponding film prints and monitor images as much as possible. The continuous ink jet technique offers high-quality prints on paper at a considerably lower cost per copy compared with the cost of a film print. With a future switch-over from diagnosing of digital images on film to diagnosing them on monitors, hard copies for demonstration purposes will occasionally be needed. This need can be filled by ink jet-printed paper copies.

  18. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer.

    PubMed

    Liu, Huimin; Xu, Wei; Tan, Wanyi; Zhu, Xuhui; Wang, Jian; Peng, Junbiao; Cao, Yong

    2016-03-01

    Line printing offers a feasible approach to remove the pixel well structure which is widely used to confine the ink-jet printed solution. In the study, a uniform line is printed by an ink-jet printer. To achieve a uniform surface profile of the printed line, 10vol% low-volatile solvent DMA (3,4-Dimethylanisole) is mixed with high-volatile solvent Pxy (p-xylene) as the solvent. After a solution-processable small molecule is dissolved, the surface tension of DMA solution becomes lower than that of Pxy solution, which creates an inward Marangoni flow during the solvent evaporation. The inward Marangoni flow balances out the outward capillary flow, thereby forming a flat film surface. The line width of the printed line depends on the contact angle of the solution on the hole injection layer.

  19. Challenges in the development of high-speed true 600-dpi thermal ink-jet printing

    NASA Astrophysics Data System (ADS)

    Ho, May F.; Keefe, Brian

    1996-03-01

    Hewlett-Packard Company recently introduced a line of thermal ink jet printers which delivers 6 to 8 pages per minute laser parity text throughput with true 600 X 600 dpi resolution. In the development of this technology, we achieved major breakthrough in many key areas in the design of the HP 51645A ink jet print cartridge. In order to print at true 600 dpi resolution, the dot size has to be reduced proportionally from the previous 300 dpi resolution. To increase the print engine throughput to meet customer needs, firing frequency of the drop generator has to be higher than any previous thermal ink jet designs. As a result of the need to improve print quality and throughput, all fluidic dimensions in the vicinity of the ink jet drop generator have to be redesigned and scaled down. This geometric redesigning and scaling poses significant challenges to the capabilities of our manufacturing processes, leading to the redesign of the orifice plate. Major development work in ink formulation has resulted in significant improvements in printer performance as well. The pigmented ink designed for this new generation of ink jet printers provides the highest optical density and media independency to meet customer's print quality needs. The ink formulation also improves dry time so as to meet the pages per minute throughput design objective.

  20. Assessment of antibiotic aerosol generation using commercial jet nebulizers.

    PubMed

    Hurley, P K; Smye, S W; Cunliffe, H

    1994-01-01

    The performance of 14 commercial jet nebulisers has been assessed; Unineb, Suremist (Unimed (UK) Ltd), Micro-Cirrus (Intersurgical Ltd), Pulmo-Neb (DeVilbiss Health Care UK Ltd), Side-Stream (Medic-Aid Ltd), Micro-Neb III (Lifecare Ltd), RespirGard (Marquest Medical Products Inc), Aeromist, Venticaire (S and W Vickers Ltd), Up-Draft II, Ava-Neb, Up-Draft (Hudson Respiratory Care Inc), Bennett/Twin, Raindrop (Puritan-Bennett Corporation). The units were operated with a high flow compressor (Maxi III, Medix Ltd) at 101/min. Performance was assessed by measuring the fraction of the initial mass of drug released as an aerosol and nebulisation time for initial drug volume of 2-6mls, and the mass median diameter and mass fraction of the aerosol in particles < 5.17 microns diameter. The Side-Stream nebuliser gave the best performance, although incorporation of a filter to trap exhaled antibiotic may prove difficult. The Micro-Cirrus generated a particularly fine aerosol. The Raindrop nebuliser performed well, while the Up-Draft II nebulised efficiently but was associated with extended nebulisation times which may limit its utility.

  1. Organ printing: computer-aided jet-based 3D tissue engineering.

    PubMed

    Mironov, Vladimir; Boland, Thomas; Trusk, Thomas; Forgacs, Gabor; Markwald, Roger R

    2003-04-01

    Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly. PMID:12679063

  2. Multiple ink-jet printed zinc tin oxide layers with improved TFT performance

    NASA Astrophysics Data System (ADS)

    Sykora, Benedikt; Wang, Di; von Seggern, Heinz

    2016-07-01

    In the last two decades, metal-oxides, like zinc tin oxide (ZTO), are widely studied semiconductors for transistor applications. This study presents a simple, non-toxic, stable, and cost efficient precursor route for ZTO deposition by ink-jet printing. Such fabricated thin films are composed of an amorphous phase with embedded ZnO nanocrystals. The saturation mobility of ink-jet printed transistors increases from 0.05 cm2 V-1 s-1 for a single semiconducting layer to 7.8 cm2 V-1 s-1 for a transistor composed of 8 layers. This constitutes the highest saturation mobility of an ink-jet printed ZTO transistor reported so far. The devices exhibit large output currents (up to 38.7 mA) and high on/off ratios (exceeding 108). The large improvement in transistor performance with the number of layers is ascribed to an improved degree of substrate coverage confirmed by AFM investigations.

  3. Pushing the practical frontiers in thermal ink-jet printing

    NASA Astrophysics Data System (ADS)

    Katen, Cheryl V.

    1995-04-01

    To continue the evolution of thermal inkjet printing, key technology developments are needed. These include the ability to print text output as fast as laser printers, determining and delivering realistic color print speeds for the consumer, lower cost of the printer and the output, and finally, realistic natural images on a wide selection of medias. In this paper, the resolution and quality needed for different types of printing are reviewed. The technical feasibility is assessed in terms of enabling subtechnologies that need to be developed to support the ultimate application goals for each type of printing. Key developments required are outlined and the underlying technical challenges that must be met in order to enable faster text, faster graphics, and high-quality image output are listed. Large arrays, higher resolution, and the need and methods for producing variable spot size from one nozzle are reviewed and assessed.

  4. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing.

    PubMed

    Onses, M Serdar; Sutanto, Erick; Ferreira, Placid M; Alleyne, Andrew G; Rogers, John A

    2015-09-01

    This review gives an overview of techniques used for high-resolution jet printing that rely on electrohydrodynamically induced flows. Such methods enable the direct, additive patterning of materials with a resolution that can extend below 100 nm to provide unique opportunities not only in scientific studies but also in a range of applications that includes printed electronics, tissue engineering, and photonic and plasmonic devices. Following a brief historical perspective, this review presents descriptions of the underlying processes involved in the formation of liquid cones and jets to establish critical factors in the printing process. Different printing systems that share similar principles are then described, along with key advances that have been made in the last decade. Capabilities in terms of printable materials and levels of resolution are reviewed, with a strong emphasis on areas of potential application.

  5. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes.

    PubMed

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-28

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.

  6. Ink Jet Printing Approaches to Solar Cell Contacts

    SciTech Connect

    Kaydanova, T.; Miedaner, A.; Curtis, C.; Perkins, J.; Alleman, J.; Ginley, D.

    2003-05-01

    We are developing inkjet printing as a low cost, high through-put approach to the deposition of front contacts for Si solar cells. High deposition rates of 1m per printing pass were achieved with a new metalorganic ink composed of silver (trifluoroacetate) in ethylene glycol. The printing conditions were optimized to achieve a relatively high line resolution of 120 m. The optimal parameters for the piezoelectric inkjet were a pulse frequency of 50 Hz and pulse amplitude of 25 V. The best resolution and the line quality were achieved at a substrate temperature of 180 C and drop separation of 40 m.

  7. Image bleed in color ink-jet printing of plain paper

    NASA Astrophysics Data System (ADS)

    Barker, Lesley J.; dePierne, Otto S.; Proverb, Robert J.; Wasser, Richard B.

    1994-05-01

    The bleed of one color into another is detrimental to perceived print quality of color-printed images, and is one of the problems encountered in ink-jet color printing. Rapid absorption of ink dye and vehicle into the paper acts to prevent coalescence of color droplets, but too strong an absorption of the vehicle along the paper fibers causes spreading and feathering of the image boundary. The process is therefore very delicate and sensitive to the physical and chemical characteristics of the paper surface. In this work, color bleed of characters printed on experimental sheets by an HP 500C DeskJet printer was measured quantitatively by image analysis. The effects of variation of internal sizing on color bleed and color optical density were measured, as well as effects resulting from surface treatments with different levels of starch and polymeric surface size. Results were compared with analogous measurements for printing without an adjacent color, and also for black ink printing on the same paper. The level of starch in the surface treatment was most important in controlling color bleed, whereas surface size was most helpful in preventing image spread in black ink printing, and in increasing the optical density of both black and composite black images.

  8. Laser heat treatment of aerosol-jet additive manufactured graphene patterns

    NASA Astrophysics Data System (ADS)

    Jabari, Elahe; Toyserkani, Ehsan

    2015-09-01

    In this article, a laser processing protocol for heat treatment of micro-scale printed graphene patterns is developed, and the results are compared with the counterpart results obtained by the conventional heat treatment process carried out in a furnace. A continuous-wave Erbium fiber laser is used to enhance electrical properties of the aerosol-jet printed graphene patterns through removing solvents and a stabilizer polymer. The laser power and the process speed are optimized to effectively treat the printed patterns without compromising the quality of the graphene flakes. Furthermore, a heat transfer model is developed and its results are utilized to optimize the laser treatment process. It is found that the laser heat treatment process with a laser speed of 0.03 mm s-1, a laser beam diameter ~50 μm, and a laser power of 10 W results in pure graphene patterns with no excessive components. The ratio of D to G bands ({{I}\\text{D}}/{{I}\\text{G}}) in Raman graph of the laser treated pure graphene, which is an indicator of the level of the active defects in graphene structures, is 0.52. The laser treated pure graphene structures also have a C/O ratio and an electrical resistivity of ~4.5 and 0.022 Ω cm, respectively. These values are fairly comparable with the results of samples treated in a furnace. The results suggest that the laser processing has the capability of removing stabilizer polymers and solvents through a localized moving heat source, which is preferable for flexible electronics with low working temperature substrates.

  9. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-01

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03034j

  10. Nano-sized ceramic inks for drop-on-demand ink-jet printing in quadrichromy.

    PubMed

    Gardini, Davide; Dondi, Michele; Costa, Anna Luisa; Matteucci, Francesco; Blosi, Magda; Galassi, Carmen; Baldi, Giovanni; Cinotti, Elenia

    2008-04-01

    Nano-sized ceramic inks suitable for ink-jet printing have been developed for the four-colours CMYK (cyan, magenta, yellow, black) process. Nano-inks of different pigment composition (Co(1-x)O, Au(0), Ti(1-x-y)Sb(x)Cr(y)O2, CoFe2O4) have been prepared with various solid loadings and their chemicophysical properties (particle size, viscosity, surface tension, zeta-potential) were tailored for the ink-jet application. The pigment particle size is in the 20-80 nm range. All these nano-suspensions are stable for long time (i.e., several months) due to either electrostatic (high zeta-potential values) or steric stabilization mechanisms. Both nanometric size and high stability avoid problems of nozzle clogging from particles agglomeration and settling. Nano-inks have a Newtonian behaviour with relatively low viscosities at room temperature. More concentrated inks fulfil the viscosity requirement of ink-jet applications (i.e., < 35 mPa x s) for printing temperatures in between 30 and 70 degrees C. Surface tension constraints for ink-jet printing are fulfilled by nano-inks, being in the 35-45 mN x m(-1) range. The nano-sized inks investigated behave satisfactorily in preliminary printing tests on several unfired industrial ceramic tiles, developing saturated colours in a wide range of firing temperatures (1000-1200 degrees C).

  11. Fabrication of a flexible Ag-grid transparent electrode using ac based electrohydrodynamic Jet printing

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Hwang, Jungho

    2014-10-01

    In the dc voltage-applied electrohydrodynamic (EHD) jet printing of metal nanoparticles, the residual charge of droplets deposited on a substrate changes the electrostatic field distribution and interrupts the subsequent printing behaviour, especially for insulating substrates that have slow charge decay rates. In this paper, a sinusoidal ac voltage was used in the EHD jet printing process to switch the charge polarity of droplets containing Ag nanoparticles, thereby neutralizing the charge on a polyethylene terephthalate (PET) substrate. Printed Ag lines with a width of 10 µm were invisible to the naked eye. After sintering lines with 500 µm of line pitch at 180 °C, a grid-type transparent electrode (TE) with a sheet resistance of ˜7 Ω sq-1 and a dc to optical conductivity ratio of ˜300 at ˜84.2% optical transmittance was obtained, values that were superior to previously reported results. In order to evaluate the durability of the TE under bending stresses, the sheet resistance was measured as the number of bending cycles was increased. The sheet resistance of the Ag grid electrode increased only slightly, by less than 20% from its original value, even after 500 cycles. To the best of our knowledge, this is the first time that Ag (invisible) grid TEs have been fabricated on PET substrates by ac voltage applied EHD jet printing.

  12. Ink-jet printed colorimetric gas sensors on plastic foil

    NASA Astrophysics Data System (ADS)

    Courbat, Jerome; Briand, Danick; de Rooij, Nico F.

    2010-08-01

    An all polymeric colorimetric gas sensor with its associated electronics for ammonia (NH3) detection targeting low-cost and low-power applications is presented. The gas sensitive layer was inkjet printed on a plastic foil. The use of the foil directly as optical waveguide simplified the fabrication, made the device more cost effective and compatible with large scale fabrication techniques, such as roll to roll processes. Concentrations of 500 ppb of NH3 in nitrogen with 50% of RH were measured with a power consumption of about 868 μW in an optical pulsed mode of operation. Such sensors foresee applications in the field of wireless systems, for environmental and safety monitoring. The fabrication of the planar sensor was based on low temperature processing. The waveguide was made of PEN or PET foil and covered with an ammonia sensitive layer deposited by inkjet printing, which offered a proper and localized deposition of the film. The influence of the substrate temperature and its surface pretreatment were investigated to achieve the optimum deposition parameters for the printed fluid. To improve the light coupling from the light source (LED) to the detectors (photodiodes), polymeric micro-mirrors were patterned in an epoxy resin. With the printing of the colorimetric film and additive patterning of polymeric micro-mirrors on plastic foil, a major step was achieved towards the implementation of full plastic selective gas sensors. The combination with printed OLED and PPD would further lead to an integrated all polymeric optical transducer on plastic foil fully compatible with printed electronics processes.

  13. Methodology and technological aspects of the flexible substrate preparation for ink-jet printing technology

    NASA Astrophysics Data System (ADS)

    Tarapata, Grzegorz; Marzecki, Michał

    2013-10-01

    The ink-jet printing technology becomes especially promising for wide volume of production of cheap sensors, consumable electronics and other dedicated applications of everyday life like smart packaging, smart textiles, smart labels, etc. To achieve this goal new materials compatible with ink-jet printing should be developed. Currently on the market there is a growing number of inks with different properties, but their use requires many tests related to its printability and their interaction with other materials. The paper presents technological problems that are encountered by people associated with fabrication of various devices with using of inkjet printing techniques. Results presented in the paper show the influence of surface preparation techniques on the quality of achieved shapes, the impact of other materials already deposited and the impact of another external factors. During carried out experiments the printer Dimatix DMP 2831 and several inks base on nanosilver or dielectric UV curable was used.

  14. Ink-jet printing of host-guest systems based on acrylates with fluorescent dopants

    NASA Astrophysics Data System (ADS)

    Bollgruen, Patrick; Gleissner, Uwe; Megnin, Christof; Mager, Dario; Korvink, Jan; Hanemann, Thomas

    2016-04-01

    We present two ink-jet printable, optically active material systems that point towards flexible foil-based optical systems independent of any electrical elements or physical connections. The materials are based on a UV-curable monomer doped with europium and diphenylantracene, resulting in red (610 nm) and blue (430 nm) fluorescence excited by UV light. Additionally, ethylene glycol dimethacrylate (EGDMA) is used to tune the viscosity to 10 mPas via a print-head temperature of 50 °C, as required by the ink-jet print-head. When illuminated with 1.5 W/cm2, the measured intensity of the europium is in the range of 1 mW/cm2. By printing these materials on PMMA foil, we can create fluorescent tracks with a feature size well below 100 μm that could serve as light sources within a planar optronic system.

  15. Assembling surface mounted components on ink-jet printed double sided paper circuit board.

    PubMed

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  16. Assembling surface mounted components on ink-jet printed double sided paper circuit board

    NASA Astrophysics Data System (ADS)

    Andersson, Henrik A.; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  17. A field shaping printhead for high-resolution electrohydrodynamic jet printing onto non-conductive and uneven surfaces

    NASA Astrophysics Data System (ADS)

    Tse, Leo; Barton, Kira

    2014-04-01

    High-resolution electrohydrodynamic jet printing is a cost effective, flexible, multi-material, high-resolution (sub 10 μm) additive manufacturing process. In this paper, we present an electric field shaping printhead capable of controlled high-resolution (sub 10 μm) e-jet printing and demonstrate printhead capabilities by creating patterns with both an optical adhesive and silver nanoparticle ink material with equivalent accuracy to state-of-the-art e-jet printing. Importantly, we demonstrate controlled printing onto non-conductive and height varying surfaces without the use of a grounded substrate at a previously unattainable length scale. This ability to print onto highly varied non-conductive substrates will enable the generalization of the 2D process to a controlled 3D printing technology at the micro-scale.

  18. Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nano-ink

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Stark, John P. W.

    2010-06-01

    We report electrohydrodynamic jet (E-jet) printing of a commercialised silver nano-ink in fully voltage-controlled fashion. Metallic pads and conducting tracks with hundred-micron feature size were drop-on-demands produced on Si substrates. Layer-by-layer printing was further performed, demonstrating a capability in creating 3D multistructures. Planar pattern with a large inductance of 2.5 μH and an excellent resistivity of 4.2×10-8 Ω m was fabricated, showing a true inductive device. Our result demonstrates a feasibility of E-jet printing in the application of smart electronic devices fabrication.

  19. Plasma jet printing of electronic materials on flexible and nonconformal objects.

    PubMed

    Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M

    2014-12-10

    We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.

  20. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.

    PubMed

    Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing; Deng, Mengmeng; Wen, Yongqiang; Song, Yanlin

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO(3) mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10( - 8)-8.76 × 10( - 8) Ω m after thermal treatment at 160 °C for 30 min, which was about five times that of bulk silver (1.586 × 10( - 8) Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices. PMID:21937786

  1. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.

    PubMed

    Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing; Deng, Mengmeng; Wen, Yongqiang; Song, Yanlin

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO(3) mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10( - 8)-8.76 × 10( - 8) Ω m after thermal treatment at 160 °C for 30 min, which was about five times that of bulk silver (1.586 × 10( - 8) Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  2. Improving reactive ink jet printing via cationization of cellulosic linen fabric.

    PubMed

    Rekaby, M; Abd-El Thalouth, J I; Abd El-Salam, Sh H

    2013-11-01

    Cellulose linen fabric samples subjected to cationization using different cationizing agents: dodecyl trimethyl ammonium bromide (DTAB), tetra methyl ammonium hydroxide (TMAH), and Quat-188, via pad batch technique, followed by ink jet printing with reactive dyes. The %N as well as the K/S of the cationized samples was found to be depends on: (a) the nature of the cationizing agent and (b) on the time of batching. As the latter increases both of the nitrogen content and K/S increases to a maximum depending on the nature of the reagent used. Further increase in the batching time up to 30 h is accompanied by a decrease in both the %N and K/S irrespective of the nature of the cationizing agent used. Cationization improves the printability of reactive dye ink jet printed linen fabrics with no remarkable effect on the overall color fastness properties.

  3. Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng

    2016-09-01

    Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.

  4. Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Plura, T. S.

    2010-11-01

    The deposition of tin-clad nano-size copper particles was carried out by means of ink-jet printing. Curing the particles on Polyimide (PI) turned them into soldered structures using an Nd-YAG laser. Area coverage of 55% was achieved for a single-layer print. Subsequent laser sintering increased this value to 95%. A Butanol-based copper ink and an aqueous tin (Sn)-clad Copper (Cu) ink were produced and were ink-jetted in this work. These nano-metallic inks showed excellent suspension stability with particle weight concentrations as high as 5%. The ink components were examined by measuring the particle size distribution in a dispersed condition, and the melting temperature. A piezo ink-jet print head was used to deposit the inks onto a moveable substrate. The thermal effect of the laser irradiation allowed approaching and connecting adjacent particles by melting the particle’s tin coating. The results were examined with regard to structure and soldering properties using EDX, SEM and optical microscopy.

  5. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    PubMed Central

    Zenou, M.; Sa’ar, A.; Kotler, Z.

    2015-01-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures. PMID:26602432

  6. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures.

    PubMed

    Zenou, M; Sa'ar, A; Kotler, Z

    2015-11-25

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  7. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'Ar, A.; Kotler, Z.

    2015-11-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  8. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures.

    PubMed

    Zenou, M; Sa'ar, A; Kotler, Z

    2015-01-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures. PMID:26602432

  9. A fast flexible ink-jet printing method for patterning dissociated neurons in culture.

    PubMed

    Sanjana, Neville E; Fuller, Sawyer B

    2004-07-30

    We present a new technique that uses a custom-built ink-jet printer to fabricate precise micropatterns of cell adhesion materials for neural cell culture. Other work in neural cell patterning has employed photolithography or "soft lithographic" techniques such as micro-stamping, but such approaches are limited by their use of an un-alterable master pattern such as a mask or stamp master and can be resource-intensive. In contrast, ink-jet printing, used in low-cost desktop printers, patterns material by depositing microscopic droplets under robotic control in a programmable and inexpensive manner. We report the use of ink-jet printing to fabricate neuron-adhesive patterns such as islands and other shapes using poly(ethylene) glycol as the cell-repulsive material and a collagen/poly-D-lysine (PDL) mixture as the cell-adhesive material. We show that dissociated rat hippocampal neurons and glia grown at low densities on such patterns retain strong pattern adherence for over 25 days. The patterned neurons are comparable to control, un-patterned cells in electrophysiological properties and in immunocytochemical measurements of synaptic density and inhibitory cell distributions. We suggest that an inexpensive desktop printer may be an accessible tool for making micro-island cultures and other basic patterns. We also suggest that ink-jet printing may be extended to a range of developmental neuroscience studies, given its ability to more easily layer materials, build substrate-bound gradients, construct out-of-plane structure, and deposit sources of diffusible factors.

  10. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    PubMed

    Munshi, Akash S; Martin, R Scott

    2016-02-01

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods. PMID:26649363

  11. Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.

    PubMed

    Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D

    2016-08-15

    1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials. PMID:27231729

  12. Ceramic Ink-Jet Printing for Digital Decoration: Physical Constraints for Ink Design.

    PubMed

    Gardini, Davide; Blosi, Magda; Zanelli, Chiara; Dondi, Michele

    2015-05-01

    In the last decade, the drop-on-demand (DOD) ink-jet printing has become the leading technology for the decoration of ceramic tiles. The inks employed for such application are colloidal suspensions of oxide particles (0.3 μm) whose stability (against agglomeration and over time) is fundamental to get successfully the tile decoration. Jettability from the DOD print heads is a key requirement along with proper colour after sintering. This means that a careful set up of inks properties (viscosity, density, surface tension) is required. The phenomena involved in the different stages of the ink-jet printing process (drop ejection from the nozzles, impact and spreading on the substrates) are described through dimensionless numbers as Reynolds, Weber, and Bond numbers, or their combinations. In literature physical constraints, obtained with a semi-theoretical approach on the basis of experimental evidences on other systems, allow to define a reference region in the space of the dimensionless numbers (here called "printable fluid region," PFR) where the inks should be suitable for the application. In this paper, 26 inks currently used for ceramic tile decoration were characterized and mapped in the space of dimensionless numbers for several printing conditions. For typical nozzle diameters (20-50 gm) and drop velocities (6-8 m/s), it has been found that they fall in the region identified by 3 < Re < 30, 27 < We < 160, and 0.6 < 1/Oh < 2.5, where Re, We, and Oh, are the Reynolds, Weber and Ohnesorge numbers, respectively. Such experimental region can be taken as reference to tune the colloidal interactions in proper way, though the thresholds delimiting the PFR should be better defined. PMID:26504976

  13. Ceramic Ink-Jet Printing for Digital Decoration: Physical Constraints for Ink Design.

    PubMed

    Gardini, Davide; Blosi, Magda; Zanelli, Chiara; Dondi, Michele

    2015-05-01

    In the last decade, the drop-on-demand (DOD) ink-jet printing has become the leading technology for the decoration of ceramic tiles. The inks employed for such application are colloidal suspensions of oxide particles (0.3 μm) whose stability (against agglomeration and over time) is fundamental to get successfully the tile decoration. Jettability from the DOD print heads is a key requirement along with proper colour after sintering. This means that a careful set up of inks properties (viscosity, density, surface tension) is required. The phenomena involved in the different stages of the ink-jet printing process (drop ejection from the nozzles, impact and spreading on the substrates) are described through dimensionless numbers as Reynolds, Weber, and Bond numbers, or their combinations. In literature physical constraints, obtained with a semi-theoretical approach on the basis of experimental evidences on other systems, allow to define a reference region in the space of the dimensionless numbers (here called "printable fluid region," PFR) where the inks should be suitable for the application. In this paper, 26 inks currently used for ceramic tile decoration were characterized and mapped in the space of dimensionless numbers for several printing conditions. For typical nozzle diameters (20-50 gm) and drop velocities (6-8 m/s), it has been found that they fall in the region identified by 3 < Re < 30, 27 < We < 160, and 0.6 < 1/Oh < 2.5, where Re, We, and Oh, are the Reynolds, Weber and Ohnesorge numbers, respectively. Such experimental region can be taken as reference to tune the colloidal interactions in proper way, though the thresholds delimiting the PFR should be better defined.

  14. 3D printing of gas jet nozzles for laser-plasma accelerators.

    PubMed

    Döpp, A; Guillaume, E; Thaury, C; Gautier, J; Ta Phuoc, K; Malka, V

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

  15. 3D printing of gas jet nozzles for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V.

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

  16. 3D printing of gas jet nozzles for laser-plasma accelerators.

    PubMed

    Döpp, A; Guillaume, E; Thaury, C; Gautier, J; Ta Phuoc, K; Malka, V

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée. PMID:27475557

  17. Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries

    NASA Astrophysics Data System (ADS)

    Delannoy, P.-E.; Riou, B.; Brousse, T.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2015-08-01

    This work demonstrates ink-jet printed LiFePO4-based composite porous electrodes for microbattery application. As binder and dispersant, we found that aqueous inks with more suitable rheological properties with respect to ink-jet printing are prepared with the low molecular weight poly-acrylic-co-maleic acid copolymer, rather than with the carboxymethyl cellulose standard binder of the lithium-ion technology. The ink-jet printed thin and porous electrode shows very high rate charge/discharge behavior, both in LiPF6/ethylene carbonate-dimethyl carbonate (LP30) and lithium bis(trifluoromethane)sulfonylimide salt (Li-TFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethane)suflonylimide ionic liquid (PYR13-TFSI) electrolytes, as well as good cyclability.

  18. Direct Write Printing on Thin and Flexible Substrates for Space Applications

    NASA Technical Reports Server (NTRS)

    Paquette, Beth

    2016-01-01

    This presentation describes the work done on direct-write printing conductive traces for a flexible detector application. A Repeatability Plan was established to define detector requirements, material and printer selections, printing facilities, and tests to verify requirements are met. Designs were created for the detector, and printed using an aerosol jet printer. Testing for requirement verification is ongoing.

  19. Ink jet printing of bio-treated linen, polyester fabrics and their blend.

    PubMed

    El-Hennawi, H M; Shahin, A A; Rekaby, M; Ragheb, A A

    2015-03-15

    Cellulosic fabrics were surface modified using Brewer's yeast filtrate and cellulase enzymes (Valumax A828, Valumax A356) to enhance its affinity to ink jet printing. The effect of enzymes on the surface structure and morphology of the cellulosic fabrics used has been illustrated using scanning electron microscope. Related test as tensile strength have been measured. The bio-treated cellulosic fabrics were digitally printed and the colour strength (K/S) and % increase in K/S were measured. Effect of different conditions (enzyme concentration, temperature and time) was investigated to obtain the optimum condition of each enzyme for each fabric that or which was indicated by higher colour strength. Results show a noticeable increase in the K/S especially for cellulosic linen and its blend compared to the standard samples. The optimum conditions to obtain the higher K/S by using Brewer's yeast filtrate and the other two cellulase enzymes in the pre-treatment of ink jet samples were obtained.

  20. Stabilization of electrohydrodynamic jets by gas discharges and applications to printing

    NASA Astrophysics Data System (ADS)

    Korkut, Sibel

    From integrated circuits to DNA hybridization micro arrays, many areas of research require flexible and reliable, high resolution surface patterning tools. A new surface patterning technique, electrohydrodynamic printing (EHDP) [1] provides high resolution and speed at the same time, which was not attainable with the existing direct surface patterning techniques. Stability of electrohydrodynamic (EHD) jets determines the accuracy of deployment in EHD printing [1-3]; therefore, understanding non-axisymmetric instability of the jet, which is caused by the surface charges, is crucial to successful operation. In this thesis, fast imaging and image analysis techniques are used to determine non-axisymmetric disturbance growth rates experimentally. Comparison of experimental instability growth rates with the theoretical estimations based on total current reveals a big discrepancy. It is also found that instability growth rates decrease and stability of EHD filaments is enhanced either by decreasing the electrode separation or by changing the surrounding gas. After considering all possible mechanisms, it is concluded that the main reason for stabilization is the increased ionization of the surrounding gas. Gas ionization results in partial neutralization of surface charges on the filament by the oppositely charged ions in the gas phase and stabilizes the jet. A new current balance including the charge transfer through the gas is developed to estimate the charge density left on the filament. Experimental and theoretical instability growth rates agree much better when the estimated charge density is used for the instability growth rate calculations. The second part of the thesis focuses on pattern formation on the surfaces. The final pattern produced with a colloidal suspension by EHDP depends on not only the stability of the jet but also the dynamics of the suspension and the stability of printed lines after the deployment. Rivulet instability, which causes deployed

  1. Biomolecule storage on non-modified thermoplastic microfluidic chip by ink-jet printing of ionogels

    PubMed Central

    Tijero, M.; Díez-Ahedo, R.; Benito-Lopez, F.; Basabe-Desmonts, L.; Castro-López, V.; Valero, A.

    2015-01-01

    This paper reports an innovative technique for reagents storage in microfluidic devices by means of a one-step UV-photoprintable ionogel-based microarray on non-modified polymeric substrates. Although the ionogel and the ink-jet printing technology are well published, this is the first study where both are used for long-term reagent storage in lab-on-a-chip devices. This technology for reagent storage is perfectly compatible with mass production fabrication processes since pre-treatment of the device substrate is not necessary and inkjet printing allows for an efficient reagent deposition process. The functionality of this microarray is demonstrated by testing the release of biotin-647 after being stored for 1 month at room temperature. Analysis of the fluorescence of the ionogel-based microarray that contains biotin-647 demonstrated that 90% of the biotin-647 present was released from the ionogel-based microarray after pumping PBS 0.1% Tween at 37 °C. Moreover, the activity of biotin-647 after being released from the ionogel-based microarray was investigated trough the binding capability of this biotin to a microcontact printed chip surface with avidin. These findings pave the way for a novel, one-step, cheap and mass production on-chip reagents storage method applicable to other reagents such as antibodies and proteins and enzymes. PMID:26339323

  2. Alignment of One-Dimensional SnO2 Lines by Electrohydrodynamic Jet Printing.

    PubMed

    Choi, Hanna; Jung, Hyunsung; Choi, Duck-Kyun; Kim, Chang-Yeoul

    2016-02-01

    One-dimensional (1-D) SnO2 line as a representative semiconducting oxide were formed by electro- hydrodynamic jet-printing (EHD) of tin chloride pentahydrate and polyvinylpyrrolidone (PVP, 1,200 k, Aldrich) solution ink. The 1-D polymer lines including Sn precursors were created by controlling the viscosity, that is, polymer/tin precursor ratio, and adjusting printing conditions such as tip to substrate distance, applying voltage, flow rate of ink and velocity. The printed lines were dried at 200 degrees C to get rid of solvent and finally heat-treated at 600 degrees C to burn out PVP and form tin oxide line. We found out that the linearity and shape of the aligned 1-D SnO2 could be controlled by adjusting various parameters such as the viscosity of a precursor solution, the ratio of Sn to PVP polymer in the solution, the shape of a cone, the size of a droplet, the applied voltages, the working distance, the flow rate on the glass slides and the Si wafers with a SiPO2 layer, respectively. It is found out that the heat-treatment for the removal of polymers should be tailored to produce continuous 1-D SnO2 lines due to the drastic volume reduction (>90%) of the aligned fibers in the annealing process. The electrical properties of the 1-D SnO2 aligned on the Si wafers with Au electrode patterns were evaluated. PMID:27433678

  3. Ink jet printing of silver metallization for photovoltaics. Quarterly technical report, 10/1/85-12/31/85

    SciTech Connect

    Vest, R.W.

    1986-01-21

    A new base for the x-y table/print head assembly was constructed in conjunction with improvements made to the ink pressure control system. Computer equipment was acquired and set up. A printing and firing study was completed. A study was done to evaluate the stability of a silver/bismuth ink. Theoretical studies of ink jet printing were initiated to develop a model to relate the amount of ink deposited per unit time to the physical properties of the ink and the machine parameters. (LEW)

  4. Pyro-EHD ink-jet printing for direct functionalization of 3D lab-on-chip devices

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Vespini, V.; Bianco, V.; Mecozzi, L.; Olivieri, F.; Todino, M.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2016-03-01

    A challenging request in the fabrication of microfluidics and biomedical microsystems is a flexible ink-jet printing for breaking the rigidity of classical lithography. A pyroelectric-EHD system is presented. The system has proved challenging spatial resolution down to nanoscale, printing of high ordered patterns, capability of dispensing bio-ink as DNA and protein array for biosensing fabrication, single cells printing and direct printing of nanoparticles. With the method proposed high viscous polymers could be easily printed at high resolution in 2D or in 3D configuration. The pyro-EHD process has been proved for the fabrication of biodegradable microneedles for trasndermal drug delivery and 3D optical waveguides.

  5. Ink Jet Printing for Silicon Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-04-00139

    SciTech Connect

    Ginley, D. S.

    2010-08-01

    The purpose of this CRADA was to combine the strengths of NREL and Evergreen Solar in the area of ink jet printing to develop a new manufacturing technology necessary to produce Si solar cells based on ribbon technology comparable to or exceeding current technologies.

  6. Print.

    ERIC Educational Resources Information Center

    Hurlburt, Carol J.

    2000-01-01

    Provides descriptions of jobs related to the printing industry. Includes information on salaries, labor market outlook, and education/training needed. Describes careers in commercial printing and graphic communications. (JOW)

  7. Characterization of ink-jet printed RGB color filters with spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Vilmi, P.; Lauri, J.; Sliz, R.; Fabritius, T.; Myllylä, R.

    2012-09-01

    We present the use of sub-micron resolution optical coherence tomography (SMR SD-OCT) in volumetric characterization of ink- jet printed color filters, aimed for electronic paper display (EPD). The device used in the study is based on supercontinuum light source, Michelson interferometer centered at 600 nm and employs 400-800 nm spectral region. Spectra are acquired at a continuous rate of 140,000 per second. Color filter array of 143 μm x 141 μm sized and 6 rtm deep ink pools was studied. The volumetric OCT reconstruction was done using the experimental SMR SD-OCT device and a commercial SD-OCT imaging system. The ink layer in the pools was estimated to be 2μm thin. The optical profilometer was used for reference measurements.

  8. Amphiphilic Copolymers of Polyfluorene Methacrylates Exhibiting Tunable Emissions for Ink-Jet Printing.

    PubMed

    Deng, Chao; Ling, Jun

    2016-08-01

    Functionalized polyfluorene receives more and more attention due to its wide applications. Here, the syntheses of three novel polyfluorene-based methacrylate macromonomers exhibiting a vast flexibility for further applications are reported. Their emissions strongly depend on the end groups and thus the macromonomers provide blue, green, and red emissions simultaneously with the same excitation light of 365 nm. Their well-defined copolymers with 2-(dimethylamino) ethyl methacrylate via reversible addition-fragmentation chain transfer polymerization are investigated in detail. These copolymers exhibit high quantum yields in solid film (up to 0.8), and self-assemble into photoluminescent nanoparticles in aqueous solutions with pure blue, green, and red emissions. By simply mixing them, perfect white light emission with high quality is obtained. These aqueous nanoparticles solutions are ready for ink-jet printing to produce exquisite bright and colorful fluorescent pictures. PMID:27310485

  9. Supersonic jet deposition of silver nanoparticle aerosols: Correlations of impact conditions and film morphologies

    SciTech Connect

    Huang, Chong; Nichols, William T.; O'Brien, Daniel T.; Becker, Michael F.; Kovar, Desiderio; Keto, John W.

    2007-03-15

    We describe experiments and modeling for the deposition of silver lines and films via the impaction of a silver nanoparticle aerosol delivered through a supersonic jet. The aerosol gas dynamics of the jet flow field, nanoparticle acceleration in the jet, and deposition by impaction onto the substrate were modeled for both a flat-plate nozzle and for a conical nozzle designed to obtain higher impaction velocities. We modeled nanoparticle dynamics for He, Ar, and N{sub 2} gasses, all initially at room temperature and 1 atm pressure, flowing through a 250 {mu}m orifice into vacuum with a pressure ratio of {approx}5000. Experiments were conducted to deposit silver nanoparticle aerosols under the same conditions as were modeled. The silver nanoparticles were generated by laser ablation of a flowing microparticle aerosol entrained in either He or Ar that produced nanoparticles 5-10 and 15-20 nm in diameter, respectively. Deposition was made onto an unheated substrate in vacuum. The morphology of the deposited films was determined by scanning electron microscope cross-section images and crystallite size was determined by x-ray diffraction analysis. The morphological features and crystallite size were correlated with the nanoparticle impaction velocity and impaction energy derived from the model. We found that, for a given gas type, the size of the grains and morphological features within the impacted films were similar to the size of the nanoparticles from which the films were formed. The density and the degree of consolidation of the films were highly dependent on the nanoparticle impaction velocity/energy and were highest for helium. Control of film morphology, grain size, and film density during supersonic impaction of nanoparticle aerosols are discussed in light of these results.

  10. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    PubMed

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-01-01

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications. PMID:26538110

  11. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    PubMed

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-11-05

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications.

  12. Block copolymer assembly on nanoscale patterns of polymer brushes formed by electrohydrodynamic jet printing.

    PubMed

    Onses, M Serdar; Ramírez-Hernández, Abelardo; Hur, Su-Mi; Sutanto, Erick; Williamson, Lance; Alleyne, Andrew G; Nealey, Paul F; de Pablo, Juan J; Rogers, John A

    2014-07-22

    Fundamental understanding of the self-assembly of domains in block copolymers (BCPs) and capabilities in control of these processes are important for their use as nanoscale templates in various applications. This paper focuses on the self-assembly of spin-cast and printed poly(styrene-block-methyl methacrylate) BCPs on patterned surface wetting layers formed by electrohydrodynamic jet printing of random copolymer brushes. Here, end-grafted brushes that present groups of styrene and methyl methacrylate in geometries with nanoscale resolution deterministically define the morphologies of BCP nanostructures. The materials and methods can also be integrated with lithographically defined templates for directed self-assembly of BCPs at multiple length scales. The results provide not only engineering routes to controlled formation of complex patterns but also vehicles for experimental and simulation studies of the effects of chemical transitions on the processes of self-assembly. In particular, we show that the methodology developed here provides the means to explore exotic phenomena displayed by the wetting behavior of BCPs, where 3-D soft confinement, chain elasticity, interfacial energies, and substrate's surface energy cooperate to yield nonclassical wetting behavior. PMID:24882265

  13. Highly selective creation of hydrophilic micro-craters on super hydrophobic surface using electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2014-11-01

    Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).

  14. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped

  15. Evaluation of the image quality of ink-jet printed paper copies of digital chest radiographs as compared with film: a receiver operating characteristic study.

    PubMed

    Lyttkens, K; Kirkhorn, T; Kehler, M; Andersson, B; Ebbesen, A; Hochbergs, P; Jarlman, O; Lindberg, C G; Holmer, N G

    1994-05-01

    Paper copies of digital radiographs printed with the continuous ink-jet technique have proved to be of a high enough quality for demonstration purposes. We present a study on the image quality of ink-jet printed paper copies of digital chest radiographs, based on receiver operating characteristic (ROC) analysis. Eighty-three digital radiographs of a chest phantom with simulated tumors in the mediastinum and right lung, derived from a computed radiography (CR) system were presented in two series of hard copies as ink-jet printed paper copies and as laser recorded film. The images, with a matrix of 1,760 x 2,140 pixels, were printed with a spatial resolution of 10 pixels/mm in the CR film recorder as well as in the ink-jet printer. On film, every image was recorded in two versions, one optimized for the mediastinum and one for the lungs. On paper, only one image was printed; this constituted an effort to optimize both the mediastinum and the lungs. The ink-jet printed images, printed on a matt coated paper, were viewed as on-sight images with reflected light. The examinations were reviewed by six radiologists, and ROC curves were constructed. No significant difference was found between the performance of film and that of ink-jet paper prints. Because the cost for a paper copy is only a tenth of that of film, remarkable cost reductions can be achieved by using the ink jet technique instead. Our results show that further quality studies of ink-jet printed images are worthwhile.

  16. Quartz Crystal Micro-Balance Gas Sensor with Ink-Jet Printed Nano-Diamond Sensitive Layer

    NASA Astrophysics Data System (ADS)

    Kulha, Pavel; Kroutil, Jiří; Laposa, Alexandr; Procházka, Václav; Husák, Miroslav

    2016-01-01

    the paper presents fabrication and characterization of a Quartz Crystal Microbalance based gas sensor with a diamond powder sensitive layer deposited using the ink-jet printing technique. The sensor was exposed to a low concentration of ammonia, acetone vapors and different levels of humidity. Impedance characteristics close to the natural resonant frequency of 10 MHz were examined. The sensor exhibits significant shifts in serial resonant frequency under different gas environments.

  17. Multicolor surface plasmon resonance imaging of ink jet-printed protein microarrays.

    PubMed

    Singh, Bipin K; Hillier, Andrew C

    2007-07-15

    We report a technique that utilizes surface plasmon resonance dispersion as a mechanism to provide multicolor contrast for imaging thin molecular films. Illumination of gold surfaces with p-polarized white light in the Kretschmann configuration produces distinct reflected colors due to excitation of surface plasmons and the resulting absorption of specific wavelengths from the source light. In addition, these colors transform in response to the formation of thin molecular films. This process represents a simple detection method for distinguishing between films of varying thickness in sensor applications. As an example, we interrogated a protein microarray formed by a commercial drop-on-demand chemical ink jet printer. Submonolayer films of a test protein (bovine serum albumin) were readily detected by this method. Analysis of the dispersion relations and absorbance sensitivities illustrate the performance and characteristics of this system. Higher detection sensitivity was achieved at angles where red wavelengths coupled to surface plasmons. However, improved contrast and spatial resolution occurred when the angle of incidence was such that shorter wavelengths coupled to the surface plasmons. Simplified optics combined with the robust microarray printing platform are used to demonstrate the applicability of this technique as a rapid and versatile, high-throughput tool for label-free detection of adsorbed films and macromolecules.

  18. Detecting the Spur Marks of Ink-Jet Printed Documents Using a Multiband Scanner in NIR Mode and Image Restoration

    NASA Astrophysics Data System (ADS)

    Furukawa, Takeshi

    Ink-jet printers are frequently used in crime such as counterfeiting bank notes, driving licenses, and identification cards. Police investigators required us to identify makers or brands of ink-jet printers from counterfeits. In such demands, classifying ink-jet printers according to spur marks which were made by spur gears located in front of print heads for paper feed has been addressed by document examiners. However, spur marks are significantly faint so that it is difficult to detect them. In this study, we propose the new method for detecting spur marks using a multiband scanner in near infrared (NIR) mode and estimations of point spread function (PSF). As estimating PSF we used cepstrum which is inverse Fourier transform of logarithm spectrum. The proposed method provided the clear image of the spur marks.

  19. Non-Contact Printed Aluminum Metallization of Si Photovoltaic Devices: Preprint

    SciTech Connect

    Platt, H. A. S.; van Hest, M. F. A. M.; Li, Y.; Novak, J. P.

    2012-06-01

    Alternative solution-based techniques such as aerosol jet printing offer the dual benefits of contactless pattern deposition and high material utilization. We have used aerosol jet printing to investigate non-contact printed Al metal ink as a replacement for screen printed Al back contacts on wafer Si solar cells. This particle-based ink can be prepared at high loadings of 60 weight % metal, which enables rapid deposition of 1 - 10 um thick lines. Al lines printed on Si wafers and heated between 550 and 800 degrees C form low resistance contacts suitable for current extraction. The effectiveness of these printed Al back contacts has further been demonstrated by incorporating them into a series of 21 cm2 crystalline Si solar cells that produced a champion power conversion efficiency of 13%.

  20. Ion-induced Aerosol-formation By Jet Aircraft: Implications For Contrail- and Cloud-formation

    NASA Astrophysics Data System (ADS)

    Eichkorn, S.; Wilhelm, S.; Arnold, F.

    Jet aircraft produced gaseous ions so called chemiions (CI) may promote the forma- tion of volatile aerosol particles (VAP). VAP are potentially important by acting as water vapor condensation nuclei in contrail- and perhaps even cloud-formation. This ion-induced VAP-formation proceeds via the formation of cluster ions which are suf- ficiently large to form stable VAP upon neutralisation by ion-ion recombination. Here we report the first measurements of large cluster ions in sulfur-poor and -rich exhaust plumes of jet aircraft in flight equipped with modern and old engines. Measurements were performed in the wake of an Airbus A340, a Boeing B707 and the German Re- search Aircraft ATTAS. Our measurements suggest that ion induced VAP-formation takes place and that gaseous sulphuric acid and gaseous low volatility organic com- pounds are involved. For modern engines burning fuel with a typical mean fuel sulfur content sulphuric acid seems to be the most abundant condensate in a contrail-free exhaust-plume.

  1. Jet Nebulization of Prostaglandin E1 During Neonatal Mechanical Ventilation: Stability, Emitted Dose and Aerosol Particle Size

    PubMed Central

    Sood, Beena G.; Peterson, Jennifer; Malian, Monica; Galli, Robert; Geisor-Walter, Maria; McKinnon, Jon; Sharp, Jody; Maddipati, Krishna Rao

    2008-01-01

    Background We have previously reported the safety of aerosolized PGE1 in neonatal hypoxemic respiratory failure. The aim of this study is to characterize the physicochemical properties of PGE1 solution, stability, emitted dose and the aerodynamic particle size distribution (APSD) of PGE1 aerosol in a neonatal ventilator circuit. Methods PGE1 was diluted in normal saline and physicochemical properties of the solution characterized. Chemical stability and emitted dose were evaluated during jet nebulization in a neonatal conventional (CMV) or high frequency (HFV) ventilator circuit by a High Performance Liquid Chromatography - Mass Spectrometry method. The APSD of the PGE1 aerosol was evaluated with a six-stage cascade impactor during CMV. Results PGE1 solution in normal saline had a low viscosity (0.9818 cP) and surface tension (60.8 mN/m) making it suitable for aerosolization. Little or no degradation of PGE1 was observed in samples from aerosol condensates, the PGE1 solution infused over 24 h, or the residual solution in the nebulizer. The emitted dose of PGE1 following jet nebulization was 32–40% during CMV and 0.1% during HFV. The PGE1 aerosol had a mass median aerodynamic diameter of 1.4 µm and geometric standard deviation of 2.9 with 90% of particles being < 4.0 µm in size. Conclusion Nebulization of PGE1 during neonatal CMV or HFV is efficient and results in rapid nebulization without altering the chemical structure. On the basis of the physicochemical properties of PGE1 solution and the APSD of the PGE1 aerosol, one can predict predominantly alveolar deposition of aerosolized PGE1. PMID:17997106

  2. Ink-jet printing technology enables self-aligned mould patterning for electroplating in a single step

    NASA Astrophysics Data System (ADS)

    Meissner, M. V.; Spengler, N.; Mager, D.; Wang, N.; Kiss, S. Z.; Höfflin, J.; While, P. T.; Korvink, J. G.

    2015-06-01

    We present a new self-aligned, mask-free micro-fabrication method with which to form thick-layered conductive metal micro-structures inside electroplating moulds. Seed layer patterning for electroplating was performed by ink-jet printing using a silver nano-particle ink deposited on SU-8 or Ordyl SY permanent resist. The silver ink contact angle on SU-8 was adjusted by oxygen plasma followed by a hard bake. Besides functioning as a seed layer, the printed structures further served as a shadow mask during patterning of electroplating moulds into negative photoresist. The printed silver tracks remained in strong adhesion to the substrate when exposed to the acidic chemistry of the electroplating bath. To demonstrate the process, we manufactured rectangular, low-resistivity planar micro-coils for use in magnetic resonance microscopy. MRI images of a spring onion with an in-plane resolution down to 10 µm × 10 µm were acquired using a micro-coil on an 11.7 T MRI scanner.

  3. An investigation into the effects of solvent content on the image quality and stability of ink jet digital prints under varied storage conditions

    NASA Astrophysics Data System (ADS)

    Fricker, A. L.; Hodgson, A.; Sandy, M.

    2010-06-01

    Increasing numbers of galleries, museums and archives are including ink jet printed materials into their collections, and therefore displays. There is evidence that the instability of these prints is such that images can suffer deterioration in print quality or in extreme cases, a loss of information over an extended period of time. This is shorter than the period typically required for perceptible deterioration to occur in many other paper-based artworks. The image stability of prints is affected by a number of factors some of which have already been studied. However the role played by the ink solvent in the loss of image quality has yet to be explored. This paper will outline research being undertaken to investigate the effects of solvent content which may increase/promote the loss in image quality of the hard copy prints when stored or displayed under a range of temperature and humidity conditions.

  4. Printing artificial sweat using ink jet printers for the test set generation in forensics: an image quality assessment of the reproducibility of the printing results

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Sturm, Jennifer; Dittmann, Jana

    2013-01-01

    In order to use scientific expert evidence in court hearings, several criteria must be met. In the US jurisdiction the Daubert decision2 has defined several criteria that might be assessed if a testimony is challenged. In particular the potential for testing or actual testing, as well as known or potential error rate are two very important criteria. In order to be able to compare the results with each other, the reproducible creation of evaluation samples is necessary. However, each latent fingerprint is unique due to external inuence factors such as sweat composition or pressure during the application of a trace. Hence, Schwarz1 introduces a method to print latent fingerprints using ink jet printers equipped with artificial sweat. In this paper we assess the image quality in terms of reproducibility and clarity of the printed artificial sweat patterns. For that, we determine the intra class variance from one printer on the same and on different substrates based on a subjective assessment, as well as the inter class variance between different printers of the same model using pattern recognition techniques. Our results indicate that the intra class variance is primarily inuenced by the drying behavior of the amino acid. The inter class is surprisingly large between identical models of one printer. Our evaluation is performed using 100 samples on an overhead foil and 50 samples on a compact disk surface with 5 different patterns (two line structures, a fingerprint image and two di_erent arrows with a larger area with amino acid) acquired with a Keyence VK-X110 laser scanning confocal microscope.11 The results show a significant difference between the two identical printers allowing for differentiating between them with an accuracy of up to 99%.

  5. Novel materials for electronic device fabrication using ink-jet printing technology

    NASA Astrophysics Data System (ADS)

    Kumashiro, Yasushi; Nakako, Hideo; Inada, Maki; Yamamoto, Kazunori; Izumi, Akira; Ishihara, Masamichi

    2009-11-01

    Novel materials and a metallization technique for the printed electronics were studied. Insulator inks and conductive inks were investigated. For the conductive ink, the nano-sized copper particles were used as metallic sources. These particles were prepared from a copper complex by a laser irradiation process in the liquid phase. Nano-sized copper particles were consisted of a thin copper oxide layer and a metal copper core wrapped by the layer. The conductive ink showed good ink-jettability. In order to metallize the printed trace of the conductive ink on a substrate, the atomic hydrogen treatment was carried out. Atomic hydrogen was generated on a heated tungsten wire and carried on the substrate. The temperature of the substrate was up to 60 °C during the treatment. After the treatment, the conductivity of a copper trace was 3 μΩ cm. It was considered that printed wiring boards can be easily fabricated by employing the above materials.

  6. The 5-6 December 1991 FIRE IFO II jet stream cirrus case study: Possible influences of volcanic aerosols

    SciTech Connect

    Sassen, K.; Starr, D.O.C.; Melfi, S.H.; Spinhirne, J.D.; Poellot, M.R.; Eberhard, W.L.; Eloranta, E.W.; Hagen, D.E.; Hallett, J.

    1995-01-01

    In presenting an overview of the cirrus clouds comprehensively studied by ground-based and airborne sensors from Coffeyville, Kansas, during the 5-6 December 1992 Project FIRE IFO II case study period, evidence is provided that volcanic aerosols from the June 1991 Pinatubo eruptions may have significantly influenced the formation and maintenance of the cirrus. Following the local appearance of a spur of stratospheric volcanic debris from the subtropics, a series of jet streaks subsequently conditioned the troposphere through tropopause foldings with sulfur-based particles that became effective cloud-forming nuclei in cirrus clouds. Aerosol and ozone measurements suggest a complicated history of stratospheric-tropospheric exchanges embedded within the upper-level flow, and cirrus cloud formation was noted to occur locally at the boundaries of stratospheric aerosol-enriched layers that became humidified through diffusion, precipitation, or advective processes. Apparent cirrus cloud alterations include abnormally high ice crystal concentrations (up to {approximately}600 L{sup {minus}1}), complex radial ice crystal types, and relatively large haze particles in cirrus uncinus cell heads at temperatures between {minus}40{degrees} and {minus}50{degrees}C. Implications for volcanic-cirrus cloud climate effects and usual (nonvolcanic aerosol) jet stream cirrus cloud formation are discussed. 42 refs., 25 figs., 3 tabs.

  7. The 5-6 December 1991 FIRE IFO 2 Jet Stream Cirrus Case Study: Possible Influences of Volcanic Aerosols

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Starr, David OC.; Mace, Gerald G.; Poellot, Michael R.; Melfi, S. H.; Eberhard, Wynn L.; Spinhirne, James D.; Eloranta, E. W.; Hagen, Donald E.; Hallett, John

    1996-01-01

    In presenting an overview of the cirrus clouds comprehensively studied by ground based and airborne sensors from Coffeyville, Kansas, during the 5-6 December 1992 First ISCCP Regional Experiment (FIRE) intensive field observation (IFO) case study period, evidence is provided that volcanic aerosols from the June 1991 Pinatubo eruptions may have significantly influenced the formation and maintenance of the cirrus. Following the local appearance of a spur of stratospheric volcanic debris from the subtropics, a series of jet streaks subsequently conditioned the troposphere through tropopause foldings with sulfur based particles that became effective cloud forming nuclei in cirrus clouds. Aerosol and ozone measurements suggest a complicated history of stratospheric-tropospheric exchanges embedded with the upper level flow, and cirrus cloud formation was noted to occur locally at the boundaries of stratospheric aerosol enriched layers that became humidified through diffusion, precipitation, or advective processes. Apparent cirrus cloud alterations include abnormally high ice crystal concentrations (up to approximately 600 L(exp. 1)), complex radial ice crystal types, and relatively large haze particles in cirrus uncinus cell heads at temperatures between -40 and -50 degrees C. Implications for volcanic-cirrus cloud climate effects and unusual (nonvolcanic) aerosol jet stream cirrus cloud formation are discussed.

  8. The relationship of satellite-inferred stratospheric aerosol extinction to the position of the 50-mb north polar jet stream

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Endlich, Roy M.

    1988-01-01

    The relationship between stratospheric aerosols and the location of the north polar night stratospheric jet stream was investigated for selected periods of four successive winters (1979-1982), using measurements from SAM II (Stratospheric Aerosol Measurement II) and SAGE I (Stratospheric Aerosol and Gas Experiment I) satellite-borne sun photometers and corresponding meteorological observations. Each period investigated included a polar stratospheric warming during which major dynamic meteorological changes are known to have perturbed the structure of the polar vortex. The analysis of variations in aerosol extinction mixing ratio patterns among winters and during major stratospheric warming events within separate winters showed a well-defined positive gradient in extinction mixing ratio and temperature across the jet stream from the cyclonic side to the anticyclonic side at altitudes between 20 and 30 km during each winter period. Estimates of extinction mixing ratio profiles measured near the center of the polar vortex suggest that a gradual subsidence took place within the polar vortex during at least three of the four winter periods.

  9. Plasma treatment and its prospective application to polymer light-emitting diodes fabricated by ink-jet printing method

    SciTech Connect

    Jo, Sung Jin; Jeong, Soon Moon; Kim, Woo Jin; Koo, Won Hoi; Choi, Sang Hun; Kim, Chang Su; Baik, Hong Koo; Lee, Se-Jong

    2005-09-15

    The influence of CF{sub 4} plasma treatment of indium-tin-oxide (ITO) and polyimide (PI) on the patterning of ink-jet printed polymer is presented. Not much difference between the as-received ITO and PI surface energies was found, but a significant difference in surface energies between ITO and PI after CF{sub 4} plasma treatment was noted. It is expected that precise patterning can be achieved by using the difference in surface energies between the inside of the pixel and its surroundings. Also the effects of CF{sub 4} plasma treatment of ITO have been studied on the performance of polymer light-emitting diodes (PLEDs). X-ray photoelectron spectroscopy revealed that CF{sub 4} plasma treatment led to a decrease in the surface content of carbon contaminants and an increase in the surface content of fluorine, which in turn enhance the performance of PLEDs.

  10. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    PubMed

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.

  11. Synthesis of one-dimensional SnO2 lines by using electrohydrodynamic jet printing for a NO gas sensor

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Yeoul; Jung, Hyunsung; Choi, Hannah; Choi, Duck-kyun

    2016-01-01

    One-dimensional (1-D) SnO2 lines as a representative semiconducting oxide were formed by using electrohydrodynamic (EHD) jet-printing of a tin chloride pentahydrate and polyvinylpyrrolidone (PVP, 1,200k, Aldrich) solution ink. The 1-D polymer lines, including Sn precursors, were created by controlling the viscosity, that is, the polymer/tin precursor ratio, and by adjusting printing conditions such as the tip-to-substrate distance, the applied voltage, the flow rate of ink and its velocity. The printed lines were dried at 200 °C to get rid of solvent and were finally heat-treated at 600 °C to burn out PVP and form a tin oxide line. We found that the linearity and the shape of the aligned 1-D SnO2 could be controlled by adjusting various parameters such as the viscosity of the precursor solution, the ratio of Sn to the PVP polymer in the solution, the shape of the cone, the size of a droplet, the applied voltage, the working distance, and the flow rate on glass slides and Si wafers with a SiO2 layer. We found that the heat treatment for removal of the polymers should be tailored to produce continuous 1-D SnO2 lines due to the drastic volume reduction (> 90%) of the aligned fibers during the annealing process. The electrical and the NO-gas-sensing properties of the 1-D SnO2 aligned on Si wafers with Au electrode patterns were evaluated.

  12. Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach

    NASA Astrophysics Data System (ADS)

    Capasso, A.; Del Rio Castillo, A. E.; Sun, H.; Ansaldo, A.; Pellegrini, V.; Bonaccorso, F.

    2015-12-01

    Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.

  13. The efficiency variation method for 4pibeta-gamma coincidence counting by ink-jet printing.

    PubMed

    Sato, Y; Yamada, T; Hata, T; Moriyama, K; Yunoki, A; Hino, Y

    2008-01-01

    In order to vary the counting efficiencies in the 4pibeta-gamma coincidence extrapolation technique, a radioactive source was coated directly with varying amounts of an electrical conducting pigment using an ink-jet printer. This method can be used to efficiently prepare the multiple sources needed to generate efficiency extrapolation curves, and was successfully applied to the standardization of a (54)Mn source.

  14. Performance of three image-quality metrics in ink-jet printing of plain papers

    NASA Astrophysics Data System (ADS)

    Lee, David L.; Winslow, Alan T.

    1993-07-01

    Three image-quality metrics are evaluated: Hamerly's edge raggedness, or tangential edge profile; Granger and Cupery's subjective quality factor (SQF) derived from the second moment of the line spread function; and SQF derived from Gur and O'Donnell's reflectance transfer function. These metrics are but a handful of many in the literature. Standard office papers from North America and Europe representing a broad spectrum of what is commercially available were printed with a 300-dpi Hewlett-Packard Deskjet printer. An untrained panel of eight judges viewed text, in a variety of fonts, and a graphics target and assigned each print an integer score based on its overall quality. Analysis of the metrics revealed that Granger's SQF had the highest correlation with panel rank, and achieved a level of precision approaching single-judge error, that is, the ranking error made by an individual judge. While the other measures correlated in varying degrees, they were less precise. This paper reviews their theory, measurement, and performance.

  15. Anthropogenic effects on the subtropical jet in the Southern Hemisphere: aerosols versus long-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Collier, M. A.; Jeffrey, S. J.; Kidston, J.; Syktus, J. I.; Wong, K. K.

    2013-03-01

    We use single-forcing historical simulations with a coupled atmosphere-ocean global climate model to compare the effects of anthropogenic aerosols (AAs) and increasing long-lived greenhouse gases (LLGHGs) on simulated winter circulation in the Southern Hemisphere (SH). Our primary focus is on the subtropical jet, which is an important source of baroclinic instability, especially in the Australasian region, where the speed of the jet is largest. For the period 1950 to 2005, our simulations suggest that AAs weaken the jet, whereas increasing LLGHGs strengthen the jet. The different responses are explained in terms of thermal wind balance: increasing LLGHGs preferentially warm the tropical mid-troposphere and upper troposphere, whereas AAs have a similar effect of opposite sign. In the mid-troposphere, the warming (cooling) effect of LLGHGs (AAs) is maximal between 20S and 30S; this coincides with the descending branch of the Hadley circulation, which may advect temperature changes from the tropical upper troposphere to the subtropics of the SH. It follows that LLGHGs (AAs) increase (decrease) the mid-tropospheric temperature gradient between low latitudes and the SH mid-latitudes. The strongest effects are seen at longitudes where the southward branches of the Hadley cell in the upper troposphere are strongest, notably at those that correspond to Asia and the western Pacific warm pool.

  16. Ink jet printing of silver metallization for photovoltaics: Final technical report for the period 10/1/84 through 9/30/86

    SciTech Connect

    Vest, R.W.

    1986-09-30

    A computer controlled ink jet printing system for depositing any desired pattern of conductor lines was developed. Major changes were made in the ink supply and pressure control systems and in all electronic sub-systems for pulsing the spray head and driving the positioning table. A personal computer was integrated into the system. The preferred ink was identified, and the effects of ink viscosity, drop frequency, pulse voltage and nozzle diameter on line definition and ink flow rate were experimentally determined. A theoretical model for ink flow rate was developed, and the agreement between theory and experiment was determined. The characteristics of solar cells metallized by the ink jet printing system were evaluated. (LEW)

  17. Modeling coverage-dependent ink thickness in ink-jet printing.

    PubMed

    Coppel, Ludovic G; Slavuj, Radovan; Hardeberg, Jon Yngve

    2016-02-10

    We propose a simple extension of the Murray-Davis halftone reflectance model that accounts for the change of ink dot reflectance due to ink spreading. Significant improvement of the prediction accuracy is obtained for a range of paper substrates and printer combinations compared to the classical Yule-Nielsen and Clapper-Yule models. The results show that ink dot thickness dependency is the main factor limiting the validity of the Murray-Davis model and that optical dot gain can be neglected when the model is calibrated for one specific printer, ink, and substrate combination. The proposed model provides a better understanding of the reflectance from halftone prints that contributes to the development of physical models for simpler and faster printer calibration to different substrates.

  18. Airflow dynamics of human jets: sneezing and breathing - potential sources of infectious aerosols.

    PubMed

    Tang, Julian W; Nicolle, Andre D; Klettner, Christian A; Pantelic, Jovan; Wang, Liangde; Suhaimi, Amin Bin; Tan, Ashlynn Y L; Ong, Garrett W X; Su, Ruikun; Sekhar, Chandra; Cheong, David D W; Tham, Kwok Wai

    2013-01-01

    Natural human exhalation flows such as coughing, sneezing and breathing can be considered as 'jet-like' airflows in the sense that they are produced from a single source in a single exhalation effort, with a relatively symmetrical, conical geometry. Although coughing and sneezing have garnered much attention as potential, explosive sources of infectious aerosols, these are relatively rare events during daily life, whereas breathing is necessary for life and is performed continuously. Real-time shadowgraph imaging was used to visualise and capture high-speed images of healthy volunteers sneezing and breathing (through the nose - nasally, and through the mouth - orally). Six volunteers, who were able to respond to the pepper sneeze stimulus, were recruited for the sneezing experiments (2 women: 27.5±6.36 years; 4 men: 29.25±10.53 years). The maximum visible distance over which the sneeze plumes (or puffs) travelled was 0.6 m, the maximum sneeze velocity derived from these measured distances was 4.5 m/s. The maximum 2-dimensional (2-D) area of dissemination of these sneezes was 0.2 m(2). The corresponding derived parameter, the maximum 2-D area expansion rate of these sneezes was 2 m(2)/s. For nasal breathing, the maximum propagation distance and derived velocity were 0.6 m and 1.4 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.11 m(2) and 0.16 m(2)/s, respectively. Similarly, for mouth breathing, the maximum propagation distance and derived velocity were 0.8 m and 1.3 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.18 m(2) and 0.17 m(2)/s, respectively. Surprisingly, a comparison of the maximum exit velocities of sneezing reported here with those obtained from coughing (published previously) demonstrated that they are relatively similar, and not extremely high. This is in contrast with some earlier estimates of sneeze velocities, and some reasons for this difference are discussed.

  19. Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols

    PubMed Central

    Tang, Julian W.; Nicolle, Andre D.; Klettner, Christian A.; Pantelic, Jovan; Wang, Liangde; Suhaimi, Amin Bin; Tan, Ashlynn Y. L.; Ong, Garrett W. X.; Su, Ruikun; Sekhar, Chandra; Cheong, David D. W.; Tham, Kwok Wai

    2013-01-01

    Natural human exhalation flows such as coughing, sneezing and breathing can be considered as ‘jet-like’ airflows in the sense that they are produced from a single source in a single exhalation effort, with a relatively symmetrical, conical geometry. Although coughing and sneezing have garnered much attention as potential, explosive sources of infectious aerosols, these are relatively rare events during daily life, whereas breathing is necessary for life and is performed continuously. Real-time shadowgraph imaging was used to visualise and capture high-speed images of healthy volunteers sneezing and breathing (through the nose – nasally, and through the mouth - orally). Six volunteers, who were able to respond to the pepper sneeze stimulus, were recruited for the sneezing experiments (2 women: 27.5±6.36 years; 4 men: 29.25±10.53 years). The maximum visible distance over which the sneeze plumes (or puffs) travelled was 0.6 m, the maximum sneeze velocity derived from these measured distances was 4.5 m/s. The maximum 2-dimensional (2-D) area of dissemination of these sneezes was 0.2 m2. The corresponding derived parameter, the maximum 2-D area expansion rate of these sneezes was 2 m2/s. For nasal breathing, the maximum propagation distance and derived velocity were 0.6 m and 1.4 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.11 m2 and 0.16 m2/s, respectively. Similarly, for mouth breathing, the maximum propagation distance and derived velocity were 0.8 m and 1.3 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.18 m2 and 0.17 m2/s, respectively. Surprisingly, a comparison of the maximum exit velocities of sneezing reported here with those obtained from coughing (published previously) demonstrated that they are relatively similar, and not extremely high. This is in contrast with some earlier estimates of sneeze velocities, and some reasons for this difference are discussed. PMID

  20. Photonic Flash Sintering of Ink-Jet-Printed Back Electrodes for Organic Photovoltaic Applications.

    PubMed

    Polino, Giuseppina; Shanmugam, Santhosh; Bex, Guy J P; Abbel, Robert; Brunetti, Francesca; Di Carlo, Aldo; Andriessen, Ronn; Galagan, Yulia

    2016-01-27

    A study of the photonic flash sintering of a silver nanoparticle ink printed as the back electrode for organic solar cells is presented. A number of sintering settings with different intensities and pulse durations have been tested on both full-area and grid-based silver electrodes, using the complete emission spectrum of the flash lamps from UV-A to NIR. However, none of these settings was able to produce functional devices with performances comparable to those of reference cells prepared using thermally sintered ink. Different degradation mechanisms were detected in the devices with a flash-sintered back electrode. The P3HT:PCBM photoactive layer appears to be highly heat-sensitive and turned out to be severely damaged by the high temperatures generated in the silver layer during the sintering. In addition, UV-induced photochemical degradation of the functional materials was identified as another possible source of performance deterioration in the devices with grid-based electrodes. Reducing the light intensity does not provide a proper solution because in this case the Ag electrode is not sintered sufficiently. For both types of devices, with full-area and grid-based electrodes, these problems could be solved by excluding the short wavelength contribution from the flash light spectrum using a filter. Optimized sintering parameters allowed manufacture of OPV devices with performance equal to those of the reference devices. Photonic flash sintering of the top electrode in organic solar cells was demonstrated for the first time. It reveals the great potential of this sintering method for the future roll-to-roll manufacturing of organic solar cells from solution. PMID:26704172

  1. Photonic Flash Sintering of Ink-Jet-Printed Back Electrodes for Organic Photovoltaic Applications.

    PubMed

    Polino, Giuseppina; Shanmugam, Santhosh; Bex, Guy J P; Abbel, Robert; Brunetti, Francesca; Di Carlo, Aldo; Andriessen, Ronn; Galagan, Yulia

    2016-01-27

    A study of the photonic flash sintering of a silver nanoparticle ink printed as the back electrode for organic solar cells is presented. A number of sintering settings with different intensities and pulse durations have been tested on both full-area and grid-based silver electrodes, using the complete emission spectrum of the flash lamps from UV-A to NIR. However, none of these settings was able to produce functional devices with performances comparable to those of reference cells prepared using thermally sintered ink. Different degradation mechanisms were detected in the devices with a flash-sintered back electrode. The P3HT:PCBM photoactive layer appears to be highly heat-sensitive and turned out to be severely damaged by the high temperatures generated in the silver layer during the sintering. In addition, UV-induced photochemical degradation of the functional materials was identified as another possible source of performance deterioration in the devices with grid-based electrodes. Reducing the light intensity does not provide a proper solution because in this case the Ag electrode is not sintered sufficiently. For both types of devices, with full-area and grid-based electrodes, these problems could be solved by excluding the short wavelength contribution from the flash light spectrum using a filter. Optimized sintering parameters allowed manufacture of OPV devices with performance equal to those of the reference devices. Photonic flash sintering of the top electrode in organic solar cells was demonstrated for the first time. It reveals the great potential of this sintering method for the future roll-to-roll manufacturing of organic solar cells from solution.

  2. MODELING AND EXPERIMENTAL EVALUATION OF AN AEROSOL GENERATOR FOR VERY HIGH NUMBER CURRENTS BASED ON A FREE TURBULENT JET. (R827354C008)

    EPA Science Inventory

    In this paper we report on theoretical and experimental work on aerosol formation in a free turbulent jet. A hot DEHS vapor issues through a circular nozzle into slowly moving cold air. Vapor concentration and temperatures are such that particles are formed via homogeneous nuc...

  3. Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique

    PubMed Central

    Yoshioka, Hiroaki; Ota, Tomoya; Chen, Cong; Ryu, Soichiro; Yasui, Kei; Oki, Yuji

    2015-01-01

    We experimentally demonstrated an extreme ultra-low lasing threshold from full-polymeric fundamental microdisk cavities fabricated by a novel fabrication method, the ink-jet printing method, which is much simpler and easier than previous methods such as lithography. The ink-jet printing method provides additive, room-temperature atmospheric, rapid fabrication with only two steps: (i) stacking cladding pedestal and waveguiding disk spots using the ink-jet technique, and (ii) partial etching of the cladding pedestal envelope. Two kinds of low-viscosity polymers successfully formed microdisks with high surface homogeneity, and one of the polymers doped with LDS798 dye yielded whispering-gallery-mode lasing. The fundamental disks exhibited an extremely ultra-low lasing threshold of 0.33 μJ/mm2 at a wavelength of 817.3 nm. To the best of our knowledge, this lasing threshold is the lowest threshold obtained among both organic and inorganic fundamental microdisk cavity lasers with a highly confined structure. PMID:26024514

  4. Sessile drop deformations under an impinging jet

    NASA Astrophysics Data System (ADS)

    Feng, James Q.

    2015-08-01

    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  5. Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Beyersdorf, A. J.; Corr, C.; Herndon, S. C.; Knighton, W. B.; Miake-Lye, R. C.; Thornhill, K. L., II; Winstead, E.; Yu, Z.; Ziemba, L. D.; Anderson, B. E.

    2015-12-01

    We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA McDonnell Douglas DC-8 CFM56-2-C1 engines burning fifteen different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the volatile aerosol fraction dominates the number and volume emissions indices (EIs) over all engine powers, which are driven by changes in fuel aromatic and sulfur content. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the non-volatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature, and show that reducing both fuel sulfur content and napththalenes to near-zero levels would result in roughly a ten-fold decrease in aerosol number emitted per kg of fuel burn. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from bio-based or Fischer-Tropsch production pathways.

  6. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    SciTech Connect

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael; Kiggans Jr, James O

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into a bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.

  7. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future.

  8. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. PMID:27252227

  9. Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Beomsoo; Kim, Sang-Yoon; Hwang, Jungho

    2014-12-01

    Drop-on-demand printing is receiving a great deal of interest in industrial applications; however, the desired pattern sizes are realized by trial and error, through repeated printing experiments with varied materials (ink and suspended particles), operating conditions (voltage, flow rate, nozzle-to-plate distance, etc.), and substrate wettability. Since this approach requires a great deal of time, cost, and effort, a more convenient and efficient method that will predict pattern sizes with a minimal number of experiments is needed. In this study, we patterned a series of Ag dots and lines using a pulsed voltage-applied electrohydrodynamic jet printing system and measured their sizes with an optical microscope. We then applied a model suggested by Stringer and Derby (J Eur Ceram Soc 29:913-918, 2009) and Gao and Sonin (Proc R Soc Lond Ser A 444:533-554, 1994) to predict the pattern sizes, comparing these predictions with the measured sizes. Finally, we demonstrated our methodology on disconnected line repairing.

  10. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes.

    PubMed

    Kim, Bong Hoon; Onses, M Serdar; Lim, Jong Bin; Nam, Sooji; Oh, Nuri; Kim, Hojun; Yu, Ki Jun; Lee, Jung Woo; Kim, Jae-Hwan; Kang, Seung-Kyun; Lee, Chi Hwan; Lee, Jungyup; Shin, Jae Ho; Kim, Nam Heon; Leal, Cecilia; Shim, Moonsub; Rogers, John A

    2015-02-11

    Here we demonstrate materials and operating conditions that allow for high-resolution printing of layers of quantum dots (QDs) with precise control over thickness and submicron lateral resolution and capabilities for use as active layers of QD light-emitting diodes (LEDs). The shapes and thicknesses of the QD patterns exhibit systematic dependence on the dimensions of the printing nozzle and the ink composition in ways that allow nearly arbitrary, systematic control when exploited in a fully automated printing tool. Homogeneous arrays of patterns of QDs serve as the basis for corresponding arrays of QD LEDs that exhibit excellent performance. Sequential printing of different types of QDs in a multilayer stack or in an interdigitated geometry provides strategies for continuous tuning of the effective, overall emission wavelengths of the resulting QD LEDs. This strategy is useful to efficient, additive use of QDs for wide ranging types of electronic and optoelectronic devices.

  11. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.

    PubMed

    Pavinatto, Felippe J; Paschoal, Carlos W A; Arias, Ana C

    2015-05-15

    Printing techniques have been extensively used in the fabrication of organic electronic devices, such as light-emitting diodes and display backplanes. These techniques, in particular inkjet printing, are being employed for the localized dispensing of solutions containing biological molecules and cells, leading to the fabrication of bio-functional microarrays and biosensors. Here, we report the fabrication of an all-printed and flexible biosensor for antioxidants. Gold (Au) interdigitated electrodes (IDEs) with sub-100 µm features were directly inkjet-printed on plastic substrates using a nanoparticle-based ink. Conductivities as high as 5×10(6) S/m (12% of bulk Au) were attained after sintering was conducted at plastic-compatible 200 °C for 6 h. The enzyme Tyrosinase (Tyr) was used in the active layer of the biosensors, being innovatively deposited by large-area rotogravure printing. A tailor-made ink was studied, and the residual activity of the enzyme was 85% after additives incorporation, and 15.5% after gravure printing. Au IDEs were coated with gravure films of the Tyr-containing ink, and the biosensor was encapsulated with a cellulose acetate dip-coating film to avoid dissolution. The biosensor impedance magnitude increases linearly with the concentration of a model antioxidant, allowing for the construction of a calibration curve. Control experiments demonstrated the molecular recognition characteristic inferred by the enzyme. We found that the biosensor sensitivity and the limit of detection were, respectively, 5.68 Ω/µm and 200 µM. In conclusion, a disposable, light-weight, all-printed and flexible biosensor for antioxidants was successfully fabricated using fast and large-area printing techniques. This opens the door for the fabrication of technological products using roll-to-roll processes.

  12. Fabricating optical fiber imaging sensors using ink jet printing technology: a pH sensor proof-of-concept.

    PubMed

    Carter, J Chance; Alvis, Rosa M; Brown, Steve B; Langry, Kevin C; Wilson, Thomas S; McBride, Mary T; Myrick, M L; Cox, W Royall; Grove, Michael E; Colston, Bill W

    2006-01-15

    We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photo-polymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micrometer-sized polymer) sensor diameter (92.2+/-2.2 microm), height (35.0+/-1.0 microm), and roundness (0.00072+/-0.00023). pH sensors were evaluated in terms of pH sensing ability (< or =2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail. PMID:16230001

  13. Short-channel polymer field-effect-transistor fabrication using spin-coating-induced edge template and ink-jet printing

    SciTech Connect

    Li, S.P.; Chu, D.P.; Newsome, C.J.; Russell, D.M.; Kugler, T.; Ishida, M.; Shimoda, T.

    2005-12-05

    A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 10{sup 6} is achieved.

  14. Study of Impingement Types and Printing Quality during Laser Printing of Viscoelastic Alginate Solutions.

    PubMed

    Zhang, Zhengyi; Xiong, Ruitong; Corr, David T; Huang, Yong

    2016-03-29

    Laser-induced forward transfer-based laser printing has been being implemented as a promising orifice-free direct-write strategy for different printing applications. The printing quality during laser printing is largely affected by the jet and droplet formation process and subsequential impingement. The objective of this study is to investigate the impingement-based printing type and resulting printing quality during the laser printing of viscoelastic alginate solutions, which are representative inks for soft structure printing such as bioprinting. Three printing types are identified: droplet-impingement printing, jet-impingement printing with multiple breakups, and jet-impingement printing with a single breakup. Printing quality, in terms of printed droplet morphology and size, has been investigated as a function of alginate concentration, laser fluence, and direct-writing height based on a time-resolved imaging approach and microarrays of printed droplets. Of these, the best printing quality is achieved with single-breakup jet-impingement printing, followed by multiple-breakup jet-impingement printing, with droplet-impingement printing producing the lowest quality printing. The printing quality can be improved by using high-concentration alginate solutions. The increase of laser fluence may lead to a well-defined primary droplet for low-concentration alginate solutions; however, this can cause the droplet diameter to increase, which may not be desirable. The direct-writing height (i.e., ribbon coating-receiving substrate distance) also influences the print quality. For example, an increase in direct-writing height can cause the printing type to change from the ideal jet-impingement with a single breakup, to the jet-impingement with multiple breakups, and even the least desired droplet-impingement printing, with only slight variations in droplet diameter. PMID:26934283

  15. Fabrication and Characterization of Carbon Nanotubes-Zinc Oxide Structure by Drop-drying and Ink Jet Printing

    NASA Astrophysics Data System (ADS)

    Liu, Pai

    This thesis elaborates the application of carbon nanotubes (CNTs) and it is discussed in two parts. In the first part of the thesis, two types of CNTs inks for inkjet materials printer are prepared. They are both chemical stable and printable, effective and easily made. The sheet resistance of printed films decreases exponentially as the number of layers increases. In the second part of this study, CNTs/ZnO composite structures are fabricated to understand the electronic and optical properties. The materials were deposited by two different methods: drop-drying and RF magnetic sputtering system on flexible polymer substrates. To further increase the conductivity of the various layers of deposited CNTs films, electrical and optical characterizations are also done. This study establishes CNTs as a multi-functional semitransparent conductor, which can be deposited at room-temperature with other transparent conductive oxide (TCO) composites for application in flexible electronics and printed circuit and sensors.

  16. Ink jet printed graphene oxide (GO) coplanar waveguide (CPW) structures for measurement of microwave propagation in GO

    NASA Astrophysics Data System (ADS)

    Duncan, Kate; Barry, Edwin; Griep, Mark; Daniel, Johhny; Morris, Derek; Karna, Shashi

    2011-03-01

    Chemically reduced graphene~(CGR) has been successfully inkjet printed using a commercially available printer. The CGR with sheet sizes below 200 nm were dispersed in a mixture of water and ethanol. Coplanar waveguide (CPW) structures were deposited on CGR and plastic substrates, scattering (S) parameters were measured in order to extract material parameter for incorporation into simulation tools. Measurements and modeling of microwave propagation in graphene shall be presented.

  17. Thermal ink jet: a review

    NASA Astrophysics Data System (ADS)

    Rezanka, Ivan

    1992-05-01

    The first public demonstration of thermal ink jet printing was done by Canon in 1981 and the first thermal ink jet product, ThinkJet, was introduced by the Hewlett-Packard Company in 1984. Since then, this powerful printing technology has assumed a strong presence in the market. In this discussion, we will first briefly review the printer market, the increasing role thermal ink jet is playing in this arena, as well as the reasons for its success. The technology discussion will follow, and will focus on several highlights in thermal ink jet physics, materials, and printing. We will conclude with our comments on future thermal ink jet developments.

  18. A facile method for integrating direct-write devices into three-dimensional printed parts

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Hang; Wang, Kan; Wu, Changsheng; Chen, Yiwen; Zhang, Chuck; Wang, Ben

    2015-06-01

    Integrating direct-write (DW) devices into three-dimensional (3D) printed parts is key to continuing innovation in engineering applications such as smart material systems and structural health monitoring. However, this integration is challenging because: (1) most 3D printing techniques leave rough or porous surfaces if they are untreated; (2) the thermal sintering process required for most conductive inks could degrade the polymeric materials of 3D printed parts; and (3) the extensive pause needed for the DW process during layer-by-layer fabrication may cause weaker interlayer bonding and create structural weak points. These challenges are rather common during the insertion of conductive patterns inside 3D printed structures. As an avoidance tactic, we developed a simple ‘print-stick-peel’ method to transfer the DW device from the polytetrafluoroethylene or perfluoroalkoxy alkanes film onto any layer of a 3D printed object. This transfer can be achieved using the self-adhesion of 3D printing materials or applying additional adhesive. We demonstrated this method by transferring Aerosol Jet® printed strain sensors into parts fabricated by PolyJet™ printing. This report provides an investigation and discussion on the sensitivity, reliability, and influence embedding the sensor has on mechanical properties.

  19. Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, K. M.; da Silva, A.

    2010-01-01

    The real-time treatment of interactive realistically varying aerosol in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that only recently begins to be addressed. Experiment results from a recent version of the NASA GEOS-5 forecasting system, inclusive of interactive aerosol treatment, are presented in this work. Four sets of 30 5-day forecasts are initialized from a high quality set of analyses previously produced and documented to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. The four forecast sets are at two different horizontal resolutions and with and without interactive aerosol treatment. The net impact of aerosol, at times in which there is a strong dust outbreak, is a temperature increase at the dust level and decrease in the near-surface levels, in complete agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African Easterly (AEJ) at slightly higher elevation, and slightly displace northward, with respect to the forecasts in which aerosols are not include. The shift in the AEJ position goes in the direction of observations and agrees with previous results.

  20. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  1. Leaf Printing.

    ERIC Educational Resources Information Center

    Mitchell, Charles W.

    1985-01-01

    Using many different media, students can turn leaves into images which can be used for study, bulletin boards, collections, and identification. The simple techniques described include pastel printing, smoke prints, ink or tempura printing, bleach printing on t-shirts, ditto machine printing using carbon paper, and making cutouts. (DH)

  2. In situ studies on volatile jet exhaust particle emissions: Impact of fuel sulfur content and environmental conditions on nuclei mode aerosols

    NASA Astrophysics Data System (ADS)

    Schröder, F.; Brock, C. A.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M.

    2000-08-01

    In situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the Deutsches Zentrum für Luft-und Raumfahrt ATTAS research jet (Rolls-Royce/Snecma M45H M501 engines) and a B737-300 aircraft (CFM International 56-3B1 engines). Measurements were made 0.15-20 s after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56, or 118mg kg-1. Particle size distributions of from 3- to 60-nm diameter were determined by using condensationnuclei-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60mg kg-1, reaching minimum values of about 2×1017kg-1 and 2×1016kg-1 for particles >3nm and >5nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60mg kg-1. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4×1014kg-1) than from the older RR M45H M501 engines (1.8×1015kg-1). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors of 2-10 depending on particle size. These and previously published data are consistent with volatile particle emissions of 2.4×1017kg-1 independent of environmental conditions, engine type and FSCs ranging between 2.6 and 2700mg kg-1. There are clear experimental indications that

  3. Security printing of covert quick response codes using upconverting nanoparticle inks.

    PubMed

    Meruga, Jeevan M; Cross, William M; Stanley May, P; Luu, QuocAnh; Crawford, Grant A; Kellar, Jon J

    2012-10-01

    Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF(4) nanoparticles for security printing applications. Inks comprised of Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) doped β-NaYF(4) nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting(®). The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er(3+)/Yb(3+) and Tm(3+)/Yb(3+), respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates. PMID:22968045

  4. Security printing of covert quick response codes using upconverting nanoparticle inks

    NASA Astrophysics Data System (ADS)

    Meruga, Jeevan M.; Cross, William M.; May, P. Stanley; Luu, QuocAnh; Crawford, Grant A.; Kellar, Jon J.

    2012-10-01

    Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF4 nanoparticles for security printing applications. Inks comprised of Yb3+/Er3+ and Yb3+/Tm3+ doped β-NaYF4 nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting®. The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er3+/Yb3+ and Tm3+/Yb3+, respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.

  5. Security printing of covert quick response codes using upconverting nanoparticle inks.

    PubMed

    Meruga, Jeevan M; Cross, William M; Stanley May, P; Luu, QuocAnh; Crawford, Grant A; Kellar, Jon J

    2012-10-01

    Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF(4) nanoparticles for security printing applications. Inks comprised of Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) doped β-NaYF(4) nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting(®). The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er(3+)/Yb(3+) and Tm(3+)/Yb(3+), respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.

  6. Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor

    NASA Astrophysics Data System (ADS)

    Fakhouri, H.; Ben Salem, D.; Carton, O.; Pulpytel, J.; Arefi-Khonsari, F.

    2014-07-01

    A simple method to deposit photocatalytic TiO2 coatings, at a high rate (20-40 µm s-1), and with a high porosity, is reported in this paper. This method, which allows the treatment of membranes (with an 800 nm pore size), is based on the introduction of a liquid precursor sprayed into an open-air atmospheric pressure plasma jet (APPJ). The photocatalytic activity of the TiO2 thin films prepared by APPJ have been compared with our best N-doped TiO2 thin films, deposited by reactive radio frequency (RF) magnetron sputtering, previously reported in the literature. The morphology, chemical composition, photoelectrochemical, and photocatalytic properties of the coatings have been studied in this paper. Significant control of the porosity and crystallinity was achieved by varying the deposition parameters and the annealing temperature. Under optimized conditions, the TiO2 coatings deposited by APPJ are characterized by a higher photocatalytic activity as compared to the optimized thin films deposited by RF sputtering. This difference can be explained by the higher specific surface of the APPJ coatings. Finally, the most interesting characteristic of this APPJ-liquid spray process is its capacity to treat membranes without blocking the pores, and to produce photocatalytic membranes which can efficiently combine filtration and photocatalysis for water treatment.

  7. Ink-jet printing of self-aligned soluble-pentacene crystals for high-performance organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lim, Jung A.; Lee, Wi H.; Park, Yeong D.; Lee, Hwa S.; Cho, Kilwon

    2007-09-01

    We have reported the fabrication of the self-organized 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN) crystals with highly ordered molecular structures by using evaporation-induced flows in a solution process. The one-dimensional microcrystal arrays of TIPS_PEN were fabricated by simple solution casting on a tilted substrate. By pinning a solution droplet on the tilted substrate, an array of ribbon-shaped crystals aligned in the tilted direction was formed on the substrate. In particular, self-aligned TIPS_PEN crystals with highly ordered crystalline structures via inkjet printing were successfully produced by controlling the evaporation-induced flow using solvent mixture, and arise when there is a recirculation flow in a inkjet printed droplet that is induced by a Marangoni flow (surface-tension-driven flow) in the direction opposite to the outward convective flow. The field-effect transistors fabricated with these self-aligned TIPS_PEN crystals via drop casting and inkjet printing exhibit significantly improved electrical performance. These results demonstrate that control of evaporation-induced flow in a solution process of organic semiconductor can be an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct-write fabrication of high-performance OFETs.

  8. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.

    PubMed

    Secor, Ethan B; Hersam, Mark C

    2015-02-19

    Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with inkjet and aerosol jet printing are ideal channels for thin-film transistors, while inkjet, gravure, and screen-printable graphene-based inks are better-suited for electrodes and interconnects. Despite the high performance achieved in prototype devices, additional effort is required to address materials integration issues encountered in more complex systems. In this regard, post-carbon nanomaterial inks (e.g., electrically insulating boron nitride and optically active transition-metal dichalcogenides) present promising opportunities. Finally, emerging work to extend these nanomaterial inks to three-dimensional printing provides a path toward nonplanar devices. Overall, the superlative properties of these materials, coupled with versatile assembly by printing techniques, offer a powerful platform for next-generation printed electronics.

  9. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.

    PubMed

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-28

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.

  10. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    NASA Astrophysics Data System (ADS)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust

  11. Capillary instability of jets

    NASA Astrophysics Data System (ADS)

    Chauhan, Anuj

    This thesis studies the capillary instability of a compound jet. A compound jet comprises an inner core of a primary fluid surrounded by an annulus of an immiscible secondary fluid. The compound jet is unstable due to capillarity. A compound jet finds applications in a variety of fields, such as, ink jet printing, particle sorting, extrusion, molding, particle production etc. In some of these applications such as molding, the disturbances that could cause the jet breakup start as periodic spatial disturbances of Fourier wave number k and grow in time. This is the temporal instability. In some other applications, such as, ink-jet printing, the disturbances initiate at the edge of the nozzle from which the jet issues out. These disturbances grow in space. This is the spatial instability. At small velocities, even if the initial disturbances are periodic in time, they grow exponentially in time. This is the absolute instability. We perform the temporal, spatial and the absolute stability analysis of an inviscid compound jet in a unified framework using the theory of transforms. Further, we solve the temporal instability problem for a viscous jet to understand the effect of viscosity on breakup dynamics. In the temporal analysis, we show that each interface of the compound jet contributes one mode to the instability. The modes contributed by the inner and outer interfaces grow for waves longer than the inner and the outer circumference of the undisturbed jet, respectively. The inner interface mode has a higher growth rate and hence dominates the breakup. The two interfaces grow exactly in phase in this mode and hence it is refereed to as the stretching mode. The other mode is the squeezing mode because the two interfaces grow exactly out of phase. The same two modes are also present in the spatial analysis. At high Weber numbers the predictions of the spatial theory reduce to those of the temporal theory because the waves simply convect with the jet velocity and there

  12. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  13. Digital printing

    NASA Astrophysics Data System (ADS)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  14. Printed electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2012-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  15. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2014-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  16. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2015-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  17. High resolution printing of charge

    DOEpatents

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  18. Printed photodetectors

    NASA Astrophysics Data System (ADS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  19. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  20. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  1. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  2. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-01

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge

  3. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED)

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving

  4. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.

    PubMed

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-28

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption. PMID:26847814

  5. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  6. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Here, collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet taggingmore » variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  7. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED).

    PubMed

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10(-3) A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 10(4) and output current up to 3.5 × 10(-4) A at V(scan) = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.

  8. Commercial and industrial applications of color ink jet: a technological perspective

    NASA Astrophysics Data System (ADS)

    Dunand, Alain

    1996-03-01

    In just 5 years, color ink-jet has become the dominant technology for printing color images and graphics in the office and home markets. In commercial printing, the traditional printing processes are being influenced by new digital techniques. Color ink-jet proofing, and concepts such as computer to film/plate or digital processes are contributing to the evolution of the industry. In industrial color printing, the penetration of digital techniques is just beginning. All widely used conventional contact printing technologies involve mechanical printing forms including plates, screens or engraved cylinders. Such forms, which need to be newly created and set up for each job, increase costs. In our era of fast changing customer demands, growing needs for customization, and increasing use of digital exchange of information, the commercial and industrial printing markets represent an enormous potential for digital printing technologies. The adoption characteristics for the use of color ink-jet in these industries are discussed. Examples of color ink-jet applications in the fields of billboard printing, floor/wall covering decoration, and textile printing are described. The requirements on print quality, productivity, reliability, substrate compatibility, and color lead to the consideration of various types of ink-jet technologies. Key technical enabling factors and directions for future improvements are presented.

  9. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  10. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2016-01-01

    We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures.

  11. Water Jetting

    NASA Astrophysics Data System (ADS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water jetting equipment, needed a high pressure rotating swivel, but found that available hardware for the system was unsatisfactory. They were assisted by Marshall, which had developed water jetting technology to clean the Space Shuttles. The result was a completely automatic water jetting system which cuts rock and granite and removes concrete. Labor costs have been reduced; dust is suppressed and production has been increased.

  12. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  13. Interaction between jets during laser-induced forward transfer

    SciTech Connect

    Patrascioiu, A.; Florian, C.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.; Hennig, G.; Delaporte, P.

    2014-07-07

    Simultaneous two-beam laser-induced forward transfer (LIFT) was carried out for various inter-beam separations, analyzing both the resulting printing outcomes and the corresponding liquid transfer dynamics. In a first experiment, droplets of an aqueous solution were printed onto a substrate at different inter-beam distances, which proved that a significant departure from the single-beam LIFT dynamics takes places at specific separations. In the second experiment, time-resolved imaging analysis revealed the existence of significant jet-jet interactions at those separations; such interactions proceed through a dynamics that results in remarkable jet deflection for which a possible onset mechanism is proposed.

  14. The use of ink jets in ultrasound registrations.

    PubMed

    Johansson, T; Nilsson, J; Almquist, L O; Holmer, N G

    1991-01-01

    The continuous ink jet method developed by Professor Hellmuth Hertz, Lund Institute of Technology, Sweden, is today used in printers that print digitally stored high-quality images rapidly and at low cost. The development started in the late 1950s when there was a need for a direct registration method for ultrasound echocardiograms. The development steps are described from the early ultrasound registrations to the true halftone printing of digital images today. Images from ultrasonic color Doppler examinations have been printed by an ink jet printer at our laboratory. The color capabilities of the printer are further illustrated by the printing of pseudo-colored gray-scale images and an image where color is used to highlight differences between two gray-scale images. The results show that the printer based on continuous ink jets is an interesting alternative to the existing hard-copy devices for medical images.

  15. Personalised dosing: Printing a dose of one's own medicine.

    PubMed

    Alomari, Mustafa; Mohamed, Fatima H; Basit, Abdul W; Gaisford, Simon

    2015-10-30

    Ink-jet printing is a versatile, precise and relatively inexpensive method of depositing small volumes of solutions with remarkable accuracy and repeatability. Although developed primarily as a technology for image reproduction, its areas of application have expanded significantly in recent years. It is particularly suited to the manufacture of low dose medicines or to short production runs and so offers a potential manufacturing solution for the paradigm of personalised medicines. This review discusses the technical and clinical aspects of ink-jet printing that must be considered in order for the technology to become widely adopted in the pharmaceutical arena and considers applications in the literature.

  16. APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING

    EPA Science Inventory

    The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...

  17. Color-managed 3D printing with highly translucent printing materials

    NASA Astrophysics Data System (ADS)

    Arikan, Can Ates; Brunton, Alan; Tanksale, Tejas Madan; Urban, Philipp

    2015-03-01

    Many 3D printing applications require the reproduction of an object's color in addition to its shape. One 3D printing technology, called multi-jetting (or poly-jetting), allows full color 3D reproductions by arranging multiple colored materials (UV curing photo-polymers) on a droplet level in a single object. One property of such printing materials is their high translucency posing new challenges for characterizing such 3D printers to create ICC profiles. In this paper, we will first describe the whole color-managed 3D printing workflow and will then focus on measuring the colors of highly translucent printing materials. We will show that measurements made by spectrophotometers used in the graphic arts industry are systematically biased towards lower reflection. We will then propose a trichromatic camera-based approach for measuring such colors. Error rates obtained in comparison with spectroradiometric measurements for the same viewing conditions are within the interinstrument-variability of hand-held spectrophotometers used in graphic arts.

  18. Fabrication and characterization of organic single crystal and printed polymer transistors

    NASA Astrophysics Data System (ADS)

    Xia, Yu

    The key challenges in the development of organic electronics lie in the understanding of the charge transport physics and the realization of low cost device fabrication. Innovative studies on both aspects have been demonstrated in this thesis. On the fundamental side, first, charge transport and localization processes in various organic single crystal transistors have been investigated using a novel "air-gap"device geometry. Second, comparison of mobility - carrier density relation in polymer and single crystal transistors has been made by the utilization of different liquid gate dielectrics with extremely wide capacitance range, and fundamentally different charge transport mechanisms have been proposed. Third, direct measurement of the electrochemical potential at organic semiconductor/gate dielectric interfaces in electrolyte gated transistors has been achieved with the assistance of an embedded reference electrode. The correlation between the referenced turn-on voltages and the organic semiconductor ionization potentials has been discovered. Finally, an unusual negative differential transconductance behavior in electrolyte gated transistors upon inducing high gate carrier densities has been extensively investigated. On the application side, high performance polymer transistors and circuits were fabricated by a commercial aerosol jet printing technique. Printing not only saves the device manufacturing cost through its simple procedure, high throughput and low waste of materials, but also enables the fabrication of electronic devices over large area and on flexible substrates. All-printed transistors with exceptionally large transconductance of 10 mS/mm under 1 V of operating voltage have been realized with the application of specially designed printable high capacitance (>10 muF/cm2) ion gel as the gate dielectric material. Various device configurations and parameters have been investigated to further reduce the fabrication cost and improve the operating speed

  19. The Role of Anthropogenic Aerosol in Atmospheric Circulation Changes

    NASA Astrophysics Data System (ADS)

    Wilcox, L.; Polvani, L. M.; Highwood, E.

    2015-12-01

    Changes in atmospheric circulation patterns play a dominant role in determining the impacts of a changing climate at the continental scale. Using CMIP5 single forcing experiments from an ensemble of models that provided anthropogenic aerosol only simulations to the archive, we quantify the influence of anthropogenic aerosol on several aspects of the atmospheric circulation, including tropical width, jet position, and jet strength. We show that there is a robust circulation response to anthropogenic aerosol in the mid twentieth century, induced by the large increases in emissions at that time. Although most anthropogenic aerosol is found in the Northern Hemisphere, a response is found in both the Northern and Southern hemispheres. We investigate the extent to which diversity in the temperature and circulation responses to aerosol are related to diversity in aerosol loading and radiative forcing.

  20. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  1. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  2. Commercial printing and electronic color printing

    NASA Astrophysics Data System (ADS)

    Webb, Joseph W.

    1995-04-01

    Technologies such as Xeikon, Indigo, and the Heidelberg/Presstek GTO-DI can change both the way print buyers may purchase printed material and the way printers and trade services respond to changing demands. Our recent study surveys the graphic arts industry for their current views of these new products and provides forecasts of installations and usage with breakdowns by market segment and size of firm. The acceptance of desktop publishing and electronic prepress have not only paved the way for a totally electronic printing process, but it has broadened the base of people who develop color originals for reproduction. Electronic printing adds the ability to customize jobs on the fly. How print providers will respond to the impact of electronic color printing depends on how each firm perceives the 'threat.' Most printing companies are run by entrepreneurial individuals who have, as their highest priority, their own economic survival. Service bureaus are already looking at electronic color printing as yet another way to differentiate their businesses. The study was based on a mail survey with 682 responses from graphic arts firms, interviews with printers, suppliers, associations and industry executives, and detailed secondary research. Results of a new survey in progress in January 1995 is also presented.

  3. Large Print Bibliography, 1990.

    ERIC Educational Resources Information Center

    South Dakota State Library, Pierre.

    This bibliography lists materials that are available in large print format from the South Dakota State Library. The annotated entries are printed in large print and include the title of the material and its author, call number, publication date, and type of story or subject area covered. Some recorded items are included in the list. The entries…

  4. High Relief Block Printing.

    ERIC Educational Resources Information Center

    Foster, Michael

    1989-01-01

    Explains a method of block printing using styrofoam shapes to make high relief. Describes the creation of the block design as well as the actual printing process. Uses a range of paper types for printing so children can see the results of using different media. (LS)

  5. Business Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Citation Jet, developed by Cessna Aircraft Company, Wichita, KS, is the first business jet to employ Langley Research Center's natural laminar flow (NLF) technology. NLF reduces drag and therefore saves fuel by using only the shape of the wing to keep the airflow smooth, or laminar. This reduces friction between the air and wing, and therefore, reduces drag. NASA's Central Industrial Applications Center, Rural Enterprises, Inc., Durant, OK, its Kansas affiliate, and Wichita State University assisted in the technology transfer.

  6. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  7. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  8. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, Steve P.

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  9. In vitro characterisation of terbutaline sulphate particles prepared by thermal ink-jet spray freeze drying.

    PubMed

    Sharma, Garima; Mueannoom, Wunlapa; Buanz, Asma B M; Taylor, Kevin M G; Gaisford, Simon

    2013-04-15

    Thermal ink-jet spray freeze-drying (TIJ-SFD) was used to produce inhalable particles of terbutaline sulphate, the aerosolisation properties of which were compared to the commercial Bricanyl formulation. Scanning electron micrograph images showed the particles to be spherical, highly porous and suitable for aerosolisation from a simple, capsule-based dry-powder device (Cyclohaler) without the need for additional excipients. Particle size was dependent upon the concentration of solution jetted, as well as the distance between the print head and the surface of the liquid nitrogen. Starting with a 5% (w/v) solution and maintaining this distance at 3cm produced spherical, porous particles of volume median diameter (VMD) 14.1 ± 0.8 μm and mass median aerodynamic diameter (MMAD) 4.0 ± 0.6 μm. The fine particle fraction (proportion of aerosol with MMAD ≤ 4.46 μm) was 22.9 ± 3.3%, which compared favourably with that of the marketed dry powder inhaler formulation of terbutaline (Bricanyl Turbohaler; 25.7 ± 3.8%), tested under the same conditions. These findings show that TIJ-SFD is a useful tool to predict the viability of a DPI formulation during preformulation physicochemical characterisation. PMID:23454848

  10. [Jet lag].

    PubMed

    Lagarde, D; Doireau, P

    1997-01-01

    Desynchronization of circadian rhythmicity resulting from rapid travel through at least four time zones leads to symptoms known in everyday English as jet-lag. The most detrimental effect of jet-lag is fatigue with poor alertness and psychomotor performance. Severity is subject to individual variation in susceptibility (morning/evening typology, age,...) and environmental factors (direction of travel, number of time zones crossed, psychosocial environment...). Many measures used to prevent or reduce jet lag are inappropriate or ineffective and some may even be dangerous, such as use of melatonin. One of the most reliable preventive techniques consists of reinforcing social synchronizers by maintaining exposure to sunlight and social activity. Only two drugs currently available on the market can be recommended, i.e. non-benzodiazepinic hypnotics which induce high quality sleep to allow quick recovery and a new time-release caffeine agent which has been shown to prolong psychomotor performance.

  11. Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    Current investigation of synthetic jets and synthetic jets in cross-flow examined the effects of orifice geometry and dimensions, momentum-flux ratio, cluster of orifices, pitch and yaw angles as well as streamwise development of the flow field. This comprehensive study provided much needed experimental information related to the various control strategies. The results of the current investigation on isolated and clustered synthetic jets with and without cross-flow will be further analyzed and documented in detail. Presentations at national conferences and publication of peer- reviewed journal articles are also expected. Projected publications will present both the mean and turbulent properties of the flow field, comparisons made with the data available in an open literature, as well as recommendations for the future work.

  12. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2011-02-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  13. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2010-09-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We observe that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We observe transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we observe an underestimation of the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  14. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  15. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  16. Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing

    NASA Astrophysics Data System (ADS)

    Delrot, Paul; Modestino, Miguel A.; Gallaire, François; Psaltis, Demetri; Moser, Christophe

    2016-08-01

    The on-demand generation of viscous microdroplets to print functional or biological materials remains challenging using conventional inkjet-printing methods, mainly due to aggregation and clogging issues. In an effort to overcome these limitations, we implement a jetting method to print viscous microdroplets by laser-induced shockwaves. We experimentally investigate the dependence of the jetting regimes and the droplet size on the laser-pulse energy and on the inks' physical properties. The range of printable liquids with our device is significantly extended compared to conventional inkjet printers's performances. In addition, the laser-induced flow-focusing phenomenon allows us to controllably generate viscous microdroplets up to 210 mPa s with a diameter smaller than the nozzle from which they originated (200 μ m ). Inks containing proteins are printed without altering their functional properties, thus demonstrating that this jetting technique is potentially suitable for bioprinting.

  17. Singular Jets and Bubbles in Drop Impact

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Josserand, Christophe; Bonn, Daniel

    2006-03-01

    We show that when water droplets gently impact on a hydrophobic surface, the droplet shoots out a violent jet, the velocity of which can be up to 40 times the drop impact speed. As a function of the impact velocity, two different hydrodynamic singularities are found that correspond to the collapse of the air cavity formed by the deformation of the drop at impact. It is the collapse that subsequently leads to the jet formation. We show that the divergence of the jet velocity can be understood using simple scaling arguments. In addition, we find that very large air bubbles can remain trapped in the drops. The surprising occurrence of the bubbles for low-speed impact is connected with the nature of the singularities, and can have important consequences for drop deposition, e.g., in ink-jet printing.

  18. Red tide (Ptychodiscus brevis) toxin aerosols: a review.

    PubMed

    Pierce, R H

    1986-01-01

    Advances in knowledge concerning red tide toxin aerosols (airborne) of the Florida red tide organism, Ptychodiscus brevis, have not kept pace with information about waterborne toxins. This review provides a summary of current knowledge regarding the characterization, effect and production of red tide toxin aerosols. Insight into the chemical characterization and toxic effects of aerosolized toxins is provided from investigations of toxins extracted from natural blooms, as well as from laboratory cultures, of P. brevis. This information is used in conjunction with the few studies that have been performed on toxin aerosols to consider toxic effects. The production of aerosolized toxins is considered through studies of jet drop aerosol formation from bursting bubbles. Existing information suggests that aerosolized red tide toxins may be the same chemicals as those extracted from laboratory cultures, with one of the toxins having a greater respiratory effect than others.

  19. Dielectrophoretic deflection of ink jets

    NASA Astrophysics Data System (ADS)

    Chiarot, Paul R.; Jones, T. B.

    2009-12-01

    In continuous ink jet systems, streams of ~10 pL liquid droplets (diameter ~30 µm) are ejected from an orifice at rates of up to 350 000 per second with velocities in excess of 20 m s-1. Applications as diverse as printing, MEMS fabrication and microarraying benefit from this technology; however, reliable manipulation of the jet, including basic on/off control and steering of the liquid droplets, remains difficult to achieve. We report a novel scheme to manipulate the trajectories of droplets that rebound at shallow angles from a solid substrate using the dielectrophoretic force exerted by patterned electrodes. Varying the voltage applied to the electrodes provides precise control of the rebounding trajectories, mainly by shifting the location of the droplet impact. This technique can also be used to implement on/off control of the droplet stream. A simple dynamic model successfully predicts the modified trajectories of the droplets.

  20. Behavior of printable formulations of loperamide and caffeine on different substrates--effect of print density in inkjet printing.

    PubMed

    Genina, Natalja; Fors, Daniela; Palo, Mirja; Peltonen, Jouko; Sandler, Niklas

    2013-09-10

    The primary goal of the current work was to study the applicability of precision inkjet printing in fabrication of personalized doses of active pharmaceutical ingredients (APIs). Loperamide hydrochloride (LOP) and caffeine (CAF) were used as model compounds. Different doses of the drugs in a single dosage unit were produced, using a drop-on-demand inkjet printer by varying printing parameters such as the distance between jetted droplets (drop spacing) and the physical dimensions of the printed dosage forms. The behavior of the formulated printable inks for both APIs was investigated on the model substrates, using different analytical tools. The obtained results showed that printed LOP did not recrystallize on any substrates studied, whereas at least partial recrystallization of printed CAF was observed on all carrier surfaces. Flexible doses of both APIs were easily obtained by adjusting the drop spacing of the depositing inks, and the results were relevant with regards to the theoretical content. Adapting the dose by varying physical dimensions of single dosage units was less successful than the approach in which drop spacing was altered. In conclusion, controlled printing technology, by means of adjusting the distance between jetted droplets, offers a means to fabricate dosage forms with individualized doses.

  1. Engraving Print Classification

    SciTech Connect

    Hoelck, Daniel; Barbe, Joaquim

    2008-04-15

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints.

  2. Printed circuit board industry.

    PubMed

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts. PMID:16580876

  3. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  4. Atmospheric responses to the redistribution of anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Jonathan H.; Su, Hui

    2015-09-01

    The geographical shift of global anthropogenic aerosols from the developed countries to the Asian continent since the 1980s could potentially perturb the regional and global climate due to aerosol-cloud-radiation interactions. We use an atmospheric general circulation model with different aerosol scenarios to investigate the radiative and microphysical effects of anthropogenic aerosols from different regions on the radiation budget, precipitation, and large-scale circulations. An experiment contrasting anthropogenic aerosol scenarios in 1970 and 2010 shows that the altered cloud reflectivity and solar extinction by aerosols results in regional surface temperature cooling in East and South Asia, and warming in the US and Europe, respectively. These aerosol-induced temperature changes are consistent with the relative temperature trends from 1980 to 2010 over different regions in the reanalysis data. A reduced meridional streamfunction and zonal winds over the tropics as well as a poleward shift of the jet stream suggest weakened and expanded tropical circulations, which are induced by the redistributed aerosols through a relaxing of the meridional temperature gradient. Consequently, precipitation is suppressed in the deep tropics and enhanced in the subtropics. Our assessments of the aerosol effects over the different regions suggest that the increasing Asian pollution accounts for the weakening of the tropics circulation, while the decreasing pollution in Europe and US tends to shift the circulation systems southward. Moreover, the aerosol indirect forcing is predominant over the total aerosol forcing in magnitude, while aerosol radiative and microphysical effects jointly shape the meridional energy distributions and modulate the circulation systems.

  5. Size limits the formation of liquid jets during bubble bursting

    PubMed Central

    Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat

    2011-01-01

    A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715

  6. Complex light in 3D printing

    NASA Astrophysics Data System (ADS)

    Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri

    2016-03-01

    3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings additional level of complexity in 3D printing.

  7. International Standards on stability of digital prints

    NASA Astrophysics Data System (ADS)

    Adelstein, Peter Z.

    2010-06-01

    The International Standards Organization (ISO) is a worldwide recognized standardizing body which has responsibility for standards on permanence of digital prints. This paper is an update on the progress made to date by ISO in writing test methods in this area. Three technologies are involved, namely ink jet, dye diffusion thermal transfer (dye-sublimation) and electrophotography. Two types of test methods are possible, namely comparative tests and predictive tests. To date a comparative test on water fastness has been published and final balloting is underway on a comparative test on humidity fastness. Predictive tests are being finalized on thermal stability and pollution susceptibility. The test method on thermal stability is intended to predict the print life during normal aging. One of the testing concerns is that some prints do not show significant image change in practical testing times. The test method on pollution susceptibility only deals with ozone and assumes that the reciprocity law applies. This law assumes that a long time under a low pollutant concentration is equivalent to a short time under the high concentration used in the test procedure. Longer term studies include a predictive test for light stability and the preparation of a material specification. The latter requires a decision about the proper colour target to be used and what constitutes an unacceptable colour change. Moreover, a specification which gives a predictive life is very dependent upon the conditions the print encounters and will only apply to specific levels of temperature, ozone and light.

  8. Turbulent Jets?

    NASA Astrophysics Data System (ADS)

    Wilde, B. H.; Rosen, P. A.; Foster, J. M.; Perry, T. S.; Steinkamp, M. J.; Robey, H. F.; Khokhlov, A. M.; Gittings, M. L.; Coker, R. F.; Keiter, P. A.; Knauer, J. P.; Drake, R. P.; Remington, B. A.; Bennett, G. R.; Sinars, D. B.; Campbell, R. B.; Mehlhorn, T. A.

    2003-10-01

    Over the last few years we have fielded numerous supersonic jet experiments on the NOVA and OMEGA lasers and Sandia's pulsed-power Z-machine in a collaboration between Los Alamos National Laboratory, the Atomic Weapons Establishment, Lawrence Livermore National Laboratory, and Sandia National Laboratory. These experiments are being conducted to help validate our radiation-hydrodynamic codes, especially the newly developing ASC codes. One of the outstanding questions is whether these types of jets should turn turbulent given their high Reynolds number. Recently we have modified our experiments to have more Kelvin-Helmholtz shear, run much later in time and therefore have a better chance of going turbulent. In order to diagnose these large (several mm) jets at very late times ( 1000 ns) we are developing point-projection imaging on both the OMEGA laser, the Sandia Z-Machine, and ultimately at NIF. Since these jets have similar Euler numbers to jets theorized to be produced in supernovae explosions, we are also collaborating with the astrophysics community to help in the validation of their new codes. This poster will present a review of the laser and pulsed-power experiments and a comparison of the data to simulations by the codes from the various laboratories. We will show results of simulations wherein these jets turn highly 3-dimensional and show characteristics of turbulence. With the new data, we hope to be able to validate the sub-grid-scale turbulent mix models (e. g. BHR) that are being incorporated into our codes.*This work is performed under the auspices of the U. S. Department of Energy by the Los Alamos National Laboratory Laboratory under Contract No. W-7405-ENG-36, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, the Laboratory for Laser Energetics under Contract No. DE-FC03-92SF19460, Sandia National Laboratories under Contract No. DE-AC04-94AL85000, the Office of Naval Research, and the NASA Astrophysical Theory Grant.

  9. Whither ink jet? Current patent trends

    NASA Astrophysics Data System (ADS)

    Pond, Stephen F.; Karz, Robert S.

    1995-04-01

    The status and potential of ink jet technology is discernible in its major technical literature forum: worldwide patents. Most ink jet technical activity is focused in commercial research and development laboratories where proprietary considerations make patents the norm for publication. Currently there are about 2,000 ink jet disclosures issued annually with over 200 enterprises represented. Ink jet patent activity is increasing about 25% per year driven by a rapidly expanding base of products, applications, and revenue. An analysis of the ink jet patent literature reveals a few major themes (i.e. continuous ink jet, piezoelectric drop-on-demand, and thermal ink jet) and numerous minor ones (i.e. electrohydro-dynamic extraction, magnetic drop-on-demand, Hertz continuous, acoustic ink printing). Patents bear witness to transformations in the industry as dominant players of the 1970's have given way to new leaders in the 1990's. They also foretell important commercial developments in ink jet's near term future. When studied in aggregate, the patent record reveals patterns for the industry in general as well as for individual companies. It becomes possible to use the patent data base not only to identify technical approaches and problems for specific firms, but also to track progress and monitor changing strategies. In addition, international filing patterns can provide insights into industry priorities. This paper presents an overview of ink jet technology as revealed by the patent literature. It will include a 25 year perspective, a review of trends over the past five years, and a survey of today's most active companies and their technical approaches. With this analysis, it will be shown that the information inherent in the patent record is more than the sum of its individual disclosures. Indeed, by using it, we can outlook whither goes ink jet.

  10. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  11. Printed shadow masks for organic transistors

    NASA Astrophysics Data System (ADS)

    Noguchi, Yoshiaki; Sekitani, Tsuyoshi; Someya, Takao

    2007-09-01

    We have manufactured organic field-effect transistors by using shadow masks that are patterned by a screen printing system. The 50-nm-thick pentacene layer is sublimed as a channel in the vacuum system through the shadow mask on the base film with a multilayer patterned by ink-jet. After the deposition of the pentacene layer, the shadow mask is peeled off from the base film without any mechanical damages to the lower structures. The mobility in the saturation regime is 0.4cm2/Vs and the on-off ratio exceeds 105.

  12. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  13. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  14. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  15. Application of 3D printing technology in aerodynamic study

    NASA Astrophysics Data System (ADS)

    Olasek, K.; Wiklak, P.

    2014-08-01

    3D printing, as an additive process, offers much more than traditional machining techniques in terms of achievable complexity of a model shape. That fact was a motivation to adapt discussed technology as a method for creating objects purposed for aerodynamic testing. The following paper provides an overview of various 3D printing techniques. Four models of a standard NACA0018 aerofoil were manufactured in different materials and methods: MultiJet Modelling (MJM), Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). Various parameters of the models have been included in the analysis: surface roughness, strength, details quality, surface imperfections and irregularities as well as thermal properties.

  16. Jets and Photons

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen D.; Roy, Tuhin S.; Scholtz, Jakub

    2013-03-01

    This Letter applies the concept of “jets,” as constructed from calorimeter cell four-vectors, to jets composed (primarily) of photons (or leptons). Thus jets become a superset of both traditional objects such as QCD jets, photons, and electrons, and more unconventional objects such as photon jets and electron jets, defined as collinear photons and electrons, respectively. Since standard objects such as single photons become a subset of jets in this approach, standard jet substructure techniques are incorporated into the photon finder toolbox. Using a (reasonably) realistic calorimeter model we demonstrate that, for a single photon identification efficiency of 80% or above, the use of jet substructure techniques reduces the number of QCD jets faking photons by factors of 2.5 to 4. Depending on the topology of the photon jets, the substructure variables reduce the number of photon jets faking single photons by factors of 10 to 103 at a single photon identification efficiency of 80%.

  17. Inverted Break-up Behaviour in Continuous Inkjet (CIJ) Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Harlen, Oliver; Morrison, Neil

    2014-11-01

    Although droplet creation during continuous jetting of Newtonian fluids has been widely studied, unsolved problems surrounding the break-up dynamics remain. Jetting through a nozzle creates a stream of liquid that is rendered unstable by surface tension. This instability creates a succession of main drops connected by thin filaments, with drop separation determined by the fastest growing wavelength. In order to control break-up and increase printing speeds, continuous inkjet (CIJ) printing exploits the effects of finite amplitude modulations in the jet velocity profile giving conditions where jet stability deviates from the usual Rayleigh behaviour. To explore these non-linear effects, we have developed a one-dimensional jetting model. In particular, we identify a modulation range for which pinching occurs upstream of the connecting filament, rather than downstream - a phenomenon we call ``inverted'' break-up. Furthermore, this behaviour can be controlled by the addition of harmonics to the initial driving signal. Our results are compared to full axisymmetric simulations in order to incorporate the effects of nozzle geometry. EPSRC Innovation in Industrial Technology.

  18. Centralize Printing, and Save.

    ERIC Educational Resources Information Center

    McCormick, Kathleen

    1984-01-01

    Describes the operations of a centralized printing office in a California school district. Centralization greatly increased the efficiency and lowered the cost of generating publications, information services, newsletters, and press releases throughout the school year. (TE)

  19. Stop, Look, Listen, Print

    ERIC Educational Resources Information Center

    Schwing, Pauline E.

    1972-01-01

    Article describes the use of audiovisual aids in teaching third-graders how to make brayer, string, Styrofoam and gadget prints. Author advises close cooperation between art and classroom teachers. Printmaking as a means of communication is touched upon. (PD)

  20. Sampling submicrometer particles suspended in near sonic and supersonic free jets. [from GTE exhaust

    NASA Technical Reports Server (NTRS)

    Martone, J. A.; Daley, P. S.; Boubel, R. W.

    1980-01-01

    Aerosols containing solid, spherical stearic acid particles with a mean diameter of 0.8 micron and a geometric standard deviation of 1.28 were sampled with small bore front-facing aspirating probes in near-sonic and supersonic unheated free jets. The results are compared to compute the sampling error associated with a high-speed jet sample.

  1. The design of an aerosol test tunnel for occupational hygiene investigations

    NASA Astrophysics Data System (ADS)

    Blackford, D. B.; Heighington, K.

    An aerosol test tunnel which provides large working sections is described and its performance evaluated. Air movement within the tunnel is achieved with a powerful D.C. motor and centrifugal fan. Test dusts are dispersed and injected into the tunnel by means of an aerosol generator. A unique divertor valve allows aerosol laden air to be either cleaned by a commercial pulse jet filtration unit or recycled around the tunnel to obtain a high aerosol concentration. The tunnel instrumentation is managed by a microcomputer which automatically controls the airspeed and aerosol concentration.

  2. Inclusive Jets in PHP

    NASA Astrophysics Data System (ADS)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  3. Numerical Simulation of Taylor Cone-Jet

    NASA Astrophysics Data System (ADS)

    Toledo, Ronne

    The Taylor cone-jet is a particular type of electrohydrodynamic phenomenon where electrostatic stresses and surface tension effects shape the interface of the jet in a peculiar conical shape. A thin jet is issued from the cone apex that further breaks up into a fine aerosol. Due to its monodispersive properties, this fine aerosol has found a number of applications, ranging from mass spectrometry, colloidal space propulsion, combustion, nano-fabrication, coating/painting, and many others. In this study, a general non-dimensional analysis is performed to derive the governing equations and boundary conditions. In accordance with the observations of Gamero-Castano (2010), noting that droplet electric potential is insensitive to the flow rate conditions, a particular set of characteristic parameters is proposed, based on the terminal jet diameter. In order to solve the non-dimensional set of governing equations and boundary conditions, a numerical method combining the Boundary Element Method and the Finite Volume Method is developed. Results of electric current have shown good agreement with numerical and experimental data available in the literature. The main feature of the algorithm developed is related to the decoupling of the electrostatic from the hydrodynamic problem, allowing us to accurately prescribe the far field electric potential boundary conditions away from the hydrodynamic computational domain used to solve the hydrodynamics of the transition region near the cone apex.

  4. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  5. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  6. Global Aerosol Radiative Forcing using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2007-12-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in their characterization and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) will be used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  7. Global Aerosol Radiative Forcing Using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2008-05-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in characterizing their properties and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) is used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  8. Selective surface treatment of micro printing pin and its performance

    NASA Astrophysics Data System (ADS)

    Tsai, Jane Gin Fai; Chen, Zugen; Nelson, Stanley F.; Kim, Chang-Jin

    2006-08-01

    Biological microarray construction relies on the sequential deposition of liquid samples, typically by contact or ink-jet printing. One drawback of contact printing is excessive solution pickup on the pin's outer surface, resulting in inefficiency. The authors combated this problem with a simple method that treats pin surfaces selectively so the outer surface becomes hydrophobic while the inner surface remains hydrophilic. Silicon-micromachined pins were utilized to evaluate the effect. The results demonstrated elimination of preprinting, greater droplet size consistency (e.g., 42±5μm vs 63±13μm), and more spots (˜800 vs ˜300) printed per loading. Consequently, an average spot diameter, between 30 and 100μm, can be controlled, depending on the pin design.

  9. Steady generation of aerosols with an improved constant output atomizer

    NASA Technical Reports Server (NTRS)

    Dea, J. Y.; Katz, U.

    1981-01-01

    It is common practice to generate laboratory aerosols of soluble materials with pneumatic atomizers. In a typical device, a solution of the substance to be aerosolized is injected into a jet of air and the liquid is broken up into very small droplets. After forced evaporation, a dry aerosol of the solute is produced. A number of commercially available devices were tested, and despite differences in design, all the atomizers tested suffered from short- and/or long-term fluctuations of their output particle number concentrations. The mechanisms responsible for atomizer instabilities are discussed and methods for alleviating these problems are considered.

  10. Printed hybrid systems

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  11. BOK-Printed Electronics

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2013-01-01

    The use of printed electronics technologies (PETs), 2D or 3D printing approaches either by conventional electronic fabrication or by rapid graphic printing of organic or nonorganic electronic devices on various small or large rigid or flexible substrates, is projected to grow exponentially in commercial industry. This has provided an opportunity to determine whether or not PETs could be applicable for low volume and high-reliability applications. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the current status of organic and printed electronics technologies. It reviews three key industry roadmaps- on this subject-OE-A, ITRS, and iNEMI-each with a different name identification for this emerging technology. This followed by a brief review of the status of the industry on standard development for this technology, including IEEE and IPC specifications. The report concludes with key technologies and applications and provides a technology hierarchy similar to those of conventional microelectronics for electronics packaging. Understanding key technology roadmaps, parameters, and applications is important when judicially selecting and narrowing the follow-up of new and emerging applicable technologies for evaluation, as well as the low risk insertion of organic, large area, and printed electronics.

  12. Fabrication of paper-based microfluidic sensors by printing.

    PubMed

    Li, Xu; Tian, Junfei; Garnier, Gil; Shen, Wei

    2010-04-01

    A novel method for the fabrication of paper-based microfluidic diagnostic devices is reported; it consists of selectively hydrophobizing paper using cellulose reactive hydrophobization agents. The hydrophilic-hydrophobic contrast of patterns so created has excellent ability to control capillary penetration of aqueous liquids in paper channels. Incorporating this idea with digital ink jet printing techniques, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and indicator reagents with precision into the microfluidic patterns to form bio-chemical sensing zones within the device. This method thus allows the complete sensor, i.e. channel patterns and the detecting chemistries, to be fabricated only by two printing steps. This fabrication method can be scaled up and adapted to use high speed, high volume and low cost commercial printing technology. Sensors can be fabricated for specific tests, or they can be made as general devices to perform on-demand quantitative analytical tasks by incorporating the required detection chemistries for the required tasks.

  13. MANCHESTER MILLS, PRINT WORKS: BLUE DYE AND SOAPING; PRINTING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MANCHESTER MILLS, PRINT WORKS: BLUE DYE AND SOAPING; PRINTING AND BLEACHING BUILDINGS. PHOTOCOPY OF c. 1905 VIEW LOOKING NORTHEAST. From the collection of Mr. George Durette, Photographer, Manchester, N. H. - Amoskeag Millyard, Canal Street, Manchester, Hillsborough County, NH

  14. Size aspects of metered-dose inhaler aerosols.

    PubMed

    Kim, C S; Trujillo, D; Sackner, M A

    1985-07-01

    The aerodynamic size distribution of several bronchodilator and corticosteroid metered-dose inhaler (MDI) aerosols was estimated in both dry and humid (90% RH) air environments with a six-stage cascade impactor. The distribution of aerosol size that penetrated into a simulated lung model were also measured. The size distributions were approximately log-normal and ranged from 2.4 to 5.5 micron in mass median aerodynamic diameter (MMAD) with geometric standard deviation (GSD) of 1.7 to 2.5 in a dry environment. In humid air, MMAD increased from 1 to 26% above the dry air state, but GSD remained unchanged. The size of aerosol delivered by MDI that penetrated into a simulated lung model fell to 2.4 to 2.8 micron in MMAD (GSD, 1.9 to 2.2). In contrast to aerosols produced by MDI, MMAD of an aerosol of cromolyn sodium powder dispersed by a Spinhaler increased rapidly with increasing humidity, 5.6 +/- 0.3 micron in dry air and 10.1 +/- 0.8 micron in 90% RH air. Finally, the factors influencing size of MDI-delivered aerosols, including formulation, canister pressure, physicochemical properties of propellants, and design of the valve and actuator orifices are discussed. Effective delivery of MDI-generated aerosols into the lung is highly dependent on particle dynamics and jet flow, and no single parameter can produce a unique particle size and jet pattern.

  15. The Giant Jet

    NASA Astrophysics Data System (ADS)

    Neubert, T.; Chanrion, O.; Arnone, E.; Zanotti, F.; Cummer, S.; Li, J.; Füllekrug, M.; van der Velde, O.

    2012-04-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the longest electric discharges on our planet. The electric properties of jets, such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measurements. Here we present an analysis of the first gigantic jet that with certainty has a positive polarity. The jet region in the mesosphere was illuminated by an unusual sprite discharge generated by a positive cloud-to-ground lightning flash shortly after the onset of the jet. The sprite appeared with elements in a ring at ~40 km distance around the jet, the elements pointing curving away from the jet. This suggests that the field close the jet partially cancels the field driving the sprite. From a simple model of the event we conclude that a substantial portion of the positive cloud potential must be carried to ~50 km altitude, which is also consistent with the observed channel expansion and the electromagnetic radiation associated with the jet. It is further shown that blue jets are likely to substantially modify the free electron content in the lower ionosphere because of increased electron attachment driven by the jet electric field. The model further makes clear the relationship between jets, gigantic jets, and sprites. This is the first time that sprites are used for sounding the properties of the mesosphere. The observations presented here will allow evaluation of theories for jet and gigantic jet generation and of their influence on the atmosphere-ionosphere system.

  16. Using Environmental Print to Enhance Emergent Literacy and Print Motivation

    ERIC Educational Resources Information Center

    Neumann, Michelle M.; Hood, Michelle; Ford, Ruth M.

    2013-01-01

    Given the ubiquitous and salient nature of environmental print, it has the potential to scaffold emergent literacy in young children. This randomised control study evaluated the effects of using environmental print compared to standard print (the same labels in manuscript form) in an 8-week intervention (30 min per week) to foster 3- to…

  17. Temporal instability analysis of inviscid compound jets falling under gravity

    NASA Astrophysics Data System (ADS)

    Mohsin, Muhammad; Uddin, Jamal; Decent, Stephen P.; Afzaal, Muhammad F.

    2013-01-01

    Compound liquid jets can be used in a variety of industrial applications ranging from capsule production in pharmaceutics to enhance printing methods in ink-jet printing. An appreciation of how instability along compound jets can lead to breakup and droplet formation is thus critical in many fields in science and engineering. In this paper, we perform a theoretical analysis to examine the instability of an axisymmetric inviscid compound liquid jet which falls vertically under the influence of gravity. We use a long-wavelength, slender-jet asymptotic expansion to reduce the governing equations of the problem into a set of one-dimensional partial differential equations, which describe the evolution of the leading-order axial velocity of the jet as well as the radii of both the inner and the outer interfaces. We first determine the steady-state solutions of the one-dimensional model equations and then we perform a linear temporal instability analysis to obtain a dispersion relation, which gives us useful information about the maximum growth rate and the maximum wavenumber of the imposed wave-like disturbance. We use our results to estimate the location and qualitative nature of breakup and then compare our results with numerical simulations.

  18. For the Classroom: Print Shop.

    ERIC Educational Resources Information Center

    Current, 1984

    1984-01-01

    Presents an activity for students (ages 5-6 and 7-14) to identify external characteristics of marine life and plants through printing (using homemade stamp pads). Includes procedures and list of materials, and printing ideas. (JN)

  19. Fully printed and flexible ferroelectric capacitors based on a ferroelectric polymer for pressure detection

    NASA Astrophysics Data System (ADS)

    Sekine, Tomohito; Sugano, Ryo; Tashiro, Tomoya; Fukuda, Kenjiro; Kumaki, Daisuke; Domingues Dos Santos, Fabrice; Miyabo, Atsushi; Tokito, Shizuo

    2016-10-01

    We report on the fabrication and demonstration of fully printed ferroelectric capacitors using poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)]. The printed ferroelectric capacitors were primarily fabricated by ink-jet printing on a thin plastic film substrate. The annealing process for the P(VDF-TrFE) layer was optimized from the viewpoints of surface morphology and crystallinity. A good ferroelectric polarization-electric field loop and piezoelectricity in the P(VDF-TrFE) were achieved for the printed ferroelectric capacitors. We have succeeded in the detection of a weak pressure of 150 mbar using the printed ferroelectric capacitor, which is an indication of a potential application to health-care biosensors. These results were realized by the optimization of the annealing temperature for the P(VDF-TrFE) layer.

  20. Digital laser printing of aluminum micro-structure on thermally sensitive substrates

    NASA Astrophysics Data System (ADS)

    Zenou, Michael; Sa'ar, Amir; Kotler, Zvi

    2015-05-01

    Aluminum metal is of particular interest for use in printed electronics due to its low cost, high conductivity and low migration rate in electrically driven organic-based devices. However, the high reactivity of Al particles at the nano-scale is a major obstacle in preparing stable inks from this metal. We describe digital printing of aluminum micro-structures by laser-induced forward transfer in a sub-nanosecond pulse regime. We manage to jet highly stable molten aluminum micro-droplets with very low divergence, less than 2 mrad, from 500 nm thin metal donor layers. We analyze the micro-structural properties of the print geometry and their dependence on droplet volume, print gap and spreading. High quality printing of aluminum micro-patterns on plastic and paper is demonstrated.

  1. Single step high-speed printing of continuous silver lines by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Puerto, D.; Biver, E.; Alloncle, A.-P.; Delaporte, Ph.

    2016-06-01

    The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.

  2. Laser microfabrication of biomedical devices: time-resolved microscopy of the printing process

    NASA Astrophysics Data System (ADS)

    Serra, P.; Patrascioiu, A.; Fernández-Pradas, J. M.; Morenza, J. L.

    2013-04-01

    Laser printing constitutes an interesting alternative to more conventional printing techniques in the microfabrication of biomedical devices. The principle of operation of most laser printing techniques relies on the highly localized absorption of strongly focused laser pulses in the close proximity of the free surface of the liquid to be printed. This leads to the generation of a cavitation bubble which further expansion results in the ejection of a small fraction of the liquid, giving place to the deposition of a well-defined droplet onto a collector substrate. Laser printing has proved feasible for printing biological materials, from single-stranded DNA to proteins, and even living cells and microorganisms, with high degrees of resolution and reproducibility. In consequence, laser printing appears to be an excellent candidate for the fabrication of biological microdevices, such as DNA and protein microarrays, or miniaturized biosensors. The optimization of the performances of laser printing techniques requires a detailed knowledge of the dynamics of liquid transfer. Time-resolved microscopy techniques play a crucial role in this concern, since they allow tracking the evolution of the ejected material with excellent time and spatial resolution. Investigations carried out up to date have shown that liquid ejection proceeds through the formation of long, thin and stable liquid jets. In this work the different approaches used so far for monitoring liquid ejection during laser printing are considered, and it is shown how these techniques make possible to understand the complex dynamics involved in the process.

  3. Printing and the Online Catalog.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1984-01-01

    Discusses issues involved in offering printing for online library catalogs and weighs advantages and disadvantages of screen printing versus remote printing--speed, quality, privacy, convenience, noise, control, costs, accessibility and service. Additional technical issues discussed are buffered versus unbuffered asynchronous printer ports,…

  4. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  5. A laser printing based approach for printed electronics

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Hu, M.; Liu, Y.; Guo, Q.; Wang, X.; Zhang, W.; Lau, W.; Yang, J.

    2016-03-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  6. "Printed-circuit" rectenna

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.

  7. Just press print

    NASA Astrophysics Data System (ADS)

    Ornes, Stephen

    2013-09-01

    Patients requiring an organ transplant may one day no longer have to wait for a matching donor. As Stephen Ornes explains, researchers are making progress towards creating human organs with techniques such as 3D printing, using the patient's own cells for ink.

  8. Serendipitous Stencil Prints

    ERIC Educational Resources Information Center

    Tam, Jeff

    2008-01-01

    Printing, stamping, and rubbings are enjoyed by all ages, and the image-making capabilities of this media are endless and very spontaneous. In printmaking, images can be repeated, overlapped, inked in various colors, cut up, reassembled, and manipulated. Students find these methods to be engaging and serendipitous. This lesson, designed for eighth…

  9. Tin Can Textile Printing.

    ERIC Educational Resources Information Center

    Mansfield, Patricia; Sanford, Barbara

    1979-01-01

    Describes the process of "canning"--applying textile pigment or dye to cloth by moving a pigment-filled can across the fabric to create a linear design. This printing process is described as low-cost, easy, and suitable for all age and artistic levels. (Author/SJL)

  10. Bloomin' Color Celery Prints.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2002-01-01

    Describes a second and third grade art activity in which students used celery cores to create pictures in the style of Georgia O'Keefe. Explains that the students learned about O'Keefe's artwork and describes how the students created their prints. (CMK)

  11. Print Advertisements in Malaysia

    ERIC Educational Resources Information Center

    Hashim, Azirah

    2010-01-01

    This paper examines print advertisements in Malaysia to determine how advertisers seek to achieve their primary goal of persuading or influencing an audience by the use of both language and visuals. It describes the main component moves and rhetorical strategies used by writers to articulate the communicative purpose of the genre and the language…

  12. Control of jet noise

    NASA Astrophysics Data System (ADS)

    Schreck, Stefan

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  13. Assessment of ink jet technology for micro-dispensing of metal particle-bearing fluids

    SciTech Connect

    Lowe, T.C.

    1988-05-01

    Ink jet printing technology is explored as a means for precisely depositing metal-bearing fluids on porous and nonporous substrates. Several inks were formulated and evaluated in related, but separate, ink jet experiments. Alternative ink jet hardware configurations were examined to show the influence of ink jet system parameters on droplet formation and system reliability. The experiments successfully demonstrated the feasibility of generating metal-bearing ink droplets with velocities less than 1 m/s and diameters as small as 28 micrometers. 3 refs., 6 figs., 8 tabs.

  14. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  15. A 3D printed superconducting aluminium microwave cavity

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Sercombe, Timothy B.; Tobar, Michael E.

    2016-07-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  16. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  17. Control of jet noise

    NASA Astrophysics Data System (ADS)

    Schreck, Stefan

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  18. Measurements of Atmospheric Aerosol Vertical Distributions above Svalbard, Norway using Unmanned Aerial Systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Johnson, J. E.; Stalin, S.; Telg, H.; Murphy, D. M.; Burkhart, J. F.; Quinn, P.; Storvold, R.

    2015-12-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2015 to investigate the processes controlling aerosol concentrations and radiative effects. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS) on 9 flights totaling 19 flight hours. Measurements were made of particle number concentration and aerosol light absorption at three wavelengths, similar to those conducted in April 2011 (Bates et al., Atmos. Meas. Tech., 6, 2115-2120, 2013). A filter sample was collected on each flight for analyses of trace elements. Additional measurements in the aerosol payload in 2015 included aerosol size distributions obtained using a Printed Optical Particle Spectrometer (POPS) and aerosol optical depth obtained using a four wavelength miniature Scanning Aerosol Sun Photometer (miniSASP). The data show most of the column aerosol mass and resulting optical depth in the boundary layer but frequent aerosol layers aloft with high particle number concentration (2000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Transport of these aerosol layers was assessed using FLEXPART particle dispersion models. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  19. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  20. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    PubMed

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  1. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    PubMed Central

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  2. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  3. Accuracy of three-dimensional printing for manufacturing replica teeth

    PubMed Central

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol

    2015-01-01

    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment. PMID:26445716

  4. Jets of incipient liquids

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  5. Inkjet printing of aqueous rivulets: Formation, deposition, and applications

    NASA Astrophysics Data System (ADS)

    Bromberg, Vadim

    The past two decades have seen an explosion of research and development into nanotechnology, ranging from synthesis of novel materials that exhibit unique behavior to the assembly of fully functional devices that hold the potential to benefit all sectors of industry and society as a whole. One significant challenge for this emerging technology is the scaling of newly developed processes to the industrial level where manufacturing should be cheap, fast and with high throughput. One approach to this problem has been to develop processes of material deposition and device fabrication via solution-based additive manufacturing techniques such as printing. Specifically, it is envisioned that (in)organic functional nanomaterial that can be processed into solution form can be deposited in a precise manner (i.e., printed) onto sheets of flexible plastic/glass in a process similar to the printing of newspaper (formally, the process is dubbed Roll-to-Roll). This work is focused on experimentally studying and developing one type of solution-based material deposition technique---drop-on-demand ink-jet printing. This technique allows highly-repeatable deposition of small (pico-liter) droplets of functional ink in precise locations on a given target substrate. Although the technology has been in existence and in continuous use for many decades in the paper graphics industry, its application to nanotechnology-based fabrication processes on non-porous substrates presents many challenges stemming from the coupling of the wetting, material transport, evaporation and solid deposition phenomena that occur when printing patterns more complex than single droplets. The focus of this research has been to investigate these phenomena for the case of printed rivulets of water-based inks. A custom ink-jet apparatus has been assembled to allow direct optical observation of the flow and deposition that occur during printing. Experimental results show the importance of substrate surface energy and

  6. Biomimetic 4D printing

    NASA Astrophysics Data System (ADS)

    Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.; Mahadevan, L.; Lewis, Jennifer A.

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

  7. Biomimetic 4D printing.

    PubMed

    Gladman, A Sydney; Matsumoto, Elisabetta A; Nuzzo, Ralph G; Mahadevan, L; Lewis, Jennifer A

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

  8. Biomimetic 4D printing.

    PubMed

    Gladman, A Sydney; Matsumoto, Elisabetta A; Nuzzo, Ralph G; Mahadevan, L; Lewis, Jennifer A

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies. PMID:26808461

  9. Electrohydrodynamic Printing and Manufacturing

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  10. Fluorinated graphene suspension for inkjet printed technologies.

    PubMed

    Nebogatikova, N A; Antonova, I V; Kurkina, I I; Soots, R A; Vdovin, V I; Timofeev, V B; Smagulova, S A; Prinz, V Ya

    2016-05-20

    The possibility to control the size of the flakes of graphene suspension in the course of their fluorination in an aqueous hydrofluoric acid solution was demonstrated. The effect of the suspension composition, the fluorination time, temperature and thermal stress on the fragmentation process was investigated. The corrugation of suspension flakes, which occurs at fluorination due to a difference in the constants of graphene and fluorographene lattices, leads to the appearance of nonuniform mechanical stresses. The fact that the flake size after fragmentation is determined by the size of corrugation allows the assumption that the driving force of fragmentation is this mechanical stress. This assumption is confirmed by the break of the corrugated layers from flakes under thermal stress. Moreover, fluorination treatment at elevated temperatures (∼70 °C) significantly accelerates the fragmentation process. Suspensions of fluorinated graphene with nanometer size flakes are of interest for the development of 2D ink-jet printing technologies and production of thermally and chemically stable dielectric films for nanoelectronics. The printed fluorinated graphene films on silicon and flexible substrates have been demonstrated and the charges in metal-insulator-semiconductor structures have been estimated as the ultra low values of (0.5-2) × 10(10) cm(-2). PMID:27044067

  11. Fluorinated graphene suspension for inkjet printed technologies

    NASA Astrophysics Data System (ADS)

    Nebogatikova, N. A.; Antonova, I. V.; Kurkina, I. I.; Soots, R. A.; Vdovin, V. I.; Timofeev, V. B.; Smagulova, S. A.; Prinz, V. Ya

    2016-05-01

    The possibility to control the size of the flakes of graphene suspension in the course of their fluorination in an aqueous hydrofluoric acid solution was demonstrated. The effect of the suspension composition, the fluorination time, temperature and thermal stress on the fragmentation process was investigated. The corrugation of suspension flakes, which occurs at fluorination due to a difference in the constants of graphene and fluorographene lattices, leads to the appearance of nonuniform mechanical stresses. The fact that the flake size after fragmentation is determined by the size of corrugation allows the assumption that the driving force of fragmentation is this mechanical stress. This assumption is confirmed by the break of the corrugated layers from flakes under thermal stress. Moreover, fluorination treatment at elevated temperatures (∼70 °C) significantly accelerates the fragmentation process. Suspensions of fluorinated graphene with nanometer size flakes are of interest for the development of 2D ink-jet printing technologies and production of thermally and chemically stable dielectric films for nanoelectronics. The printed fluorinated graphene films on silicon and flexible substrates have been demonstrated and the charges in metal–insulator–semiconductor structures have been estimated as the ultra low values of (0.5–2) × 1010 cm‑2.

  12. Fluorinated graphene suspension for inkjet printed technologies

    NASA Astrophysics Data System (ADS)

    Nebogatikova, N. A.; Antonova, I. V.; Kurkina, I. I.; Soots, R. A.; Vdovin, V. I.; Timofeev, V. B.; Smagulova, S. A.; Prinz, V. Ya

    2016-05-01

    The possibility to control the size of the flakes of graphene suspension in the course of their fluorination in an aqueous hydrofluoric acid solution was demonstrated. The effect of the suspension composition, the fluorination time, temperature and thermal stress on the fragmentation process was investigated. The corrugation of suspension flakes, which occurs at fluorination due to a difference in the constants of graphene and fluorographene lattices, leads to the appearance of nonuniform mechanical stresses. The fact that the flake size after fragmentation is determined by the size of corrugation allows the assumption that the driving force of fragmentation is this mechanical stress. This assumption is confirmed by the break of the corrugated layers from flakes under thermal stress. Moreover, fluorination treatment at elevated temperatures (˜70 °C) significantly accelerates the fragmentation process. Suspensions of fluorinated graphene with nanometer size flakes are of interest for the development of 2D ink-jet printing technologies and production of thermally and chemically stable dielectric films for nanoelectronics. The printed fluorinated graphene films on silicon and flexible substrates have been demonstrated and the charges in metal-insulator-semiconductor structures have been estimated as the ultra low values of (0.5-2) × 1010 cm-2.

  13. Protocols for printing thick film ceramic libraries using the London University Search Instrument (LUSI).

    PubMed

    Chen, L; Zhang, Y; Yang, S; Evans, J R G

    2007-07-01

    Thick film combinatorial libraries can be prepared by mixing ceramic suspensions using stepper-driven syringes to control ink-jet-printing nozzles, but a more tolerant and efficient method has been devised using a simplification of the same equipment. By simplifying the printing sequence and using direct deposition from the stepper syringes, the time committed to a repetitive sequence of priming and cleaning the ink-jet printer nozzles is reduced. Polytetrafluoroethylene (PTFE) open ended tubes and commercial pipette tips are used as the printing nozzles. Calibration and corrections for the method are described. This method opens up the possibility for making ceramic libraries more rapidly with much simpler and less expensive equipment.

  14. Protocols for printing thick film ceramic libraries using the London University Search Instrument (LUSI)

    SciTech Connect

    Chen, L.; Zhang, Y.; Yang, S.; Evans, J. R. G.

    2007-07-15

    Thick film combinatorial libraries can be prepared by mixing ceramic suspensions using stepper-driven syringes to control ink-jet-printing nozzles, but a more tolerant and efficient method has been devised using a simplification of the same equipment. By simplifying the printing sequence and using direct deposition from the stepper syringes, the time committed to a repetitive sequence of priming and cleaning the ink-jet printer nozzles is reduced. Polytetrafluoroethylene (PTFE) open ended tubes and commercial pipette tips are used as the printing nozzles. Calibration and corrections for the method are described. This method opens up the possibility for making ceramic libraries more rapidly with much simpler and less expensive equipment.

  15. Plasmonic colour laser printing.

    PubMed

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil; Mortensen, N Asger; Kristensen, Anders

    2016-04-01

    Colour generation by plasmonic nanostructures and metasurfaces has several advantages over dye technology: reduced pixel area, sub-wavelength resolution and the production of bright and non-fading colours. However, plasmonic colour patterns need to be pre-designed and printed either by e-beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel. PMID:26657786

  16. Plasmonic colour laser printing

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2016-04-01

    Colour generation by plasmonic nanostructures and metasurfaces has several advantages over dye technology: reduced pixel area, sub-wavelength resolution and the production of bright and non-fading colours. However, plasmonic colour patterns need to be pre-designed and printed either by e-beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel.

  17. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  18. The power of print: children's trust in unexpected printed suggestions.

    PubMed

    Eyden, Julie; Robinson, Elizabeth J; Einav, Shiri; Jaswal, Vikram K

    2013-11-01

    How do children evaluate the veracity of printed text? We examined children's handling of unexpected suggestions conveyed via print versus orally. In Experiment 1 (N=131), 3- to 6-year-olds witnessed a speaker either read aloud an unexpected but not completely implausible printed label (e.g., fish for a bird-like animal with some fish features) or speak the label without accompanying text. Pre-readers accepted labels in both conditions. Early readers often rejected spoken labels yet accepted them in the print condition, and in Experiment 2 (N=55) 3- to 6-year-olds continued to apply them even after the print was obscured. Early readers accept printed testimony that they reject if only spoken, and the influence of text endures even when it is no longer visible. PMID:23981273

  19. Multi-jets formation using laser forward transfer

    NASA Astrophysics Data System (ADS)

    Biver, Emeric; Rapp, Ludovic; Alloncle, Anne-Patricia; Delaporte, Philippe

    2014-05-01

    The dynamics of multi-jets formation in liquid films has been investigated using the laser-induced forward transfer (LIFT) technique. This technique allows the deposition of micrometer-sized droplets with a high spatial resolution from a donor substrate to a receiver substrate. The donor was a silver nanoparticles ink-coated substrate. The interaction of the laser pulse with the donor ink layer generates an expanding bubble in the liquid which propels a jet towards the receiver. Silver lines have already been printed by depositing overlapping droplets in a “low speed” process. In order to increase the throughput, it is necessary to decrease the time between the depositions of two droplets. By scanning the beam of a high repetition rate UV picosecond laser (343 nm; 30 ps; 500 kHz) with a galvanometric mirror, successive pulses are focused on the silver nanoparticles ink-coated donor substrate. The shape and dynamics of single jets and adjacent jets have been investigated by means of a time-resolved imaging technique. By varying the distance between the laser spots, different behaviours were observed and compared to the printed droplets. A spacing of 25 μm between laser spots was found to generate both stable jets and well-controlled, reproducible droplets at high speed.

  20. Jets at CDF

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U.

    2006-08-01

    Recent jet results in p{bar p} collisions at {radical}s = 1.96 TeV from the CDF experiment at the Tevatron are presented. The jet inclusive cross section is compared to next-to-leading order QCD prediction in different rapidity regions. The b-jet inclusive cross section is measured exploiting the long lifetime and large mass of B-hadrons. Jet shapes, W+jets and W/Z+photon cross sections are also measured and compared to expectations from QCD production.

  1. Protostellar Jets: Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Vitorino, B. F.; Jatenco-Pereira, V.; Opher, R.

    1998-11-01

    Numerical simulations of astrophysical jets have been made in order to study their collimation and internal structure. Recently Ouyed & Pudritz (1997) did numerical simulations of axi-simetric magnetocentrifugal jets from a keplerian acretion disk employing the eulerian finite difference code Zeus-2D. During their simulation, it was raised a steady state jet confirming a lot of results of the MHD winds steady state theory. Following this scenario we did tridimensional numerial simulations of this model allowing the jet, after a perturbation, evolve into a not steady state producing the helical features observed in some protostellar jets.

  2. Analysis of tropospheric aerosol number density for aerosols of 0.2- to 3-micrometers diameter: Central and northeastern Canada

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Anderson, Bruce E.; Barrick, John D.; Hudgins, Charles H.; Bagwell, Donald R.; Blake, Donald R.

    1994-01-01

    NASA's Atmospheric Boundary Layer Experiment conducted during the summer of 1990 focused on the distribution of trace species in central and northeastern Canada (altitudes less than 6 km) and the importance of surface sources/sinks, local emissions, distant transport, tropospheric/stratospheric exchange. Aircraft flights were based from North Bay, Ontario, and Goose Bay, Labrador, Canada. As part of the aircraft measurements, aerosol number density (0.2- to 3-micrometers diameter) was measured using an optical laser technique. Results show that summertime aerosol budgets of central and northeastern Canada can be significantly impacted by the transport of pollutants from distant source regions. Biomass burning in Alaska and western and central Canada exerts major influences on regional aerosol budgets. Urban emissions transported from the U.S./Canadian border regions are also important. Aerosol enhancements (mixed layer and free troposphere) were most prevalent in air with carbon monoxide mixing ratios greater than 110 parts per billion by volume (ppbv). When data were grouped as to the source of the air (5-day back trajectories) either north or south of the polar jet, aerosol number density in the mixed layer showed a tendency to be enhanced for air south of the jet relative to north of the jet. However, this difference was not observed for measurements at the higher altitudes (4 to 6 km). For some flights, mixed layer aerosol number densities were greater than 100 higher than free-tropospheric values (3- to 6-km altitude). The majority of the observed mixed layer enhancement was associated with transport of effluent-rich air into the Canadian regions. Aerosol emissions from natural Canadian ecosystems were relatively small when compared to transport.

  3. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  4. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  5. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  6. Recent trends in print portals and Web2Print applications

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2009-01-01

    For quite some time now, the printing business has been under heavy pressure because of overcapacity, dropping prices and the delocalization of the production to low income countries. To survive in this competitive world, printers have to invest in tools that, on one hand, reduce the production costs and, on the other hand, create additional value for their customers (print buyers). The creation of customer portals on top of prepress production systems allowing print buyers to upload their content, approve the uploaded pages based on soft proofs (rendered by the underlying production system) and further follow-up the generation of the printed material, has been illustrative in this respect. These developments resulted in both automation for the printer and added value for the print buyer. Many traditional customer portals assume that the printed products have been identified before they are presented to the print buyer in the portal environment. The products are, in this case, typically entered by the printing organization in a so-called MISi system after the official purchase order has been received from the print buyer. Afterwards, the MIS system then submits the product to the customer portal. Some portals, however, also support the initiation of printed products by the print buyer directly. This workflow creates additional flexibility but also makes things much more complex. We here have to distinguish between special products that are defined ad-hoc by the print buyer and standardized products that are typically selected out of catalogs. Special products are most of the time defined once and the level of detail required in terms of production parameters is quite high. Systems that support such products typically have a built-in estimation module, or, at least, a direct connection to an MIS system that calculates the prices and adds a specific mark-up to calculate a quote. Often, the markup is added by an account manager on a customer by customer basis; in this

  7. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. On jet substructure methods for signal jets

    NASA Astrophysics Data System (ADS)

    Dasgupta, Mrinal; Powling, Alexander; Siodmok, Andrzej

    2015-08-01

    We carry out simple analytical calculations and Monte Carlo studies to better understand the impact of QCD radiation on some well-known jet substructure methods for jets arising from the decay of boosted Higgs bosons. Understanding differences between taggers for these signal jets assumes particular significance in situations where they perform similarly on QCD background jets. As an explicit example of this we compare the Y-splitter method to the more recently proposed Y-pruning technique. We demonstrate how the insight we gain can be used to significantly improve the performance of Y-splitter by combining it with trimming and show that this combination outperforms the other taggers studied here, at high p T . We also make analytical estimates for optimal parameter values, for a range of methods and compare to results from Monte Carlo studies.

  11. Splattering during turbulent liquid jet impingement on solid targets

    SciTech Connect

    Bhunia, S.K.; Lienhard, J.H. V . Dept. of Mechanical Engineering)

    1994-06-01

    In turbulent liquid jet impingement, a spray of droplets often breaks off of the liquid layer formed on the target. This splattering of liquid alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. In this paper, the authors present a more complete study of splattering and improved correlations that extend and supersede the previous reports on this topic. The authors report experimental results on the amount of splattering for jets of water, isopropanol-water solutions, and soap-water mixtures. Jets were produced by straight tube nozzles of diameter 0.8--5.8 mm, with fully developed turbulent pipe-flow upstream of the nozzle exist. These experiments cover Weber numbers between 130--31,000, Reynolds numbers between 2,700--98,000, and nozzle-to-target separations of 0.2 [<=]l/d[<=]125. Splattering of up to 75 percent of the incoming jet liquid is observed. The results show that only the Weber number and l/d affect the fraction of jet liquid splattered. The presence of surfactants does not alter the splattering. A new correlation for the onset condition for splattering is given. In addition, the authors establish the range of applicability of the model of Lienhard et al. and the authors provide a more accurate set of coefficients for their correlation.

  12. Versioning of printed products

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2005-01-01

    During the definition of a printed product in an MIS system, a lot of attention is paid to the production process. The MIS systems typically gather all process-related parameters at such a level of detail that they can determine what the exact cost will be to make a specific product. This information can then be used to make a quote for the customer. Considerably less attention is paid to the content of the products since this does not have an immediate impact on the production costs (assuming that the number of inks or plates is known in advance). The content management is typically carried out either by the prepress systems themselves or by dedicated workflow servers uniting all people that contribute to the manufacturing of a printed product. Special care must be taken when considering versioned products. With versioned products we here mean distinct products that have a number of pages or page layers in common. Typical examples are comic books that have to be printed in different languages. In this case, the color plates can be shared over the different versions and the black plate will be different. Other examples are nation-wide magazines or newspapers that have an area with regional pages or advertising leaflets in different languages or currencies. When considering versioned products, the content will become an important cost factor. First of all, the content management (and associated proofing and approval cycles) becomes much more complex and, therefore, the risk that mistakes will be made increases considerably. Secondly, the real production costs are very much content-dependent because the content will determine whether plates can be shared across different versions or not and how many press runs will be needed. In this paper, we will present a way to manage different versions of a printed product. First, we will introduce a data model for version management. Next, we will show how the content of the different versions can be supplied by the customer

  13. Versioning of printed products

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2004-12-01

    During the definition of a printed product in an MIS system, a lot of attention is paid to the production process. The MIS systems typically gather all process-related parameters at such a level of detail that they can determine what the exact cost will be to make a specific product. This information can then be used to make a quote for the customer. Considerably less attention is paid to the content of the products since this does not have an immediate impact on the production costs (assuming that the number of inks or plates is known in advance). The content management is typically carried out either by the prepress systems themselves or by dedicated workflow servers uniting all people that contribute to the manufacturing of a printed product. Special care must be taken when considering versioned products. With versioned products we here mean distinct products that have a number of pages or page layers in common. Typical examples are comic books that have to be printed in different languages. In this case, the color plates can be shared over the different versions and the black plate will be different. Other examples are nation-wide magazines or newspapers that have an area with regional pages or advertising leaflets in different languages or currencies. When considering versioned products, the content will become an important cost factor. First of all, the content management (and associated proofing and approval cycles) becomes much more complex and, therefore, the risk that mistakes will be made increases considerably. Secondly, the real production costs are very much content-dependent because the content will determine whether plates can be shared across different versions or not and how many press runs will be needed. In this paper, we will present a way to manage different versions of a printed product. First, we will introduce a data model for version management. Next, we will show how the content of the different versions can be supplied by the customer

  14. Block-Cell-Printing for live single-cell printing

    PubMed Central

    Zhang, Kai; Chou, Chao-Kai; Xia, Xiaofeng; Hung, Mien-Chie; Qin, Lidong

    2014-01-01

    A unique live-cell printing technique, termed “Block-Cell-Printing” (BloC-Printing), allows for convenient, precise, multiplexed, and high-throughput printing of functional single-cell arrays. Adapted from woodblock printing techniques, the approach employs microfluidic arrays of hook-shaped traps to hold cells at designated positions and directly transfer the anchored cells onto various substrates. BloC-Printing has a minimum turnaround time of 0.5 h, a maximum resolution of 5 µm, close to 100% cell viability, the ability to handle multiple cell types, and efficiently construct protrusion-connected single-cell arrays. The approach enables the large-scale formation of heterotypic cell pairs with controlled morphology and allows for material transport through gap junction intercellular communication. When six types of breast cancer cells are allowed to extend membrane protrusions in the BloC-Printing device for 3 h, multiple biophysical characteristics of cells—including the protrusion percentage, extension rate, and cell length—are easily quantified and found to correlate well with their migration levels. In light of this discovery, BloC-Printing may serve as a rapid and high-throughput cell protrusion characterization tool to measure the invasion and migration capability of cancer cells. Furthermore, primary neurons are also compatible with BloC-Printing. PMID:24516129

  15. Dielectrophoretic bending of directly printed free-standing ultra-soft nanowires

    SciTech Connect

    Galliker, P.; Schneider, J.; Poulikakos, D.

    2014-02-17

    Electrohydrodynamic printing has shown superior resolution compared to conventional ink-jet printing, but the use of electrically charged liquid commonly leads to unwanted repulsion effects posing a threshold to resolution capabilities. However, a recently demonstrated controlled dripping process of nanoscale, particle-laden droplets, could circumvent such resolution obstacles even on insulating substrates. Here, we show that so-printed free-standing nanostructures can be autonomously deformed, and mechanically characterized due to the presence of the electrified nozzle, or, after voltage termination, due to transient charge residuals on the structures themselves. Dielectrophoretic forces, arising between two subsequently printed nanopillars lead to their contactless bending and to the formation of out-of-plane arc structures arising from the connection of the pillar apexes. Once connected, the ultra-soft nanopillars are found to be tightly merged and could, for example, serve in electronics as out of plane nanobonds.

  16. Aerosol Formation In The Free Troposphere: Aircraft and Laboratory Measurements of Ionic and Gaseous Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Arnold, F.

    Aerosol formation seems to be very efficient in the upper troposphere (UT) as in- dicated by the frequent presence of numerous very small and therefore very young aerosol particles. Aersosol formation proceeds via nucleation of supersaturated low volatility trace gases (LVG) involving either a homogeneous (HONU) or an ion- induced (INU) mechanism. LVG experience rapid removal by condenstation on prefer- ably pre-existing aerosol particles and therefore LVG must be formed locally in the UT by photochemical conversion of precursor gases. A prominent example is gaseous sulfuric acid which is formed from SO2. This SO2 originates at least in the northern hemisphere mostly from fossil fuel combustion at ground-level and to some part origi- nates also from jet aircraft cruising in the UT. Other conceivable LVG's are low volatil- ity organic compounds. After formation by nucleation new particles may experience condensational growth involving LVG. Alternatively new particles may experience scavenging by attachment to pre-existing larger particles. The LVG-concentration has a strong influence on the growth-rate of new particles and thereby on the possibil- ity for growth to the size of a cloud condensation nucleus. Unfortunately present knowledge on free tropospheric LVG is rather poor. Here will be reported free tropo- spheric aircraft-based measurements of ionic and gaseous aerosol-precursors. These include both measurements in the "background" FT as well as measurements in ex- haust plumes of jet aircraft cruising in the UT. Furthermore accompanying new labo- ratory investigations of INU and measurements behind aircraft jet engines at ground- level will also be adressed.

  17. Inkjet printing for fabrication of organic photonics and electronics

    NASA Astrophysics Data System (ADS)

    Yoshioka, Yuka

    Organic light-emitting devices (OLEDs) are traditionally patterned either through vacuum deposition masks or by UV lithographs. However, such patterning routes are relatively expensive, time consuming, and geometry limited. On the other hand, developments in the use of inkjet printing as a tool to pattern a given electrode promise a low cost, maskless, and non-contact approach to generate a myriad of patterns. In this dissertation, I will present our exploratory works in ink jet printing techniques, to pattern conductive polymers for use as electrodes with predefined shapes and controlled conductivity. Our works have been extended to explore printing with multiple inks, which mix and/or react with each other, for the use in making artificial muscles and for the developments of inkjet combinatorial techniques. Many factors including surface tension of the printed solution, substrate surface properties, and drying conditions have a direct effect on the final quality and performance of the organic based devices. Issues related to device fabrication on flexible substrates will be discussed and the results of tested devices are shown.

  18. 3-D Printed Slit Nozzles for Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dewberry, Chris; Mackenzie, Becca; Green, Susan; Leopold, Ken

    2015-06-01

    3-D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3-D printing to the facile design and construction of supersonic nozzles. The efficacy of a variety of designs is assessed by examining rotational spectra OCS and Ar-OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. This work focuses primarily on the use of slit nozzles but other designs have been tested as well. New nozzles can be created for 0.50 or less each, and the ease and low cost should facilitate the optimization of nozzle performance (e.g., jet temperature or cluster size distribution) for the needs of any particular experiment.

  19. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets

    NASA Astrophysics Data System (ADS)

    Galliker, P.; Schneider, J.; Eghlidi, H.; Kress, S.; Sandoghdar, V.; Poulikakos, D.

    2012-06-01

    Nanotechnology, with its broad impact on societally relevant applications, relies heavily on the availability of accessible nanofabrication methods. Even though a host of such techniques exists, the flexible, inexpensive, on-demand and scalable fabrication of functional nanostructures remains largely elusive. Here we present a method involving nanoscale electrohydrodynamic ink-jet printing that may significantly contribute in this direction. A combination of nanoscopic placement precision, soft-landing fluid dynamics, rapid solvent vapourization, and subsequent self-assembly of the ink colloidal content leads to the formation of scaffolds with base diameters equal to that of a single ejected nanodroplet. The virtually material-independent growth of nanostructures into the third dimension is then governed by an autofocussing phenomenon caused by local electrostatic field enhancement, resulting in large aspect ratio. We demonstrate the capabilities of our electrohydrodynamic printing technique with several examples, including the fabrication of plasmonic nanoantennas with features sizes down to 50 nm.

  20. The Art of Small Job Printing.

    ERIC Educational Resources Information Center

    Fairhurst, Millicent

    1978-01-01

    Presents guidelines for the design and production of printed promotional materials for library programs, lectures, movies, exhibits, and community events. Areas covered are typography, printing, production, costs, copyfitting and layout, printing stock, and binding. (VT)

  1. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    intertropical convergence zone (ITCZ). This is consistent with the aerosol's shortwave heating of the atmosphere and the fact that SSTs are fixed. Moreover, the Northern hemisphere mid-latitude jet shows an annual-mean zonal-mean poleward shift. Due to large natural variability, however, these signals only emerge clearly in ensemble runs or if the aerosol optical depth is increased by a factor of five compared to the observed magnitude of the present-day anthropogenic aerosol. When SSTs are adapted to include the cooling effect of the aerosol, the ITCZ and the Northern hemisphere jet shift southward in the annual- and zonal-mean. The models exhibit very similar precipitation and zonal wind changes in response to the SST change, showing that SSTs are a key factor for the circulation response. Yet, model differences in the surface and top-of-atmosphere energy balances due to evaporation and cloud-radiative effects imply that the models would show much more different responses if they were coupled to an interactive ocean.

  2. Gas-phase removal of biofilms from various surfaces using carbon dioxide aerosols.

    PubMed

    Cha, Minju; Hong, Seongkyeol; Kang, Min-Yeong; Lee, Jin-Won; Jang, Jaesung

    2012-01-01

    The present study evaluated the removal of Escherichia coli XL1-blue biofilms using periodic jets of carbon dioxide aerosols (a mixture of solid and gaseous CO(2)) with nitrogen gas. The aerosols were generated by the adiabatic expansion of high-pressure CO(2) gas through a nozzle and used to remove air-dried biofilms. The areas of the biofilms were measured from scanning electron micrographs before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured with various air-drying times of the biofilms before the treatment, surface materials, and durations of CO(2) aerosols in each 8-s aerosol-nitrogen cleaning cycle. Nearly 100% of the fresh biofilms were removed from the various surfaces very reliably within 90 s. This technique can be useful for removing unsaturated biofilms on solid surfaces and has potential applications for cleaning bio-contaminated surfaces.

  3. Growth factor array fabrication using a color ink jet printer.

    PubMed

    Watanabe, Kohei; Miyazaki, Takeshi; Matsuda, Ryoichi

    2003-04-01

    We have developed a novel method for growth factor analysis using a commercial color ink jet printer to fabricate substrata patterned with growth factors. We prepared substrata with insulin printed in a simple pattern or containing multiple areas of varying quantities of printed insulin. When we cultured the mouse myoblast cell line, C2C12, on the insulin-patterned substrata, the cells were grown in the same pattern with the insulin-printed pattern. Cell culture with the latter substrata demonstrated that quantity control of insulin deposition by a color ink jet printer is possible. For further applications, we developed substrata with insulin-like growth factor-I (IGF-I) and basic fibroblast growth factor (bFGF) spotted in 16 different areas in varying combinations and concentrations (growth factor array). With this growth factor array, C2C12 cells were cultured, and the onset of muscle cell differentiation was monitored for the expression of the myogenic regulator myogenin. The ratio of cells expressing myogenin varied with the doses of IGF-I and bFGF in the sections, demonstrating a feasibility of growth factor array fabrication by a color ink jet printer. Since a printer manipulates several colors, this method can be easily applied to multivariate analyses of growth factors and attachment factors affecting cell growth and differentiation. This method may provide a powerful tool for cell biology and tissue engineering, especially for stem cell research in investigating unknown conditions for differentiation.

  4. Hotspots, Jets and Environments

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.

    2008-06-01

    I discuss the nature of `hotspots' and `jet knots' in the kpc-scale structures of powerful radio galaxies and their relationship to jet-environment interactions. I describe evidence for interaction between the jets of FRI sources and their local environments, and discuss its relationship to particle acceleration, but the main focus of the paper is the hotspots of FRIIs and on new observational evidence on the nature of the particle acceleration associated with them.

  5. Current therapies and technological advances in aqueous aerosol drug delivery.

    PubMed

    Watts, Alan B; McConville, Jason T; Williams, Robert O

    2008-09-01

    Recent advances in aerosolization technology have led to renewed interest in pulmonary delivery of a variety of drugs. Pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs) have experienced success in recent years; however, many limitations are presented by formulation difficulties, inefficient delivery, and complex device designs. Simplification of the formulation process as well as adaptability of new devices has led many in the pharmaceutical industry to reconsider aerosolization in an aqueous carrier. In the acute care setting, breath-enhanced air-jet nebulizers are controlling and minimizing the amount of wasted medication, while producing a high percentage of respirable droplets. Vibrating mesh nebulizers offer advantages in higher respirable fractions (RFs) and slower velocity aerosols when compared with air-jet nebulizers. Vibrating mesh nebulizers incorporating formulation and patient adaptive components provide improvements to continuous nebulization technology by generating aerosol only when it is most likely to reach the deep lung. Novel innovations in generation of liquid aerosols are now being adapted for propellant-free pulmonary drug delivery to achieve unprecedented control over dose delivered and are leading the way for the adaptation of systemic drugs for delivery via the pulmonary route. Devices designed for the metered dose delivery of insulin, morphine, sildenafil, triptans, and various peptides are all currently under investigation for pulmonary delivery to treat nonrespiratory diseases. Although these devices are currently still in clinical testing (with the exception of the Respimat), metered dose liquid inhalers (MDLIs) have already shown superior outcomes to current pulmonary and systemic delivery methods.

  6. Embellished String Prints. Cover Story.

    ERIC Educational Resources Information Center

    Smith, Mary Ruth

    1999-01-01

    Focuses on a printmaking activity in which students create embellished string prints using the relief process of string glued to chip board. Explains that string prints can easily be embellished with oil pastels. Provides a description of the procedure and a list of materials and methods. (CMK)

  7. Interpretation of extragalactic jets

    SciTech Connect

    Norman, M.L.

    1985-01-01

    The nature of extragalatic radio jets is modeled. The basic hypothesis of these models is that extragalatic jets are outflows of matter which can be described within the framework of fluid dynamics and that the outflows are essentially continuous. The discussion is limited to the interpretation of large-scale (i.e., kiloparsec-scale) jets. The central problem is to infer the physical parameters of the jets from observed distributions of total and polarized intensity and angle of polarization as a function of frequency. 60 refs., 6 figs.

  8. Piezoelectric-driven droplet impact printing with an interchangeable microfluidic cartridge

    PubMed Central

    Li, Baoqing; Fan, Jinzhen; Li, Jiannan; Chu, Jiaru; Pan, Tingrui

    2015-01-01

    Microfluidic impact printing has been recently introduced, utilizing its nature of simple device architecture, low cost, non-contamination, and scalable multiplexability and high throughput. In this paper, we have introduced an impact-based droplet printing platform utilizing a simple plug-and-play microfluidic cartridge driven by piezoelectric actuators. Such a customizable printing system allows for ultrafine control of droplet volume from picoliters (∼23 pl) to nanoliters (∼10 nl), a 500 fold variation. The high flexibility of droplet generation can be simply achieved by controlling the magnitude of actuation (e.g., driving voltage) and the waveform shape of actuation pulses, in addition to nozzle size restrictions. Detailed printing characterizations on these parameters have been conducted consecutively. A multiplexed impact printing system has been prototyped and demonstrated to provide the functions of single-droplet jetting and droplet multiplexing as well as concentration gradient generation. Moreover, a generic biological assay has also been tested and validated on this printing platform. Therefore, the microfluidic droplet printing system could be of potential value to establish multiplexed micro reactors for high-throughput life science applications. PMID:26392833

  9. Observations of Aerosol Conditions Associated with Precipitation Events in the Remote Sierra Nevada Foothills

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Kingsmill, D.; Roberts, G. C.; Noblitt, S.; Prather, K. A.

    2011-12-01

    Recent investigations of atmospheric aerosols have suggested their importance in affecting clouds and precipitation patterns, especially in regions where anthropogenic contributions to aerosol loadings are large. Aerosols entrained into precipitating clouds have been shown to either enhance or suppress precipitation based on the characteristics of the cloud condensation nuclei (CCN) or ice nuclei (IN) introduced. Due to the inherent chemical dependence of CCN activity, the chemical composition of aerosols introduced into precipitating clouds will determine their effect on precipitation. This presentation will utilize ground-based chemical and physical measurements of aerosols and precipitation from multiple winter seasons gathered at Sugar Pine Dam (Foresthill, CA) as part of the CalWater experiment. The coupled behavior of landfalling frontal systems, regional terrain-parallel flow along the windward slopes of the Sierra Nevada (i.e., the Sierra Barrier Jet), and observed aerosol conditions in the Sierra Nevada foothills will be demonstrated and related issues explored. Temporally correlated changes in aerosol chemical composition with approaching winter storms may provide key insights into the evolution of the Sierra Barrier Jet, a dynamic feature that can have a major influence on orographically-forced precipitation in this region, and could provide clues to the coupling of Central Valley pollution with winter-time orographic precipitation episodes (or lack thereof). Gaining an overall understanding of the frequency and magnitude of the entrainment of Central Valley pollutants on winter storm systems will ultimately provide an estimate of how much aerosols affect precipitation in California.

  10. Particle Property Data Quality Flags for the MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Gaitley, B. J.; Kahn, R. A.; Garay, M. J.

    2013-12-01

    , extending over more than twelve years of MISR data, aid in the assessment. Comparisons with the limited available AERONET aerosol type data are also made and evaluated as appropriate. Seasons and regions that regularly show poorly constrained aerosol type results are identified, as are times and places where particle property information can be used with confidence. This work is performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and in part at the NASA Goddard Space Flight Center.

  11. An Investigation of the Behavior of Solvent based Polycaprolactone ink for Material Jetting

    NASA Astrophysics Data System (ADS)

    He, Yinfeng; Wildman, Ricky D.; Tuck, Chris J.; Christie, Steven D. R.; Edmondson, Steven

    2016-02-01

    An initial study of processing bioresorbable polycaprolactone (PCL) through material jetting was conducted using a Fujifilm Dimatix DMP-2830 material printer. The aim of this work was to investigate a potential solvent based method of jetting polycaprolactone. Several solvents were used to prepare a PCL solvent based ink and 1, 4-dioxane was chosen with the consideration of both solubility and safety. The morphology of PCL formed under different substrate temperatures, droplet spacings were investigated. Multi-layer PCL structures were printed and characterized. This work shows that biodegradable polycaprolactone can be processed through material jetting.

  12. An Investigation of the Behavior of Solvent based Polycaprolactone ink for Material Jetting.

    PubMed

    He, Yinfeng; Wildman, Ricky D; Tuck, Chris J; Christie, Steven D R; Edmondson, Steven

    2016-01-01

    An initial study of processing bioresorbable polycaprolactone (PCL) through material jetting was conducted using a Fujifilm Dimatix DMP-2830 material printer. The aim of this work was to investigate a potential solvent based method of jetting polycaprolactone. Several solvents were used to prepare a PCL solvent based ink and 1, 4-dioxane was chosen with the consideration of both solubility and safety. The morphology of PCL formed under different substrate temperatures, droplet spacings were investigated. Multi-layer PCL structures were printed and characterized. This work shows that biodegradable polycaprolactone can be processed through material jetting. PMID:26868530

  13. An Investigation of the Behavior of Solvent based Polycaprolactone ink for Material Jetting

    PubMed Central

    He, Yinfeng; Wildman, Ricky D.; Tuck, Chris J.; Christie, Steven D. R.; Edmondson, Steven

    2016-01-01

    An initial study of processing bioresorbable polycaprolactone (PCL) through material jetting was conducted using a Fujifilm Dimatix DMP-2830 material printer. The aim of this work was to investigate a potential solvent based method of jetting polycaprolactone. Several solvents were used to prepare a PCL solvent based ink and 1, 4-dioxane was chosen with the consideration of both solubility and safety. The morphology of PCL formed under different substrate temperatures, droplet spacings were investigated. Multi-layer PCL structures were printed and characterized. This work shows that biodegradable polycaprolactone can be processed through material jetting. PMID:26868530

  14. An Investigation of the Behavior of Solvent based Polycaprolactone ink for Material Jetting.

    PubMed

    He, Yinfeng; Wildman, Ricky D; Tuck, Chris J; Christie, Steven D R; Edmondson, Steven

    2016-02-12

    An initial study of processing bioresorbable polycaprolactone (PCL) through material jetting was conducted using a Fujifilm Dimatix DMP-2830 material printer. The aim of this work was to investigate a potential solvent based method of jetting polycaprolactone. Several solvents were used to prepare a PCL solvent based ink and 1, 4-dioxane was chosen with the consideration of both solubility and safety. The morphology of PCL formed under different substrate temperatures, droplet spacings were investigated. Multi-layer PCL structures were printed and characterized. This work shows that biodegradable polycaprolactone can be processed through material jetting.

  15. Masking mediated print defect visibility predictor

    NASA Astrophysics Data System (ADS)

    Jing, Xiaochen; Nachlieli, Hila; Shaked, Doron; Shiffman, Smadar; Allebach, Jan P.

    2012-01-01

    Banding is a well-known artifact produced by printing systems. It usually appears as lines perpendicular to the process direction of the print. Therefore, banding is an important print quality issue which has been analyzed and assessed by many researchers. However, little literature has focused on the study of the masking effect of content for this kind of print quality issue. Compared with other image and print quality research, our work is focused on the print quality of typical documents printed on a digital commercial printing press. In this paper, we propose a Masking Mediated Print Defect Visibility Predictor (MMPDVP) to predict the visibility of defects in the presence of customer content. The parameters of the algorithm are trained from ground-truth images that have been marked by subjects. The MMPDVP could help the press operator decide whether the print quality is acceptable for specific customer requirements. Ultimately, this model can be used to optimize the print-shop workflow.

  16. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  17. Stratospheric geoengineering with black carbon aerosols

    NASA Astrophysics Data System (ADS)

    Kravitz, Benjamin S.

    I use a general circulation model of Earth's climate to simulate stratospheric geoengineering with black carbon aerosols, varying the altitude of injection, initial particle size, and whether the deposited black carbon modifies ground albedo. 1 Tg of black carbon aerosols injected into the stratosphere each year will cause significant enough surface cooling to negate anthropogenic warming if the aerosols are small (r=0.03 mum) or if the aerosols are injected into the middle stratosphere, although using small aerosols causes large regional cooling effects that would be catastrophic to agriculture. The aerosols cause significant stratospheric heating, resulting in stratospheric ozone destruction and circulation changes, most notably an increase in the Northern Hemisphere polar jet, which forms an Arctic ozone hole and forces a positive mode of the Arctic Oscillation. The hydrologic cycle is perturbed, specifically the summer monsoon system of India, Africa, and East Asia, resulting in monsoon precipitation collapse. Global primary productivity is decreased by 35.5% for the small particle case. Surface cooling causes some sea ice regrowth, but not at statistically significant levels. All of these climate impacts are exacerbated for small particle geoengineering, with high altitude geoengineering with the default particle size (r=0.08 mum) causing a reasonable amount of cooling, and large particle (r=0.15 mum) geoengineering or particle injection into the lower stratosphere causing few of these effects. The modification of ground albedo by the soot particles slightly perturbs the radiative budget but does not cause any distinguishable climate effects. The cheapest means we investigated for placing 1 Tg of black carbon aerosols into the stratosphere by diesel fuel combustion would cost 1.4 trillion initially and 541 billion annual, or 2.0% and 0.8% of GDP, respectively. The additional carbon dioxide released from combusting diesel to produce these aerosols is about 1

  18. Aerosol MTF revisited

    NASA Astrophysics Data System (ADS)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak

    2014-05-01

    Different views of the significance of aerosol MTF have been reported. For example, one recent paper [OE, 52(4)/2013, pp. 046201] claims that the aerosol MTF "contrast reduction is approximately independent of spatial frequency, and image blur is practically negligible". On the other hand, another recent paper [JOSA A, 11/2013, pp. 2244-2252] claims that aerosols "can have a non-negligible effect on the atmospheric point spread function". We present clear experimental evidence of common significant aerosol blur and evidence that aerosol contrast reduction can be extremely significant. In the IR, it is more appropriate to refer to such phenomena as aerosol-absorption MTF. The role of imaging system instrumentation on such MTF is addressed too.

  19. Design of roll-to-roll printing equipment with multiple printing methods for multi-layer printing.

    PubMed

    Kim, Chung Hwan; Jo, Jeongdai; Lee, Seung-Hyun

    2012-06-01

    In this paper, a novel design concept for roll-to-roll printing equipment used for manufacturing printed electronic devices by multi-layer printing is presented. The roll-to-roll printing system mainly consists of printing units for patterning the circuits, tension control components such as feeders, dancers, load cells, register measurement and control units, and the drying units. It has three printing units which allow switching among the gravure, gravure-offset, and flexo printing methods by changing the web path and the placements of the cylinders. Therefore, depending on the application devices and the corresponding inks used, each printing unit can be easily adjusted to the required printing method. The appropriate printing method can be chosen depending on the desired printing properties such as thickness, roughness, and printing quality. To provide an example of the application of the designed printing equipment, we present the results of printing tests showing the variations in the printing properties of the ink for different printing methods.

  20. Jet physics at CDF

    SciTech Connect

    Melese, P.

    1997-05-01

    We present high E{sub T} jet measurements from CDF at the Fermilab Tevatron Collider. The incfilusive jet cross section at {radical}s = 1800 GeV with {approximately} 5 times more data is compared to the published CDF results, preliminary D0 results, and next-to-leading order QCD predictions. The {summation}E{sub T} cross section is also compared to QCD predictions and the dijet angular distribution is used to place a limit on quark compositeness. The inclusive jet cross section at {radical}s = 630 GeV is compared with that at 1800 GeV to test the QCD predictions for the scaling of jet cross sections with {radical}s. Finally, we present momentum distributions of charged particles in jets and compare them to Modified Leading Log Approximation predictions.

  1. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1992-01-01

    The instability of rectangular jets is investigated using a vortex sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  2. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  3. Jet Lag in Athletes

    PubMed Central

    Lee, Aaron; Galvez, Juan Carlos

    2012-01-01

    Context: Prolonged transmeridian air travel can impart a physical and emotional burden on athletes in jet lag and travel fatigue. Jet lag may negatively affect the performance of athletes. Study Type: Descriptive review. Evidence Acquisition: A Medline search for articles relating to jet lag was performed (1990-present), as was a search relating to jet lag and athletes (1983-January, 2012). The results were reviewed for relevance. Eighty-nine sources were included in this descriptive review. Results: Behavioral strategies are recommended over pharmacological strategies when traveling with athletes; pharmacological aides may be used on an individual basis. Strategic sleeping, timed exposure to bright light, and the use of melatonin are encouraged. Conclusions: There is strong evidence that mood and cognition are adversely affected by jet lag. Some measures of individual and team performance are adversely affected as well. PMID:23016089

  4. Liquid Jet Formation in Laser-Induced Forward Transfer

    NASA Astrophysics Data System (ADS)

    Brasz, C. Frederik

    Laser-induced forward transfer (LIFT) is a direct-write technique capable of printing precise patterns of a wide variety of materials. In this process, a laser pulse is focused through a transparent support and absorbed in a thin donor film, propelling material onto an adjacent acceptor substrate. For fluid materials, this transfer occurs through the formation of a narrow liquid jet, which eventually pinches off due to surface tension. This thesis examines in detail the fluid mechanics of the jet formation process occurring in LIFT. The main focus is on a variant of LIFT known as blister-actuated LIFT (BA-LIFT), in which the laser pulse is absorbed in an ink-coated polymer layer, rapidly deforming it locally into a blister to induce liquid jet formation. The early-time response of a fluid layer to a deforming boundary is analyzed with a domain perturbation method and potential-flow simulations, revealing scalings for energy and momentum transfer to the fluid and providing physical insight on how and why a jet forms in BA-LIFT. The remaining chapters explore more complex applications and modifications of LIFT. One is the possibility of high-repetition rate printing and limits on time delay and separation between pulses imposed by a tilting effect found for adjacent jets. Another examines a focusing effect achieved by perturbing the interface with ring-shaped disturbances. The third contains an experimental study of LIFT using a silver paste as the donor material instead of a Newtonian liquid. The transfer mechanism is significantly different, although with repeated pulses at one location, a focusing effect is again observed. All three of these chapters investigate how perturbations to the interface can strongly influence the jet formation process.

  5. Printing of metallic 3D micro-objects by laser induced forward transfer.

    PubMed

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed. PMID:26832524

  6. Anomalies in the South American Monsoon Induced by Aerosols

    NASA Technical Reports Server (NTRS)

    Lau, K. M. William; Kyu-Mong, Kim

    2007-01-01

    We have investigated the direct effects of aerosols on the water cycle of the South American monsoon using the NASA finite-volume general circulation model (fvGCM). Global aerosol forcings are computed from radiative transfer functions derived from global distributions of five species of aerosols, i.e., dust, black carbon, organic carbon, sulphate and sea salt from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model. Comparing fvGCM experiments without aerosol forcing, and with different combinations of aerosol forcing, we evaluate the impacts of aerosol direct heating on the onset, maintenance and evolution of the South American summer monsoon. We find that during the pre-monsoon season (September-October-November) Saharan dust contribute to heating of the atmosphere over the central and eastern equatorial Atlantic/Africa region through the elevated heat pump mechanism. The heating generates an anomalous Walker circulation with sinking motion, and low level northeasterlies over the Caribbean and northwestern South America. The low level flow is blocked by the Andes, and turn south and southeastward, increasing the low level jet (LLJ) along the eastern slope of the Andes. The increased LLJ transports more moisture from the Atlantic and the Amazon, enhancing the moisture convergence over subtropical land regions of South America. The moisture convergence was further accelerated by atmospheric heating by biomass burning over the Amazon. The net results of the dust and biomass heating are: a) an advance of the monsoon rainy season, b) an enhanced LLJ and c) a shifting the South America monsoon land precipitation equatorward, with increased rain over southern Brazil and reduced rain over the La Plata basin. ramifications of this elevated heating heat pump mechanism in aerosol monsoon water cycle on climate variability and change will be discussed. The ramifications of this "elevated heating heat pump" mechanism in aerosol monsoom water cycle on climate

  7. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  8. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  9. Environmental Print: Real-World Early Reading

    ERIC Educational Resources Information Center

    Prior, Jennifer

    2009-01-01

    What is environmental print? It is symbols all around. Environmental print is on signs, billboards, packages, junk mail, and everywhere. Young children easily recognize environmental print in their surroundings. Their everyday experiences with print are an important classroom tool to help children connect what they already know about written…

  10. Detection of latent prints by Raman imaging

    DOEpatents

    Lewis, Linda Anne; Connatser, Raynella Magdalene; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  11. Lidar remote sensing of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, Jia; Felton, Melvin; Lei, Liqiao; McCormick, M. Patrick; Delgado, Ruben; St. Pé, Alexandra

    2016-05-01

    In May 2014, the East Hampton Roads Aerosol Flux campaign was conducted at Hampton University to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars and rawindsonde launches. We present the results of analyses performed on these high-resolution planetary boundary layer and lower atmospheric measurements, with a focus on the low-level jets (LLJs) that form in this region during spring and summer. We present a detailed case study of a LLJ lasting from evening of 20 May to morning of 21 May using vertical profiles of aerosol backscatter, wind speed and direction, water vapor mixing ratio, temperature, and turbulence structure. We show with higher resolution than in previous studies that enhanced nighttime turbulence triggered by LLJs can cause the aerosol and water vapor content of the boundary layer to be transported vertically and form a well-mixed region containing the cloud condensation nuclei that are necessary for cloud formation.

  12. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  13. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  14. Teleprinter uses thermal printing technique

    NASA Technical Reports Server (NTRS)

    Perkins, R. D.; Perkins, W. E.; Taylor, J. W.; Thomas, D. G.

    1967-01-01

    Alphameric/facsimile printer receives serial digital data in the form of a specified number of bits per group and prints it on thermally sensitive paper. A solid state shift-register memorizes the incoming serial digital data.

  15. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  16. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  17. AngioJet thrombectomy.

    PubMed

    Lee, Michael S; Singh, Varinder; Wilentz, James R; Makkar, Raj R

    2004-10-01

    The AngioJet rheolytic thrombectomy system is designed to remove thrombus with the Venturi-Bernoulli effect, with multiple high-velocity, high-pressure saline jets which are introduced through orifices in the distal tip of the catheter to create a localized low-pressure zone, resulting in a vacuum effect with the entrainment and dissociation of bulky thrombus. Rheolytic thrombectomy with the AngioJet catheter can reduce the thrombus burden in the setting of AMI and degenerated SVGs. The long-term follow-up appears to be favorable in patients treated with rheolytic thrombectomy in the setting of acute myocardial infarction over conventional primary angioplasty. PMID:15505358

  18. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  19. Organ printing: promises and challenges.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Drake, Christopher; Markwald, Roger R

    2008-01-01

    Organ printing or biomedical application of rapid prototyping, also defined as additive layer-by-layer biomanufacturing, is an emerging transforming technology that has potential for surpassing traditional solid scaffold-based tissue engineering. Organ printing has certain advantages: it is an automated approach that offers a pathway for scalable reproducible mass production of tissue engineered products; it allows a precised simultaneous 3D positioning of several cell types; it enables creation tissue with a high level of cell density; it can solve the problem of vascularization in thick tissue constructs; finally, organ printing can be done in situ. The ultimate goal of organ-printing technology is to fabricate 3D vascularized functional living human organs suitable for clinical implantation. The main practical outcomes of organ-printing technology are industrial scalable robotic biofabrication of complex human tissues and organs, automated tissue-based in vitro assays for clinical diagnostics, drug discovery and drug toxicity, and complex in vitro models of human diseases. This article describes conceptual framework and recent developments in organ-printing technology, outlines main technological barriers and challenges, and presents potential future practical applications.

  20. Organ printing: promises and challenges.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Drake, Christopher; Markwald, Roger R

    2008-01-01

    Organ printing or biomedical application of rapid prototyping, also defined as additive layer-by-layer biomanufacturing, is an emerging transforming technology that has potential for surpassing traditional solid scaffold-based tissue engineering. Organ printing has certain advantages: it is an automated approach that offers a pathway for scalable reproducible mass production of tissue engineered products; it allows a precised simultaneous 3D positioning of several cell types; it enables creation tissue with a high level of cell density; it can solve the problem of vascularization in thick tissue constructs; finally, organ printing can be done in situ. The ultimate goal of organ-printing technology is to fabricate 3D vascularized functional living human organs suitable for clinical implantation. The main practical outcomes of organ-printing technology are industrial scalable robotic biofabrication of complex human tissues and organs, automated tissue-based in vitro assays for clinical diagnostics, drug discovery and drug toxicity, and complex in vitro models of human diseases. This article describes conceptual framework and recent developments in organ-printing technology, outlines main technological barriers and challenges, and presents potential future practical applications. PMID:18154465

  1. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  2. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  3. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  4. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  5. Printing nanotube/nanowire for flexible microsystems

    NASA Astrophysics Data System (ADS)

    Tortorich, Ryan P.; Choi, Jin-Woo

    2014-04-01

    Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

  6. Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Prather, Kimberly A.; Hatch, Courtney D.; Grassian, Vicki H.

    2008-07-01

    Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.

  7. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  8. Counterflowing Jet Subsystem Design

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca; Daso, Endwell; Pritchett, Victor; Wang, Ten-See

    2010-01-01

    A counterflowing jet design (a spacecraft and trans-atmospheric subsystem) employs centrally located, supersonic cold gas jets on the face of the vehicle, ejecting into the oncoming free stream. Depending on the supersonic free-stream conditions and the ejected mass flow rate of the counterflowing jets, the bow shock of the vehicle is moved upstream, further away from the vehicle. This results in an increasing shock standoff distance of the bow shock with a progressively weaker shock. At a critical jet mass flow rate, the bow shock becomes so weak that it is transformed into a series of compression waves spread out in a much wider region, thus significantly modifying the flow that wets the outer surfaces, with an attendant reduction in wave and skin friction drag and aerothermal loads.

  9. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  10. Jet lag prevention

    MedlinePlus

    ... your internal clock before you travel. While in flight: DO NOT sleep unless it matches the bedtime ... decrease jet lag. If you will be in flight during the bedtime of your destination, take some ...

  11. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    PubMed

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology.

  12. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  13. Generation of circularly polarized stereoscopic transparencies and prints

    NASA Astrophysics Data System (ADS)

    Walworth, Vivian K.; Slafer, W. Dennis

    2010-02-01

    We describe a new iteration of the StereoJet process, which has been simplified by changes in materials and improved by the conversion from linear to circular polarization. A prototype StereoJet process for producing full color stereoscopic images, described several years ago by Scarpetti et al., was developed at the Rowland Institute for Science, now part of Harvard University. The system was based on the inkjet application of inks comprising dichroic dyes to Polaroid Vectograph sheet, a concept explored earlier by Walworth and Chiulli at the Polaroid Research Laboratories. Vectograph sheet comprised two oppositely oriented layers of stretched polyvinyl alcohol (PVA) laminated to opposite surfaces of a cellulose triacetate support sheet. The two PVA layers were oriented at +45 and -45 degrees, respectively, with respect to the running edge of the support sheet. A left-eye and right-eye stereoscopic image pair were printed sequentially on the respective surfaces, and the resulting stereoscopic image viewed with conventional linearly polarized glasses having +45 and -45 degree orientation. StereoJet, Inc. has developed new, simplified technology based on the use of PVA substrate of the type used in sheet polarizer manufacture with orientation parallel to the running edge of the support. Left- and right-eye images are printed at 0 and 90 degrees, then laminated in register. Addition of a thin layer of 1/4-wave retarder to the front surface converts the image pair's respective orientations to right- and left-circular polarization. The full color stereoscopic images are viewed with circularly polarized glasses.

  14. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  16. Observation of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, J.; McCormick, M. P.; Lei, L.

    2015-12-01

    We present the results of analyses performed on high-resolution remotely-sensed and in situ atmospheric measurements of the boundary layer and lower atmosphere centered over the northeast coast of the Hampton Roads body of water in southeast Virginia. This region is adjacent to the confluence of the Chesapeake Bay and the Atlantic Ocean where often times, low-level jets (LLJs) are found in the boundary layer during summer months. An East Hampton Roads Aerosol Flux (EHRAF) campaign, was conducted from the campus of Hampton University (HU) to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars, as well as rawindsondes over a one-week period in May 2014 . LLJs were observed from evening of 20 May to the morning of 21 May, and were found to lead to cloud formation. In this paper, the cloud formation caused by LLJs is analyzed using data that includes high-resolution profiles of: aerosol backscatter, turbulence structure, temperature, wind speed and direction, and water vapor. It is found that enhanced nighttime turbulence triggered by LLJs causes the aerosol and water vapor content of boundary layer to be lifted up forming a well-mixed region. We show that this region contains the cloud condensation nuclei that are very important for the formation of clouds.

  17. Correlation Among Lip Print Pattern, Finger Print Pattern and Abo Blood Group

    PubMed Central

    N, Srilekha; A, Anuradha; Srinivas G, Vijay; Devi R, Sabitha

    2014-01-01

    Aim: To study correlation between lip print pattern, finger print pattern and ABO blood group. Materials and Methods: The study group consisted of 27 males and 27 females who were aged between 20–40 years. Lip prints, finger prints and ABO and Rh blood groups of each individual were recorded. Lip prints were classified, based on Suzuki’s and Tsuchihashi’s classification and finger prints were classified, based on Michael’s and Kucken’s classification. The results were statistically analyzed by using Chi–square test. Results: Complete vertical lip print, loop finger print pattern, O+ blood group were predominant among individual groups. O+ blood group-type I lip print combination, loop finger print pattern-type IV lip print pattern combination, O+ blood group-loop finger print pattern combination and both B+ blood group-loop finger print pattern- type IV lip print pattern combination and O+ blood group-loop finger print pattern-type I lip print pattern were predominant. Conclusion: Though lip prints, finger prints and blood groups had their own specificities, correlation of the three parameters did not show any significance. PMID:24783079

  18. Insertion of Vertically Aligned Nanowires into Living Cells by Inkjet Printing of Cells.

    PubMed

    Lee, Donggyu; Lee, Daehee; Won, Yulim; Hong, Hyeonaug; Kim, Yongjae; Song, Hyunwoo; Pyun, Jae-Chul; Cho, Yong Soo; Ryu, Wonhyoung; Moon, Jooho

    2016-03-01

    Effective insertion of vertically aligned nanowires (NWs) into cells is critical for bioelectrical and biochemical devices, biological delivery systems, and photosynthetic bioenergy harvesting. However, accurate insertion of NWs into living cells using scalable processes has not yet been achieved. Here, NWs are inserted into living Chlamydomonas reinhardtii cells (Chlamy cells) via inkjet printing of the Chlamy cells, representing a low-cost and large-scale method for inserting NWs into living cells. Jetting conditions and printable bioink composed of living Chlamy cells are optimized to achieve stable jetting and precise ink deposition of bioink for indentation of NWs into Chlamy cells. Fluorescence confocal microscopy is used to verify the viability of Chlamy cells after inkjet printing. Simple mechanical considerations of the cell membrane and droplet kinetics are developed to control the jetting force to allow penetration of the NWs into cells. The results suggest that inkjet printing is an effective, controllable tool for stable insertion of NWs into cells with economic and scale-related advantages. PMID:26800021

  19. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  20. Characteristics of a mixed-gas jet system in KUR-ISOL

    NASA Astrophysics Data System (ADS)

    Taniguchi, Akihiro; Okano, Kotoyuki; Sharshar, Taher; Kawase, Yoichi

    1994-12-01

    The characteristics of N 2- and He-N 2 mixed-gas jet systems have been investigated when a target chamber was located in a strong radiation field at KUR-ISOL. The ion yields have been much enhanced using the He-N 2 mixed-gas jet coupled with PbI 2 as aerosol material. The characteristics of these gas jet systems have been studied by measuring the amount of transported activities and by detecting representative γ-rays from mass-separated fission products. The dependence of the ion yields on the aerosol materials (DOP, NaCl and PbI 2) and on the volumetric mixing ratio of He and N 2 gases has been investigated.

  1. What Can We Learn From Laboratory Studies of Inorganic Sea Spray Aerosol?

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Zieger, P.; Acosta Navarro, J. C.; Grythe, H.; Kirkevag, A.; Rosati, B.; Riipinen, I.; Nilsson, E. D.

    2015-12-01

    Since 2013 we have been operating a temperature-controlled plunging-jet sea spray aerosol chamber at Stockholm University using inorganic artificial seawater. Using size-resolved measurements of the foam bubbles responsible for the aerosol production we were able to show that it is changes to these foam bubbles which drive the observed changes in aerosol production and size distribution as water temperature changes (Salter et al., 2014). Further, by combining size-resolved measurements of aerosol production as a function of water temperature with measurements of air entrainment by the plunging-jet we have developed a temperature-dependent sea spray source function for deployment in large-scale models (Salter et al., 2015). We have also studied the hygroscopicity, morphology, and chemical composition of the inorganic sea spray aerosol produced in the chamber. The sea spray aerosol generated from artificial seawater exhibited lower hygroscopic growth than both pure NaCl and output from the E-AIM aerosol thermodynamics model when all relevant inorganic ions in the sea salt were included. Results from sensitivity tests using a large-scale earth system model suggest that the lower hygroscopicity observed in our laboratory measurements has important implications for calculations of the radiative balance of the Earth. In addition, size-dependent chemical fractionation of several inorganic ions was observed relative to the artificial seawater with potentially important implications for the chemistry of the marine boundary layer. Each of these studies suggest that there is still much to be learned from rigorous experiments using inorganic seawater proxies. Salter et al., (2014), On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. J. Geophys. Res. Atmos., 119, 9052-9072, doi: 10.1002/2013JD021376 Salter et al., (2015), An empirically derived inorganic sea spray source function incorporating sea surface temperature. Atmos

  2. Contact Printing of Arrayed Microstructures

    PubMed Central

    Xu, Wei; Luikart, Alicia M.; Sims, Christopher E.; Allbritton, Nancy L.

    2010-01-01

    A novel contact printing method utilizing a sacrificial layer of polyacrylic acid (PAA) was developed to selectively modify the upper surfaces of arrayed microstructures. The method was characterized by printing polystyrene onto SU-8 microstructures to create an improved substrate for a cell-based microarray platform. Experiments measuring cell growth SU-8 arrays modified with polystyrene and fibronectin demonstrated improved growth of NIH 3T3 (93% vs. 38%), HeLa (97% vs. 77%), and HT1080 (76% vs. 20%) cells relative to that for the previously used coating method. In addition, use of the PAA sacrificial layer permitted the printing of functionalized polystyrene, carboxylate polystyrene nanospheres, and silica nanospheres onto the arrays in a facile manner. Finally, a high concentration of extracellular matrix materials (ECM), such as collagen (5 mg/mL) and gelatin (0.1%), was contact printed onto the array structures using as little as 5 μL of the ECM reagent and without the formation of a continuous film bridge across the microstructures. Murine embryonic stem cells cultured on arrays printed with this gelatin-hydrogel remained in an undifferentiated state indicating an adequate surface gelatin layer to maintain these cells over time. PMID:20425106

  3. 3D Printing: Print the future of ophthalmology.

    PubMed

    Huang, Wenbin; Zhang, Xiulan

    2014-08-26

    The three-dimensional (3D) printer is a new technology that creates physical objects from digital files. Recent technological advances in 3D printing have resulted in increased use of this technology in the medical field, where it is beginning to revolutionize medical and surgical possibilities. It is already providing medicine with powerful tools that facilitate education, surgical planning, and organ transplantation research. A good understanding of this technology will be beneficial to ophthalmologists. The potential applications of 3D printing in ophthalmology, both current and future, are explored in this article.

  4. Inkjet-printed vertically emitting solid-state organic lasers

    NASA Astrophysics Data System (ADS)

    Mhibik, Oussama; Chénais, Sébastien; Forget, Sébastien; Defranoux, Christophe; Sanaur, Sébastien

    2016-05-01

    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically emitting thin-film organic lasers and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 μJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several μm thicknesses are realized, thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm-1 at 550-680 nm. Standard laser dyes like Pyrromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size "printed pixels" of 50 mm2 present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50 μm × 50 μm AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost, and can be used as fully disposable items. This work opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated.

  5. Disposable jet nebulizers. How reliable are they?

    PubMed

    Alvine, G F; Rodgers, P; Fitzsimmons, K M; Ahrens, R C

    1992-02-01

    We studied the frequency of malfunction, variability in rate of nebulization, and effect of this variability on aerosol particle size of eight disposable jet nebulizer models produced by six manufacturers. Four of eight models showed visual signs of malfunction, including spraying of large, individually visible droplets, leaking of nebulizer solution, and air leaks that completely prevented nebulization. Variability of nebulization rate within specific models ranged from 57 to 129 percent. The model with the largest variability of nebulization rate was also associated with an unacceptably large variability in particle size. In contrast, two models with smaller variability in nebulization rate had greater consistency of particle size. These results indicate poor quality control by some manufacturers in the disposable nebulizer industry. The data suggest that purchasing agents should consider reliability as well as cost before selecting a specific nebulizer model and that their evaluation should include physical testing of multiple units of each model under consideration.

  6. Nanoparticle composites for printed electronics

    NASA Astrophysics Data System (ADS)

    Männl, U.; van den Berg, C.; Magunje, B.; Härting, M.; Britton, D. T.; Jones, S.; van Staden, M. J.; Scriba, M. R.

    2014-03-01

    Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used.

  7. Fingerprint + Iris = IrisPrint

    NASA Astrophysics Data System (ADS)

    Othman, Asem; Ross, Arun

    2015-05-01

    We consider the problem of generating a biometric image from two different traits. Specifically, we focus on generating an IrisPrint that inherits its structure from a fingerprint image and an iris image. To facilitate this, the continuous phase of the fingerprint image, characterizing its ridge flow, is first extracted. Next, a scheme is developed to extract "minutiae" from an iris image. Finally, an IrisPrint, that resembles a fingerprint, is created by mixing the ridge flow of the fingerprint with the iris minutiae. Preliminary experiments suggest that the new biometric image (i.e., IrisPrint) (a) can potentially be used for authentication by an existing fingerprint matcher, and (b) can potentially conceal and preserve the privacy of the original fingerprint and iris images.

  8. Tissue printing on nitrocellulose membrane

    SciTech Connect

    Taylor, R.; Song, Yanru; Pont-Lezica, R.; Lin, Liangshiou; Ye, Zhenghua; Varner, J.E. )

    1989-04-01

    In the 1950's Daoust developed substrate film printing on gelatin and starch films to localize protease, amylase, DNAase and RNAase activities. These procedures were adapted to plant tissues by Yomo and Taylor (1973) and by Jacobsen and Knox (1973). Membranes such as nitrocellulose bind cellular materials from cut tissue surfaces with little lateral diffusion. Thus accurate chemical prints are obtained. When the tissue is pressed firmly onto nitrocellulose a physical impression is obtained which shows the anatomy of the tissue. We have used the tissue-print technique to localize (1) proteins with labeled antibodies, (2) RNA with labeled nucleic acid probes, (3) enzymes by catalytic activity, (4) glycoproteins by fluorescent lectins, (5) lectins by fluorescent sugars, (6) cysteine-rich proteins by dansylated iodoacetamide, (7) ascorbic acid by silver nitrate, (8) soluble fluorescent compounds by direct observation.

  9. Ram-jet Performance

    NASA Technical Reports Server (NTRS)

    Cervenko, A. J.; Friedman, R.

    1956-01-01

    The ram jet is basically one of the most dimple types of aircraft engine. It consists only of an inlet diffuser, a combustion system, and an exit nozzle. A typical ram-jet configuration is shown in figure 128. The engine operates on the Brayton cycle, and ideal cycle efficiency depends only on the ratio of engine to ambient pressure. The increased, engine pressures are obtained by ram action alone, and for this reason the ram jet has zero thrust at zero speed. Therefore, ram-jet-powered aircraft must be boosted to flight speeds close to a Mach number of 1.0 before appreciable thrust is generated by the engine. Since pressure increases are obtained by ram action alone, combustor-inlet pressures and temperatures are controlled by the flight speed, the ambient atmospheric condition, and by the efficiency of the inlet diffuser. These pressures and temperatures, as functions of flight speed and altitude, are shown in figure 129 for the NACA standard atmosphere and for practical values of diffuser efficiency. It can be seen that very wide ranges of combustor-inlet temperatures and pressures may be encountered over the ranges of flight velocity and altitude at which ram jets may be operated. Combustor-inlet temperatures from 500 degrees to 1500 degrees R and inlet pressures from 5 to 100 pounds per square inch absolute represent the approximate ranges of interest in current combustor development work. Since the ram jet has no moving parts in the combustor outlet, higher exhaust-gas temperatures than those used in current turbojets are permissible. Therefore, fuel-air ratios equivalent to maximum rates of air specific impulse or heat release can be used, and, for hydrocarbon fuels, this weight ratio is about 0.070. Lower fuel-air ratios down to about 0.015 may also be required to permit efficient cruise operation. This fuel-air-ratio range of 0.015 to 0.070 used in ram jets can be compared with the fuel-air ratios up to 0.025 encountered in current turbojets. Ram-jet

  10. Sweeping Jet Optimization Studies

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  11. Jet penetration in glass

    SciTech Connect

    Moran, B.; Glenn, L.A.; Kusubov, A.

    1991-05-01

    We describe a phenomenological model which accounts for the mechanical response of glass to intense impulsive loading. An important aspect of this response is the dilatancy accompanying fracture. We have also conducted a number of experiments with 38.1-mm diameter precision shaped charges to establish the performance against various targets and to allow evaluation of our model. At 3 charge diameters standoff, the data indicate that both virgin and damaged glass offer better (Bernoulli-scaled) resistance to penetration than either of 4340 steel, or 6061-T6 aluminum alloy. Time-resolved measurements indicate two distinct phases of jet penetration in glass: An initial hydrodynamic phase, and a second phase characterized by a slower penetration velocity. Our calculations show that at early time, a crater is formed around the jet and only the tip of the undisturbed jet interacts with the glass. At late time the glass has collapsed on the jet and degraded penetration continues via a disturbed and fragmented jet.

  12. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  13. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  14. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  15. Modified shielding jet model for twin-jet shielding analysis

    NASA Technical Reports Server (NTRS)

    Gerhold, C. H.; Gilbride, J.

    1983-01-01

    An analytical model to estimate the shielding of noise emitted from a point noise source has been developed assuming the shielding jet to be a cylinder of constant radius with uniform flow across the cross section. Comparison to experiment indicated that the model overestimates diffraction of sound around the jet in the far downstream region. The shielding jet model is modified to include widening downstream of the nozzle exit. This not only represents a more realistic model of the jet, but is also expected to improve the shielding estimate downstream. The modified jet model incorporates a Mach number dependent widening rate, a corresponding decrease in flow velocity downstream and an equivalent slug flow evaluation to retain the locally parallel flow approximation of the model development. The shielding analysis with modified jet model is compared to measured data for a subsonic isothermal air jet and a simulated hot subsonic jet. Improvement of the shielding estimate is discussed.

  16. B-jets and z + b-jets at CDF

    SciTech Connect

    Jeans, Daniel; /Rome U.

    2006-06-01

    The authors present CDF cross-section measurements for the inclusive production of b jets and the production of b jets in association with a Z{sup 0} boson. Both measurements are in reasonable agreement with NLO QCD predictions.

  17. Blood Print Detection By Fluorescence

    NASA Astrophysics Data System (ADS)

    Everse, K. E.; Menzel, E. R.

    1987-01-01

    We have surveyed the current methods for detection of blood prints and have compared representative procedures from the standpoint of the general type of involved chemistry. We find that the methods that involve fluorescent products produce the greatest sensitivity in concert with laser fluorescence excitation. The ninhydrin/ZnCl2 procedure is very effective for porous items, including cloth. Merbromin or dichlorofluorescein are effective for non-porous surfaces. Development of blood prints on surfaces that display overwhelming background fluorescence is best performed by peroxidase-type absorption methods.

  18. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  19. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  20. Emergency protection from aerosols

    SciTech Connect

    Cristy, G.A.; Chester, C.V.

    1981-07-01

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  1. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  2. MISR Aerosol Typing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  3. Philadelphia Printing and Publishing, 1876-1976

    ERIC Educational Resources Information Center

    Whitehead, Thomas M.

    1976-01-01

    Two Philadelphia printing histories, both reflecting the relationship of printing to publishing, are examined in this article: the manufacture by the publisher of his own product and the development and commercialization of the photomechanical halftone process. (Author)

  4. 3D holographic printer: fast printing approach.

    PubMed

    Morozov, Alexander V; Putilin, Andrey N; Kopenkin, Sergey S; Borodin, Yuriy P; Druzhin, Vladislav V; Dubynin, Sergey E; Dubinin, German B

    2014-02-10

    This article describes the general operation principles of devices for synthesized holographic images such as holographic printers. Special emphasis is placed on the printing speed. In addition, various methods to increase the printing process are described and compared.

  5. Printing considerations for non-printers

    SciTech Connect

    Webb, G.W.

    1986-01-01

    This paper explains the basics of printing to editors, graphic artists, and others who prepare copy for the printer. It discusses pre-press requirements, paper selection, printing methods, and finishing options.

  6. 48 CFR 952.208-70 - Printing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reproduction in excess of the limits set forth above, the Contractor shall notify the Contracting Officer in... printing plant. (3) Printing services not obtained in compliance with this guidance will result in the...

  7. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  8. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. PMID:24679258

  9. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes.

  10. Hypersonic jet control effectiveness

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Stollery, J. L.; Smith, A. J.

    The present study aims to identify some of the parameters which determine the upstream extent and the lateral spreading of the separation front around an under-expanded transverse jet on a slender blunted cone. The tests were conducted in the Cranfield hypersonic facility at M∞ = 8.2, Re∞ /cm = 4.5 to 9.0 × 104 and at M∞ = 12.3, Re∞ /cm = 3.3 × 104. Air was used as the working gas for both the freestream and the jet. Schlieren pictures were used for the visualisation of the three-dimensional structures around the jet. Pressure, normal force and pitching moment measurements were conducted to quantitatively study the interaction region and its effects on the vehicle. An analytical algorithm has been developed to predict the shape of the separation front around the body.

  11. Reading Environmental Print: What Is the Role of Concepts about Print in Discriminating Young Readers' Responses?

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Fawson, Parker C.; Young, Janet R.; Morrison, Timothy G.; Wilcox, Brad

    2003-01-01

    Examines how concepts-about-print knowledge interacted with other traditional measures of print knowledge, to affect children's reading environmental print in context and out. Demonstrates that concepts-about-print and word recognition were the most reliable discriminators between children who could accurately and consistently read environmental…

  12. Improved pen alignment for bidirectional printing

    NASA Astrophysics Data System (ADS)

    Bernal, Edgar; Allebach, Jan P.; Pizlo, Zygmunt

    2006-01-01

    The quality of the prints produced by an inkjet printer is highly dependent on the characteristics of the dots produced by the inkjet pens. While some literature discusses metrics for the objective evaluation of print quality, few of the efforts have combined automated quality tests with subjective assessment. We develop an algorithm for analyzing printed dots and study the effects of the dot characteristics on the perceived print alignment. We establish the perceptual preferences of human observers via a set of psychophysical experiments.

  13. Jet Shockwaves Produce Gamma Rays

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  14. Impact of a viscoelastic jet

    NASA Astrophysics Data System (ADS)

    Lhuissier, Henri; Néel, Baptiste; Limat, Laurent

    2014-11-01

    A jet of a Newtonian liquid impacting onto a wall at right angle spreads as a thin liquid sheet which preserves the radial symmetry of the jet. We observe that for a viscoelastic jet (solution of polyethylene glycol in water) this symmetry can break: close to the wall, the jet cross-section is faceted and radial steady liquid films (membranes) form, which connect the cross-section vertices to the sheet. The number of membranes increases with increasing viscoelastic relaxation time of the solution, but also with increasing jet velocity and decreasing distance from the jet nozzle to the wall. A mechanism for this surprising destabilization of the jet, which develops perpendicularly to the direction expected for a buckling mechanism, is presented that explains these dependences. The large-scale consequences of the jet destabilization on the sheet spreading and fragmentation, which show through the faceting of hydraulic jumps and suspended (Savart) sheets, will also be discussed.

  15. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  16. Distinct Patterns of Climate Response to Anthropogenic Aerosol Versus Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    WANG, H.; Xie, S. P.; Liu, Q.

    2015-12-01

    Patterns of climate response to anthropogenic aerosols and well-mixed greenhouse gas (GHG) changes are investigated using eight models from Phase 5 of the Coupled Model Intercomparison Project. In the 20th century, the principal climate response patterns show both similarities and differences between aerosol and GHG runs. This paper focuses on distinct patterns of climate response to aerosol and GHG changes, while a recent companion study discussed the similarities. The GHG induced radiative forcing gives rise to amplified warming in the tropical upper troposphere and intensified mid-latitude jets in both hemispheres. However, for the anthropogenic aerosols, they are concentrated in the Northern Hemisphere and the temperature change shows a deep cooling structure in the troposphere around 40°N. Consistent with thermal wind balance, the cooling anchors a westerly acceleration to its south in aerosol runs. The response to aerosol induced inter-hemispheric asymmetry is also interpreted in terms of an anomalous Hadley circulation across the equator. Careful comparison indicates that the aerosol forcing dominates the Northern Hemisphere response in atmospheric circulation and precipitation, including a southward shift of the Inter Tropical Convergence Zone, the drying trend over the East Asia monsoon region, the southward shift of the East Asia westerly jet and the North Pacific cooling. The GHG forcing dominates the tropical Pacific rainfall increase mediated by the sea surface temperature pattern. Several climate response pattern indices are evaluated for the relative importance of aerosol and GHG forcing. The aerosol induced inter-hemisphere thermal contrast plays a key role in inducing climate response patterns that are quite different from the results in GHG runs.

  17. 48 CFR 970.5208-1 - Printing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Operating Contracts 970.5208-1 Printing. As prescribed in 970.0808-3, insert the following clause... such printing being disallowed. (d) The Contractor shall include the substance of this clause in all... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Printing....

  18. 48 CFR 970.5208-1 - Printing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Operating Contracts 970.5208-1 Printing. As prescribed in 970.0808-3, insert the following clause... such printing being disallowed. (d) The Contractor shall include the substance of this clause in all... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Printing....

  19. 48 CFR 970.5208-1 - Printing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Operating Contracts 970.5208-1 Printing. As prescribed in 970.0808-3, insert the following clause... such printing being disallowed. (d) The Contractor shall include the substance of this clause in all... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Printing....

  20. 48 CFR 970.5208-1 - Printing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Operating Contracts 970.5208-1 Printing. As prescribed in 970.0808-3, insert the following clause... such printing being disallowed. (d) The Contractor shall include the substance of this clause in all... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Printing....

  1. Organic materials for printed electronics

    NASA Astrophysics Data System (ADS)

    Berggren, M.; Nilsson, D.; Robinson, N. D.

    2007-01-01

    Organic materials can offer a low-cost alternative for printed electronics and flexible displays. However, research in these systems must exploit the differences - via molecular-level control of functionality - compared with inorganic electronics if they are to become commercially viable.

  2. Conservation of Drawings and Prints

    ERIC Educational Resources Information Center

    King, Antoinette

    1972-01-01

    Some of the basic techniques of preserving and restoring prints and drawings are outlined. Examination, dry cleaning, stain removal, mending, backing removal, and lining are discussed, as well as aspects of the complexity of bleaching, types and nature of some stains and discolorations, and materials of poor quality used by many framers. (Author)

  3. Qualification of security printing features

    NASA Astrophysics Data System (ADS)

    Simske, Steven J.; Aronoff, Jason S.; Arnabat, Jordi

    2006-02-01

    This paper describes the statistical and hardware processes involved in qualifying two related printing features for their deployment in product (e.g. document and package) security. The first is a multi-colored tiling feature that can also be combined with microtext to provide additional forms of security protection. The color information is authenticated automatically with a variety of handheld, desktop and production scanners. The microtext is authenticated either following magnification or manually by a field inspector. The second security feature can also be tile-based. It involves the use of two inks that provide the same visual color, but differ in their transparency to infrared (IR) wavelengths. One of the inks is effectively transparent to IR wavelengths, allowing emitted IR light to pass through. The other ink is effectively opaque to IR wavelengths. These inks allow the printing of a seemingly uniform, or spot, color over a (truly) uniform IR emitting ink layer. The combination converts a uniform covert ink and a spot color to a variable data region capable of encoding identification sequences with high density. Also, it allows the extension of variable data printing for security to ostensibly static printed regions, affording greater security protection while meeting branding and marketing specifications.

  4. Conservation of Photographic Print Collections.

    ERIC Educational Resources Information Center

    Swan, Alice

    1981-01-01

    Provides specific information on varying photographic materials and processes to aid archivists and curators in preserving photograph collections. Preservation problems related to major types of silver prints on paper (salt, albumen, collodion, gelatin) and to the silver image (oxidation, silver sulfide) are covered. Twenty references are cited.…

  5. End of the Printed Line?

    ERIC Educational Resources Information Center

    Wishengrad, Ruth

    1998-01-01

    Considers whether laptop and handheld computers will be able to replace printed textbooks in classrooms. Topics cover benefits of classroom computers, including the need for computer literacy; computer costs, including service contracts, theft, and the need for staff development; the problems with dated textbooks; publishers' concerns; and…

  6. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  7. The Power of the Print

    ERIC Educational Resources Information Center

    Tam, Jeff

    2010-01-01

    The print has a long-standing tradition of carrying a political message. This can be seen in the works of artists from the German Expressionists, like Kathe Kollwitz and Emil Nolde, to Mexican printmakers like Jose Posada and Leopoldo Mendez. Whether it was during the Mexican Revolution of 1910, the War in Iraq, or the 2008 presidential election,…

  8. Design of printed circuit coils

    NASA Technical Reports Server (NTRS)

    Higgins, W. T.

    1969-01-01

    Spiral-like coil is printed with several extra turns which increase the realizable coil inductance. Included are shorting connections which not only short the extra turns, but also short out several turns of the main body. Coil tuning is accomplished by removing the shorts until the desired inductance is obtained.

  9. Printing. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Seivert, Chester

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate printing course. The materials were developed for a two-semester (3 hours daily) course with specialized classroom, shop, and practical experiences designed to enable the student to develop proficiency…

  10. Latin American Folk Art Prints

    ERIC Educational Resources Information Center

    Navah, Jan

    2011-01-01

    Latin American customs and colors play an important role as second graders are introduced to multicultural experiences through food, music, dance, art, and craft. In this article, the author describes a printing project inspired by Guatemalan weavings and amate bark paintings. (Contains 2 online resources.)

  11. [Epidemiology of occupational neoplasms in the printing industry].

    PubMed

    Il'icheva, S A; Bul'bulian, M A; Zaridze, D G

    2001-01-01

    The paper presents the findings of the first Russian study of possible cancer risks in printing workers. For the first time, the historical cohort study included women. The cohort comprised 1,553 males and 3,473 females who were followed up for 15 years (01/01/79-12/31/93). A significant increase in the rates of death from pancreatic cancer was registered among males employed as compositors exposed to inorganic lead dust and vapors. Raised mortality from malignancies of the stomach urinary bladder, skin melanoma and mesothelioma was identified in females exposed to a PAU-containing oil paint aerosol and paper dust. Significant death risks from esophageal and ovarian malignancies due to exposure to glue vapors and paper dust were observed in bookbinders.

  12. [Epidemiology of occupational neoplasms in the printing industry].

    PubMed

    Il'icheva, S A; Bul'bulian, M A; Zaridze, D G

    2001-01-01

    The paper presents the findings of the first Russian study of possible cancer risks in printing workers. For the first time, the historical cohort study included women. The cohort comprised 1,553 males and 3,473 females who were followed up for 15 years (01/01/79-12/31/93). A significant increase in the rates of death from pancreatic cancer was registered among males employed as compositors exposed to inorganic lead dust and vapors. Raised mortality from malignancies of the stomach urinary bladder, skin melanoma and mesothelioma was identified in females exposed to a PAU-containing oil paint aerosol and paper dust. Significant death risks from esophageal and ovarian malignancies due to exposure to glue vapors and paper dust were observed in bookbinders. PMID:11710282

  13. Jet noise recorded during discrete explosive eruptions

    NASA Astrophysics Data System (ADS)

    Scarlato, P.; Sesterhenn, J.; Taddeucci, J.

    2013-12-01

    Most commonly, acoustic studies of explosive volcanic activity focus on the infrasonic range, as related to large volumetric changes mostly associated with the liberation of pressurized gas. However, there are multiple potential sources of sound that accompany explosive activity, expected to cover a broad range of frequencies. Among the audible range are several mechanisms, generating sound in high-velocity jets of gas or gas-particle mixture entering the atmosphere. This types of sound, well-documented and investigated in physics and engineering literature, has been so far mostly neglected in the study of explosive eruptions, due to the high energy content of the jet noise in the infrasonic regime, despite the potential it holds for parameterizing and understanding eruption processes. High-speed imaging of Strombolian and Vulcanian explosive eruptions at several volcanoes allowed the visualization of acoustic waves generated during the emission of the eruptive gas-pyroclast mixture. The waves, visible only when travelling within dilute gas/aerosol plumes, are thought to cause a temporary phase change in the travel medium. Image analysis allows direct measurement of the apparent (projected) trajectory, wavelength and travel velocity of the waves. Synchronized audio recording from the same eruptions include frequency contents in agreement with the observed waves. The general features of the observed waves are compatible with jet noise originated by the gas-pyroclast mixture entering the atmosphere, opening the way for future comparison with the results of numerical simulations of explosive eruptions, and possibly setting the basis for new acoustic monitoring tools for explosive eruptions.

  14. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.

    PubMed

    Ha, Mingjing; Xia, Yu; Green, Alexander A; Zhang, Wei; Renn, Mike J; Kim, Chris H; Hersam, Mark C; Frisbie, C Daniel

    2010-08-24

    Printing electronic components on plastic foils with functional liquid inks is an attractive approach for achieving flexible and low-cost circuitry for applications such as bendable displays and large-area sensors. The challenges for printed electronics, however, include characteristically slow switching frequencies and associated high supply voltages, which together impede widespread application. Combining printable high-capacitance dielectrics with printable high-mobility semiconductors could potentially solve these problems. Here we demonstrate fast, flexible digital circuits based on semiconducting carbon nanotube (CNT) networks and high-capacitance ion gel gate dielectrics, which were patterned by jet printing of liquid inks. Ion gel-gated CNT thin-film transistors (TFTs) with 50 microm channel lengths display ambipolar transport with electron and hole mobilities >20 cm(2)/V.s; these devices form the basis of printed inverters, NAND gates, and ring oscillators on both polyimide and SiO(2) substrates. Five-stage ring oscillators achieve frequencies >2 kHz at supply voltages of 2.5 V, corresponding to stage delay times of 50 micros. This performance represents a substantial improvement for printed circuitry fabricated from functional liquid inks.

  15. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  16. Stationary relativistic jets

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.; Porth, Oliver; Lyutikov, Maxim

    2015-11-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with vz≈ c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialised code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres and elucidated the nature of radial oscillations of steady-state jets.

  17. Jets and QCD

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen D.; Soper, Davison E.

    2013-06-01

    An essential element of the development of the strong interaction component of the Standard Model of particle physics, QCD, has been the evolving understanding of the "jets" of particles that appear in the final states of high energy particle collisions. In this chapter we provide a historical outline of those developments...

  18. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  19. The Jet Travel Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    Airplane travelers are dismayed by the long lines and seemingly chaotic activities that precede boarding a full airplane. Surely, the one who can solve this problem is going to make many travelers happy. This article describes the Jet Travel Challenge, an activity that challenges students to create some alternatives to this now frustrating…

  20. Spectroscopy with Supersonic Jets.

    ERIC Educational Resources Information Center

    Skinner, Anne R.; Chandler, Dean W.

    1980-01-01

    Discusses a new technique that enables spectroscopists to study gas phase molecules at temperatures below 1 K, without traditional cryogenic apparatus. This technique uses supersonic jets as samples for gas molecular spectroscopy. Highlighted are points in the theory of supersonic flow which are important for applications in molecular…

  1. Aerosol delivery systems for bronchial asthma.

    PubMed Central

    Ariyananda, P. L.; Agnew, J. E.; Clarke, S. W.

    1996-01-01

    Many different inhalation devices are now available for the treatment of asthma. Pressures towards the elimination of chlorofluorocarbon propellants are driving forward development of new devices-as are obvious commercial pressures, including the increased availability of generic formulations. We still, however, often cannot tell exactly where within the lung we want to target a particular medication, be it a bronchodilator or a steroid. The basic processes of aerosol deposition are readily comprehensible. Nevertheless, even under carefully supervised inhalation conditions, one can only roughly estimate where the medication is deposited. We can, however, hope to give our patients good guidance on how to make the best use of a metered-dose inhaler or a jet nebuliser. From the array of available devices, we will increasingly be able to select the most comfortable and convenient for the patient-and therefore most likely to encourage good compliance. PMID:8731705

  2. Pool scrubbing under jet injection regime: An enhancement of the SPARC90 code

    SciTech Connect

    Herranz, L. E.; Berna, C.; Escriva, A.; Munoz-Cobo, J. L.

    2012-07-01

    The SPARC90 code was developed to calculate the aerosol pool trapping during vent discharge processes, at low gas velocities. However, there are accident sequences, like SGTR core meltdown sequences, at which particle laden gases reach the aqueous ponds at very high velocities and new particle removal mechanisms become effective right at the inlet. As a result of the shearing off of roll wave water crests, water droplets are entrained in the gas core and sweep out aerosol particles, mainly by inertial impaction and interception. This paper summarizes the update of the SPARC90 code based on state-of-the-art equations for jet hydrodynamics and aerosol removal. Equations for variables like droplets population, size and velocity have been implemented. Based on the anticipated conditions in case of an SGTR severe accident sequence, comparisons of estimates from this new version (SPAR90-Jet) and the original one are set in terms of decontamination factor. Even though further work is still ahead, this work highlights how substantial particle retention at the pool inlet can reach under jet regime and how different aerosol removal mechanisms are with respect to the globule injection regime. (authors)

  3. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  4. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  5. Review of jet reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Atkin, Ryan

    2015-10-01

    Accurate jet reconstruction is necessary for understanding the link between the unobserved partons and the jets of observed collimated colourless particles the partons hadronise into. Understanding this link sheds light on the properties of these partons. A review of various common jet algorithms is presented, namely the Kt, Anti-Kt, Cambridge/Aachen, Iterative cones and the SIScone, highlighting their strengths and weaknesses. If one is interested in studying jets, the Anti-Kt algorithm is the best choice, however if ones interest is in the jet substructures then the Cambridge/Aachen algorithm would be the best option.

  6. MISR UAE2 Aerosol Versioning

    Atmospheric Science Data Center

    2013-03-21

    ... the MISR aerosol microphysical properties are "Beta." Uncertainty envelopes for the aerosol optical depths are given in  Kahn et ... particle microphysical property validation is in progress, uncertainty envelopes on particle size distribution, shape, and ...

  7. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  8. Hygroscopic Properties of Aircraft Engine Exhaust Aerosol Produced From Traditional and Alternative Fuels

    NASA Astrophysics Data System (ADS)

    Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Crumeyrolle, S.; Chen, G.; Anderson, B. E.

    2012-12-01

    Aircraft emissions of greenhouse gases and aerosols constitute an important component of anthropogenic climate forcing, of which aerosol-cloud interactions remain poorly understood. It is currently thought that the ability of these aerosols to alter upper tropospheric cirrus cloud properties may produce radiative forcings many times larger than the impact of linear contrails alone and which may partially offset the impact of greenhouse gas emissions from aviation (Burkhardt and Karcher, Nature, 2011). Consequently, it is important to characterize the ability of these engine-emitted aerosol to act as cloud condensation nuclei (CCN) and ice nuclei (IN) to form clouds. While a number of studies in the literature have examined aerosol-cloud interactions for laboratory-generated soot or from aircraft engines burning traditional fuels, limited attention has been given to how switching to alternative jet fuels impacts the ability of engine-emitted aerosols to form clouds. The key to understanding these changes is the aerosol hygroscopicity. To address this need, the second NASA Alternative Aviation Fuel Experiment (AAFEX-II) was conducted in 2011 to examine the aerosol emissions from the NASA DC-8 under a variety of different engine power and fuel type conditions. Five fuel types were considered including traditional JP-8 fuel, synthetic Fischer-Tropsh (FT) fuel , sulfur-doped FT fuel (FTS) , hydrotreated renewable jet (HRJ) fuel, and a 50:50 blend of JP-8 with HRJ. Emissions were sampled from the DC-8 on the airport jetway at a distance of 145 meters downwind of the engine by a comprehensive suite of aerosol instrumentation that provided information on the aerosol concentration, size distribution, soot mass, and CCN activity. Concurrent measurements of carbon dioxide were used to account for plume dilution so that characteristic emissions indices could be determined. It is found that both engine power and fuel type significantly influence the hygroscopic properties of

  9. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  10. Interacting jets from binary protostars

    NASA Astrophysics Data System (ADS)

    Murphy, G. C.; Lery, T.; O'Sullivan, S.; Spicer, D.; Bacciotti, F.; Rosen, A.

    2008-02-01

    Aims: We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. Methods: We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. Results: We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. Conclusions: While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly parallel, as in most observed cases, we show that the magnetic field can help the collimation and refocusing of both of the two jets.

  11. Jet propagation through energetic materials

    SciTech Connect

    Pincosy, P; Poulsen, P

    2004-01-08

    In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.

  12. Flow cytometer jet monitor system

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  13. Pileup subtraction for jet shapes.

    PubMed

    Soyez, Gregory; Salam, Gavin P; Kim, Ji-Hun; Dutta, Souvik; Cacciari, Matteo

    2013-04-19

    Jets in high energy hadronic collisions often contain the fingerprints of the particles that produced them. Those fingerprints, and thus the nature of the particles that produced the jets, can be read off with the help of quantities known as jet shapes. Jet shapes are, however, severely affected by pileup, the accumulation in the detector of the residues of the many simultaneous collisions taking place in the Large Hadron Collider (LHC). We introduce a method to correct for pileup effects in jet shapes. Relative to earlier, limited approaches, the key advance resides in its full generality, achieved through a numerical determination, for each jet, of a given shape's susceptibility to pileup. The method rescues the possibility of using jet shapes in the high pileup environment of current and future LHC running, as we show with examples of quark-gluon discrimination and top tagging.

  14. Inkjet printing as a novel medicine formulation technique.

    PubMed

    Scoutaris, Nikolaos; Alexander, Morgan R; Gellert, Paul R; Roberts, Clive J

    2011-12-10

    We demonstrate the viability of using an ink-jet printer to produce a formulation capable of controlling the release of a drug. This is shown for the drug felodipine, an antihypertensive, with polyvinyl pirrolidone (PVP) as an excipient. As felodipine is a poorly water soluble drug, its molecular dispersion in a soluble polymer (ie. PVP) is a commonly used approach to improve bioavailability. Various ratios of felodipine and PVP in an ethanol-DMSO mixture (95/5) were dispensed in picoliter quantities using a piezoelectric 'ink-jet' head onto a hydrophobic substrate. The resultant formulation spots were characterized using atomic force microscopy, localized nano-thermal analysis, ATR-IR and imaging confocal Raman spectroscopy. Intimate mixing of the felodipine and PVP within the micro-dots was observed. ATR-IR confirmed the known molecular level interaction of felodipine and PVP through hydrogen bonding. Nanothermal analysis indicated a single glass transition point, indicative of an intimate polymer drug mixture, which is lowered as the drug concentration increases. Confocal Raman microscopy mapping on single micro-scale droplets allowed the visualization of the drug distribution in the spots as well as facilitating characterization of the release of the drug. The drug release can be altered through control of the drug loading. As inkjet printing is an inherently scalable technology, this proof of principal work with single deposited micro-spot formulations demonstrates the potential of this approach to print practical dosage forms (e.g. as an array of many thousands of spots with different release profiles). This, for example, raises the possibility in the future of producing dosage forms at points of care with one or more drugs which have been formulated for the needs of individual patients.

  15. Aerosolized antibiotics for ventilator-associated pneumonia: lessons from experimental studies.

    PubMed

    Rouby, Jean-Jacques; Bouhemad, Belaïd; Monsel, Antoine; Brisson, Hélène; Arbelot, Charlotte; Lu, Qin

    2012-12-01

    The aim of this review is to perform a critical analysis of experimental studies on aerosolized antibiotics and draw lessons for clinical use in patients with ventilator-associated pneumonia. Ultrasonic or vibrating plate nebulizers should be preferred to jet nebulizers. During the nebulization period, specific ventilator settings aimed at decreasing flow turbulence should be used, and discoordination with the ventilator should be avoided. The appropriate dose of aerosolized antibiotic can be determined as the intravenous dose plus extrapulmonary deposition. If these conditions are strictly respected, then high lung tissue deposition associated with rapid and efficient bacterial killing can be expected. For aerosolized aminoglycosides and cephalosporins, a decrease in systemic exposure leading to reduced toxicity is not proven by experimental studies. Aerosolized colistin, however, does not easily cross the alveolar-capillary membrane even in the presence of severe lung infection, and high doses can be delivered by nebulization without significant systemic exposure. PMID:23135264

  16. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  17. Cantera Aerosol Dynamics Simulator

    SciTech Connect

    Moffat, Harry

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkin formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.

  18. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  19. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.

  20. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  1. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  2. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  3. Printed sectoral horn power combiner

    NASA Astrophysics Data System (ADS)

    Boccia, Luigi; Emanuele, Antonio; Shamsafar, Alireza; Arnieri, Emilio; Amendola, Giandomenico

    2015-02-01

    In this work, it is presented a new configuration of planar power combiner/divider based on an H-plane sectoral horn antenna. This component is proposed to realise the basic building blocks of printed power-combining amplifiers. It will be shown how the sectoral horn elements can be implemented on substrate integrated waveguide and multilayer printed circuit board technologies, thus obtaining a high integration level. In the following, the design procedure will be described reporting an example of an 11-stage power divider/combiner in C-band. A prototype has been fabricated, and the measured results compared with the numerical model. Experimental results are in good agreement with theoretical expectations showing a single-stage efficiency of about 90% and a bandwidth of 40%.

  4. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  5. Highly stable aerosol generator

    SciTech Connect

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  6. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  7. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  8. Heat sinking for printed circuitry

    DOEpatents

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  9. Printed polymer photonic devices for optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  10. Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985-2010

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong J.; Yeh, Sang-Wook; Park, Rokjin J.

    2016-02-01

    We examine the effect of anthropogenic aerosol forcing on the East Asian summer monsoon (EASM) using the Community Atmosphere Model version 5.1.1. One control and two sensitivity model experiments were conducted in order to diagnose the separate roles played by sea surface temperature (SST) variations and anthropogenic sulfate aerosol forcing changes in East Asia. We find that the SST variation has been a major driver for the observed weakening of the EASM, whereas the effect of the anthropogenic aerosol forcing has been opposite and has slightly intensified the EASM over the recent decades. The reinforcement of the EASM results from radiative cooling by the sulfate aerosol forcing, which decelerates the jet stream around the jet's exit region. Subsequently, the secondary circulation induced by such a change in the jet stream leads to the increase in precipitation around 18-23°N. This result indicates that the increase in anthropogenic emissions over East Asia may play a role in compensating for the weakening of the EASM caused by the SST forcing.

  11. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  12. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  13. Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts

    NASA Astrophysics Data System (ADS)

    Gennari, Oriella; Battista, Luigi; Silva, Benjamin; Grilli, Simonetta; Miccio, Lisa; Vespini, Veronica; Coppola, Sara; Orlando, Pierangelo; Aprin, Laurent; Slangen, Pierre; Ferraro, Pietro

    2015-02-01

    Electrical conductivity and viscosity play a major role in the tip jetting behaviour of liquids subjected to electrohydrodynamic (EHD) forces, thus influencing significantly the printing performance. Recently, we developed a nozzle- and electrode-free pyro-EHD system as a versatile alternative to conventional EHD configurations and we demonstrated different applications, including inkjet printing and three-dimensional lithography. However, only dielectric fluids have been used in all of those applications. Here, we present an experimental characterization of the pyro-EHD jetting regimes, induced by laser blasts, of sessile drops in case of dielectric and conductive liquids in order to extend the applicability of the system to a wider variety of fields including biochemistry and biotechnology where conductive aqueous solutions are typically used.

  14. Ink jet assisted metallization for low cost flat plate solar cells

    NASA Technical Reports Server (NTRS)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  15. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  16. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  17. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  18. Phenomenology of photon-jets

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen D.; Roy, Tuhin S.; Scholtz, Jakub

    2013-01-01

    One of the challenges of collider physics is to unambiguously associate detector-based objects with the corresponding elementary physics objects. A particular example is the association of calorimeter-based objects such as “jets,” identified with a standard (IR-safe) jet algorithm, with the underlying physics objects, which may be QCD-jets (arising from a scattered parton), electrons, photons or, as discussed here, photon-jets (a group of collinear photons). This separation is especially interesting in the context of Higgs search, where the signal includes events with two photons (in the Standard Model) as well as events with two photon-jets (in a variety of Beyond the Standard Model scenarios), while QCD provides ever-present background. Here we describe the implementation of techniques from the rapidly evolving area of jet substructure studies, not only to enhance the more familiar photon-QCD separation, but also to separately distinguish photon-jets, i.e., to separate usual jets into three categories: single photons, photon-jets and QCD-jets. The efficacy of these techniques for separation is illustrated through studies of simulated data.

  19. Jet-Environment Interactions as Diagnostics of Jet Physics

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian

    2014-09-01

    In this chapter, we will explore the interaction of jets with their environments. Jets can transport a sizable fraction of accretion energy away from black holes and neutron stars. Because they are collimated, they can travel to distances far beyond the gravitational sphere of influence of the black hole. Yet, their interaction with the interstellar and intergalactic medium must eventually halt their advance and dissipate the energy they carry. The termination of the jet, and the inflation of large scale cavities of relativistic plasma offers one of the most powerful ways to constrain the physics of jets. In this chapter, we will review the inflation of radio lobes, the propagation of hot spots, the creation of shells and cavities, and the bending of jet by proper motion through their environment, both in the context of AGN jets and microquasars.

  20. Ram jet engine

    SciTech Connect

    Crispin, B.; Pohl, W.D.; Thomaier, D.; Voss, N.

    1983-11-29

    In a ram jet engine, a tubular combustion chamber is divided into a flame chamber followed by a mixing chamber. The ram air is supplied through intake diffusers located on the exterior of the combustion chamber. The intake diffusers supply combustion air directly into the flame chamber and secondary air is conveyed along the exterior of the combustion chambers and then supplied directly into the mixing chamber.

  1. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  2. Micromachined chemical jet dispenser

    SciTech Connect

    Swierkowski, S.; Ciarlo, D.

    1996-05-13

    Goal is to develop a multi-channel micromachined chemical fluid jet dispenser that is applicable to prototype tests with biological samples that demonstrate its utility for molecular biology experiments. Objective is to demonstrate a new device capable of ultrasonically ejecting droplets from 10-200 {mu}m diameter capillaries that are arranged in an array that is linear or focused. The device is based on several common fabrication procedures used in MEMS (micro electro mechanical systems) technology: piezoelectric actuators, silicon, etc.

  3. Behavior of Electrospinning Jet

    NASA Astrophysics Data System (ADS)

    Xu, Han; Reneker, Darrell

    2002-03-01

    During the electrospinning of jets of polymer solutions such as polyethylene oxide in water, interference colors similar to those seen in the walls of soap bubbles are seen if the proper illumination is provided. The colors can be seen both in the straight part of the jet and in the loops formed by the electrically driven bending instability. The colors were correlated with measurements of the diameter of segments of a particular color. The path of a slowly moving jet of polyisobutylene in a mixture of acetone and paraffin oil was recorded. A well-developed expanding spiral that moved downward was observed. The downward velocity of a typical segment was .13 m/s, and the radial velocity of the same segment was .23m/s. The development of the second bending instability occurred 180 ms after the first, and a third bending instability occurred 280 ms after the first. The growth of the bending instability clearly demonstrated its self-similar, fractal nature. A network of electrospun polyisobutylene fibers was collected in an isopropyl alcohol precipitation bath.

  4. Transport of fission products with a helium gas-jet at TRIGA-SPEC

    NASA Astrophysics Data System (ADS)

    Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Herfurth, F.; Geppert, C.; Ketelaer, J.; Ketter, J.; Krämer, J.; Krieger, A.; Knuth, K.; Nagy, Sz.; Nörtershäuser, W.; Smorra, C.

    2010-02-01

    A helium gas-jet system for the transport of fission products from the research reactor TRIGA Mainz has been developed, characterized and tested within the TRIGA-SPEC experiment. For the first time at TRIGA Mainz carbon aerosol particles have been used for the transport of radionuclides from a target chamber with high efficiency. The radionuclides have been identified by means of γ-spectroscopy. Transport time, efficiency as well as the absolute number of transported radionuclides for several species have been determined. The design and the characterization of the gas-jet system are described and discussed.

  5. Characteristics of a nitrogen-jet system in KUR-ISOL

    NASA Astrophysics Data System (ADS)

    Taher, Sharshar; Okano, Kotoyuki; Kawase, Yoichi

    1992-08-01

    The basic characteristics of a N 2-jet system coupled with a surface-ionization type ion source have been investigated at KUR-ISOL. The yields of transported activities and ionized ions have been measured under various conditions for both the He- and N 2-jets. The effects of N 2 gas upon the ionization and skimmer efficiency have been investigated. It was found that N 2 gas has almost no effect upon the ionization efficiency, but causes poorer skimmer efficiency than He gas owing to the large opening angle of aerosol particles at the outlet of a capillary. A mixture of He and N 2 gases was also tested.

  6. Areal array jetting device for ball grid arrays

    SciTech Connect

    Frear, D.R.; Yost, F.G.; Schmale, D.T.; Essien, M.

    1997-08-01

    Package designs for microelectronics devices have moved from through-hole to surface mount technology in order to increase the printed wiring board real estate available by utilizing both sides of the board. The traditional geometry for surface mount devices is peripheral arrays where the leads are on the edges of the device. As the technology drives towards high input/output (I/O) count (increasing number of leads) and smaller packages with finer pitch (less distance between peripheral leads), limitations on peripheral surface mount devices arise. A solution to the peripheral surface mount issue is to shift the leads to the area under the device. This scheme is called areal array packaging and is exemplified by the ball grid array (BGA) package. In a BGA package, the leads are on the bottom surface of the package in the form of an array of solder balls. The current practice of joining BGA packages to printed wiring boards involves a hierarchy of solder alloy compositions. A high melting temperature ball is typically used for standoff. A promising alternative to current methods is the use of jetting technology to perform monolithic solder ball attachment. This paper describes an areal array jetter that was designed and built to simultaneously jet arrays of solder balls directly onto BGA substrates.

  7. Mesospheric aerosol sampling spectrometer

    NASA Astrophysics Data System (ADS)

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Horanyi, Mihaly; Kohnert, Rick

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument has been launched on two sounding rockets in August, 2007 from Andoya, Norway to detect charged sub-visible aerosol particles in the polar mesosphere. The MASS instrument is designed to collect charged aerosols, cluster ions, and electrons on four pairs of graphite electrodes, three of which are biased with increasing voltage. The design of the MASS instrument was complicated by the short mean free path in the mesosphere. The opening to MASS was deliberately built to increase the mean free path and to reduce the shock wave within the instrument. The design procedure began with aerodynamics simulations of the flow through the instrument using Direct Simulation Monte Carlo (DSMC) in 3-D. The electric fields within the instrument were calculated using a Laplace solver in 3-D. With the aerodynamic and electric field simulations completed, an algorithm was created to find the trajectories of charged aerosols including collisions within MASS. Using this algorithm the collection efficiencies for each electrode was calculated as a function of the charge to mass ratio of the incoming particle. The simulation results have been confirmed experimentally using an Argon RF ion beam. The data from the August launches have been analyzed and the initial results show the MASS instrument operated as expected. Additional studies are underway to determine if there were effects from payload charging or spurious charge generation within the instrument. This project is supported by NASA.

  8. Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiberto, Paola; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Chiolerio, Alessandro; Martino, Paola; Pandolfi, Paolo; Allia, Paolo

    2013-04-01

    Two ferrofluid inks for jet-printing, containing magnetite NPs of slightly different average radius (sample A: 6 nm; sample B: 8 nm) were prepared by adding a dispersion of magnetite nanopowders in n-hexane to an insulating ink. Isothermal magnetization loops of inks were measured by means of a vibrating sample magnetometer in the temperature interval 5-300 K up to 70 kOe. The inks were then ejected at room temperature on standard paper by means of either a thermal ink jet head (TIJ; sample A) or a piezoelectric ink jet head (PIJ; sample B). Magnetic properties of prints on paper (FC/ZFC curves, isothermal magnetic loops and related hysteretic properties) were measured between 10 and 300 K using an alternating gradient force magnetometer up to 20 kOe. The inks display a different magnetic behavior with respect to both prints. In particular, the dispersed NPs are characterized by an effective radius (and ensuing magnetic interaction) larger than expected on the basis of the properties of the starting powders. Instead, the NP radii in both prints are closer to the starting values. The printed magnetic films show an almost perfect superparamagnetic (SP) response around room temperature; however, at temperatures lower than 100 K the SP scaling is not observed and both samples behave as interacting superparamagnetic (ISP) materials. The evolution from the SP to the ISP regime is marked by a steady increase in the hysteretic properties of both samples. Particular attention will be paid to the study of magnetic interactions occurring among NPs. The effect of the ejection process on the degree of aggregation of magnetite NPs will be here studied.

  9. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    PubMed

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-01

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism.

  10. Aerosol deposition in human respiratory-tract casts

    SciTech Connect

    Martonen, T.B.

    1981-09-01

    To assess the health hazard to the human presented by airborne particulate matter in the mining and industrial work environment, information is needed concerning total dose deposition and its distribution. Data has been obtained by depositing monodisperse ammonium fluorscein aerosols in respiratory system simulators consisting of combined human replica larynx casts and single-pathway trachebronchial (TB) tue models. Since they have only two airways in each generation distal to the trachea, airflow rates and patterns could be controlled in a practical manner with rotometers. Larynx configurations correspond to inspiratory flow rates of 15, 30 and 60 lmin. The mass median aerodynamic diameters of the aerosols ranged from 3.0 ..mu..m to 10.6 ..mu..m with geometric standard deviations of 1.11 to 1.16. Total larynx and TB deposition measurements could be expressed in terms of a single parameter, the particle Stokes number. Intrabronchial dose distribution results indicated relatively large tracheal losses, attributed to the laryngeal jet. Some airway bifurcations were sites of enhanced deposition. Such hot spots would indicate very high dosage to epithelial cells of workers' airways and have important implications regarding the establishment of threshold exposure values. Findings are in agreement with aerosol deposition data from replica TB casts. Inhalation exposure tests support the use of the single-pathway TB model as a suitable surrogate in studies of factors affecting aerosol behavior and deposition in the human.

  11. Effects of Carbon Dioxide Aerosols on the Viability of Escherichia coli during Biofilm Dispersal

    PubMed Central

    Singh, Renu; Monnappa, Ajay K.; Hong, Seongkyeol; Mitchell, Robert J.; Jang, Jaesung

    2015-01-01

    A periodic jet of carbon dioxide (CO2) aerosols is a very quick and effective mechanical technique to remove biofilms from various substrate surfaces. However, the impact of the aerosols on the viability of bacteria during treatment has never been evaluated. In this study, the effects of high-speed CO2 aerosols, a mixture of solid and gaseous CO2, on bacteria viability was studied. It was found that when CO2 aerosols were used to disperse biofilms of Escherichia coli, they led to a significant loss of viability, with approximately 50% of the dispersed bacteria killed in the process. By comparison, 75.6% of the biofilm-associated bacteria were viable when gently dispersed using Proteinase K and DNase I. Indirect proof that the aerosols are damaging the bacteria was found using a recombinant E. coli expressing the cyan fluorescent protein, as nearly half of the fluorescence was found in the supernatant after CO2 aerosol treatment, while the rest was associated with the bacterial pellet. In comparison, the supernatant fluorescence was only 9% when the enzymes were used to disperse the biofilm. As such, these CO2 aerosols not only remove biofilm-associated bacteria effectively but also significantly impact their viability by disrupting membrane integrity. PMID:26345492

  12. Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery.

    PubMed

    Nelson, Garrett; Kirian, Richard A; Weierstall, Uwe; Zatsepin, Nadia A; Faragó, Tomáš; Baumbach, Tilo; Wilde, Fabian; Niesler, Fabian B P; Zimmer, Benjamin; Ishigami, Izumi; Hikita, Masahide; Bajt, Saša; Yeh, Syun-Ru; Rousseau, Denis L; Chapman, Henry N; Spence, John C H; Heymann, Michael

    2016-05-30

    Reliable sample delivery is essential to biological imaging using X-ray Free Electron Lasers (XFELs). Continuous injection using the Gas Dynamic Virtual Nozzle (GDVN) has proven valuable, particularly for time-resolved studies. However, many important aspects of GDVN functionality have yet to be thoroughly understood and/or refined due to fabrication limitations. We report the application of 2-photon polymerization as a form of high-resolution 3D printing to fabricate high-fidelity GDVNs with submicron resolution. This technique allows rapid prototyping of a wide range of different types of nozzles from standard CAD drawings and optimization of crucial dimensions for optimal performance. Three nozzles were tested with pure water to determine general nozzle performance and reproducibility, with nearly reproducible off-axis jetting being the result. X-ray tomography and index matching were successfully used to evaluate the interior nozzle structures and identify the cause of off-axis jetting. Subsequent refinements to fabrication resulted in straight jetting. A performance test of printed nozzles at an XFEL provided high quality femtosecond diffraction patterns. PMID:27410079

  13. Three Dimensional Aerosol Climatology over India and the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Adams, A.; Zhang, C.

    2013-12-01

    Numerical models are indispensable tools to study aerosol effects on climate, including both aerosol direct and indirect radiative effects and their role in precipitation. But, agreement among the models has not been achieved, and thus it is not possible to accurately and confidently attain estimates of aerosol effects on climate. The lack of reliable knowledge on global three-dimensional (3D) aerosol climatology has prevented us from assessing the degree to which the disagreement in their aerosol climatic effects may come from differences of aerosol vertical structures in their simulations. To that end, we created a six year, global 3D extinction coefficient dataset for each aerosol species identifiable by the Level 2, Version 3, 5 km Aerosol Profile product from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) as a tool to improve 3D model representations. Here we describe the 3D structure of aerosol in the Middle East, India, and the Northern Indian Ocean and some of the interesting dynamical features responsible for the vertical structure and external mixing of aerosol species. One interesting feature in the 3D structure during boreal summer is a well-defined EC core located 0 - 10°N, 40°E - 90°E (Somalia across the Indian subcontinent), centered at 3 km. This is controlled by a shallow meridional circulation about the core. Additionally, the Somali Low-Level Jet exists at this location, but is usually located below the core (~850 mb). Another interesting feature is a strong EC core located 0 - 15°N, 60°E - 90°E below 0.5 km. Polluted dust (external mixture of dust and smoke) and marine aerosol are collocated in this area with maximum AODs of ~0.5 and ~0.2 respectively. Due to the wind stress over ocean, collocation of aerosol species, altitude, and lack of transport pathway for polluted dust, it is possible that this is an example of aerosol misclassification by

  14. Effects of fluid properties and laser fluence on jet formation during laser direct writing of glycerol solution

    NASA Astrophysics Data System (ADS)

    Yan, Jingyuan; Huang, Yong; Xu, Changxue; Chrisey, Douglas B.

    2012-10-01

    Laser-induced forward transfer (LIFT) has been widely studied to print various structures. It is important to investigate the jet and droplet formation process under different LIFT operating conditions. The resulting knowledge will help to better control the resulting printing quality and feature resolution. This study aims to better understand the effects of fluid properties and laser fluence on the jet formation process using time resolved imaging analysis during LIFT of glycerol solutions. It is found that if the laser fluence is too low and/or the glycerol concentration is too high, it is less likely for a bubble to fully form and/or grow before it diminishes. If the laser fluence is too high and/or the glycerol concentration is too low, it is also difficult to form a well-developed jet since dramatic bubble expansion may lead to a bulgy shape and even splashing. Only under certain combinations of glycerol concentration and laser fluence, can a well-defined jet form. When a jetting fluid is given, its jettability (J) can be characterized as the inverse of the Ohnesorge number. It is observed that a good jet forms at 0.86 ≤ J ≤ 2.49 (corresponding to 75%-85% glycerol solutions) when the laser fluence is 717 ± 45 mJ/cm2.

  15. Wall jets created by single and twin high pressure jet impingement

    NASA Astrophysics Data System (ADS)

    Miller, P.; Wilson, M.

    1993-03-01

    An extensive experimental investigation into the nature of the wall jets produced by single and twin normal jet impingement has been undertaken. Wall jet velocity profiles have been recorded up to 70 jet diameters from the impingement point, at pressures representative of current VStol technology. The tests used fixed convergent nozzles, with nozzle height and spacing and jet pressure being varied. Single jet impingement displays a consistent effect of nozzle height on wall jet development. For twin jet cases a powerful reinforcement exists along the wall jet interaction plane. Remote from the interaction plane the wall jets are weaker than those produced by a single jet impingement.

  16. High speed printing with polygon scan heads

    NASA Astrophysics Data System (ADS)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  17. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944

  18. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  19. W + jet production at CDF

    SciTech Connect

    Messina, Andrea; /INFN, Rome

    2006-10-01

    A measurement of W {yields} e{nu} + n-jet cross sections in p{bar p} collisions at {radical}s = 1.96 TeV using the Collider Detector at Fermilab in Run II (CDF II) is presented. The measurement is based on an integrated luminosity of 320 pb{sup -1}, and includes events with up to 4 or more jets. In each jet multiplicity sample the differential and cumulative cross sections with respect to the transverse energy of the i{sup th} jet are measured. For W+ {ge} 2 jets the differential cross section with respect to the 2-leading jets invariant mass m{sub j{sub 1}j{sub 2}} and angural separation {Delta} R{sub j{sub 1}j{sub 2}} is also reported. The data are compared to predictions from Monte Carlo simulations.

  20. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  1. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  2. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  3. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  4. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  5. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  6. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  7. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  8. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  9. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  10. The gray-scale ink-jet printer: value in making hard copies of digital images.

    PubMed

    Combs, M J; Snell, J; Cail, W S; Maier, T; Buck, D A

    1995-01-01

    Referring physicians often are supplied with copies of images to illustrate a report of the findings of a radiologic study or so that the radiologist can retain the original images. The increasing costs of production, film, and recovery of chemicals have enhanced the requirement for a clean, low-cost dry printing process. An ink-jet gray-scale paper printer (Unitone, Scitex Medical Systems, Bedford, MA) can print high-quality (300 dots per inch [dpi]) images with an effective 10-bit gray scale range by using the Hertz continuous ink-jet method [1-3], which does not require the use of a darkroom or hazardous chemicals. Several types of media (matte paper, glossy paper, transparency film) with a printing area of 26.9 x 43.7 cm (10.6 x 17.4 inches) may be used. The consumables are approximately 50-70% less expensive than the cost of silver halide film, providing a cost advantage over film for referral and archival copies. The results of an initial evaluation of the ink-jet printer at our institution are reported here.

  11. Three-dimensional printing of scintillating materials.

    PubMed

    Mishnayot, Y; Layani, M; Cooperstein, I; Magdassi, S; Ron, G

    2014-08-01

    We demonstrate, for the first time, the applicability of three-dimensional printing techniques to the manufacture of scintillation detectors. We report on the development of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various applications.

  12. NASA printing, duplicating, and copying management handbook

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This handbook provides information and procedures for the implementation of NASA policy and applicable laws and regulations relating to printing, duplicating, and copying. The topics addressed include a description of relevant laws and regulations, authorizations required, and responsible entities for NASA printing, duplicating, and copying. The policy of NASA is to ensure understanding and application of authority and responsibility on printing matters. Where necessary, the handbook clarifies the intent of basic laws and regulations applicable to NASA.

  13. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  14. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  15. Processing a printed wiring board by single bath electrodeposition

    DOEpatents

    Meltzer, Michael P.; Steffani, Christopher P.; Gonfiotti, Ray A.

    2010-12-07

    A method of processing a printed wiring board. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from a bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  16. Processing A Printed Wiring Board By Single Bath Electrodeposition

    DOEpatents

    Meltzer, Michael P.; Steffani, Christopher P.; Gonfiotti, Ray A.

    2003-04-15

    A method of processing a printed wiring board by single bath electrodeposition. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from the bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  17. Radiation-Driven Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2000-10-01

    Radiative winds and jets from luminous accretion disks/tori are reviewed. Among various models of astrophysical jets, plasma outflows emanating from accretion disks/tori and accelerated by the radiation pressure is the most promising one. Here explained are the roles of radiation pressure force and radiation drag force. Rise and fall of a torus model are also discussed, following its revenge. Finally, the millennium jet model, where the multistage acceleration takes place, is proposed.

  18. XRF-analysis of fine and ultrafine particles emitted from laser printing devices.

    PubMed

    Barthel, Mathias; Pedan, Vasilisa; Hahn, Oliver; Rothhardt, Monika; Bresch, Harald; Jann, Oliver; Seeger, Stefan

    2011-09-15

    In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants.

  19. Palm print image processing with PCNN

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Zhao, Xianhong

    2010-08-01

    Pulse coupled neural networks (PCNN) is based on Eckhorn's model of cat visual cortex, and imitate mammals visual processing, and palm print has been found as a personal biological feature for a long history. This inspired us with the combination of them: a novel method for palm print processing is proposed, which includes pre-processing and feature extraction of palm print image using PCNN; then the feature of palm print image is used for identifying. Our experiment shows that a verification rate of 87.5% can be achieved at ideal condition. We also find that the verification rate decreases duo to rotate or shift of palm.

  20. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.