Science.gov

Sample records for aerosol lidar measurements

  1. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  2. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  3. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  4. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  5. Aerosol Classification from High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.

  6. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  7. Scanning Raman lidar measurements of atmospheric water vapor and aerosols

    SciTech Connect

    Ferrare, R.A.; Evans, K.D.; Melfi, S.H.; Whiteman, D.N.

    1995-04-01

    The principal objective of the Department of Energy`s (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and infrared radiation, and indirectly, through their roles in cloud formation and dissipation. Over the past several years, we have been investigating how the scanning Raman lidar developed at the NASA/Goddard Space Flight Center (GSFC) can provide the water vapor and aerosol measurements necessary for such modeling. The lidar system has provided frequent, high resolution profiles of atmospheric water vapor and aerosols in nighttime operations during two recent field experiments. The first experiment was ATMIS-11 (Atmospheric Moisture Intercomparison Study) conducted in July-August 1992, and the second was the Convection and Moisture Experiment (CAMEX) conducted during September-October 1993. We present a brief description of the lidar system and examples of the water vapor and aerosol measurements acquired during these experiments.

  8. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall

  9. Improvement on lidar data processing for stratospheric aerosol measurements.

    PubMed

    Likura, Y; Sugimoto, N; Sasano, Y; Shimzu, H

    1987-12-15

    For lidar measurements of stratospheric aerosols; signal-induced noise (SIN) from a photomultiplier (PMT) has been a problem of particular interest. In this paper, we succeed in simulating lidar signals affected by the PMT, after finding a long tail with a decay time of ~200 micros in the PMT's response to an impulselike light exposure. The PMT studied was an RCA 8852. Computer simulation quantitatively revealed that the SIN caused by the delayed response became greater than the real signal at high altitudes. Based on the results of simulation, a proposal was made to find a practical method for identifying and removing the SIN from the actual lidar signals. In addition, an improved method for the lidar signal calibration was proposed by taking into account the systematic noise component, including background light as well as SIN, in formulating the clean air calibration (the matching method). Validity of the proposed methods was demonstrated by using them both with an actual lidar signal and a simulated lidar signal with SIN.

  10. Tracking aerosol plumes: lidar, modeling, and in situ measurement

    NASA Astrophysics Data System (ADS)

    Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.

    2004-09-01

    The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.

  11. Retrieval of stratospheric aerosol size distributions and integral properties from simulated lidar backscatter measurements.

    PubMed

    Yue, G K

    2000-10-20

    A new approach for retrieving aerosol properties from extinction spectra is extended to retrieve aerosol properties from lidar backscatter measurements. In this method it is assumed that aerosol properties are expressed as a linear combination of backscatters at three or fewer wavelengths commonly used in lidar measurements. The coefficients in the weighted linear combination are obtained by minimization of the retrieval error averaged for a set of testing size distributions. The formulas can be used easily by investigators to retrieve aerosol properties from lidar backscatter measurements such as the Lidar In-Space Technology Experiment and Pathfinder Instruments for Clouds and Aerosols Spaceborne Observations.

  12. Lidar Aerosol Profiles Measured From Halifax During Summer 2007

    NASA Astrophysics Data System (ADS)

    Crawford, L.; Duck, T. J.; Doyle, J.; Harris, R.; Beauchamp, S.

    2007-12-01

    Measurements of aerosol profiles in the troposphere and lower stratosphere were obtained with a high-power Raman Lidar from Halifax, Nova Scotia (44.63N, 63.58W) on the East Coast of Canada during Summer 2007. Observations throughout the troposphere at high temporal resolution were made possible by using a new dual-receiver setup. The lidar was operated in clear-sky conditions, and several long duration (> 80 hours) data sets were obtained. The measurements reveal the presence of boundary-layer aerosols during episodes of pollution transport from the Eastern US and Canada, and are compared with surface measurements of ozone and other species. Boundary layer development, entrainment and mixing are evident in the data. Structured plumes at higher altitudes are traced back to biomass burning events throughout North America. Aerosols were also observed on two occasions at 15 km in altitude, and are most likely due to pyroconvection. The measurements are being used to help understand transport and mixing processes, and to form a climatology of aerosol export from North America during the summer months.

  13. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  14. Lidar Measurements of Stratospheric Ozone, Temperature and Aerosol During 1992 UARS Correlative Measurement Campaign

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Singh, Upendra N.; Gross, Michael; Heaps, William S.; Ferrare, Richard

    1992-01-01

    Measurements of stratospheric ozone, temperature, and aerosols were made by the NASA/GSFC mobile stratospheric lidar during the UARS (Upper Atmospheric Research Satellite) Correlative Measurement Campaign at the JPL-Table Mountain Facility in Feb. and Mar. 1992. Due to the presence of substantial amounts of residual volcanic aerosol from the eruption of Mt. Pinatubo, the GSFC lidar system was modified for an accurate measurement of ozone concentration in the stratosphere. While designed primarily for the measurement of stratospheric ozone, this lidar system was also used to measure middle atmosphere temperature and density from 30 to 65 km and stratospheric aerosol from 15 to 35 km. In the following sections, we will briefly describe and present some typical measurements made during this campaign. Stratospheric ozone, temperature, and aerosols profiles derived from data taken between 15 Feb. and 20 Mar., 1992 will be presented at the conference.

  15. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  16. Raman lidar measurements of aerosol extinction and backscattering 1. Methods and comparisons

    SciTech Connect

    Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Evans, K.D.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10{endash}40{percent} lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40{percent} lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles. {copyright} 1998 American Geophysical Union

  17. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  18. Development of eye-safe lidar for aerosol measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Wilderson, Thomas D.

    1990-01-01

    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin.

  19. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  20. Lidar measurements of the post-fuego stratospheric aerosol

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hake, R. D., Jr.; Viezee, W.

    1976-01-01

    Fifteen lidar observations of the stratospheric aerosol were made between February and November 1975. All observations revealed the greatly increased particulate backscattering that followed the eruption of the volcano Fuego in October 1974. Vertical structure consisted initially of multiple layers, which later merged to form a single, broader peak. Essentially all of the increased scattering was confined to altitudes below 20 km. Hence, aerosol layer centroids in 1975 were typically several km below their altitude prior to the eruption. Radiative and thermal consequences of the measured post-Fuego layer were computed using several recently published models. The models predict a temperature increase of several K at the altitude of the layer, caused by the infrared absorption bands of the sulfuric acid particles. The surface temperature decrease predicted by the models is considerably smaller than 1 K, partly because of the small optical thickness of the volcanic layer, and partly because of its short residence time relative to the earth-ocean thermal response time.

  1. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.; Nadeev, Alexander I.

    2016-06-01

    Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  2. Mobile lidar for simultaneous measurements of ozone, aerosols, and temperature in the stratosphere.

    PubMed

    Uchino, O; Tabata, I

    1991-05-20

    A Meteorological Research Institute Mark II mobile lidar was developed for simultaneous measurements of ozone, temperature, and aerosols in the stratosphere. The lidar consists of an XeCl laser, a Nd:YAG laser, and an 80-cm diam receiving telescope. The laser beams at three wavelengths (308, 355, and 532 nm) can be almost simultaneously transmitted. The purpose of this lidar is to study, for example, the aerosol impact on the ozone layer through radiative and photochemical processes, the aerosol impact on the Umkehr measurements after violent volcanic eruptions, and the interaction between temperature and ozone. The performance of the lidar system and some data about ozone, aerosols, and temperature are described.

  3. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements.

    PubMed

    Cuesta, Juan; Flamant, Pierre H

    2010-04-20

    We present the "lidar beams in opposite directions" (LIBOD) technique and applications for quality assessment of spaceborne observations made by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite. LIBOD is applicable to standard total backscatter lidar because it does not require a priori knowledge of the particle extinction-to-backscatter ratio. In this paper, we present (i) an objective assessment of the lidar signal quality and representativity of correlative ground-based lidar and CALIOP measurements only using normalized range-corrected lidar signals and (ii) a numerical filtering and optimization technique for reducing the spurious oscillations induced by noisy signal differentiation as needed for retrieval of particle extinction coefficients and extinction-to-backscatter ratio profiles. Numerical simulations and Monte Carlo tests are conducted for assessing the performance of the LIBOD technique. The applications are illustrated with examples of actual correlative 532 nm lidar profiles from CALIOP and a ground-based lidar deployed in Tamanrasset in the heart of Sahara in 2006 and near Strasbourg, France, in 2007.

  4. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  5. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  6. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  7. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  8. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  9. Water Vapor, Cloud and Aerosol Properties on the Tibetan Plateau Using Multi-Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Dai, Guangyao; Wang, Dongxiang; Zhai, Xiaochun; Song, Xiaoquan

    2016-06-01

    The 3rd Tibetan Plateau atmospheric expedition experiment campaign were operated in the Tibetan Plateau during July and August 2014 by utilizing the Water vapor, Cloud and Aerosol Lidar (WVCAL), Coherent Doppler Wind Lidar and ceilometer VAISALA CL31. The observation was carried out in Nagqu area (31.5°N, 92.05°E), which is 4508 meters above the mean sea level. Water vapor mixing ratio, cloud height, vertical wind speed and vertical water vapor flux was measured by these lidars. The inversion methods of data products of lidars are described in details in this paper. Furthermore, the clouds heights measured by lidar and ceilometer were compared to verify the performance of the lidar. Finally, the case studies of water vapor mixing ratio, water vapor flux and cloud height and statistics were provided.

  10. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  11. Raman Lidar Measurements of the Aerosol Extinction-to-Backscatter Ratio Over the Southern Great Plains

    SciTech Connect

    Ferrare, Richard; Turner, David D.; Brasseur, L. H.; Feltz, W. F.; Dubovik, O.; Tooman, Tim P.

    2001-09-16

    We derive profiles of the aerosol extinction-to-backscatter ratio, Sa, at 355 nm using aerosol extinction and backscatter profiles measured during 1998 and 1999 by the operational Raman lidar at the Department of Energy Atmospheric Radiation Measurement program Southern Great Plains site in north central Oklahoma. Data from this Raman/Rayleigh-Mie lidar, which measures Raman scattering from nitrogen as well as the combined molecular (Rayleigh) and aerosol (Mie) scattering at the laser wavelength, are used to derive aerosol extinction and backscattering independently as a function of altitude. Because this lidar operates at 355 nm, where molecular backscattering is comparable with aerosol backscattering, Sa retrievals are generally limited to conditions where the aerosol extinction at 355 nm is > 0.03 km-1. The mean value of Sa at 355 nm derived for this period was 60 sr with a standard deviation of 12 sr. Sa was generally about 5-10 sr higher during high aerosol optical thickness (AOT) (> 0.3) conditions than during low AOT (< 0.1). A similar increase in Sa was found when the relative humidity increased from 30 to 80%. Large (> 15%) variations in the vertical profile of Sa occurred about 30% of the time, which implies significant variability in the vertical distribution of aerosol size distribution, shape, and/or composition often occurs. The Raman lidar measurements of Sa were compared with estimates of particle size and refractive index derived from an algorithm that uses ground-based Sun photometer measurements of Sun and sky radiance. For 17 cases of coincident Raman lidar and Sun and sky radiance measurements, Sa was linearly correlated with the aerosol fine mode effective radius and the volume ratio of fine/coarse particles.

  12. Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength Lidar measurements

    NASA Technical Reports Server (NTRS)

    Sasano, Y.; Browell, E. V.

    1986-01-01

    Aerosols are often classified into several general types according to their origins and composition, such as maritime, continental, and stratospheric aerosols, and these aerosol types generally have different characteristics in chemical and physical properties. The present study aims at demonstrating the potential for distinguishing these aerosol types by the wavelength dependence of their backscatter coefficients obtained from quantitative analyses of multiple wavelength lidar signals. Data from the NASA Airborne Differential Abosrption lidar (DIAL) S ystems, which can measure aerosol backscatter profiles at wavelenghts of 300, 600, and 1064 nm and ozone profiles of backscatter coefficients for these three wavelength were derived from the observations of aerosols of different types. Observations were performed over the Atlantic Ocean, the Southwestern United States, and French Guyana.

  13. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R., Jr.; DeYoung, Russell J.; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2008. While the PM2.5 concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Measurements of the boundary layer height from lidar instruments are necessary to incorporate satellite measurements with air quality measurements.

  14. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  15. Optical properties of different aerosol types: seven years of combined Raman- elastic backscatter lidar measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Giannakaki, E.; Balis, D. S.; Amiridis, V.; Zerefos, C.

    2009-11-01

    We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001-2007. The largest optical depths are observed for Saharan dust and smoke aerosol loads. For "local" and "continental polluted" aerosols the measurements indicate moderate aerosol loads. However, measurements associated with the "local" path show lower values of free tropospheric contribution (37% versus 46% for "continental polluted") and thus, enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for "continental clean" aerosols. The largest lidar ratios, of the order of 70 sr are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values was estimated for well defined aerosol categories, which provides a statistical measure of the lidar ratio's dependency on aerosol-size, which is a useful tool for elastic lidar systems. Scatter plot between lidar ratio values and Ångström exponent values for "local" and "continental polluted" aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for "clean continental" aerosols we found constantly low lidar ratios almost independent of size.

  16. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  17. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  18. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  19. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  20. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  1. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  2. Aerosol Properties over Southeastern China from Multi-Wavelength Raman and Depolarization Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru

    2016-06-01

    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.

  3. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-02-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layer) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  4. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-05-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layers) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  5. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  6. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the

  7. Mobile Multiwavelength Polarization Raman Lidar for Water Vapor, Cloud and Aerosol Measurement

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Zhang, Kailin; Qin, Shengguang; Gao, Fei; Hua, Dengxin

    2016-06-01

    Aiming at the detection of water vapor mixing ratio, particle linear depolarization ratio, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WVCAL) was developed by the lidar group at Ocean University of China. The Lidar consists of transmitting subsystem, receiving subsystem, data acquisition and controlling subsystem and auxiliary subsystem. These parts were presented and described in this paper. For the measurement of various physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in this Lidar system. In this paper, the integration and working principle of these channels is introduced in details. Finally, a measurement example which was operated in coastal area-Qingdao, Shandong province, during 2014 is provided.

  8. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  9. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  10. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.

    PubMed

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Liu, Jintao; Zhang, Kailin; Qin, Shengguang; Hua, Dengxin; Gao, Fei; Liu, Liping

    2015-12-28

    Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change.

  11. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  12. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  13. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  14. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

  15. Estimation of aerosol direct forcing by Asian dust using sun/sky radiometer and lidar measurement

    NASA Astrophysics Data System (ADS)

    Won, J. G.; Yoon, S. C.; Holben, B.

    2002-12-01

    Appropriate optical parameters of aerosols are critical part for estimating aerosol direct forcing. We suggest a method of determining aerosol parameters for the radiative transfer model, CRM released by NCAR, from AERONET inversion data set. AERONET inversion provides size distribution and complex refractive indices at 4 wavelengths, 440, 670, 870 and 1020nm. Mie calculation can produce the aerosol optical parameters, such as aerosol optical thickness (AOT), single scattering albedo (SSA), asymmetry factor(g) and by using regression fitting method on log-log plane, the parameters at 19 channels of short wavelength region can be retrieved. With this method, it becomes possible to use ground-base solar radiance measurement data for calculating aerosol direct forcing without assuming the specific aerosol type in advance. We investigated the differences of aerosol forcing by dust and non-dust aerosols. Out of AERONET data collected in Apr. 2001, the properties of Asian dust aerosols were examined, which have the characteristics of bigger AOT, bigger SSA (bigger solar radiance reflection) and less wavelength dependence of SSA and g. This difference makes larger aerosol direct forcing at TOA and less atmospheric absorption. The aerosol profiles measured by lidar are also applied for radiative transfer calculation. The profiles of short wave radiation flux and heating rate by dust were investigated for two Asian dust events, one was elevated dust event and the other was dust event settling into the PBL. Instantaneous heating rate larger than 2K/day was estimated within dust aerosol layer and several differences of radiation flux profiles due to the aerosol profiles were investigated.

  16. Multiyear Aerosol Study Based on Lidar&Sunphotometer Measurements in Romania

    NASA Astrophysics Data System (ADS)

    Nemuc, Anca; Binietoglou, Ioannis; Andrei, Simona; Dandocsi, Alexandru; Stefanie, Horatiu

    2016-06-01

    This observational study focused on three-years time-averaged data set (January 2012-2015). An investigation of long-term trends was performed on two different data sets derived from active and passive remote sensing measurements in Magurele, Romania. Measurements of sun photometer aerosol optical depth (AOD) at 500 nm and 340 nm show the mean values of 0.230 ±0 .118 and 0.398 ± 0.185, respectively. The lidar AOD at 532 and 355nm has a mean of 0.271 ±.0.164 and 0.472 ± 0.165 respectively. The highest seasonal mean value was measured by the lidar during the summer of 2014 while the lowest seasonal value was measured by the sunphotometer in February 2012. The origin of atmospheric aerosols has been analyzed using both backtajectories of Hysplit and Circulation Type Classification (CTCs) methods.

  17. Raman lidar system for the measurement of water vapor and aerosols in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Melfi, S. H.; Ferrare, R. A.

    1992-01-01

    A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sept. 1987 and described in their meteorological context.

  18. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  19. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper; DeYoung, Russell; Ferrare, Richard; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM(sub 2.5) concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM(sub 2.5) in the winter can exceed summer PM(sub 2.5) by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM(sub 2.5) measurements at the surface. Measurements of the boundary layer height from lidar instruments provide valuable information need to understand the relationship between satellite measurements of optical depth and in-situ measurements of PM(sub 2.5).

  20. Uncertainty in Cloud Aerosol Transport System (CATS) Doppler Lidar Products and Measurements

    NASA Astrophysics Data System (ADS)

    Selmer, P. A.

    2010-12-01

    The Cloud Aerosol Transport System (CATS) is both a high spectral resolution lidar and Doppler lidar currently being developed at NASA Goddard Space Flight Center for use as a demonstrator instrument for NASA’s Aerosol Cloud Ecosystem (ACE) Mission. CATS is intended to fly on NASA’s high-altitude ER-2 aircraft. CATS will be capable of measuring both aerosol properties and horizontal wind velocity as a function of altitude. The accuracy of these measurements is important to the success of the instrument and the ACE mission. Uncertainty equations for both the aerosol and wind products are derived. Initially the only sources of error are assumed to be instrument error in the spectral measurements. Using simulated CATS spectral measurements from simulated atmospheric profiles (an atmosphere with only a cirrus layer, an atmosphere with only a cumulus layer, an atmosphere with only an aerosol layer, and an atmosphere with no clouds or aerosols), the uncertainty in the aerosol and wind products are calculated. These calculated uncertainties are found to be within reason. Also worthy of consideration is the effect of aircraft motion on CATS’ wind measurements and products. An equation for the the nadir angle (assumed to be about 45 degrees for CATS), as well as the uncertainty in this angle, in terms of aircraft pitch and roll is derived. The effect of uncertainty in this angle on the uncertainty in CATS aerosol and wind products is calculated using the same simulated data previously mentioned, which is found to be insignificant for normal, steady flight.

  1. Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique.

    PubMed

    Russell, P B; Morley, B M; Livingston, J M; Grams, G W; Patterson, E M

    1982-05-01

    Aerosol and cloud measurements are simulated for a space shuttle lidar. Expected errors (in signal, transmission, density, and calibration) are calculated algebraically and checked by simulating measurements and retrievals using random number generators. Vertical resolution is 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in mesospheric cloud and aerosol layers. Horizontal resolution is 100-2000 km. By day vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 microm) as well as strong volcanic stratospheric aerosols (at 0.53 microm). Quantitative backscatter is retrieved provided that particulate optical depth does not exceed approximately 0.3. By night all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 microm), mesospheric aerosols (at 0.53 microm), and noctilucent clouds (at 1.06 and 0.53 microm). Molecular density is a leading source of error in measuring nonvolcanic stratospheric and upper tropospheric aerosols.

  2. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  3. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  4. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  5. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  6. Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar

    NASA Astrophysics Data System (ADS)

    Vanderbeek, Richard; Gurton, Kristan

    2004-02-01

    A novel windowless chamber was developed to allow aerosol backscatter measurements with a frequency-agile CO2 lidar. The chamber utilizes curtains of air to contain the cloud, thus preventing the inevitable backscatter off of conventional windows from corrupting the desired measurements. This feature is critical because the CO2 lidar has a long (1 μs) pulse and the backscatter off the window cannot be temporally separated from the backscatter off the aerosol in the chamber. The chamber was designed for testing with a variety of CB simulants and interferents in both vapor and aerosol form and has been successfully shown to contain a cloud of known size, concentration, and particle size distribution for 10-15 minutes. This paper shows the results using Arizona road dust that was screened by the manufacturer into 0-3 μm and 5-10 μm particle size distributions. The measurements clearly show the effect of size distribution on the infrared backscatter coefficients as well as the dynamic nature of the size distribution for a population of aerosols. The test methodology and experimental results are presented.

  7. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  8. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  9. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  10. Compact Ozone Lidar for Atmospheric Ozone and Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Marcia, Joel; DeYoung, Russell J.

    2007-01-01

    A small compact ozone differential absorption lidar capable of being deployed on a small aircraft or unpiloted atmospheric vehicle (UAV) has been tested. The Ce:LiCAF tunable UV laser is pumped by a quadrupled Nd:YLF laser. Test results on the laser transmitter demonstrated 1.4 W in the IR and 240 mW in the green at 1000 Hz. The receiver consists of three photon-counting channels, which are a far field PMT, a near field UV PMT, and a green PMT. Each channel was tested for their saturation characteristics.

  11. Design of an airborne lidar for stratospheric aerosol measurements

    NASA Technical Reports Server (NTRS)

    Evans, W. E.

    1977-01-01

    A modular, multiple-telescope receiving concept is developed to gain a relatively large receiver collection aperture without requiring extensive modifications to the aircraft. This concept, together with the choice of a specific photodetector, signal processing, and data recording system capable of maintaining approximately 1% precision over the required large signal amplitude range, is found to be common to all of the options. It is recommended that development of the lidar begin by more detailed definition of solutions to these important common signal detection and recording problems.

  12. Visibility and aerosol measurement by diode-laser random-modulation CW lidar

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.

    1986-01-01

    Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.

  13. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  14. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.

    PubMed

    Ben-David, A

    1999-04-20

    The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape beta(lambda) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence beta(lambda) was computed from the measurements and used to estimate the error Delta(CL) (concentration-path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration-path-length product CL and the average concentration C = /L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements.

  15. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Powell, Kathleen A.; Kuehn, Ralph E.; Young, Stuart A.; Winker, David M.; Hostetler, Chris A.; Hunt, William H.; Liu, Zhaoyan; McGill, Matthew J.; Getzewich, Brian J.

    2009-01-01

    Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth s atmosphere is critical in assessing the planet s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

  16. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  17. Improved simulation of aerosol, cloud, and density measurements by shuttle lidar

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.

    1981-01-01

    Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.

  18. Benefit of depolarization ratio at λ = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements

    NASA Astrophysics Data System (ADS)

    Gasteiger, J.; Freudenthaler, V.

    2014-11-01

    A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the aerosol optical properties that is sufficient for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of aeroplanes, was retrieved from measurements of such lidar systems in southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on those of MULIS and POLIS of the Ludwig-Maximilians-Universität in Munich (Germany) which measure the linear depolarization ratio at 355 and 532 nm with high accuracy. The improvements are determined by comparing uncertainties from retrievals applied to simulated measurements of this lidar setup with uncertainties obtained when the depolarization at 1064 nm is added to this setup. The simulated measurements are based on real lidar measurements of transported Eyjafjallajökull volcano ash. It is found that additional 1064 nm depolarization measurements significantly reduce the uncertainty of the retrieved mass concentration and effective particle size. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. The size dependence of the depolarization does not vary strongly with refractive index, thus we expect similar benefits for the retrieval in case of measurements of other volcanic ash compositions and

  19. Continuous and automatic measurement of atmospheric structures and aerosols optical properties with R-Man510 nitrogen Raman lidar

    NASA Astrophysics Data System (ADS)

    Royer, P.; Renaudier, M.; Sauvage, L.; Boquet, M.; Thobois, L.; Bizard, A.

    2012-04-01

    A new compact and light nitrogen Raman lidar (R-Man510) has recently been developed by Leosphere company. This UV-lidar system is based on a low energy diode pumped Nd:YAG laser at 355 nm and has been developed to be operated unmanly for the meteorological and airport needs. Measurements are typically performed with a vertical resolution between 15 and 60 m and a temporal resolution between 30 seconds (for elastic channel) and 10 minutes (for Raman channel). The elastic channel of the lidar is used to automatically detect up to 9 atmospheric structures (Plantery Boundary Layer height, aerosol and cloud layers) in quasi real-time. Aerosols are classified in 6 types (pollution aerosols, desert dusts, volcanic ashes, marine aerosols, biomass burning and no aerosols) considering informations on depolarization ratio determined with the two cross-polarized elastic channels and on aerosols optical properties (extinction-to-backscatter ratio, aerosol backscatter and extinction coefficients) determined thanks to the nitrogen Raman channel at 387 nm. Aerosols optical properties can then been used for the assessment of mass concentrations which is crucial in case of hypothetical volcanic eruption. We will present the first results obtained with this new commercial lidar system. Daytime and nighttime performances of the system will be analyzed and compared with simulations from an instrumental model.

  20. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  1. Mobile LiDAR Measurement for Aerosol Investigation in South-Central Hebei, China

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; Zheng, Yunhui; Wong Man, Sing; Wang, Runfeng; Hu, Mingyu; Lang, Hongmei; Wang, Luyao; Bai, Yang; Rao, Lanlan

    2016-04-01

    With the rapid industrialization and urbanization in China during the last decades, the increasing anthropogenic pollutant emissions have significantly caused serious air pollution problems which are adversely influencing public health. Hebei is one of the most air polluted provinces in China. In January 2013, an extremely severe and persistent haze episode with record-breaking PM2.5 outbreak affecting hundreds of millions of people occurred over eastern and northern China. During that haze episode, 7 of the top 10 most polluted cities in China were located in the Hebei Province according to the report of China's Ministry of Environmental Protection. To investigate and the spatial difference and to characterize the vertical distribution of aerosol in different regions of south-central Hebei, mobile measurements were carried out using a mini micro pulse LiDAR system (model: MiniMPL) in March 2014. The mobile LiDAR kit consisting of a MiniMPL, a vibration reduction mount, a power inverter, a Windows surface tablet and a GPS receiver were mounted in a car watching though the sunroof opening. For comparison, a fixed measurement using a traditional micro pulse LiDAR system (model: MPL-4B) was conducted simultaneously in Shijiazhuang, the capital of Hebei Province. The equipped car was driven from downtown Shijiazhuang by way of suburban and rural area to downtown Cangzhou, Handan, and Baoding respectively at almost stable speed around 100Km per hour along different routes which counted in total more than 1000Km. The results can be summarized as: 1) the spatial distribution of total aerosol optical depth along the measurement routes in south-central Hebei was controlled by local terrain and population in general, with high values in downtown and suburban in the plain areas, and low values in rural areas along Taihang mountain to the west and Yan mountain to the north; 2) obviously high AODs were obtained at roads crossing points, inside densely populated area and nearby

  2. Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad

    2012-11-01

    Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research

  3. Lidar Measurements of Stratospheric Ozone, Aerosols and Temperature during the SAUNA Campaign at Sodankyla, Finland

    NASA Technical Reports Server (NTRS)

    McGee, T.; Twigg, L.; Sumnicht, G.; McPeters, R.; Bojkov, B.; Kivi, R.

    2008-01-01

    The Sodankyla Total Column Ozone Intercomparison (SAUNA) campaign took place at the Finnish Meteorological Institute Arctic Research Center (FMI-ARC) at Sodankyla, Finland (67.37 N) in two separate phases during early spring 2006, and winter 2007. These campaigns has several goals: to determine and improve the accuracy of total column ozone measurements during periods of low solar zenith angle and high total column ozone; to determine the effect of ozone profile shape on the total column retrieval; and to make validate satellite ozone measurements under these same conditions. The GSFC Stratospheric Ozone Lidar (STROZ), which makes profile measurements of ozone temperature, aerosols and water vapor participated in both phases of the campaign. During the deployments, more than 30 profile measurements were made by the lidar instrument, along with Dobson, Brewer, DOAS, ozonesonde, and satellite measurements. The presentation will concentrate on STROZ lidar results from the second phase of the campaign and comparisons with other instruments will be discussed. This will include both ground-based and satellite comparisons.

  4. Intercomparison of Pulsed Lidar Data with Flight Level CW Lidar Data and Modeled Backscatter from Measured Aerosol Microphysics Near Japan and Hawaii

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.

  5. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 1. Lidar intercomparison

    SciTech Connect

    Bowdle, D.A. ); Rothermel, J. ); Vaughan, J.M.; Brown, D.W. ); Post, M.J. )

    1991-03-20

    An airborne continuous wave (CW) focused CO{sub 2} Doppler lidar and a ground-based pulsed CO{sub 2} Doppler lidar were used to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6 {mu}m wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter the two lidars show good agreement, with differences usually less than {approximately}50% near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  6. Global View of Aerosol Vertical Distributions from CALIPSO Lidar Measurements and GOCART Simulations: Regional and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas

    2010-01-01

    This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.

  7. Global Lidar Measurements of Clouds and Aerosols from Space Using the Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Palm, S. P.; Welton, E. J.; Hart, W. D.; Spinhirne, J. D.; McGill, M.; Mahesh, A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch on the ICESat satellite as part of the NASA EOS mission in 2002. GLAS will be used to perform high resolution surface altimetry and will also provide a continuously operating atmospheric lidar to profile clouds, aerosols, and the planetary boundary layer with horizontal and vertical resolution of 175 and 76.8 m, respectively. GLAS is the first active satellite atmospheric profiler to provide global coverage. Data products include direct measurements of the heights of aerosol and cloud layers, and the optical depth of transmissive layers. In this poster we provide an overview of the GLAS atmospheric data products, present a simulated GLAS data set, and show results from the simulated data set using the GLAS data processing algorithm. Optical results from the ER-2 Cloud Physics Lidar (CPL), which uses many of the same processing algorithms as GLAS, show algorithm performance with real atmospheric conditions during the Southern African Regional Science Initiative (SAFARI 2000).

  8. Vertical profiling of marine aerosol, dust and their mixtures utilizing the synergy of sunphotometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Engelman, Ronny; Baars, Holger; Wandinger, Ulla; Ansmann, Albert; Solomos, Stavros; Dubovik, Oleg; Schüttemeyer, Dirk

    2015-04-01

    Current and future lidar products from space missions (CALIPSO, ADM-Aeolus, EarthCARE) aim to improve our understanding of atmospheric dynamics and aerosol/cloud interactions on global scale. However, the lidar instruments onboard these three missions (CALIOP, ALADIN, ATLID) are different systems, operating at different wavelengths and providing different sets of measured parameters. In order to spectrally homogenize the datasets, aerosol/cloud-type-dependent spectral conversion factors are needed to be applied to all lidar-related properties (extinction, backscatter and depolarization), based on the aerosol/cloud classification of the space-borne observations. The well-established European Aerosol Research Lidar Network (EARLINET) offers the unique opportunity to support such an effort. However, EARLINET database suffers from lack of information for specific aerosol types such as marine and mixed dust/marine cases. Unfortunately, these types are not observed in EARLINET's core stations, since the stations are mostly located at continental sites and are influenced by urban pollution. Moreover, the lidar systems near the coastlines suffer from the inability to measure at the first few hundred meters (500-1000 m) due to their technical design, which results in an incomplete laser/telescope overlap region. Towards the study of marine and marine-dust aerosol mixtures we organized the experimental campaign of "Characterization of Aerosol mixtures of Dust And Marine origin" (CHARADMexp), on June 20 to July 10, at Finokalia, Grete, Greece. Our aim was to derive optical, microphysical and chemical properties of the marine component and its mixtures with dust, employing sophisticated instrumentation installed on the site of Finokalia ACTRIS station, where only marine and dust particles are present 95% of the time. Specifically, aerosol characterization was established by the "Generalized Aerosol Retrieval from Radiometer and Lidar Combined data" (GARRLiC), a technique that

  9. Raman lidar measurements of aerosol extinction and backscattering 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements

    SciTech Connect

    Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Kaufman, Y.J.; Evans, K.D.

    1998-08-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index {ital n}, and estimate the effective single-scattering albedo {omega}{sub 0}. Values of {ital n} ranged between 1.4{endash}1.5 (dry) and 1.37{endash}1.47 (wet); {omega}{sub 0} varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of {omega}{sub 0}. The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by {ital Hanel} [1976] with the exponent {gamma}=0.3{plus_minus}0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment. {copyright} 1998 American Geophysical Union

  10. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  11. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  12. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program

    SciTech Connect

    Ferrare, Richard A.

    2002-08-19

    Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

  13. Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements.

    PubMed

    Bissonnette, L R; Hutt, D L

    1995-10-20

    A novel aerosol lidar inversion method based on the use of multiple-scattering contributions measured by a multiple-field-of-view receiver is proposed. The method requires assumptions that restrict applications to aerosol particles large enough to give rise to measurable multiple scattering and depends on parameters that must be specified empirically but that have an uncertainty range of much less than the boundary value and the backscatter-to-extinction ratio of the conventional single-scattering inversion methods. The proposed method is applied to cloud measurements. The solutions obtained are the profiles of the scattering coefficient and the effective diameter of the cloud droplets. With mild assumptions on the form of the function, the full-size distribution is estimated at each range position from which the extinction coefficient at any visible and infrared wavelength and the liquid water content can be determined. Typical results on slant-path-integrated optical depth, vertical extinction profiles, and fluctuation statistics are compared with in situ data obtained in two field experiments. The inversion works well in all cases reported here, i.e., for water clouds at optical depths between ~0.1 and ~4.

  14. Measurements of the Vertical Structure of Aerosols and Clouds Over the Ocean Using Micro-Pulse LIDAR Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)

    2001-01-01

    The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.

  15. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  16. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  17. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  18. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  19. Aerosol profiling by Raman lidar in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Cao, Nianwen; Yang, Shaobo; Xie, Yinhai; Zhu, Cunxiong

    2015-10-01

    Aerosol profiles at 607 nm over ranges from 2 to 20 km were obtained using Raman lidar in Nanjing, China. The measured aerosol extinction coefficient was largely stable at about 1.5-2.5 × 10-4 m-1 after noise and Rayleigh corrections were applied. The noise effect in Raman lidar aerosol measurements is analyzed, and a formula relating aerosol extinction coefficient error and noise is presented in detail. Simulation and experimental results are in good agreement, indicating that the noise-related calculation for the Raman lidar aerosol measurement error is reasonable.

  20. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Zhien; Liu, Zhaoyan; Winker, Dave; Trepte, Charles

    2008-08-01

    Based on the first year of CALIPSO lidar measurements under cloud-free conditions, a height-resolved global distribution of dust aerosols is presented for the first time. Results indicate that spring is the most active dust season, during which ˜20% and ˜12% of areas between 0 and 60°N are influenced by dust at least 10% and 50% of the time, respectively. In summer within 3-6 km, ˜8.3% of area between 0 and 60°N is impacted by dust at least 50% of the time. Strong seasonal cycles of dust layer vertical extent are observed in major source regions, which are similar to the seasonal variation of the thermally driven boundary layer depth. The arid and semiarid areas in North Africa and the Arabian Peninsula are the most persistent and prolific dust sources. African dust is transported across the Atlantic all yearlong with strong seasonal variation in the transport pathways mainly in the free troposphere in summer and at the low altitudes in winter. However, the trans-Atlantic dust is transported at the low altitudes is important for all seasons, especially transported further cross the ocean. The crossing Atlantic dusty zones are shifted southward from summer to winter, which is accompanied by a similar southward shift of dust-generating areas over North Africa. The Taklimakan and Gobi deserts are two major dust sources in East Asia with long-range transport mainly occurring in spring. The large horizontal and vertical coverage of dust aerosols indicate their importance in the climate system through both direct and indirect aerosol effects.

  1. Vertical distribution of near-ground aerosol backscattering coefficient measured by a CCD side-scattering lidar

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Liu, Dong; Ma, Xiaomin; Shi, Bo; Shan, Huihui; Zhao, Ming; Xie, Chenbo; Wang, Yingjian

    2015-09-01

    The near-ground aerosols have the most impact on the human beings. Its fine spatial and temporal distribution, with which the environmental and meteorological departments concern themselves most, has not been elaborated very well due to the unavailable measurement tools. We present the continuous observations of the vertical profile of near-ground aerosol backscattering coefficients by employing our self-developed side-scattering lidar system based on charge-coupled device camera. During the experimental period from April 2013 to August 2014, four catalogs of aerosol backscattering coefficient profiles are found in the near ground. The continuous measurement is revealed by the contour plots measured during the whole night. These experimental results indicate that the aerosol backscattering coefficients in near ground are inhomogeneous and vary with altitude and time, which are very useful for the model researchers to study the regional air pollution and its climate impact.

  2. Comparing Simultaneous Stratospheric Aerosol and Ozone Lidar Measurements with SAGE 2 Data after the Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; McCormick, M. P.; Veiga, R. E.; Wang, P.-H.; Rizi, V.; Masci, F.; DAltorio, A.; Visconti, G.

    1995-01-01

    Stratospheric aerosol and ozone profiles obtained simultaneously from the lidar station at the University of L'Aquila (42.35 deg N, 13.33 deg E, 683 m above sea level) during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratospheric Aerosol and Gas Experiment (SAGE) 2 profiles. The agreement between the two data sets is found to be reasonably good. The temporal change of aerosol profiles obtained by both techniques showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concentration profiles derived from an empirical time-series model based on SAGE 2 ozone data obtained before the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentrations measured in January 1992 were reduced relative to time-series model estimates. Possible reasons for the differences between measured and model-based ozone profiles are discussed.

  3. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D.; Ferrare, R.; Evans, K.; Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.

    1992-07-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] was to study the development and radiative characteristics of cirrus clouds. The SPECTRE [Spectral Radiation Experiment] project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth`s surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

  4. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D. . Goddard Space Flight Center); Ferrare, R. ); Evans, K. ); Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E. )

    1992-01-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment) was to study the development and radiative characteristics of cirrus clouds. The SPECTRE (Spectral Radiation Experiment) project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth's surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

  5. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 μg m -2) or no traffic conditions (3.73 × 10 5 μg m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

  6. Airborne High Spectral Resolution Lidar Measurements of Aerosol Distributions and Properties during the NASA DISCOVER-AQ Missions

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Scarino, A. J.; Burton, S. P.; Harper, D. B.; Cook, A. L.; Berkoff, T.; Rogers, R. R.; Seaman, S. T.; Fenn, M. A.; Sawamura, P.; Clayton, M.; Mueller, D.; Chemyakin, E.; Anderson, B. E.; Beyersdorf, A. J.; Ziemba, L. D.; Crawford, J. H.

    2015-12-01

    The NASA Langley Research Center airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, were deployed for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) missions. DISCOVER-AQ provided systematic and concurrent observations of column-integrated, surface, and vertically-resolved distributions of aerosols and trace gases to improve the interpretation of satellite observations related to air quality. HSRL-1, deployed during the first DISCOVER-AQ mission over the Washington DC-Baltimore region, measured profiles of aerosol backscatter and depolarization (532, 1064 nm) and aerosol extinction and optical thickness (AOT) (532 nm). HSRL-2, the first airborne multiwavelength HSRL, was deployed for the following three DISCOVER-AQ missions over the California Central Valley, Houston, and Denver. HSRL-2 measures profiles of aerosol backscatter and depolarization (355, 532, 1064 nm) and aerosol extinction and AOT (355, 532 nm). Additional HSRL-2 data products include aerosol type, mixed layer depth, and range-resolved aerosol microphysical parameters. The HSRL measurements reveal the temporal, spatial, and vertical variability of aerosol optical properties over these locations. HSRL measurements show that surface PM2.5 concentrations were better correlated with near surface aerosol extinction than AOT scaled by the mixed layer height. During the missions over Washington DC-Baltimore, Houston, and Denver, only about 20-65% of AOT was within the mixed layer. In contrast, nearly all of the AOT was within the mixed layer over the California Central Valley. HSRL-2 retrievals of aerosol fine mode volume concentration and effective radius compare well with coincident airborne in situ measurements and vary with relative humidity. HSRL-2 retrievals of aerosol fine mode volume concentration were also used to derive PM2.5 concentrations which compare well with surface PM2.5 measurements.

  7. Lidar measurements of stratospheric aerosols over Menlo Park, California, October 1972 - March 1974

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Viezee, W.; Hake, R. D.

    1974-01-01

    During an 18-month period, 30 nighttime observations of stratospheric aerosols were made using a ground based ruby lidar located near the Pacific coast of central California (37.5 deg. N, 122.2 deg. W). Vertical profiles of the lidar scattering ratio and the particulate backscattering coefficient were obtained by reference to a layer of assumed negligible particulate content. An aerosol layer centered near 21 km was clearly evident in all observations, but its magnitude and vertical distribution varied considerably throughout the observation period. A reduction of particulate backscattering in the 23- to 30-km layer during late January 1973 appears to have been associated with the sudden stratospheric warming which occurred at that time.

  8. Measuring the characteristics of stratospheric aerosol layer and total ozone concentration at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey

    2015-11-01

    We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5 °N, 85.0 °E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of TOMS satellite data for the period 1979- 1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk after a series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, researchers record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  9. Certain Results of Measurements of Characteristics of Stratospheric Aerosol Layer and Total Ozone Content at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey

    2016-06-01

    We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N, 85.0°E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of Total Ozone Mapping Spectrometer (TOMS) data for the period 1979-1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk aftera series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, we record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  10. Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—A study using LIDAR, ground measurements and satellite data

    NASA Astrophysics Data System (ADS)

    Badarinath, K. V. S.; Kumar Kharol, Shailesh; Rani Sharma, Anu

    2009-01-01

    Agriculture crop residue burning in tropics is an important source of atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. Synchronous measurements using micro-pulsed lidar, MICROTOPS-II sun photometer, multi-filter rotating shadow band radiometer (MFRSR) on aerosol optical depth and ground reaching solar irradiance were carried at an urban location in central region of India. Aerosol backscatter profiles obtained from micro-pulse lidar showed elevated aerosol layers up to ~3 km on certain days during October 2007. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains over large regions. Radiative forcing of aerosols estimated from SBDART model with input information on aerosol chemical properties, aerosol optical depth and single scattering albedo and broadband solar irradiance measurements using MFRSR showed good correlation (R=0.98).

  11. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  12. Lidar observations of the Pinatubo aerosol layer at Thule, Greenland

    SciTech Connect

    Di Girolamo, P.; Cacciani, M.; Sarra, A. di; Fiocco, G.; Fua, D. )

    1994-06-22

    This paper summarizes lidar measurements from Thule Greenland made during EASOE. The lidar was able to track aerosols, primarily of volcanic origin, through the winter. Above 18 km the aerosol content was strongly dependent upon the location of the vortex, and did not show a substantial increase until the vortex broke up.

  13. Cloud and aerosol optics by polarized micro pulse Lidar and ground based measurements of zenith radiance

    NASA Astrophysics Data System (ADS)

    Delgadillo, Rodrigo

    Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.

  14. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  15. Airborne lidar measurements of El Chichon stratospheric aerosols, October 1982 to November 1982

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Osborn, M. T.

    1985-01-01

    A coordinated flight mission to determine the spatial distribution and aerosol characteristics of the El Chichon produced stratospheric aerosol was flown in October to November 1982. The mission covered 46 deg N to 46 deg S and included rendezvous between balloon-, airplane-, and satellite-borne sensors. The lidar data from the flight mission are presented. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering functions versus altitude are supplied for each profile. The bulk of the material produced by the El Chichon eruptions of late March 10 to early April 1982 resided between latitudes from 5 to 7 deg S to 35 to 37 deg N and was concentrated above 21 km in a layer that peaked at 23 to 25 km. In this latitude region, peak scattering ratios at a wavelength of 0.6943 micron were approximately 24. The results of this mission are presented in a ready-to-use format for atmospheric and climatic studies.

  16. Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2016-06-01

    This work presents a Scheimpflug lidar system which was employed for atmospheric aerosol monitoring in southern Sweden. Atmospheric aerosol fluctuation was observed around rush-hour. The extinction coefficient over 6 km was retrieved, i.e., 0.15 km-1, by employing the slop-method during the time when the atmosphere was relatively homogenous. The measurements successfully demonstrate the potential of using a Scheimpflug lidar technique for atmospheric aerosol monitoring applications.

  17. Lidar Measurements of Wind, and Cloud & Aerosol Structures using HARLIE at the WVIOP, Sept/Oct 2000

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary; Miller, D.; Wilkerson, T.; Andrus, I.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The holographic scanning lidar HARLIE made continuous measurements of aerosol and cloud one-micron backscatter and derived the horizontal wind speed and direction at cloud height over the ARM (SGP) site during the water vapor campaign WVIOP, September 17 - October 6, 2000. Whenever possible, these measurements were compared with Loran-C winds as measured by the routine launches of Vaisala radiosonde balloons scheduled by the ARM project. Taken overall, the agreement between these two types of observation is excellent, which could be taken merely as a validation of the relatively new HARLIE technique. However, the detailed comparison for a given sonde launch clearly requires that, out of the HARLIE data which are taken all the time at all altitudes, one must select those segments that match the altitude-time trajectory of the sonde. Moreover, the conical HARLIE scan at a 45 deg. elevation angle covers a wide area that is more representative of the average wind conditions above the site than the isolated track of the sonde's ascent. We suggest that the HARLIE instrument offers a more general and improved representation of the horizontal wind profile whenever there is sufficient backscatter by clouds and aerosols for lidar operation. HARLIE is a rugged and compact lidar that operates from aircraft as well as from the ground and has been used in several meteorological campaigns. As a "direct detection" lidar, HARLIE does not require the complexity of a coherent detection system. The data reduction algorithms facilitate the rapid and accurate determination of wind speed and direction at all altitudes. Wind measurements and HARLIE performance data from WVIOP 2000 and other campaigns will be presented.

  18. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  19. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  20. Sun photometer and lidar measurements of the plume from the Hawaii Kilauea Volcano Pu'u O'o vent: Aerosol flux and SO2 lifetime

    USGS Publications Warehouse

    Porter, J.N.; Horton, K.A.; Mouginis-Mark, P. J.; Lienert, B.; Sharma, S.K.; Lau, E.; Sutton, A.J.; Elias, T.; Oppenheimer, C.

    2002-01-01

    Aerosol optical depths and lidar measurements were obtained under the plume of Hawaii Kilauea Volcano on August 17, 2001, ???9 km downwind from the erupting Pu'u O'o vent. Measured aerosol optical depths (at 500 nm) were between 0.2-0.4. Aerosol size distributions inverted from the spectral sun photometer measurements suggest the volcanic aerosol is present in the accumulation mode (0.1-0.5 micron diameter), which is consistent with past in situ optical counter measurements. The aerosol dry mass flux rate was calculated to be 53 Mg d-1. The estimated SO2 emission rate during the aerosol measurements was ???1450 Mg d-1. Assuming the sulfur emissions at Pu'u O'o vent are mainly SO2 (not aerosol), this corresponds to a SO2 half-life of 6.0 hours in the atmosphere.

  1. Aerosol classification by airborne high spectral resolution lidar observations

    NASA Astrophysics Data System (ADS)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2012-10-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was validated with in-situ measurements and backward trajectory analyses. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  2. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  3. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  4. Aerosol classification by airborne high spectral resolution lidar observations

    NASA Astrophysics Data System (ADS)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2013-03-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning mixture, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was supported by backward trajectory analysis and validated with in-situ measurements. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  5. LOSA-M2 aerosol Raman lidar

    SciTech Connect

    Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V

    2011-10-31

    The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

  6. Lidar measurements of aerosol at Varanasi (25.28° N, 82.96° E), India during CAIPEEX scientific campaign

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, Y. Jaya; Samuel, E. James J.; Thara, P.; Jayaraman, A.

    2016-05-01

    A compact dual polarization lidar (DPL) was designed and developed at National Atmospheric Research Laboratory (NARL) for daytime measurements of the boundary layer aerosol distribution and depolarization properties with very high vertical and temporal resolution. The lidar employs a compact flashlamp pumped Q-switched Nd:YAG laser and operates at 532 nm wavelength. The lidar system uses a stable biaxial configuration between transmitter and receiver units. The receiver utilizes a 150 mm Schmidt Cassegranin telescope for collecting laser returns from the atmosphere. The collected backscattered light is separated into co and cross-polarization signals using a polarization beam splitter cube. A set of mini-PMTs have been used for detection of light from atmosphere during daylight period. A two channel transient recorder system with built-in ADC has been employed for recording the detected light. The entire lidar system is housed in a compact cabinet which can be easily transported for field measurements. During 2014, the lidar system was installed at the Banaras Hindu University (BHU) campus, Varanasi (25.28° N, 82.96° E, 82 m AMSL) and operated for a period of three months in to support the cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX) conducted by Indian Institute of tropical meteorology (IITM). During this campaign period, the lidar measurements were carried out in the vertical direction with spatial resolution of 7.5 m and time sampling of 30s. The lidar measurements revealed the occurrence of boundary layer growth during convective periods and also detected the long-range transport dust layers with significant depolarization. In the present paper, we present the lidar measurements obtained during the campaign period and discuss the observation of transport of dust layer over the experimental site with support of back trajectory analysis and satellite data. The Lidar observations were compared with the available satellite

  7. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 2, Retrieval of Particulate Matter Concentration

    NASA Astrophysics Data System (ADS)

    Moore, K. D.; Bird, A. W.; Wojcik, M.; Lemon, R.; Hatfield, J.

    2014-12-01

    An elastic backscatter light detection and ranging (Lidar) system emits a laser pulse and measures the return signal from molecules and particles along the path. It has been shown that particulate matter mass concentrations (PM) can be retrieved from Lidar data using multiple wavelengths. In this paper we describe a technique that allows for semi-quantitative PM determination under a set of guiding assumptions using only one laser wavelength. The Space Dynamics Laboratory has designed an eye-safe (1.5 μm) single wavelength elastic Lidar system called CELiS (Compact Eye-safe Lidar System), which is described in a companion paper, to which this technique is applied. Data utilized in the PM retrieval include the Lidar return signal, ambient temperature, ambient humidity, barometric pressure, particle size distribution, particle chemical composition, and PM measurements. Particle size distribution is measured with an optical particle counter. PM is measured with filter-based measurements. Chemical composition is determined through multiple analyses on exposed filter samples. Particle measurements are made both inside and outside of the plume of interest and collocated with the lidar beam for calibration. The meteorological and particle measurements are used to estimate the total extinction (σ) and backscatter (β) for background and plume aerosols. These σ and β values are used in conjunction with the lidar return signal in an inversion technique based on that of Klett (1985, Appl. Opt., 1638-1643). Variable σ/β ratios over the lidar beam path are used to estimate the values of σ and β at each lidar bin. A relationship between β and PM mass concentrations at calibration points is developed, which then allows the β values derived over the lidar beam path to be converted to PM. A PM-calibrated, scanning Lidar system like CELiS can be used to investigate PM concentrations and emissions over a large volume, a task that is very difficult to accomplish with typical

  8. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.

    PubMed

    Reichardt, Jens; Wandinger, Ulla; Klein, Volker; Mattis, Ina; Hilber, Bernhard; Begbie, Robert

    2012-12-01

    The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES.

  9. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; van Zyl, Pieter G.; Müller, Detlef; Balis, Dimitris; Komppula, Mika

    2016-07-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type are available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single-scattering albedo, were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr, 41 ± 13 sr, 0.9 ± 0.4 % and 2.3 ± 0.5, respectively, for urban/industrial aerosols, while these values were 92 ± 10 sr, 75 ± 14 sr, 3.2 ± 1.3 % and 1.7 ± 0.3, respectively, for biomass burning aerosol layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 µm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single-scattering albedo at 532 nm was 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532

  10. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  11. [Dual-wavelength Mie lidar observations of tropospheric aerosols].

    PubMed

    Chi, Ru-Li; Wu, De-Cheng; Liu, Bo; Zhou, Jun

    2009-06-01

    A new dual-wavelength Mie lidar (DWL) is introduced. The DWL can be used to monitor the optical properties of tropospheric aerosol at 532 and 1 064 nm wavelength and their spatial and temporal variations, and to research aerosol size distribution with altitude. This lidar adopted four channels to receive the far and near range backscattering signal at 532 and 1 064 nm wavelength respectively. In order to enhance the capability of daytime measurement, the system employed a narrow band interference filter to separate the main backscattering signal of lidar return, including Mie backscattering signal and Rayleigh backscattering signal from the total backscattering signal including non-elastic scattering signal and solar spectrum, by cooperating with an iris to depress the majority of sky background noise. Overall structure and specifications of the lidar, as well as data processing method, were described. The lidar system has been operated in Hefei (117. 16 degrees E, 31.90 degrees N). The profile of extinction coefficient of tropospheric aerosol and its temporal-spatial distribution were obtained. Angstrom exponent and optical depth of aerosol were also discussed. The observational results have shown that this lidar works well both during the day and at night and has the ability to measure the tropospheric aerosols and to manifest the temporal and spatial distributions of the aerosols with high precision.

  12. Scanning Mobile Lidar for Aerosol Tracking and Biological Aerosol Identification

    NASA Astrophysics Data System (ADS)

    He, Tingyao; Bergant, Klemen; Filipčič, Andrej; Forte, Biagio; Gao, Fei; Stanič, Samo; Veberič, Darko; Zavrtanik, Marko

    2010-05-01

    fluorescence signals at 295 nm is estimated to be 2 km. The measurements of the time-series indicate that the mobile lidar is capable of detecting and profiling clouds and aerosols in its detection range. Our future plans include establishing an automated, unattended environmental monitoring system that will allow full time continuous measurements in the desired solid angle around the lidar station.

  13. Lidar measurements at Lauder, NZ

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Gross, Michael; Singh, Upendra; Kimvilakani, Patrick

    1995-01-01

    In March of 1994, the GSFC Stratospheric Ozone Lidar was deployed to the Network for the Detection of Stratospheric Change (NDSC) site at Lauder, NZ. This was in conjunction with a series of NASA ER-2 flights from Christchurch, NZ south to the Antarctic Circle. These flights were organized to study the chemistry of the stratosphere before, during and after the formation of the well-known 'ozone hole'. Lidar measurements were made at four different time periods corresponding to the times of the ER-2 flights. Lauder is situated nearly along the flight path as the aircraft flew south and so the lidar measurements provide a checkpoint for the ozone, aerosol and temperature instruments onboard the aircraft. Whenever the weather permitted, lidar measurements were made as near to dawn, prior to the flight, and as near to sunset, after the flight. This provided data as close to the aircraft transit time as possible. More than 70 individual lidar measurements were made, each consisting of a vertical profile of ozone, temperature, and aerosol. These were made over three different seasons and show seasonal variation. Of particular interest in the lidar data base is the wintertime stratospheric - mesospheric temperature profiles, which show large variations at the stratopause and also some significant wave activity.

  14. A tunable coherent CO2 lidar for measurements of atmospheric aerosol backscatter and attenuation

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1983-01-01

    A coherent laser radar system using a grating-tunable, injection-locked TEA-CO2 transmitter is being used to measure the altitude dependence of atmospheric aerosol backscatter and attenuation at a variety of CO2 laser wavelengths in the 9-11 micron region. Injection control of the TEA-CO2 laser allows one to obtain Single-Longitudinal-Mode (SLM) pulses which will follow the frequency of the injected radiation if the TEA laser cavity length is adjusted so that a cavity resonance is in proximity with the injected signal frequency, and if various additional conditions are satisfied. Requirements for generation of SLM pulses in this manner from a TEA CO2 laser with an unstable resonator cavity will be discussed. Procedures used for quantitative range-gated measurements of aerosol backscatter and attenuation will also be discussed.

  15. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  16. Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Formenti, Paolo

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution or aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18'N, 16 deg 30'W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and in analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO. and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 + 0.007 per sr. Comparisons of the MPL data with data from other co-located instruments showed good agreement during the dust episode.

  17. Ground-Based Lidar Measurements of Aerosols During ACE-2: Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18 min N, 16 deg 30 min W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and an analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO, and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 +/- 0.007 sr(exp -1). Comparisons of the MPL data with data from other collocated instruments showed good agreement during the dust episode.

  18. Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W. (Principal Investigator)

    1995-01-01

    A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.

  19. Infrared lidar observations of stratospheric aerosols.

    PubMed

    Forrister, H N; Roberts, D W; Mercer, A J; Gimmestad, G G

    2014-06-01

    We observed the stratospheric aerosol layer at 34° north latitude with a photon-counting 1574 nm lidar on three occasions in 2011. During all of the observations, we also operated a nearby 523.5 nm micropulse lidar and acquired National Weather Service upper air data. We analyzed the lidar data to find scattering ratio profiles and the integrated aerosol backscatter at both wavelengths and then calculated the color ratio and wavelength exponent for lidar backscattering from the stratospheric aerosols. The visible-light integrated backscatter values of the layer were in the range 2.8-3.5×10⁻⁴ sr⁻¹ and the infrared integrated backscatter values ranged from 2.4 to 3.7×10⁻⁵  sr⁻¹. The wavelength exponent was determined to be 1.9±0.2.

  20. Lidar observations of high-altitude aerosol layers (cirrus clouds)

    NASA Astrophysics Data System (ADS)

    Deleva, Atanaska D.; Grigorov, Ivan V.

    2013-03-01

    Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

  1. Multistatic aerosol-cloud lidar in space: A theoretical perspective

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-11-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; help relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the

  2. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  3. Studying Taklamakan aerosol properties with lidar (STAPL)

    NASA Astrophysics Data System (ADS)

    Cottle, Paul; Mueller, Detlef; Shin, Dong-Ho; Zhang, Xiao Xiao; Feng, Guanglong; McKendry, Ian; Strawbridge, Kevin

    2013-10-01

    By now, the global impacts of atmospheric dust have been well-established. Nevertheless, relevant properties such as size distribution, depolarization ratio, and even single-scattering albedo have been shown to vary substantially between dust producing regions and are also strongly dependant on the conditions under which the dust is emitted. Even greater variations have been documented during the process of long-range transport. With continued improvement of detection technologies, research focus is increasingly turning to refinement of our knowledge of these properties of dust in order to better account for the presence of dust in models and data analysis. The purpose of this study is to use a combination of lidar data and models to directly observe the changing properties of dust layers as they are transported from their origin in the Taklamakan Desert of western China. With the co-operation of the Xinjiang Institute of Ecology and Geography, a portable micropulse lidar system was installed at Aksu National Field on the northern edge of the Tarim Basin in late April 2013, during the Spring dust storm season. Over six days, data were collected on the optical properties of dust emissions passing over this location. The measurements of this lidar have shown the dust over Aksu on these days to have a significantly higher depolarization ratio than has been previously reported for the region. Model results show this dust was then transported across the region at least as far as Korea and Japan. Models from the Naval Aerosol Analysis and Prediction System (NAAPS) show that during transport the dust layers became intermixed with sulfate emissions from industrial sources in China as well as smoke from wildfires burning in south-east Asia and Siberia. The multi-wavelength raman-elastic lidar located in Gwangju South Korea was used to observe the vertical structure of the layers as well as optical properties such as colour ratio, depolarization ratio and extinction

  4. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  5. Lidar measurements of sub-visible aerosol layers in the free troposphere at a tropical coastal station in Trivandrum, India

    NASA Astrophysics Data System (ADS)

    Veerabuthiran, Sangaipillai; Satyanarayana, Malladi; Sreeja, Rajappan; Presennakumar, Bhargavan; Muraleedharen Nair, Sivarama Pillai; Ramakrishna Rao, Duggirala; Pillai Mohankumar, Santhibhavan Vasudevan

    2006-12-01

    Lidar observations had been conducted to study the long-range transport of aerosol and their effect at tropical station, Trivandrum during the period of 2001-2003. The presence of aerosol layers was observed on many days below about 5 km during the above period. The monthly values of aerosol extinction coefficient profile showed the presence of aerosol layer in the height region up to about 5 km during the summer monsoon periods. However, during the Asian winter monsoon period the aerosol layers were observed in the altitude region between 0.6 and 3 km. The extinction values were high in the winter season and were typically found to be 3.4×10-4 m-1. The aerosol optical depth was calculated by integrating the extinction values in the aerosol layer region and it was found to be between 0.2 and 0.35. The plausible reasons for the formation of these layers were explained using the wind circulation pattern and air back trajectories.

  6. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  7. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; Omar, A.

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  8. Lidar determination of the composition of atmosphere aerosols

    NASA Technical Reports Server (NTRS)

    Wright, M. L.

    1980-01-01

    Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

  9. Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2014-12-01

    Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).

  10. Aerosol pattern correlation techniques of wind measurement

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W.

    1985-01-01

    This paper reviews the current status of lidar image correlation techniques of remote wind measurement. It also examines the potential use of satellite borne lidar global wind measurements using this approach. Lidar systems can easily detect spatial variations in the volume scattering cross section of naturally occurring aerosols. Lidar derived RHI, PPI and range-time displays of aerosol backscatter have been extensively employed in the study of atmospheric structure. Descriptions of this type of data can be obtained in many references including Kunkel et al. (1977), Kunkel et al. (1980), Boers et al. (1984), Uthe et al. (1980), Melfi et al. (1985) and Browell et al. (1983). It is likely that the first space-borne lidars for atmospheric studies will observe aerosol backscatter to measure parameters such as boundary layer depth and cloud height. This paper examines the potential application of these relatively simple aerosol backscatter lidars to global wind measurements.

  11. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  12. LIDAR for measuring atmospheric extinction

    NASA Astrophysics Data System (ADS)

    Dawsey, M.; Gimmestad, G.; Roberts, D.; McGraw, J.; Zimmer, P.; Fitch, J.

    2006-06-01

    The Georgia Tech Research Institute and the University of New Mexico are developing a compact, rugged, eye safe lidar (laser radar) to be used specifically for measuring atmospheric extinction in support of the second generation of the CCD/Transit Instrument (CTI-II). The CTI-II is a 1.8 meter telescope that will be used to accomplish a precise timedomain imaging photometric and astrometric survey at the McDonald Observatory in West Texas. The supporting lidar will enable more precise photometry by providing real-time measurements of the amount of atmospheric extinction as well as its cause, i.e. low-lying aerosols, dust or smoke in the free troposphere, or high cirrus. The goal of this project is to develop reliable, cost-effective lidar technology for any observatory. The lidar data can be used to efficiently allocate observatory time and to provide greater integrity for ground-based data. The design is described in this paper along with estimates of the lidar's performance.

  13. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement. PMID:25321266

  14. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement.

  15. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.

    PubMed

    Sasano, Y; Browell, E V

    1989-05-01

    The present study demonstrates the potential of a multiple wavelength lidar for discriminating between several aerosol types such as maritime, continental, stratospheric, and desert aerosols on the basis of wavelength dependence of the aerosol backscatter coefficient. In the analysis of lidar signals, the two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength, and this made it possible to reduce the uncertainty in the extinction/backscatter ratio, which is a key parameter in the lidar solution. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064 nm can provide unique information for discriminating between various aerosol types such as continental, maritime, Saharan dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols. Measurement error estimation was also made through numerical simulations. Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. There was disagreement between the theoretical and empirical results, which in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations. PMID:20548724

  16. Fluorescent lidar for organic aerosol study

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Timofeev, V. I.; Grishin, A. I.; Fateyeva, N. L.

    2005-10-01

    The paper describes the fluorescent lidar created for monitoring of the atmosphere and for estimating the content of fluorescent components of organic aerosol. The lidar operation is based on the use of ultraviolet radiation of harmonics of Nd:YAG solid state laser for exciting the atmospheric fluorescence and the spectral analysis of the atmospheric fluorescence is used in the near ultraviolet and blue spectral range with the resolution of 2 nm. The lidar was found to be efficient for remote analysis of organic aerosol occurring as a result of vegetation emission of secondary metabolites to the atmosphere. Fluorescence spectra processing allows us to select some organic compounds, which molecules contain 7 and more carbon atoms. Taking into account the availability of interconnection between organic aerosol and vegetation, in lidar the second harmonic of Nd:YAG laser is also used for exciting the fluorescence of vegetation covers. In this case the receiving system detects the fluorescence of vegetation in the red spectral range conditioned by the chlorophyll of vegetation. Simultaneous detection of the fluorescence from the atmosphere and from vegetation makes it possible to obtain data on the interaction of the atmosphere and underlying surface covered by vegetation. It has been found that a disruption in the vegetation feeding or the impact of pollutions on vegetation resulted in a sharp increase of the fluorescence intensity of vegetation chlorophyll in the red spectral range and in the simultaneous appearance of organic aerosol in the atmosphere adjacent to vegetation in the region of negative impact.

  17. Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

    NASA Astrophysics Data System (ADS)

    Chaikovsky, A.; Dubovik, O.; Holben, B.; Bril, A.; Goloub, P.; Tanré, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; Grudo, Y.; Lopatin, A.; Karol, Y.; Lapyonok, T.; Amiridis, V.; Ansmann, A.; Apituley, A.; Allados-Arboledas, L.; Binietoglou, I.; Boselli, A.; D'Amico, G.; Freudenthaler, V.; Giles, D.; Granados-Muñoz, M. J.; Kokkalis, P.; Nicolae, D.; Oshchepkov, S.; Papayannis, A.; Perrone, M. R.; Pietruczuk, A.; Rocadenbosch, F.; Sicard, M.; Slutsker, I.; Talianu, C.; De Tomasi, F.; Tsekeri, A.; Wagner, J.; Wang, X.

    2015-12-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  18. Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

    NASA Astrophysics Data System (ADS)

    Chaikovsky, Anatoli; Dubovik, Oleg; Holben, Brent; Bril, Andrey; Goloub, Philippe; Tanré, Didier; Pappalardo, Gelsomina; Wandinger, Ulla; Chaikovskaya, Ludmila; Denisov, Sergey; Grudo, Jan; Lopatin, Anton; Karol, Yana; Lapyonok, Tatsiana; Amiridis, Vassilis; Ansmann, Albert; Apituley, Arnoud; Allados-Arboledas, Lucas; Binietoglou, Ioannis; Boselli, Antonella; D'Amico, Giuseppe; Freudenthaler, Volker; Giles, David; José Granados-Muñoz, María; Kokkalis, Panayotis; Nicolae, Doina; Oshchepkov, Sergey; Papayannis, Alex; Perrone, Maria Rita; Pietruczuk, Alexander; Rocadenbosch, Francesc; Sicard, Michaël; Slutsker, Ilya; Talianu, Camelia; De Tomasi, Ferdinando; Tsekeri, Alexandra; Wagner, Janet; Wang, Xuan

    2016-03-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode.The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  19. Lidar network observations of tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Nishizawa, Tomoaki; Hara, Yukari; Xie, Chenbo; Uno, Itsushi; Yumimoto, Keiya; Wang, Zifa; Yoon, Soon-Chang

    2008-12-01

    Observations of tropospheric aerosols (mineral dust, air-pollution aerosols, etc.) and clouds are being conducted using a network of two-wavelength (1064nm, 532nm) polarization (532nm) lidars in the East Asian region. Currently, the lidars are operated continuously at 23 locations in Japan, Korea, China, Mongolia and Thailand. A real-time data processing system was developed for the network, and the data products such as the attenuated backscatter coefficients and the estimated extinction coefficients for non-spherical and spherical aerosols are generated automatically for online network stations. The data are used in the real-time monitoring of Asian dust as well as in the studies of regional air pollution and climate change.

  20. Atmospheric aerosol profiling with a bistatic imaging lidar system.

    PubMed

    Barnes, John E; Sharma, N C Parikh; Kaplan, Trevor B

    2007-05-20

    Atmospheric aerosols have been profiled using a simple, imaging, bistatic lidar system. A vertical laser beam is imaged onto a charge-coupled-device camera from the ground to the zenith with a wide-angle lens (CLidar). The altitudes are derived geometrically from the position of the camera and laser with submeter resolution near the ground. The system requires no overlap correction needed in monostatic lidar systems and needs a much smaller dynamic range. Nighttime measurements of both molecular and aerosol scattering were made at Mauna Loa Observatory. The CLidar aerosol total scatter compares very well with a nephelometer measuring at 10 m above the ground. The results build on earlier work that compared purely molecular scattered light to theory, and detail instrument improvements. PMID:17514239

  1. Aerosol properties over Interior Alaska from lidar, DRUM Impactor sampler, and OPC-sonde measurements and their meteorological context during ARCTAS-A, April 2008

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.; Sassen, K.; Hayashi, M.; Cahill, C. F.; Shaw, G.; Harrigan, D.; Fuelberg, H.

    2013-02-01

    Aerosol loading over Interior Alaska displays a strong seasonality, with pristine conditions generally prevailing during winter months. Long term aerosol research from the University of Alaska Fairbanks indicates that the period around April typically marks the beginning of the transition from winter to summer conditions. In April 2008, the NASA-sponsored "Arctic Research of the Composition of the Troposphere from Aircraft and Satellites" (ARCTAS) field campaign was conducted to analyze incursions of aerosols transported over Alaska and the Canadian North. In and around Fairbanks, Alaska, data concerning aerosol characteristics were gathered by polarization (0.693 μm) lidar, DRUM Impactor sampler, and balloon-borne optical particle counter. These data provide information on the vertical distribution and type of aerosol, their size distributions, the chemical nature of aerosol observed at the surface, and timing of aerosol loading. A detailed synoptic analysis placed these observations into their transport and source-region context. Evidence suggests four major aerosol loading periods in the 25 March-30 April 2008 timeframe: a period during which typical Arctic haze conditions prevailed, several days of extremely clear conditions, rapid onset of a period dominated by Asian dust with some smoke, and a period dominated by Siberian wildfire smoke. A focused case study analysis conducted on 19 April 2008 using a balloon-borne optical particle counter suggests that, on this day, the majority of the suspended particulate matter consisted of coarse mode desiccated aerosol having undergone long-range transport. Backtrack trajectory analysis suggests aged Siberian wildfire smoke. In the last week of April, concentrations gradually decreased as synoptic conditions shifted away from favoring transport to Alaska. An important result is a strong suggestion of an Asian dust incursion in mid-April that was not well identified in other ARCTAS measurements. The lidar and OPC

  2. Accuracy Remote-Sensing of Aerosol Spatial Distribution in the Lower Troposphere by Twin Scanning Lidars

    NASA Astrophysics Data System (ADS)

    Gao, F.; Hua, D.; Li, Y.; Li, W.; Wang, L.

    2015-12-01

    Aerosols in the lower troposphere play an important role in the absorption and scattering of atmospheric radiation, the forming of precipitation and the circulation of chemistry. Due to the influence of solar heating at the surface, the aerosol distribution is inhomogeneous and variation with time. Lidar is proven to be a powerful tool in the application of remote sensing of atmospheric properties (Klett 1981). However, the existing of overlap function in lidar equation limits the fine detection of aerosol optical properties in the lower troposphere by vertical measurement, either by Raman lidar (Whiteman 2003) or by high spectral resolution lidar (Imaki 2005). Although the multi-angle method can succeed the aerosol measurement from the ground, the homogeneous atmospheric is needed (Pahlow 2004). Aiming to detect the inhomogeneous aerosols in the lower troposphere and to retrieve the aerosol extinction and backscatter coefficients in the lidar equation, a novel method for accuracy remote-sensing of aerosol properties based on twin scanning lidars has been proposed. In order to realize the fine detection of the aerosol spatial distribution from the ground to the height of interest of atmosphere, the scanning lidar is utilized as the remote sensing tool combined with the cross scanning by the twin systems, which makes the exact solutions of those two unknown parameters retrievable. Figure shows the detection method for aerosol spatial distribution using twin scanning lidars. As two lidar equations are provided simultaneously, the aerosol extinction and backscatter coefficients are retrievable. Moreover, by selecting the transmitting laser wavelength, the presented method can realize the fine detection of aerosol at any spectrum, even the theoretical and technical analysis of the aerosol characteristics by applying multi-spectra.

  3. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    NASA Technical Reports Server (NTRS)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  4. The evaluation of a shuttle borne lidar experiment to measure the global distribution of aerosols and their effect on the atmospheric heat budget

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Joseph, J. H.; Trauger, J. T.; Guetter, P. J.; Eloranta, E. W.; Lawler, J. E.; Wiscombe, W. J.; Odell, A. P.; Roesler, F. L.; Weinman, J. A.

    1975-01-01

    A shuttle-borne lidar system is described, which will provide basic data about aerosol distributions for developing climatological models. Topics discussed include: (1) present knowledge of the physical characteristics of desert aerosols and the absorption characteristics of atmospheric gas, (2) radiative heating computations, and (3) general circulation models. The characteristics of a shuttle-borne radar are presented along with some laboratory studies which identify schemes that permit the implementation of a high spectral resolution lidar system.

  5. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  6. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  7. Aerosol analysis techniques and results from micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Spinhirne, James D.; Campbell, James R.; Reagan, John A.; Powell, Donna

    1998-01-01

    The effect of clouds and aerosol on the atmospheric energy balance is a key global change problem. Full knowledge of aerosol distributions is difficult to obtain by passive sensing alone. Aerosol and cloud retrievals in several important areas can be significantly improved with active remote sensing by lidar. Micro Pulse Lidar (MPL) is an aerosol and cloud profilometer that provides a detailed picture of the vertical structure of boundary layer and elevated dust or smoke plume aerosols. MPL is a compact, fully eyesafe, ground-based, zenith pointing instrument capable of full-time, long-term unattended operation at 523 nm. In October of 1993, MPL began taking full-time measurements for the Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) site and has since expanded to ARM sites in the Tropical West Pacific (TWP) and the North Slope of Alaska (NSA). Other MPL's are moving out to some of the 60 world-wide Aerosol Robotic Network (AERONET) sites which are already equipped with automatic sun-sky scanning spectral radiometers providing total column optical depth measurements. Twelve additional MPL's have been purchased by NASA to add to the aerosol and cloud database of the EOS ground validation network. The original MPL vertical resolution was 300 meters but the newer versions have a vertical resolution of 30 meters. These expanding data sets offer a significant new resource for atmospheric radiation analysis. Under the direction of Jim Spinhirne, the MPL analysis team at NASA/GSFC has developed instrument correction and backscatter analysis techniques for ARM to detect cloud boundaries and analyze vertical aerosol structures. A summary of MPL applications is found in Hlavka (1997). With the aid of independent total column optical depth instruments such as the Multifilter Rotating Shadowband Radiometer (MFRSR) at the ARM sites or sun photometers at the AERONET sites, the MPL data can be calibrated, and time-resolved vertical profiles of

  8. Improvement of Raman lidar algorithm for quantifying aerosol extinction

    NASA Technical Reports Server (NTRS)

    Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond

    2005-01-01

    Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most

  9. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations

    NASA Astrophysics Data System (ADS)

    Cattrall, Christopher; Reagan, John; Thome, Kurt; Dubovik, Oleg

    2005-05-01

    The lidar (extinction-to-backscatter) ratios at 0.55 and 1.02 μm and the spectral lidar, extinction, and backscatter ratios of climatically relevant aerosol species are computed on the basis of selected retrievals of aerosol properties from 26 Aerosol Robotic Network (AERONET) sites across the globe. The values, obtained indirectly from sky radiance and solar transmittance measurements, agree very well with values from direct observations. Low mean values of the lidar ratio, Sa, at 0.55 μm for maritime (27 sr) aerosols and desert dust (42 sr) are clearly distinguishable from biomass burning (60 sr) and urban/industrial pollution (71 sr). The effects of nonsphericity of mineral dust are shown, demonstrating that particle shape must be taken into account in any spaceborne lidar inversion scheme. A new aerosol model representing pollution over Southeast Asia is introduced since lidar (58 sr), color lidar, and extinction ratios in this region are distinct from those over other urban/industrial centers, owing to a greater number of large particles relative to fine particles. This discrimination promises improved estimates of regional climate forcing by aerosols containing black carbon and is expected to be of utility to climate modeling and remote sensing communities. The observed variability of the lidar parameters, combined with current validated aerosol data products from Moderate Resolution Imaging Spectroradiometer (MODIS), will afford improved accuracy in the inversion of spaceborne lidar data over both land and ocean.

  10. Aerosol Properties From Combined Oxygen A Band Radiances and Lidar

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Zhai, Peng-Wang; Hu, Yongxiang

    2015-01-01

    We have developed a new aerosol retrieval technique based on combing high-resolution A band spectra with lidar profiles. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution (17,000:1) measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers in the forward model. The algorithm has been developed to be applied to observations from the CALIPSO and OCO-2 satellites, flying in formation as part of the A-train constellation. We describe the approach and present simulated retrievals to illustrate performance potential.

  11. PhyLM: A Mission Design Concept for an Optical/Lidar Instrument to Measure Ocean Productivity and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Gervin, Janette C.; Behrenfeld, Michael; McClain, Charles R.; Spinhirne, James; Purves, Lloyd; Wood, H. John; Roberto, Michael R.

    2004-01-01

    The Physiology Lidar-Multispectral Mission (PhyLM) is intended to explore the complex ecosystems of our global oceans. New "inversion" methods and improved understanding of marine optics have opened the door to quantifying a range of critical ocean properties. This new information could revolutionize our understanding of global ocean processes, such as phytoplankton growth, harmful algal blooms, carbon fluxes between major pools and the productivity equation. The new science requires new measurements not addressed by currently planned space missions. PhyLM will combine active and advanced passive remote sensing technologies to quantify standing stocks and fluxes of climate-critical components of the Ocean carbon cycle to meet these science providing multispectral bands from the far UV through the near infrared (340 - 1250 nm) at a ground resolution of 250 m. Improved detectors, filters, mirrors, digitization and focal plane design will offer an overall higher-quality data product. The unprecedented accuracy and precision of the absolute water-leaving radiances will support inversion- based quantification of an expanded set of ocean carbon cycle components. The dual- wavelength (532 & 1064 nm) Nd:Yag Lidar will enhance the accuracy and precision of the passive data by providing aerosol profiles for atmospheric correction and coincident active measurements of backscattering. The Lidar will also examine dark-side fluorescence as an additional approach to quantifying phytoplankton biomass in highly productive regions.

  12. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  13. Long-range transport of forest fire aerosol observed by Raman lidar

    NASA Astrophysics Data System (ADS)

    Vaughan, Geraint; Ricketts, Hugo; Bradley, Zoe

    2016-04-01

    Over the summer of 2014 and 2015 the Raman lidar system at Aberystwyth observed frequent occurrences of aerosol layers in the free troposphere, layers which are not observed at other times of the year. The Raman lidar can measure the optical depth and lidar ratio of these layers, giving an indication of their microsphysical properties. A summary of the observations will be presented, together with evidence that the aerosol originates from forest fires over North America. The hemispheric spread of absorbing aerosol, at a time of year when the northern latitudes are illuminated by the Sun, suggests that there may be implications for the Earth's radiation budget.

  14. Autonomous Ozone and Aerosol LIDAR Profiling of the Troposphere: A Synergistic Approach

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2015-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model/satellite verification and validation. In recent years, Environment Canada has designed several autonomous aerosol LIDAR systems for deployment across several regions of Canada. The current system builds on the successes of these autonomous LIDARS but using a synergistic approach by combining tropospheric ozone DIAL (Differential Absorption LIDAR) technology with simultaneous 3+2+1 aerosol LIDAR measurements. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. A few case studies are shown emphasizing the synergistic approach of coupling ozone and aerosol profiles to better understand air quality impacts on local and regional scales.

  15. Aerosol Products from The Future Space Lidar AEOLUS

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Dabas, Alain; Lever, Vincent; Flamant, Pierre; Huber, Dorit

    2016-06-01

    Ready for launch by the end of 2016, the Doppler lidar mission AEOLUS from the European Space Agency (ESA) will be the first High-Spectral Resolution Lidar (HSRL) in space. Operating in the UV, it implements two detection channels for aerosol and molecular backscatter. The system is primarily designed for the measurement of winds, but the HSRL capability enables the measurement of the particulate backscatter and extinction coefficients without any a priori assumption on the aerosol type. The level-2A (L2A) processor has been developed for these measurements and tested with synthetic data. The results show good aerosol backscatter profiles can be retrieved. Extinction coefficients are reasonable but do not reach the quality of backscatter coefficients. A precise, full, radiometric calibration of the lidar is required. A major limitation of the system is a single polarization component of the light is detected leading to an underestimation of backscatter coefficients when the atmospheric particles are depolarizing. The vertical resolution goes from 250 meters in the lowest part of the atmosphere, to 2 km in the lower stratosphere. The maximum altitude can reach above 20km. The basic horizontal averaging is 90km. Averaging on shorter distances (down to a few km) are possible but require a sufficient signal to noise ratio.

  16. Aerosol and cloud typing with an automated 24/7 aerosol lidar

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Seifert, Patric; Wandinger, Ulla

    2015-04-01

    Modern sophisticated multi-wavelength Raman polarization lidars have the ability to measure autonomous and unattended in 24/7 mode. These aerosol lidars can deliver backscatter, extinction, and depolarization profiles of the atmosphere which can be used for a target categorization, i.e. the determination of different aerosol and cloud types. However, to derive the optical particle properties a calibration of the lidar signals in the free atmosphere, where only Rayleigh scattering occurs, is needed. This calibration is usually done manually case by case and thus prohibits automatic data analysis and particle typing. To overcome this limitation, the mobile EARLINET lidar PollyXT of TROPOS was deployed continuously without changes in the instrumental setup during two field campaigns in the framework of the German HD(CP)2 project to obtain temporally stable lidar signals. The temporal stability together with the high performance and good characterization of the lidar lead to the possibility of an absolute lidar calibration. The corresponding calibration constant was derived in two ways: first by using manually Raman and Klett retrievals for selected periods and second by using the aerosol optical depth (AOD) from co-located AERONET sun photometer measurements. The derived calibration constants show a high temporal stability and a good agreement between both methods and thus allowed the continuous calibration of the lidar and the retrieval of the attenuated backscatter coefficient at three wavelengths. In addition, the calibrated volume depolarization ratio, obtained following EARLINET recommendations, is continuously available. After correction for the molecular contribution, these four quantities were used for an aerosol and cloud typing in terms of particle size and shape. The final categorization leads to 11 categories, e.g. clean atmosphere, small spherical particles, large non-spherical particles, water droplets, ice crystals and corresponding mixtures. In this

  17. Aerosol speckle effects on atmospheric pulsed lidar backscattered signals

    NASA Technical Reports Server (NTRS)

    Murty, S. R.

    1989-01-01

    Lidar systems using atmospheric aerosols as targets exhibit return signal amplitude and power fluctuations which indicate speckle effects. The effects of refractive turbulence along the path on the aerosol speckle field propagation and on the decorrelation time are studied for coherent pulsed lidar systems.

  18. Retrieval of optical and microphysical properties of aerosols from a hybrid multiwavelength lidar dataset

    NASA Astrophysics Data System (ADS)

    Sawamura, Patricia

    Over the past decade the development of inversion techniques for the retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations) and aerosol optical properties (e.g. complex index of refraction and single scattering albedo) from multiwavelength lidar systems brought a new perspective in the study of the vertical distribution of aerosols. In this study retrievals of such parameters were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL) measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study to our knowledge in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for eleven cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.

  19. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2015-12-01

    Observational constraints on the change in radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detection all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE. Therefore, global estimates of the aerosol DRE inferred from CALIPSO are likely too weak.

  20. Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing

    SciTech Connect

    Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Christopher J.; Turner, David D. ); Spinhirne, James D.; Scott, III, V. S.; Hwang, I. H.

    2002-04-01

    Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involve knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through the Atmospheric Radiation Measurement (ARM) program, has constructed four long-term atmospheric observing sites in strategic climate regimes (north central Oklahoma, Barrow, Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of nearly all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing pulse energy through a shared, coaxial transmit/receive telescope. ARM MPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. These techniques in tandem represent an operational value added processing package used to produce normalized data products for ARM cloud and aerosol research.

  1. Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Analysis

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Connor J.; Turner, David D.; Spinhirne, James D.; Scott, V. Stanley, III; Hwang, I. H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involves a knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through I the Atmospheric Radiation Measurement (ARM) program has constructed four long- term atmospheric observing sites in strategic climate regimes (north central Oklahoma, In Barrow. Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing Pulse energy through a shared, coaxial transmit/receive telescope. ARM NIPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. A multiple cloud boundary detection algorithm is also described. These techniques in tandem represent an operational value added processing package used to produce normalized data products for Cloud and aerosol research and the historical ARM data archive.

  2. Stratospheric aerosol increase after eruption of Pinatubo observed with lidar and aureolemeter

    NASA Technical Reports Server (NTRS)

    Hayashida, Sachiko; Sasano, Yasuhiro; Nakane, Hideaki; Matsui, Ichiro; Hayasaka, Tadahiro

    1994-01-01

    An increase in the amount of stratospheric aerosol due to the Pinatubo eruption (June 12-15, 1991, 15.14 deg N, 120.35 deg E) was observed from the end of June, 1991 by a lidar in NIES (National Institute for Environmental Studies), Tsukuba (36.0 deg N, 140.1 deg E). After large fluctuations in summer of 1991, the amount of the aerosols increased in mid-September as a result of enhanced transportation from the subtropical region. In autumn and winter of 1991, dense aerosol layers were continuously observed. Aureolemeter (scanning spectral radiometer) measurements were also carried out with lidar measurements and columnar size distribution of stratospheric aerosols was estimated for some cases. Collaborative measurements with the lidar and aureolemeter provided some information on height distribution of the surface area of aerosols in late 1991.

  3. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-08-01

    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the

  4. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  5. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  6. Lidar Based Particulate Flux Measurements of Agricultural Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-wavelength portable scanning lidar system was developed to derive information on particulate spatial aerosol distribution over remote distances. The lidar system and retrieval approach has been tested during several field campaigns measuring agricultural emissions from a swine feeding operat...

  7. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  8. Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System

    NASA Technical Reports Server (NTRS)

    Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady

    1997-01-01

    Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.

  9. Atmospheric lidar research applying to H2O, O2 and aerosols

    NASA Technical Reports Server (NTRS)

    Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    Experimental research on a near infrared tunable dye laser was reported, and theoretical simulations were presented for various lidar configurations. The visible and nearinfrared wavelengths considered were suitable for observations of aerosols, water vapor, molecular oxygen pressure and temperature in the troposphere and above. The first phase of development work was described on a ruby pumped, tunable dye laser for the wavelength region 715 to 740 nanometers. Lidar simulations were summarized for measurements of H2O and for two color lidar observations of aerosols in the atmosphere.

  10. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-03-01

    The European Aerosol Research Lidar Network, EARLINET was founded in 2000 as a research project for establishing a quantitative, comprehensive and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET is continuing to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last thirteen years. Since 2000, EARLINET has strongly developed in terms of number of stations and spatial distribution, from 17 stations in 10 countries in 2000, to 27 stations in 16 countries in 2013. EARLINET has strongly developed also in terms of technological advances with the spread of advanced multi-wavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing and dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase of the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions and for model evaluation and satellite data validation and integration. Future plans are in the direction of continuous measurements and near real time data delivery in close cooperation with other ground-based networks, as in the ACTRIS research infrastructure, and with the modelling and satellite community, bridging the research community with the

  11. Novel Co:MgF2 lidar for aerosol profiler

    NASA Technical Reports Server (NTRS)

    Acharekar, M. A.

    1993-01-01

    Lidars are of great interest because of their unique capabilities in remote sensing applications in sounding of the atmosphere, meteorology, and climatology. In this small business innovative research (SBIR) phase II program, laser sources including Co:MgF2, CTH:YAG, CTH:YSGG, CT:YAG, and Er:Glass were evaluated. Modulator of fused silica and TeO2 materials with Brewster's angle end faces were used with these lasers as acousto-optical (AO) Q-switches. A higher hold-off energy and hence a higher Q-switched energy was obtained by using a high power RF driver. The report provides performance characteristics of these lasers. The tunable (1.75-2.50 microns) Co:MgF2 laser damaged the TeO2 Q-switch cell. However, the CTH:YAG laser operating at 2.09 microns provided output energy of over 300 mJ/p in 50 ns pulse width using the fused silica Q-switch. This Q-switched CTH:YAG laser was used in a breadboard vertical aerosol profiler. A 40 cm diameter telescope, InSb and InGaAs detectors were used in the receiver. The data obtained using this lidar is provided in the report. The data shows that the eye safe lidar using CTH:YAG laser for the vertical aerosol density and range measurements is the viable approach.

  12. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science

  13. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing.

  14. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing. PMID:26698808

  15. Lidar measurements of stratospheric temperature during STOIC

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; McGee, T. J.; Whiteman, D.; Burris, J.; Owens, M.; Butler, J.; Barnes, R. A.; Schmidlin, F.; Komhyr, W.; Wang, P. H.; McCormick, M. P.; Miller, A. J.

    1995-05-01

    Measurements of stratospheric temperature and density were acquired by the NASA/GSFC lidar during the Stratospheric Ozone Intercomparison Campaign (STOIC) experiment at the Jet Propulsion Laboratory Table Mountain Facility (TMF) (34.4°N, 117.7°W) in July and August 1989. Lidar temperatures, obtained on 21 nights preceding and during this experiment, are compared with temperatures derived by radiosondes, datasondes, Stratospheric Aerosol and Gas Experiment (SAGE II) satellite experiment, and National Meteorological Center (NMC) analyses. Radiosondes were flown from the TMF site as well as from San Nicholas Island (33.2°N, 119.5°W) located about 225 km southwest of TMF. Datasondes were deployed from Super-Loki rockets also launched at San Nicholas Island. SAGE II satellite temperature measurements were made within 1000 km of the Table Mountain site. NMC temperature analyses derived from the NOAA satellite measurements were interpolated to coincide in space and time with the lidar measurements. The lidar temperatures, which were derived for altitudes between 30 and 65 km, were within 2-3 K of the temperatures measured by the other sensors in the altitude range 30-45 km. Between 30 and 35 km, lidar temperatures were about 2 K cooler than those obtained from the datasondes and the NMC analyses but were about 1-2 K warmer than those obtained from the radiosonde. These differences may be due to the time difference between the measurements as well as possible nonnegligible aerosol scattering near 30 km. Near and above the stratopause the temperature differences increased to 3-8 K. Lidar temperature profiles also show small-scale variations possibly caused by wave activity.

  16. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.; Hostetler, C. A.

    2013-09-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just scalar values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.

  17. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.; Hostetler, C. A.

    2014-02-01

    Knowledge of aerosol type is important for determining the magnitude and assessing the consequences of aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e., lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just single values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of extinction mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.

  18. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  19. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  20. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  1. Characterization of aerosols in East Asia with the Asian Dust and Aerosol Lidar Observation Network (AD-Net)

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro; Jin, Yoshitaka

    2014-11-01

    Continuous observations of aerosols are being conducted with the Asian Dust and aerosol lidar observation Network (AD-Net). Currently, two-wavelength (1064 nm and 532 nm) polarization-sensitive (532 nm) lidars are operated at 20 stations in East Asia. At the primary stations (6 stations), nitrogen vibrational Raman scattering is also measured to obtain the extinction coefficient at 532 nm. Recently, continuous observations with a three-wavelength (1064 nm, 532 nm and 355 nm) lidar having a high-spectral-resolution receiver at 532 nm and a Raman receiver at 355 nm and polarization-sensitive receivers at 532 nm and 355 nm) was started in Tsukuba. Also, continuous observations with multi-wavelength Raman lidars are being prepared in Fukuoka, Okinawa Hedo, and Toyama. A data analysis method for deriving distributions of aerosol components (weak absorption fine (such as sulfate), weak absorption coarse (sea salt), strong absorption fine (black carbon), non-spherical (dust)) has been developed for these multi-parameter lidars. Major subjects of the current studies with AD-Net include data assimilation of multi-parameter lidars, mixing states of Asian dust with air pollution particulate matter, and validation of EarthCARE ATLID based on the aerosol component analysis method.

  2. An Assessment of a Technique for Modeling Lidar Background Measurements

    NASA Astrophysics Data System (ADS)

    Powell, K. A.; Hunt, W. H.; Vaughan, M. A.; Hair, J. W.; Butler, C. F.; Hostetler, C. A.

    2015-12-01

    A high-fidelity lidar simulation tool has been developed to generate synthetic lidar backscatter data that closely matches the expected performance of various lidars, including the noise characteristics inherent to analog detection and uncertainties related to the measurement environment. This tool supports performance trade studies and scientific investigations for both the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which flies aboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL). The simulation tool models the lidar instrument characteristics, the backscatter signals generated from aerosols, clouds, ocean surface and subsurface, and the solar background signals. The background signals are derived from the simulated aerosol and cloud characteristics, the surface type, and solar zenith angle, using a look-up table of upwelling radiance vs scene type. The upwelling radiances were derived from the CALIOP RMS background noise and were correlated with measurements of the particulate intensive and extensive optical properties, including surface scattering for transparent layers. Tests were conducted by tuning the tool for both HSRL and CALIOP instrument settings and the atmospheres were defined using HSRL measurements from underflights of CALIPSO. For similar scenes, the simulated and measured backgrounds were compared. Overall, comparisons showed good agreement, verifying the accuracy of the tool to support studies involving instrument characterization and advanced data analysis techniques.

  3. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  4. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  5. CNR-IMAA lidar systems for aerosol, clouds, and water vapour study

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Boselli, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Mona, L.; Pandolfi, M.

    2005-10-01

    At CNR-IMAA located in Tito Scalo (40°36'N, 15°44'E, 760 m a.s.l.), two lidar systems are systematically operational: the first is devoted to tropospheric aerosol characterization, in the framework of EARLINET, and the second performs water vapour measurements. The aerosol lidar system provides independent measurements of aerosol extinction and backscatter coefficient at 355 nm and at 532 nm, aerosol backscatter profiles at 1064 nm and particles depolarization ratio at 532 nm. The Raman lidar for the water vapor allows the vertical profiling of the water vapour mixing ratio with high spatial and temporal resolution up to the tropopause. The system has been calibrated by means of intensive measurement campaign of simultaneous and co-located radiosonde launches. CNR-IMAA is also provided with a DIAL mobile system for pollutants 3-dimensional spatial distribution. Besides these lidar systems, the CNR-IMAA ground based facility for Earth Observation includes ancillary instruments: a radiosounding system for PTU, ozone and wind measurements; a Sun photometer operative since December 2004 in the framework of AERONET; a 12 channels microwave radiometer for continuous measurements of temperature, relative humidity and water vapor, operative since February 2004; a ceilometer for continuous cloud cover monitoring. Lidar systems together with these ancillary instruments make the CNR-IMAA a heavily instrumented experimental site for integrated observations of aerosols, clouds and water vapor to be used for climatological studies and for the validation of satellite data.

  6. Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers.

    PubMed

    Machol, Janet L; Marchbanks, Richard D; Senff, Christoph J; McCarty, Brandi J; Eberhard, Wynn L; Brewer, William A; Richter, Ronald A; Alvarez, Raul J; Law, Daniel C; Weickmann, Ann M; Sandberg, Scott P

    2009-01-20

    The Ozone Profiling Atmospheric Lidar is a scanning four-wavelength ultraviolet differential absorption lidar that measures tropospheric ozone and aerosols. Derived profiles from the lidar data include ozone concentration, aerosol extinction, and calibrated aerosol backscatter. Aerosol calibrations assume a clear air region aloft. Other products include cloud base heights, aerosol layer heights, and scans of particulate plumes from aircraft. The aerosol data range from 280 m to 12 km with 5 m range resolution, while the ozone data ranges from 280 m to about 1.2 km with 100 m resolution. In horizontally homogeneous atmospheres, data from multiple-elevation angles is combined to reduce the minimum altitude of the aerosol and ozone profiles to about 20 m. The lidar design, the characterization of the photomultiplier tubes, ozone and aerosol analysis techniques, and sample data are described. Also discussed is a double-gating technique to shorten the gated turn-on time of the photomultiplier tubes, and thereby reduce the detection of background light and the outgoing laser pulse.

  7. Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers.

    PubMed

    Machol, Janet L; Marchbanks, Richard D; Senff, Christoph J; McCarty, Brandi J; Eberhard, Wynn L; Brewer, William A; Richter, Ronald A; Alvarez, Raul J; Law, Daniel C; Weickmann, Ann M; Sandberg, Scott P

    2009-01-20

    The Ozone Profiling Atmospheric Lidar is a scanning four-wavelength ultraviolet differential absorption lidar that measures tropospheric ozone and aerosols. Derived profiles from the lidar data include ozone concentration, aerosol extinction, and calibrated aerosol backscatter. Aerosol calibrations assume a clear air region aloft. Other products include cloud base heights, aerosol layer heights, and scans of particulate plumes from aircraft. The aerosol data range from 280 m to 12 km with 5 m range resolution, while the ozone data ranges from 280 m to about 1.2 km with 100 m resolution. In horizontally homogeneous atmospheres, data from multiple-elevation angles is combined to reduce the minimum altitude of the aerosol and ozone profiles to about 20 m. The lidar design, the characterization of the photomultiplier tubes, ozone and aerosol analysis techniques, and sample data are described. Also discussed is a double-gating technique to shorten the gated turn-on time of the photomultiplier tubes, and thereby reduce the detection of background light and the outgoing laser pulse. PMID:19151820

  8. New Examination of the Raman Lidar Technique for Water Vapor and Aerosols. Paper 1; Evaluating the Temperature Dependent Lidar Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.

  9. Aerosol Typing by 3-Wavelength Elastic Lidar Signals Over the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Rita; Burlizzi, Pasquale

    2016-06-01

    Elastic lidar signals at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sunphotometer measurements collocated in space and time have been used to retrieve columnar lidar ratio (LR) values at the lidar wavelengths by a constrained iterative inversion procedure. Then, the relationships of LRs with AOTs, Ångström exponents, fine mode fractions (η), and fine mode radii (Rf) have been investigated for the aerosol typing. η and Rf values have been retrieved from a graphical framework. It is shown that the implemented methodology has allowed identifying three main aerosol types over the Central Mediterranean which are designed as urban/industrial, marine-polluted, and mixed-dust. Results on the relationships of LRs with AOTs, Å, η, and Rf for each aerosol type represent main paper results.

  10. The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and Progress

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Higurashi, Akiko; Jin, Yoshitaka

    2016-06-01

    We have operated a ground-based lidar network AD-Net using dual wavelength (532, 1064nm) depolarization Mie lidar continuously and observed movement of Asian dust and air pollution aerosols in East Asia since 2001. This lidar network observation contributed to understanding of the occurrence and transport mechanisms of Asian dust, validation of chemical transport models, data assimilation and epidemiologic studies. To better understand the optical and microphysical properties, externally and internally mixing states, and the movements of Asian dust and airpollution aerosols, we go forward with introducing a multi-wavelength Raman lidar to the AD-Net and developing a multi-wavelength technique of HSRL in order to evaluate optical concentrations of more aerosol components. We will use this evolving AD-Net for validation of Earth-CARE satellite observation and data assimilation to evaluate emissions of air pollution and dust aerosols in East Asia. We go forward with deploying an in-situ instrument polarization optical particle counter (POPC), which can measure size distributions and non-sphericity of aerosols, to several main AD-Net sites and conducting simultaneous observation of POPC and lidar to clarify internally mixed state of Asian dust and air pollution aerosols transported from the Asian continent to Japan.

  11. Variability of aerosol properties and Planetary Boundary Layer heights from airborne High Spectral Resolution Lidar, ground-based measurements, and the WRF model during CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Swanson, A. J.; Ferrare, R. A.; Burton, S. P.; Hair, J. W.; Hostetler, C. A.; Rogers, R.; Fast, J. D.; Berg, L. K.; Pekour, M. S.; Shaw, W. J.; Zaveri, R. A.; Haman, C. L.; Cook, A.; Harper, D.

    2011-12-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) was deployed on board the NASA Langley Research Center's B200 aircraft to California in May and June of 2010 to aid in characterizing aerosol properties during the CalNex and CARES field missions. Measurements of aerosol extinction (at 532 nm), backscatter (at 532 and 1064 nm), and depolarization (at 532 and 1064 nm) during 31 flights and nearly 100 hours, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Planetary Boundary Layer (PBL). This work examines the variability of the extensive (dependent on aerosol type and number density) and intensive (dependent on aerosol type only) aerosol properties to aid in describing the broader context of aerosol behavior within and nearby the Sacramento and Los Angeles Basin regions. PBL heights derived from HSRL measurements will be compared with those produced by local ceilometers, radiosondes, and the Weather Research and Forecasting (WRF) model. Spatial and temporal averages of aerosol properties will be presented.

  12. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  13. Lidar Measurements for Desert Dust Characterization: An Overview

    NASA Technical Reports Server (NTRS)

    Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.

    2012-01-01

    We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper

  14. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  15. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  16. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2015-05-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers (originally designed for cloud base height monitoring) has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research Lidar Network). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of the ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the signal to noise ratio (SNR) but also due to changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. Therefore, technological improvements are needed to move ceilometers towards operational use in the monitoring of atmospheric aerosols in the low and free troposphere.

  17. Ceilometer aerosol profiling vs. Raman lidar in the frame of INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2014-12-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. A large instability of ceilometers in the incomplete overlap region has also been observed, making the use of a single overlap correction function for the whole duration of the campaign critical. Therefore, technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are needed.

  18. Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer.

    PubMed

    Kolev, I; Parvanov, O; Kaprielov, B

    1988-06-15

    The paper presents results from lidar measurements of wind velocity in the planetary boundary layer using correlation data processing. Two lidars are used in our experiments: a ruby lidar operating along slant paths and a YAG:Nd lidar operating for near vertical sounding used by us for the first time. On the basis of our experience the optimal sizes of aerosol inhomogeneities (30-300 m), the duration of the experiments (2-10 min), and the repetition rate of laser shots (fractions of hertz to several hertz) are determined. The results are compared to independent data obtained from anemometer measurements, theodolite- and radar-tracked pilot balloons. The range of differences is ~1-2 m/s in speed and 10-15 degrees in direction. Preliminary results from the use of lidar data to remotely sound the wind speed for various atmospheric stratifications and synoptic situations are described as well. PMID:20531786

  19. Development of Three-Wavelength Polarization-Raman Lidar and Application to Shipborne Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zhangjun; Du, Libin; Li, Xianxin; Zhou, Bin; Meng, Xiangqian; Chen, Chao; Liu, Qiaojun; Liu, Xingtao

    2016-06-01

    A Three-Wavelength Polarization-Raman Lidar (TWPRL) system for aerosol and clouds was developed. This lidar system provides α at 532 and 355 nm, β at 355, 532 and 1064 nm, and σ at 532 nm as well as water vapor content using Raman lidar techniques. The temporal and vertical variation of aerosols and clouds could be determined. We conducted shipborne TWPRL measurements over Yellow Sea of China from August to September in 2014. The derived aerosol optical properties indicate that the developed lidar system worked very well. 24-hour continuous measurements with the shipborne TWPRL during the cruise are presented.

  20. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  1. UV-LIF lidar for standoff BW aerosol detection

    NASA Astrophysics Data System (ADS)

    Hopkins, Rebecca J.; Barrington, Stephen J.; Castle, Michael J.; Baxter, Karen L.; Felton, Nicola V.; Jones, Joseph; Griffiths, Clare; Foot, Virginia; Risbey, Kit

    2009-09-01

    An ultraviolet (UV) laser induced fluorescence (LIF) light detection and ranging (LIDAR) system has been constructed and commissioned by Dstl and demonstrated to be an effective technique for discriminating between some common fluorescent potentially interfering aerosols and biological warfare agent (BWA) simulants at a distance remote from the release. The Mk 3 UV-LIF LIDAR employs the fundamental wavelength (1064 nm) of a Nd:YAG laser to spatially map aerosol clouds, and the fourth harmonic (266 nm) to excite fluorescence. The fluorescence emission is spectrally resolved into ten detection channels between 300-500 nm, permitting classification by a discrimination algorithm. The UV-LIF LIDAR was trialled in 2007 in the Joint Ambient Breeze Tunnel (JABT) and on the open range, at the US Army Dugway Proving Ground (DPG), Utah. In the JABT, calibration instruments were used to characterise the BWA simulant and interferent aerosol releases, permitting calculation of the system's limits of detection (LoD) and discrimination ability.

  2. Satellite and correlative measurements of the stratospheric aerosol. III - Comparison of measurements by SAM II, SAGE, dustsondes, filters, impactors and lidar

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.; Mcmaster, L. R.; Swissler, T. J.; Rosen, J. M.; Hofmann, D. J.

    1984-01-01

    The SAM II and SAGE satellite sensors, dustsondes, impactors, a filter collector and an airborne lidar were used in a large satellite validation experiment on July 16-19, 1979, at Poker Flat, Alaska. Independent measurements of extinction profiles by SAM II and SAGE are noted to agree with each other and with those derived from the other instruments (within combined uncertainties). The wire impactor-derived results, while also consistent with the others, are coarse due to the relatively large uncertainties in impactor-derived mass, extinction, and number of particles/unit volume whose radius is greater than x microns.

  3. A lidar system for remote sensing of aerosols and water vapor from NSTS and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Delorme, Joseph F.

    1989-01-01

    The Tropical Atmospheric Lidar Observing System (TALOS) is proposed to be developed as a Differential Absorption Lidar (DIAL) system for flight aboard the earth orbiting Space Station Freedom. TALOS will be capable of making high resolution vertical profile measurements of tropospheric water and tropospheric and stratospheric aerosols, clouds and temperature.

  4. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  5. Assessment of satellite-based aerosol optical depth using continuous lidar observation

    NASA Astrophysics Data System (ADS)

    Lin, C. Q.; Li, C. C.; Lau, A. K. H.; Yuan, Z. B.; Lu, X. C.; Tse, K. T.; Fung, J. C. H.; Li, Y.; Yao, T.; Su, L.; Li, Z. Y.; Zhang, Y. Q.

    2016-09-01

    Due to a reliance on solar radiation, the aerosol optical depth (AOD) is observed only during the day by passive satellite-based instruments such as the MODerate resolution Imaging Spectroradiometer (MODIS). Research on urban air quality, atmospheric turbidity, and evolution of aerosols in the atmospheric boundary layer, however, requires 24-h measurement of aerosols. A lidar system is capable of detecting the vertical distribution of the aerosol extinction coefficient and calculating the AOD throughout the day, but routinely lidar observation is still quite limited and the results from MODIS and lidar sometimes are contradictory in China. In this study, long-term lidar observations from 2005 to 2009 over Hong Kong were analyzed with a focus on identification of the reasons for different seasonal variation in the AOD data obtained from MODIS and lidar. The lidar-retrieved AOD shows the lowest average level, but has the most significant diurnal variation during the summer. When considering only a 5-h period between 10:00 a.m. and 3:00 p.m. local time to match satellite passages, the average of the lidar-retrieved AOD doubles during the summer and exceeds that during the winter. This finding is consistent with the MODIS observation of a higher AOD during the summer and a lower AOD during the winter. The increase in the aerosol extinction coefficient in the upper level of the mixing layer makes the greatest contribution to the increase in the AOD at midday during the summer. These assessments suggest that large over-estimation may occur when long-term averages of AOD are estimated from passive satellite observations.

  6. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    SciTech Connect

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  7. Lidar data assimilation for improved analyses of volcanic aerosol events

    NASA Astrophysics Data System (ADS)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar

  8. Analysis of aerosol properties derived from sun photometer and lidar over Dunhuang radiometric calibration site

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Jing, Yingying; Zhang, Peng; Hu, Xiuqing

    2016-05-01

    Duhuang site has been selected as China Radiation Calibration Site (CRCS) for Remote Sensing Satellite Sensors since 1996. With the economic development of Dunhuang city, the ambient of the radiation calibration field has changed in recent years. Taking into account the key role of aerosol in radiometric calibration, it is essential to investigate the aerosol optical properties over Dunhuang radiometric calibration site. In this paper, the CIMEL sun photometer (CE-318) and Mie-scattering Lidar are simultaneously used to measure aerosol optical properties in Dunhuang site. Data from aerosol-bands of sun photometer are used in a Langley method to determine spectral optical depths of aerosol. And Lidar is utilized to obtain information of vertical profile and integrated aerosol optical depths at different heights. The results showed that the aerosol optical depth at 500 nm wavelength during the in-situ measurement campaigns varied from 0.1 to 0.3 in Dunhuang site. And the observation results also indicated that high aerosol concentration layer mostly located at the height of about 2~4 km. These results implies that the aerosol concentration of atmosphere in Dunhuang was relatively small and suitable for in-flight calibration for remote sensing satellite sensors.

  9. A Lidar and Backscatter Sonde Aerosol Measurement Campaign at Table Mountain During February-March 1997: Observations of Stratospheric Background Aerosols and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M.; Haner, D.; Kjome, N.; McDermid, I.; McGee, T.; Rosen, J.; Schafer, H. J.; Schrems, O.

    1999-01-01

    Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.

  10. Lidar Monitoring of Clouds and Aerosols at the Facility for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    2000-01-01

    We report on findings from ongoing polarization lidar research at the University of Utah Facility for Atmospheric Remote Sensing (FARS). This facility was established in 1987, and the current total of lidar and radiometric measurements is approx. 2,900-h. Research at FARS has been applied to the climatological investigation of cirrus cloud properties for basic research and satellite measurement validation (currently in its 13th year), and studies of contrails, mixed phase clouds, and volcanic and Asian dust aerosols. Among the techniques utilized for monitoring cloud and aerosol properties are triple-wave length linear depolarization measurements, and high (1.5-m by 10-Hz) resolution scanning observations. The usefulness of extended time lidar studies for atmospheric and climate research is illustrated.

  11. Multi-wavelength Raman lidar, sunphotometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Papayannis, A.; Amiridis, V.; Müller, D.; Kokkalis, P.; Rapsomanikis, S.; Karageorgos, E. T.; Tsaknakis, G.; Nenes, A.; Kazadzis, S.; Remoundaki, E.

    2012-01-01

    A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project which took place between 15-31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers occurred on 20-21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius - reff), single-scattering albedo (ω) and mean complex refractive index (m) at selected heights in the 2-3 km height region. We found that reff was 0.3-0.4 μm, ω at 532 nm ranged from 0.63 to 0.88 and m ranged from 1.45 + 0.015i to 1.56 + 0.05i, in good accordance with in situ aircraft measurements. The final data set of the aerosol microphysical properties along with the water vapor and temperature profiles were incorporated into the ISORROPIA model to infer an in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2-3 km height region gave a variable range of sulfate (0-60%) and organic carbon (OC) content (0-50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; in connection with the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sunphotometer data.

  12. Development of Multi-Wavelength Raman Lidar and its Application on Aerosol and Cloud Research

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yingjian; Wang, Zhenzhu; Tao, Zongming; Wu, Decheng; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo

    2016-06-01

    A movable multi-wavelength Raman lidar (TMPRL) was built in Hefei, China. Emitting with three wavelengths at 1064, 532, and 355nm, receiving three above Mie scattering signals and two nitrogen Raman signals at 386 and 607nm, and depolarization signal at 532nm, TMPRL has the capacity to investigate the height resolved optical and microphysical properties of aerosol and cloud. The retrieval algorithms of optical parameters base on Mie-Raman technique and the microphysical parameters based on Bayesian optimization method were also developed and applied to observed lidar data. Designing to make unattended operation and 24/7 continuous working, TMPRL has joined several field campaigns to study on the aerosol, cloud and their interaction researches. Some observed results of aerosol and cloud optical properties and the first attempt to validate the vertical aerosol size distribution retrieved by TMPRL and in-situ measurement by airplane are presented and discussed.

  13. Aerosol Size Distribution Determined From Multiple Field-Of-View Lidar

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yabuki, M.; Tsuda, T.; Uesugi, T.

    2014-12-01

    Knowledge of aerosol size distribution is essential for its influence on atmosphere and human health, especially for small particles because they are able to penetrate lung tissues, thus increasing the risk of bronchitis or lung diseases. Lidar as an active optical remote sensing technique is effective for monitoring aerosols with high temporal and spatial variations. Particles with diameters comparable to the detecting light wavelength have been effectively detected by using UV, VIS, and near-IR wavelengths. However, to quantitatively estimate the shape of the particle size distribution, more information is required with respect to sub-micrometer and smaller particles. Conventional lidar employs tiny field-of-view (FOV) to detect single scatter reflected from aerosols in the direction opposite to incident light. However, the complicated reflection on the path of laser causes multiple scatter which contains also the size distribution information of aerosols. In this study, a UV Lidar with multiple FOV receiver was used for detecting such multiple scattering effects in order to obtain more quantitative information related to particle size distribution. The FOV of Lidar receiver was program controlled in a range from 0.1 mrad to 12.4 mrad. The pacific retrieval method for aerosol size distribution using this feature and field measurement results will be introduced in the presentation.

  14. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations

    NASA Technical Reports Server (NTRS)

    Sasano, Yasuhiro; Browell, Edward V.

    1989-01-01

    The present study demonstrates the potential of a multiple-wavelength lidar for discriminating between several aerosol types on the basis of the wavelength dependence of the aerosol backscatter coefficient. The two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064nm can provide unique information for discriminating between various aerosol types (continental, maritime, Saharan-dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols). Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. The disagreement between the theoretical and empirical results in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations.

  15. Nabro aerosol evolution observed jointly by lidars at a mid-latitude site and CALIPSO

    NASA Astrophysics Data System (ADS)

    Zhuang, J.; Yi, F.

    2016-09-01

    Evolution of the Nabro volcanic aerosols from initially-localized plumes to a decaying hemispherically-covered layer was jointly observed by ground-based lidars at Wuhan (30.5°N, 114.4°E), China and CALIPSO. During the aerosol plume formation period, from the Nabro eruption to early July 2011, the lidar backscatter ratio related to the Nabro aerosols above Wuhan varied strongly both in vertical structure and intensity, suggesting that the Nabro aerosol distribution was horizontally inhomogeneous. The stratospheric aerosol optical depth (AOD) from CALIPSO shows that the Nabro plume first circled around the Asian monsoon anticyclone and then gradually fulfilled the whole anticyclone area with a net aerosol enhancement, which may reflect a gas-particle conversion (from sulfur dioxide gas) and/or particle injection from the upper troposphere. During the horizontal dispersion period, from early July to mid-August 2011, the stratospheric AOD over Wuhan declined rapidly since the Nabro particles were transported throughout the northern hemisphere. A nearly horizontally-uniform volcanic aerosol layer was formed. During the local cleansing period, from mid-August to the end of 2011, the Nabro aerosol layer over Wuhan had a single-peak structure and decayed uniformly. The corresponding e-folding decay time for the layer AOD is ∼130 days. The lidar measurements at Wuhan gave a small depolarization ratio and large backscatter-related Ångström exponent for the Nabro aerosols on 8 July, suggesting that the majority of these aerosols were spherical and small. The effective radius and total mass for the Nabro aerosol particles were estimated to be ∼0.26 μm and ∼0.32 Tg respectively.

  16. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  17. Effect of particle settling on lidar profiles of long-range transported Saharan aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Groß, Silke

    2016-04-01

    A large amount of desert aerosol is transported in the Saharan Air Layer (SAL) westwards from Africa over the Atlantic Ocean. Lidar profiles of transported Saharan aerosol may contain some information about the vertically-resolved aerosol microphysics that could be used to characterize processes that affected the measured aerosol during transport. We present modelled lidar profiles of long-range transported Saharan aerosol assuming that initially the SAL is well-mixed and that there is no vertical mixing of air within the SAL as soon as it reaches the Atlantic. We consider Stokes gravitational settling of aerosol particles over the ocean. The lidar profiles are calculated using optical models for irregularly-shaped mineral dust particles assuming settling-induced particle removal as function of distance from the SAL top. Within the SAL we find a decrease of both the backscatter coefficients and the linear depolarization ratios with decreasing distance from the SAL top. For example, the linear depolarization ratio at a wavelength of 532nm decreases from 0.289 at 1000m to 0.256 at 200m and 0.215 at 100m below SAL top. We compare the modelled backscatter coefficients and linear depolarization ratios to ground-based lidar measurements performed during the SALTRACE field campaign in Barbados (Caribbean) and find agreement within the estimated uncertainties. We discuss the uncertainties of our modeling approach in our presentation. Assumed mineral dust particle shapes, assumed particle mixture properties, and assumptions about processes in the SAL over the continent and the ocean are important aspects to be considered. Uncertainties are relevant for the potential of lidar measurements of transported Saharan dust to learn something about processes occuring in the SAL during long-range transport. We also compare our modeling results to modeling results previously published in the literature.

  18. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  19. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  20. Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Papayannis, A.; Amiridis, V.; Müller, D.; Kokkalis, P.; Rapsomanikis, S.; Karageorgos, E. T.; Tsaknakis, G.; Nenes, A.; Kazadzis, S.; Remoundaki, E.

    2012-07-01

    A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15-31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20-21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ω) and mean complex refractive index (m)) at selected heights in the 2-3 km height region. We found that reff was 0.14-0.4 (±0.14) μm, ω was 0.63-0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2-3 km height region gave a variable range of sulfate (0-60%) and organic carbon (OC) content (0-50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.

  1. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  2. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  3. Lidar and Sunphotometer observations of aerosol optical properties over Egbert, ON

    NASA Astrophysics Data System (ADS)

    Srinivasan, T.; O'Neill, N. T.; Strawbridge, K. B.; Freemantle, J.

    2006-05-01

    Optical properties of aerosols are routinely monitored using Lidar and Sunphotometer/Sky radiometer measurements over Egbert, ON. The objectives of this monitoring program are to better understand the optical coherency of these active and passive remote sensing techniques and eventually to achieve a climatology of extensive parameters such as the extinction-to-backscatter ratio required for lidar optical depth retrievals. Observations made within the context of this program revealed some interesting events related to the long and short range transport of smoke aerosols to the observing site. An interesting case study on June 2, 2003 showed smoke layers between 4 and 9 km in both the Zenith and Scanning Lidar data. Co-located CIMEL Sunphotometric/Sky radiometric measurements also showed an increase in fine mode aerosol optical depths corresponding to the Lidar smoke layer observations. Data from some of the AERONET stations in the Eastern US also indicated the presence of these smoke layers. A detailed study of backtrajectories and MODIS imagery indicate that the source of these smoke layers was the intense forest fire activity that occurred during the whole of the summer of 2003 in the Lake Baikal region of Siberia. In addition an interesting regional smoke event which originated from Lake Nipigon (Northwestern Ontario) forest fires was observed on June 23, 2005. Optical and physical properties observed and retrieved for these long and short range cases of smoke aerosol transport will be analyzed and compared.

  4. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  5. Optical design and development of the Near Range Lidar system for aerosol investigation at Belsk

    NASA Astrophysics Data System (ADS)

    Posyniak, Michal; Piatruczuk, Aleksander; Szkop, Artur

    2015-04-01

    The development of the lidar system in the Central Geophysics Observatory at Belsk (Poland) is presented. Belsk is an aerosol background site located in a rural area about 50 km south from Warsaw. A new near range (NR) lidar was added to the existing far range (FR) lidar system to enable the acquisition of lidar signals at the distance of a few hundred meters from the device. In the existing design of the FR lidar a 600 mm diameter mirror was used which resultedin anoverlap over 1500 mmaking this device suitable for observations of aerosols in free troposphere and lower stratosphere but not in the Planetary Boundary Layer (PBL).To enable measurements in the PBL the near range detection systemwas designed as a complement of the existing FR lidar. A secondtelescope with a set of detectors was used with the same laser as in the FR system as a light source. The Nd:YAGpulselasergenerates three wavelengths (1064, 532 and 355 nm).Energies of light pulses are about 320 mJ while their repetition rate is 15 Hz. In the optical receiver of the NR lidar a telescope with a 150 mm diameter parabolic mirror with optical fiber (1 mm core diameter) as a field stop was used. Our analysis shows that full overlap of the laser beam and the NR telescope field of view is expected at about 150 m. A polichromator based on dichroic beam splitters and a set of narrow band pass filters were used to separate wavelengths. The design of the NR lidar easily allows to add Raman channels to the system. The acquisition of the analog lidar echoes was done by photomultipliers (at 355 and 532 nm) and the avalanche photodiode (at 1064 nm). 14 bit analog to digital converters coupled with PC computer by USB 2.0 were also used.

  6. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  7. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  8. Remote Sensing of Wind Fields and Aerosol Distributions with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric and surface processes and feature. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of about a 1 Joule/pulse (eyesafe) lidar transceiver, telescope, scanner, inertial measurement unit, and operations control system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically resolved wind fields. Horizontal resolution is about 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (on an order of 1 micron in diameter). Measurement coverage depends on aerosol spatial distribution and concentration. Velocity accuracy has been verified to be about 1 m/s. A variety of applications has been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; an upper tropospheric jet stream; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the

  9. Measurements of Wind Divergence with Volume Imaging Lidar

    NASA Technical Reports Server (NTRS)

    Young, P. W.; Eloranta, E. W.

    1992-01-01

    Mesoscale horizontal divergence and vertical motion in the boundary layer are key ingredients in atmospheric and climate modeling. These quantities are very difficult to measure. This paper presents a technique for determining the divergence over a 10 km x 5 km area from lidar images depicting the spatial distribution of the naturally occurring atmospheric aerosols.

  10. Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sartelet, K. N.; Bocquet, M.; Chazette, P.; Sicard, M.; D'Amico, G.; Léon, J. F.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; Bach, J.; Belegante, L.; Binietoglou, I.; Bush, X.; Comerón, A.; Delbarre, H.; García-Vízcaino, D.; Guerrero-Rascado, J. L.; Hervo, M.; Iarlori, M.; Kokkalis, P.; Lange, D.; Molero, F.; Montoux, N.; Muñoz, A.; Muñoz, C.; Nicolae, D.; Papayannis, A.; Pappalardo, G.; Preissler, J.; Rocadenbosch, F.; Sellegri, K.; Wagner, F.; Dulac, F.

    2014-11-01

    This paper presents a new application of assimilating lidar signals to aerosol forecasting. It aims at investigating the impact of a ground-based lidar network on the analysis and short-term forecasts of aerosols through a case study in the Mediterranean basin. To do so, we employ a data assimilation (DA) algorithm based on the optimal interpolation method developed in the Polair3D chemistry transport model (CTM) of the Polyphemus air quality modelling platform. We assimilate hourly averaged normalised range-corrected lidar signals (PR2) retrieved from a 72 h period of intensive and continuous measurements performed in July 2012 by ground-based lidar systems of the European Aerosol Research Lidar Network (EARLINET) integrated into the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) network and an additional system in Corsica deployed in the framework of the pre-ChArMEx (Chemistry-Aerosol Mediterranean Experiment)/TRAQA (TRAnsport à longue distance et Qualité de l'Air) campaign. This lidar campaign was dedicated to demonstrating the potential operationality of a research network like EARLINET and the potential usefulness of assimilation of lidar signals to aerosol forecasts. Particles with an aerodynamic diameter lower than 2.5 μm (PM2.5) and those with an aerodynamic diameter higher than 2.5 μm but lower than 10 μm (PM10-2.5) are analysed separately using the lidar observations at each DA step. First, we study the spatial and temporal influences of the assimilation of lidar signals on aerosol forecasting. We conduct sensitivity studies on algorithmic parameters, e.g. the horizontal correlation length (Lh) used in the background error covariance matrix (50 km, 100 km or 200 km), the altitudes at which DA is performed (0.75-3.5 km, 1.0-3.5 km or 1.5-3.5 km a.g.l.) and the assimilation period length (12 h or 24 h). We find that DA with Lh = 100 km and assimilation from 1.0 to 3.5 km a.g.l. during a 12 h assimilation period length leads to the

  11. Assimilation of lidar signals: application to aerosol forecasting in the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sartelet, K. N.; Bocquet, M.; Chazette, P.; Sicard, M.; D'Amico, G.; Léon, J. F.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; Bach, J.; Belegante, L.; Binietoglou, I.; Bush, X.; Comerón, A.; Delbarre, H.; García-Vízcaino, D.; Guerrero-Rascado, J. L.; Hervo, M.; Iarlori, M.; Kokkalis, P.; Lange, D.; Molero, F.; Montoux, N.; Muñoz, A.; Muñoz, C.; Nicolae, D.; Papayannis, A.; Pappalardo, G.; Preissler, J.; Rocadenbosch, F.; Sellegri, K.; Wagner, F.; Dulac, F.

    2014-05-01

    This paper presents a new application of assimilating lidar signals to aerosol forecasting. It aims at investigating the impact of a ground-based lidar network on analysis and short-term forecasts of aerosols through a case study in the Mediterranean. To do so, we employ a data assimilation (DA) algorithm based on the optimal interpolation method developed in the chemistry transport model (CTM) {Polair3D of the air quality modelling platform POLYPHEMUS. We assimilate hourly-averaged normalised range corrected lidar signals (PR2) retrieved from a 72 h period of intensive and continuous measurements performed in July 2012 by ground-based lidar systems of the European Aerosol Research Lidar Network (EARLINET) integrated into the Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS) and an additional system in Corsica deployed in the framework of the pre-ChArMEx (Chemistry-Aerosol Mediterranean Experiment)/TRAQA (TRAnsport à longue distance et Qualité de l'Air) campaign. This lidar campaign was dedicated to demonstrating the potential operationality of a research network like EARLINET and the potential usefulness of assimilation of lidar signals to aerosol forecasts. Particles with an aerodynamic diameter lower than 2.5 μm (PM2.5) and those with an aerodynamic diameter higher than 2.5 μm but lower than 10 μm (PM2.5-10) are analysed separately using the lidar observations at each DA step. First, we study the spatial and temporal influences of the assimilation of lidar signals on aerosol forecasting. We conduct sensitivity studies on algorithmic parameters, e.g. the horizontal correlation length (Lh) used in the background error covariance matrix (50 km, 100 km or 200 km), the altitudes at which DA is performed (0.75-3.5 km, 1.0-3.5 km or 1.5-3.5 km a.g.l.) and the assimilation period length (12 h or 24 h). We find that DA with Lh = 100 km and assimilation from 1.0 to 3.5 km a.g.l. during a 12 h assimilation period length leads to the best

  12. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  13. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  14. WIND MEASUREMENTS WITH HIGH-ENERGY DOPPLER LIDAR

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Kavaya, Michael J.; Barnes, Bruce W.; Beyon, Jeffrey Y.; Petros, Mulugeta; Jirong, Yu; Amzajerdian, Farzin; Slingh, Upendra N.

    2006-01-01

    Coherent lidars at 2-micron wavelengths from holmium or thulium solid-state lasers have been in use to measure wind for applications in meteorology, aircraft wake vortex tracking, and turbulence detection [1,2,3] These field-deployed lidars, however, have generally been of a pulse energy of a few millijoules, limiting their range capability or restricting operation to regions of high aerosol concentration such as the atmospheric boundary layer. Technology improvements in the form of high-energy pulsed lasers, low noise detectors, and high optical quality telescopes are being evaluated to make wind measurements to long ranges or low aerosol concentrations. This research is aimed at developing lidar technology for satellite-based observation of wind on a global scale. The VALIDAR project was initiated to demonstrate a high pulse energy coherent Doppler lidar. VALIDAR gets its name from the concept of validation lidar, in that it can serve as a calibration and validation source for future airborne and spaceborne lidar missions. VALIDAR is housed within a mobile trailer for field measurements.

  15. Direct Detection Doppler Lidar for Spaceborne Wind Measurement

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Flesia, Cristina

    1999-01-01

    The theory of double edge lidar techniques for measuring the atmospheric wind using aerosol and molecular backscatter is described. Two high spectral resolution filters with opposite slopes are located about the laser frequency for the aerosol based measurement or in the wings of the Rayleigh - Brillouin profile for the molecular measurement. This doubles the signal change per unit Doppler shift and improves the measurement accuracy by nearly a factor of 2 relative to the single edge technique. For the aerosol based measurement, the use of two high resolution edge filters reduces the effects of background, Rayleigh scattering, by as much as an order of magnitude and substantially improves the measurement accuracy. Also, we describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined. A measurement accuracy of 1.2 m/s can be obtained for a signal level of 1000 detected photons which corresponds to signal levels in the boundary layer. For the molecular based measurement, we describe the use of a crossover region where the sensitivity of a molecular and aerosol-based measurement are equal. This desensitizes the molecular measurement to the effects of aerosol scattering and greatly simplifies the measurement. Simulations using a conical scanning spaceborne lidar at 355 nm give an accuracy of 2-3 m/s for altitudes of 2-15 km for a 1 km vertical resolution, a satellite altitude of 400 km, and a 200 km x 200 km spatial.

  16. First results from the aerosol lidar and backscatter sonde intercomparison campaign STRAIT'1997 at table mountain facility during February-March 1997

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M. R.; Haner, D. A.; Kjome, N. T.; McDermid, I. S.; McGee, T. J.; Rosen, J. M.; Schaefer, H. - J.; Schrems, O.

    1998-01-01

    First results of an intercomparison measurement campaign between three aerosol lidar instruments and in-situ backscatter sondes performed at Table Mountain Facility (34.4 deg N, 117.7 deg E, 2280 m asl) in February-March 1997 are presented. During the campaign a total of 414 hours of lidar data were acquired by the Aerosol-Temperature-Lidar (ATL, Goddard Space Flight Center) the Mobile-aerosol-Raman-Lidar (MARL, Alfred Wegener Institute), and the TMF-Aerosol-Lidar (TAL, Jet Propulsion Laboratory), and four backscatter sondes were launched. From the data set altitude profiles of backscatter ratio and volume depolarization of stratospheric background aerosols at altitudes between 15 and 25 km and optically thin high-altitude cirrus clouds at altitudes below 13 km are derived. On the basis of a sulfuric acid aerosol model color ratio profiles obtained from two wavelength lidar data are compared to the corresponding profiles derived from the sonde observations. We find an excellent agreement between the in-situ and ATL lidar data with respect to backscatter and color ratio. Cirrus clouds were present on 16 of 26 nights during the campaign. Lidar observations with 17 minute temporal and 120-300 m spatial resolution indicate high spatial and temporal variability of the cirrus layers. Qualitative agreement is found between concurrent lidar measurements of backscatter ratio and volume depolarization.

  17. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  18. Long-Term Variation of Stratospheric Aerosols Observed With Lidar from 1982 to 2014 Over Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Uchino, Osamu; Nagai, Tomohiro; Fujimoto, Toshifumi; Tabata, Isao

    2016-06-01

    The vertical distribution of stratospheric aerosols has been measured with lidars at the Meteorological Research Institute (MRI) over Tsukuba since 1982. After two major volcanic eruptions (Mt. El Chichón in 1982 and Mt. Pinatubo in 1991), stratospheric aerosol loading increased about 50-100 times compared with the background level which was observed for 1997-2000. From 2000 to 2012, a slight increase (5.3% year-1) was observed by some volcanic eruptions. This long-term lidar data have been used for assessing of impact of the stratospheric aerosols on climate and the ozone layer.

  19. Systematic Relationships Between Lidar Observables And Sizes And Mineral Composition Of Dust Aerosols

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Perlwitz, J. P.; Fridlind, A. M.; Chowdhary, J.; Cairns, B.; Stangl, A. J.

    2015-12-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  20. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  1. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Whiteman, D.; Ferrare, R.; Evans, K.; Goldsmith, J. E. M.; Lapp, M.; Bisson, S. E.

    1992-01-01

    Water vapor is one of the most important constituents of the earth's atmosphere. It has a major impact on both atmospheric dynamics and radiative transfer. From a dynamic standpoint, the distribution of water vapor with height determines convective stability which is the major indicator of destructive storm development. Also, water vapor stored in the planetary boundary layer acts as the fuel to intensify severe weather. In regards to radiative transfer, water vapor is the most active IR molecule in the atmosphere. It is more effective in absorbing and emitting IR radiation than either carbon dioxide or methane, and thus plays an important role in global change. The main objective of FIRE (First ISSCCP (International Satellite Cloud Climatology Project) Regional Experiment) was to study the development and radiative characteristics of cirrus clouds. The SPECTRE (Spectral Radiation Experiment) project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. The FIRE/SPECTRE field campaign was conducted during Nov. - Dec. 1991 in Coffeyville, Kansas. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments.

  2. Potential of lidar backscatter data to estimate solar aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Müller, Detlef; Mattis, Ina; Ansmann, Albert

    2006-02-01

    The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (betac). A close correlation between the SARF and betac was found. SARF-betac parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia.

  3. Potential of lidar backscatter data to estimate solar aerosol radiative forcing.

    PubMed

    Wendisch, Manfred; Müller, Detlef; Mattis, Ina; Ansmann, Albert

    2006-02-01

    The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (beta(c)). A close correlation between the SARF and beta(c) was found. SARF-beta(c) parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia.

  4. Aerosol Layering Characterization Near the Gobi Desert by a Double Polarization Lidar System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Boselli, A.; Sannino, A.; Song, C.; Spinelli, N.; Wang, X.

    2016-06-01

    In order to carry out 4-D (space and time) analysis of the atmospheric aerosol distribution and to make a characterization of their properties and time evolution, a transportable multi-wavelength, Elastic/Raman scanning lidar system with angular scanning capability has been realized. The system uses a diode pumped Nd:YAG laser source, specifically designed for this device, and a receiving systems able to detect elastic signals at 355, 532 and 1064 nm and Raman signals at 386, 407 and 607 nm. It also allows to perform aerosol depolarization measurements at both 355nm and 532nm. A first measurement campaign has been carried out in Dunhuang, North-West of China, in the region of the Gobi desert with the aims to study and characterize desert dust at source. Optical properties of aerosol layers developing in the atmosphere have been analyzed and lidar data are discussed in terms of profiles of aerosol backscatter coefficient at 355nm, 532nm, aerosol extinction coefficient at 355nm, aerosol depolarization ratio at 355nm and 532nm and water vapor mixing ratio. Depolarization ratio measured simultaneously at two wavelengths allowed also to study its dependence on the wavelength.

  5. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data

    NASA Astrophysics Data System (ADS)

    Bovchaliuk, Valentyn; Goloub, Philippe; Podvin, Thierry; Veselovskii, Igor; Tanre, Didier; Chaikovsky, Anatoli; Dubovik, Oleg; Mortier, Augustin; Lopatin, Anton; Korenskiy, Mikhail; Victori, Stephane

    2016-07-01

    Aerosol particles are important and highly variable components of the terrestrial atmosphere, and they affect both air quality and climate. In order to evaluate their multiple impacts, the most important requirement is to precisely measure their characteristics. Remote sensing technologies such as lidar (light detection and ranging) and sun/sky photometers are powerful tools for determining aerosol optical and microphysical properties. In our work, we applied several methods to joint or separate lidar and sun/sky-photometer data to retrieve aerosol properties. The Raman technique and inversion with regularization use only lidar data. The LIRIC (LIdar-Radiometer Inversion Code) and recently developed GARRLiC (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) inversion methods use joint lidar and sun/sky-photometer data. This paper presents a comparison and discussion of aerosol optical properties (extinction coefficient profiles and lidar ratios) and microphysical properties (volume concentrations, complex refractive index values, and effective radius values) retrieved using the aforementioned methods. The comparison showed inconsistencies in the retrieved lidar ratios. However, other aerosol properties were found to be generally in close agreement with the AERONET (AErosol RObotic NETwork) products. In future studies, more cases should be analysed in order to clearly define the peculiarities in our results.

  6. Cirrus and aerosol lidar profilometer - analysis and results

    SciTech Connect

    Spinhirne, J.D.; Scott, V.S.; Reagan, J.A.; Galbraith, A.

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  7. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  8. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  9. Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Vasilescu, Jeni

    2015-04-01

    Aerosols can influence the microphysical and macrophysical properties of clouds and hence impact the energy balance, precipitation and the hydrological cycle. They have different scattering and absorption properties depending on their origin, therefore measured optical properties can be used to retrieve their physical properties, as well as to estimate their chemical composition. Due to the measurement limitations (spectral, uncertainties, range) and high variability of the aerosol properties with environmental conditions (including mixing during transport), the identification of the aerosol type from lidar data is still not solved. However, ground, airborne and space-based lidars provide more and more observations to be exploited. Since 2000, EARLINET collected more than 20,000 aerosol vertical profiles under various meteorological conditions, concerning local or long-range transport of aerosols in the free troposphere. This paper describes the basic algorithm for aerosol typing from optical data using the benefits of artificial neural networks. A relevant database was built to provide sufficient training cases for the neural network, consisting of synthetic and measured aerosol properties. Synthetic aerosols were simulated starting from the microphysical properties of basic components, internally mixed in various proportions. The algorithm combines the GADS database (Global Aerosol DataSet) to OPAC model (Optical Properties of Aerosol and Clouds) and T-Matrix code in order to compute, in an iterative way, the intensive optical properties of each aerosol type. Both pure and mixed aerosol types were considered, as well as their particular non-sphericity and hygroscopicity. Real aerosol cases were picked up from the ESA-CALIPSO database, as well as EARLINET datasets. Specific selection criteria were applied to identify cases with accurate optical data and validated sources. Cross-check of the synthetic versus measured aerosol intensive parameters was performed in

  10. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  11. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  12. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph

    2007-01-01

    The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

  13. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  14. Exceptional aerosol pollution plume observed using a new ULA-lidar approach

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick

    2016-09-01

    An exceptional particulate pollution event was sampled in June 2005 over the Ardèche region in Southern France. Airborne (at the wavelength of 355 nm) and ground-based (at the wavelength of 532 nm) lidars performed measurements simultaneously. Airborne observations were performed from an ultra-light aircraft (ULA); they offer an opportunity to test a new method for inversing lidar profiles which enables their quantitative use while the airplane flies in a scattering layer. Using the results of this approach and the ground-based lidar measurements, the aerosol plumes have been optically quantified and the diversity of particle sources (from Western Europe, North Africa and even North America) which contributed to the event has been highlighted using both spaceborne observations and multiple air mass back-trajectories.

  15. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  16. Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Rosoldi, M.; Vande Hey, J.; Pappalardo, G.

    2016-06-01

    In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60 N, 15.72 E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six month. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term. Technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are likely needed.

  17. [Ultraviolet Mie lidar observations of aerosol extinction in a dust storm case over Macao].

    PubMed

    Liu, Qiao-jun; Cheng, A Y S; Zhu, Jian-hua; Fong, S K; Chang, S W; Tam, K S; Viseu, A

    2012-03-01

    Atmospheric aerosol over Macao was monitored by using a 355 nm Mie scattering lidar during the dust event on March 22nd, 2010. Vertical profiles of aerosol extinction coefficients were obtained and correlated with local PM10 concentration. The near-surface aerosol extinction coefficients have good agreement with PM10 concentration values. The aerosol extinction vertical profiles showed that there were distinct layers of dust aerosol concentration. The source and tracks of dust aerosol were analyzed by back-trajectory simulation. Observations showed that this lidar could run well even in dust storm episode, and it would help to further the study on aerosol properties over Macao. PMID:22582620

  18. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    NASA Technical Reports Server (NTRS)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  19. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 1, Instrument Design and Operation

    NASA Astrophysics Data System (ADS)

    Bird, A. W.; Wojcik, M.; Moore, K. D.; Lemon, R.

    2014-12-01

    CELiS (Compact Eyesafe Lidar System) is an elastic lidar system conceived for the purpose of monitoring air quality environmental compliance regarding particulate matter (PM) generated from off-road use of wheeled and tracked vehicles. CELiS is a prototype instrument development by the Space Dynamics Laboratory to demonstrate a small, low power, eye-safe lidar system capable of monitoring PM fence-line concentration of fugitive dust from off-road vehicle activity as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road Department of Defense Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PM concentration and emissions. The instrument is mounted on Moog Quickset pan and tilt positioner. Ground support equipment includes portable racks with laser power and cooler, power supplies, readout electronics and computer. The complete CELiS instrument weighs less than 300 lbs., is less than 1 cubic meters in volume and uses 700 W of 120V AC power. CELiS has a working range of better than 6km and a range resolution of 1.5m-6m. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength. The receiver is an off-axis parabolic (OAP) telescope, aft-optics and alignment assembly and InGaAs APD detector readout. The transmitter is a 20Hz PRF - 25mJ Quantel 1.574 μm laser with a 20x beam expander. Both the receiver and transmitter are mounted on a carbon fiber optical breadboard with a custom mounting solution to minimize misalignment due to thermal operating range (0-40 C) and pointing vectors. Any lidar system used to monitor fence-line PM emissions related to off-road training activities will be subject to a strict eye-safety requirement to protect both troops and wildlife. CELiS is eyesafe at the output aperture. CELiS has participated in two Dugway Proving Ground Lidar exercises performing within expectations

  20. Combining Passive Polarimetric and Lidar Observations from TCAP to Vertically Partition a Multi-Modal Aerosol Model

    NASA Astrophysics Data System (ADS)

    Cairns, B.; Ottaviani, M.; Knobelspiesse, K. D.; Chowdhary, J.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Cook, A. L.; Harper, D. B.; Mack, T. L.; Hare, R. J.; Cleckner, C. S.; Rogers, R.; Mueller, D.; Burton, S. P.; Obland, M. D.; Scarino, A. J.; Redemann, J.; Schmid, B.; Fast, J. D.; Berg, L. K.

    2012-12-01

    The first airborne deployment associated with the Two-Column Aerosol Project (TCAP) field campaign was carried out on Cape Cod, Massachusetts during July 2012 using the DOE Gulfstream 1 (G-1) and the NASA Langley B200. The first column located on Cape Cod has the surface based ARM Mobile Facility, which measures aerosol properties, radiation, and cloud characteristics, as its anchor point. The second column, 200 km to the East, was chosen to facilitate characterization of the large gradient of AOD near the coast of New England. The G-1 was equipped with a suite of in situ instrumentation to measure the size, composition and optics of aerosols, together with spectral Aerosol Optical Depth (AOD) above the aircraft using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research. The G1 generally flew at low altitude except when profiling the two columns. The B200, flew at ~ 9 km, above the G1, and operated the world's first airborne three backscatter (355, 532 and 1064 nm) and two extinction (355 and 532 nm) channel high-spectral-resolution lidar, HSRL-2 and the Research Scanning Polarimeter (RSP), which provides multi-angle multi-spectral observations of the intensity and polarization over a spectral range from 410 to 2260 nm. The TCAP measurements are ideal for remote sensing of aerosols since a dark ocean allows the full power of the passive intensity and polarization observations to be explored. RSP observations over the ocean have previously been used to retrieve the AOD, particle size and complex refractive index of aerosols, but it was noted that the vertical distribution of the aerosols could affect the accuracy of the retrieval. In this paper we combine HSRL-2 and RSP data to retrieve and partition a multi-modal aerosol model through the column. The lidar intensive variables (ratios of the lidar observations) that do not depend on aerosol load are used to constrain the microphysics of the aerosol modes. Where the classification technique presented

  1. AGLITE Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AGLITE Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of AGLITE is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural sources. AGLITE uses a high-repetition rate low-pulse-energy 3-wavelen...

  2. Aglite Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy...

  3. Polar stratospheric cloud measurements by means of depolarization lidar in the Antarctic

    NASA Astrophysics Data System (ADS)

    Stefanutti, L.

    1991-02-01

    POLE (Polar Ozone Lidar Experiment) is a cooperative project between the French and Italian services. It was started with the implementation of a first depolarization backscattering lidar for measurements both of background stratospheric aerosols and Polar Stratospheric Clouds (PSCs). A complex Ozone lidar was also installed which will replace the backscattering system and extend its measurements to tropospheric and stratospheric Ozone and to stratospheric and mesospheric temperatures. This new system allows also the measurement of the backscattered and depolarized signal produced by PSCs and background aerosols. The depolarization technique seemed to be quite efficient in the detection of different types of PSCs.

  4. Polar stratospheric cloud measurements by means of depolarization lidar in the Antarctic

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.

    1991-01-01

    POLE (Polar Ozone Lidar Experiment) is a cooperative project between the French and Italian services. It was started with the implementation of a first depolarization backscattering lidar for measurements both of background stratospheric aerosols and Polar Stratospheric Clouds (PSCs). A complex Ozone lidar was also installed which will replace the backscattering system and extend its measurements to tropospheric and stratospheric Ozone and to stratospheric and mesospheric temperatures. This new system allows also the measurement of the backscattered and depolarized signal produced by PSCs and background aerosols. The depolarization technique seemed to be quite efficient in the detection of different types of PSCs.

  5. Analysis of measurements for solid state laser remote lidar system

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1995-01-01

    The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.

  6. Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution.

    PubMed

    Rajeev, K; Parameswaran, K

    1998-07-20

    Two iterative methods of inverting lidar backscatter signals to determine altitude profiles of aerosol extinction and altitude-resolved aerosol size distribution (ASD) are presented. The first method is for inverting two-wavelength lidar signals in which the shape of the ASD is assumed to be of power-law type, and the second method is for inverting multiwavelength lidar signals without assuming any a priori analytical form of ASD. An arbitrary value of the aerosol extinction-to-backscatter ratio (S(1)) is assumed initially to invert the lidar signals, and the ASD determined by use of the spectral dependence of the retrieved aerosol extinction coefficients is used to improve the value of S(1) iteratively. The methods are tested for different forms of altitude-dependent ASD's by use of simulated lidar-backscatter-signal profiles. The effect of random noise on the lidar backscatter signals is also studied.

  7. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  8. Lidar measurements from space for tropospheric chemistry investigations: Summary of workshop overview presentation

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.

    1987-01-01

    Over the past decade, NASA has played a lead role in defining the scientific objectives and technology requirements for spaceborne lidar investigations of the atmosphere. An assessment of the potential for conducting lidar measurements from space for investigations that pertain specifically to tropospheric chemistry is presented. A description of potential lidar measurement techniques is given, and the scientific requirements for tropospheric chemistry are reviewed. The current status of airborne lidar measurements of aerosols, O3, and H2O is discussed, and a brief description of the evolution of lidar technology to space is given. Also, the measurement of tropospheric gases with a spaceborne lidar system is evaluated for a wide range of gas species. From this general assessment, it appears feasible to measure aerosols, H2O, O3, NH3, CO, CH4, NO2, atmospheric pressure and temperature, and wind with a lidar from space provided that the appropriate laser and receiver technology is available. For the mid-1990's, it is expected that lidar technology will be available for the measurement of aerosols, H2O, and O3 from a space platform.

  9. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao

    2016-06-01

    Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA). In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  10. Micropulse lidar observations of tropospheric aerosols over northeastern South Africa during the ARREX and SAFARI 2000 dry season experiments

    NASA Astrophysics Data System (ADS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent N.

    2003-07-01

    During the Aerosol Recirculation and Rainfall Experiment (ARREX 1999) and Southern African Regional Science Initiative (SAFARI 2000) dry season experiments, a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The lidar was colocated with a diverse array of passive radiometric equipment. For SAFARI 2000, a daytime time series of layer mean aerosol optical properties, including layer mean extinction-to-backscatter ratios and vertical extinction cross-section profiles are derived from the synthesis of the lidar data and aerosol optical depths from available AERONET Sun photometer data. Combined with derived spectral Angstrom exponents, normalized broadband flux measurements, and calculated air mass back-trajectories, the temporal evolution of the surface aerosol layer optical properties is analyzed for climatological trends. For dense biomass smoke events the extinction-to-backscatter ratio is between 50 and 90 sr, and corresponding spectral Angstrom exponent values are between 1.50 and 2.00. Observations of an advecting smoke event during SAFARI 2000 are shown. The smoke was embedded within two distinct stratified thermodynamic layers causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of 1 September 2000. Significant surface broadband flux forcing of over -50 W/m2 was measured in this event. The evolution of the vertical aerosol extinction profile is profiled using the lidar data. Finally, observations of persistent elevated aerosol layers during ARREX 1999 are presented and discussed. Back-trajectory analyses combined with lidar and Sun photometer measurements indicate the likelihood for these aerosols being the result of long-range particulate transport from the southern and central South America.

  11. Effect of multiple scattering on depolarization measurements with spaceborne lidars.

    PubMed

    Reichardt, Susanne; Reichardt, Jens

    2003-06-20

    An analytical model based on the integration of the scattering-angle and light-path manifold has been developed to quantify the effect of multiple scattering on cirrus measurements obtained with elastic polarization lidars from space. Light scattering by molecules and by a horizontally homogeneous cloud is taken into account. Lidar parameter, including laser beam divergence, can be freely chosen. Up to 3 orders of scattering are calculated. Furthermore, an inversion technique for the retrieval of cloud extinction profiles from measurements with elastic-backscatter lidars is proposed that explicitly takes multiple scattering into account. It is found that for typical lidar system parameters such as those of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument multiple scattering does not significantly affect depolarization-ratio measurements in cirrus clouds with small to moderate optical depths. For all simulated clouds, the absolute value of the difference between measured and single-scattering volume depolarization ratio is < 0.006. The particle depolarization ratio can be calculated from the measured volume depolarization ratio and the retrieved backscatter ratio without degradation of accuracy; thus characterization of the various cirrus categories in terms of the particle depolarization ratio and retrieval of cloud microphysical properties is feasible from space. The results of this study apply to polar stratospheric clouds as well.

  12. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  13. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm‑1 sr‑1. Winter values of Raman backscatter coefficient are less than 0.06 Mm‑1 sr‑1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  14. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm-1 sr-1. Winter values of Raman backscatter coefficient are less than 0.06 Mm-1 sr-1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  15. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  16. The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory.

    PubMed

    Hu, Yongxiang; Vaughan, Mark; Liu, Zhaoyan; Lin, Bing; Yang, Ping; Flittner, David; Hunt, Bill; Kuehn, Ralph; Huang, Jiangping; Wu, Dong; Rodier, Sharon; Powell, Kathy; Trepte, Charles; Winker, David

    2007-04-30

    Using measurements obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, relationships between layer-integrated depolarization ratio (delta) and layer-integrated attenuated backscatter (gamma) are established for moderately thick clouds of both ice and water. A new and simple form of the delta-gamma relation for spherical particles, developed from Monte Carlo simulations and suitable for both water clouds and spherical aerosol particles, is found to agree well with the observations. A high-backscatter, low-depolarization delta-gamma relationship observed for some ice clouds is shown to result primarily from horizontally oriented plates and implies a preferential lidar ratio - depolarization ratio relation in nature for ice cloud particles containing plates.

  17. A semianalytic Monte Carlo code for modelling LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2007-10-01

    LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.

  18. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; Clarke, A.; Freitag, S.; Howell, S.; Kapustin, V.; McNaughton, C.

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to

  19. Mie lidar observations of lower tropospheric aerosols and clouds.

    PubMed

    Veerabuthiran, S; Razdan, A K; Jindal, M K; Dubey, D K; Sharma, R C

    2011-12-15

    Mie lidar system is developed at Laser Science and Technology Centre, Delhi (28.38°N, 77.12°E) by using minimal number of commercially available off-the-shelf components. Neodymium Yttrium Aluminum Garnet (Nd:YAG) laser operating at 1064nm with variable pulse energies between 25 and 400 mJ with 10 Hz repetition rate and 7ns pulse duration is used as a transmitter and off-axis CASSEGRAIN telescope with 100mm diameter as a receiver. Silicon avalanche photodiode (Si-APD) module with built-in preamplifier and front-end optics is used as detector. This system has been developed for the studies of lower tropospheric aerosols and clouds. Some experiments have been conducted using this set up and preliminary results are discussed. The characteristics of backscattered signals for various transmitter pulse energies are also studied. Atmospheric aerosol extinction coefficient values are calculated using Klett lidar inversion algorithm. The extinction coefficient, in general, falls with range in the lower troposphere and the values lie typically in the range 7.5×10(-5) m(-1) to 1.12×10(-4) m(-1) in the absence of any cloud whereas this value shoots maximum up to 1.267×10(-3) m(-1) (peak extinction) in the presence of clouds.

  20. Wavelength dependent near-range lidar profiling of smog aerosol over Athens

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Marinou, Eleni; Engelmann, Ronny; Costa Surós, Montserrat; Kottas, Mickael; Baars, Holger; Janicka, Lucja; Solomos, Stavros; Heese, Birgit; Kumala, Wojciech; Tsekeri, Alexandra; Binietoglou, Ioannis; Markowicz, Krzysztof M.; Amiridis, Vassilis; Balis, Dimitris; Althausen, Dietrich; Wandinger, Ulla; Ansmann, Albert

    2016-04-01

    Recently, the ACTRIS2 JRA1 field campaign focusing on joint remote and in-situ sensing of absorbing aerosols has been conducted in Athens (http://actris-athens.eu). In the frame of the ACTRIS2 BL-Smog TNA, co-located measurements of the near-range lidar receiver (NARLa) of the University of Warsaw with the multi-wavelength PollyXT lidar of the National Observatory of Athens were performed. The excellent capacities of the PollyXT-NOA lidar, equipped with eight far-range channels (355, 355s, 387, 407, 532, 532s, 607, and 1064nm) and two near-range channels (532 and 607 nm), were enhanced by integrating the NARLa for simultaneous observations. By using the NARLa, equipped with the elastic channels (355 and 532nm) and Raman channels (387 and 607nm), the wavelength dependence of the aerosol particles properties within boundary layer was captured. The dominant conditions observed during the JRA1 period were the fresh winter smog layers occurring in lowermost boundary layer over Athens. NARLa provided profiles as close to surface as 50m, thus the data obtained in the near-range were used for the incomplete overlap region of the far-field channels. With NARLa we assessed the overlap at 355 and 532nm wavelengths and concluded on the possibility of using the single near-range 532 nm channel for the overlap correction in both VIS and UV channels of the PollyXT-NOA. As a result, the obtained lidar profiles are expected to be more consistent with the sunphotometer measurements. In the future, the GARRLiC code can be applied on the synergy of combined near and far range lidar profiles with AERONET data sets in order to study improvement on the inversion results.

  1. Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy

    SciTech Connect

    Sheen, David M.; Aker, Pam M.

    2007-09-19

    This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

  2. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2-O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-05-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  3. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  4. Scanning Lidar Measurements of the Full-Scale RDD Field Trial Puff Plumes.

    PubMed

    Cao, Xiaoying; Roy, Gilles

    2016-05-01

    A vertically scanning lidar (light/radar) was used to measure the time evolution of clouds generated by a small explosive device. Vertical sweeps were performed at a downwind distance of 105 m from the detonation. The measured quantity obtained from the lidar was the light extinction coefficient. This quantity is directly proportional to the aerosol concentration. The background aerosol value was set to 0.0001 m (-1) (assuming a visibility of 40 km), and assuming the scattering properties of the explosively generated cloud is the same as the background aerosol, the authors found that the instantaneous maximal local concentration of aerosol in the cloud did not exceed 500 times the background aerosol value, and the instantaneous concentration was typically less than five times the background aerosol value. In the two trials that were done, the volumes of the clouds were reasonably close at 2,700 m(3) and 4,000 m(3), respectively.

  5. Scanning Lidar Measurements of the Full-Scale RDD Field Trial Puff Plumes.

    PubMed

    Cao, Xiaoying; Roy, Gilles

    2016-05-01

    A vertically scanning lidar (light/radar) was used to measure the time evolution of clouds generated by a small explosive device. Vertical sweeps were performed at a downwind distance of 105 m from the detonation. The measured quantity obtained from the lidar was the light extinction coefficient. This quantity is directly proportional to the aerosol concentration. The background aerosol value was set to 0.0001 m (-1) (assuming a visibility of 40 km), and assuming the scattering properties of the explosively generated cloud is the same as the background aerosol, the authors found that the instantaneous maximal local concentration of aerosol in the cloud did not exceed 500 times the background aerosol value, and the instantaneous concentration was typically less than five times the background aerosol value. In the two trials that were done, the volumes of the clouds were reasonably close at 2,700 m(3) and 4,000 m(3), respectively. PMID:27023031

  6. The Ny-Alesund aerosol and ozone measurements intercomparison campaign 1997/1998 (NAOMI-1998)

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Beyerle, G.; Beninga, I.; VonderGathen, P.; Rairoux, P.; Schrems, O.; Wahl, P.; Gross, M.; McGee, Th.; Iwasaka, Y.; Fujiwara, M.; Shibata, T.; Klein, U.; Steinbrecht, W.

    1998-01-01

    An intercomparison campaign for Lidar measurements of stratospheric ozone and aerosol has been conducted at the Primary Station of the Network for the Detection of Stratospheric Change (NDSC) in Ny-Alesund/Spitsbergen during January-February 1998. In addition to local instrumentation, the NDSC mobile ozone lidar from NASA/GSFC and the mobile aerosol lidar from Alfred Wegener Institute (AWI) participated. The aim is the validation of stratospheric ozone and aerosol profile measurements according to NDSC guidelines. This paper briefly presents the employed instruments and outlines the campaign. Results of the blind intercomparison of ozone profiles are given in a companion paper and temperature measurements are described in this issue.

  7. Airborne lidar measurements of pollution transport in central and southern California during CalNEX 2010

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Alvarez, R. J., II; Hardesty, R.; Langford, A. O.; Banta, R. M.; Brewer, A.; Davies, F.; Sandberg, S.; Marchbanks, R.; Weickmann, A.

    2010-12-01

    During the CalNEX experiment from May through July 2010, we co-deployed NOAA’s airborne ozone and aerosol lidar TOPAZ and the University of Leeds scanning Doppler wind lidar on a Twin Otter aircraft. We flew a total of 46 missions over central and southern California, focusing primarily on the Los Angeles Basin and Sacramento areas. The downward-looking lidars provided highly resolved measurements of ozone concentration, aerosol backscatter, and wind speed and direction in the boundary layer and lower free troposphere. We will use the airborne lidar data to characterize transport of ozone and aerosols on regional and local scales. In particular, we will focus on pollutant transport between air basins and the role of flow patterns in complex terrain, such as gap flows and orographic lifting and venting along mountain slopes, on pollutant distribution.

  8. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    PubMed

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  9. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    PubMed

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  10. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    PubMed Central

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1) and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  11. Lidar measurements of stratospheric temperature during STOIC

    SciTech Connect

    Ferrare, R.A. ||; McGhee, T.J.; Burris, J.

    1995-05-20

    This paper presents stratospheric temperature measurements made by ground based lidar during the Stratospheric Ozone Intercomparison Campaign experiment. These measurements are correlated with complementary measurements made from sondes, satellite platforms, and National Meteorological Center analyses. Over the altitude range 30 to 65 km, the lidar derived temperatures were within 2 to 3 K of the temperatures derived from the other measurement systems. Specific differences are discussed in the paper.

  12. The Antarctic ozone lidar system

    NASA Astrophysics Data System (ADS)

    Stefanutti, L.; Castagnoli, F.; del Guasta, M.; Morandi, M.; Sacco, V. M.; Zuccagnoli, L.; Godin, S.; Megie, G.; Porteneuve, J.

    1992-07-01

    A new complex lidar system, designated POLE, for measuring tropospheric and stratospheric ozone, stratospheric aerosols, and polar stratospheric and tropospheric clouds is described. The lidar system is comprised of a Rayleigh lidar, an upper stratospheric ozone lidar, a low-altitude or tropospheric ozone lidar, and an aerosol backscattering depolarization lidar. The paper describes the characteristics of these lidars and the measurements obtained by each of them, together with the features of various subsystems of POLE, and presents results of measurements performed during the 1991 antarctic winter.

  13. Transport of mineral dust derived from airborne wind lidar measurements during SALTRACE

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Groß, Silke; Rahm, Stephan; Freudenthaler, Volker; Toledano, Carlos; Weinzierl, Bernadett

    2015-04-01

    During the SALTRACE field experiment conducted between the 10 of June and the 15 of July 2013, the transport and properties of Saharan dust were characterized by a 2-µm Doppler wind lidar (DWL) deployed on the DLR Falcon 20 research aircraft. Unlike aerosol lidars, the DLW is able to simultaneously measure wind fields and -by means of an adequate calibration- aerosol optical properties, which is more adequate for aerosol transport studies. The retrieved horizontal and vertical wind speed provide a direct observation of dust long range transport mechanisms across the Atlantic (e.g. by the African easterly jet) from Western Africa to the Caribbean. Vertical wind observations revealed the structure of island induced lee waves in the Cape Verde and Barbados regions. A novel method for the calibration of DWLs based on simultaneous measurements with a ground-based aerosol lidar and sun photometer was developed. After being calibrated, the system is able to retrieve quantitative aerosol backscatter and extinction coefficients, which is usually not obtained from coherent lidars. Results from the validation with a ground-based aerosol lidar in Barbados and the CALIPSO satellite instrument will be discussed.

  14. New Lidar Capabilities in Space: An Overview of the Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    McGill, M. J.; Yorks, J. E.; Hlavka, D. L.; Selmer, P. A.; Hart, W. D.; Palm, S. P.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard, V.

    2014-12-01

    The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the late 2014. CATS is an elastic backscatter lidar operating in one of three science modes with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at the 532 and 1064 nm wavelengths. The CATS science modes are described in Figure 1. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. A primary science objectives of CATS is to provide global aerosol and cloud vertical profile data in near real time to for assimilation in aerosol transport models such as the NASA GEOS-5 model. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite sensors. Another important science objective of CATS is to advance technology in support of future mission development. CATS will employ 355 nm and HSRL capabilities, as well as depolarization at multiple wavelengths. These expanded measurement capabilities will provide the science community with new and improved global data products that have yet to be retrieved from space-based lidar. In preparation for launch, simulations of the CATS lidar signal are produced using GEOS5 model data to develop and test future data products. An example of the simulated CATS attenuated

  15. Two-wavelength backscattering lidar for stand off detection of aerosols

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek

    2008-10-01

    Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.

  16. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this

  17. Wind measurement via direct detection lidar

    NASA Astrophysics Data System (ADS)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  18. Profile of heating rate due to aerosols using lidar and skyradiometer in SKYNET Hefei site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, D.; Xie, C.

    2015-12-01

    Atmospheric aerosols have a significant impact on climate due to their important role in modifying atmosphere energy budget. On global scale, the direct radiative forcing is estimated to be in the range of -0.9 to -0.1 Wm-2 for aerosols [1]. Yet, these estimates are subject to very large uncertainties because of uncertainties in spatial and temporal variations of aerosols. At local scales, as aerosol properties can vary spatially and temporally, radiative forcing due to aerosols can be also very different and it can exceed the global value by an order of magnitude. Hence, it is very important to investigate aerosol loading, properties, and radiative forcing due to them in detail on local regions of climate significance. Haze and dust events in Hefei, China are explored by Lidar and Skyradiometer. Aerosol optical properties including the AOD, SSA, AAE and size distribution are analysed by using the SKYRAD.PACK [2] and presented in this paper. Furthermore, the radiative forcing due to aerosols and the heating rate in the ATM are also calculated using SBDART model [3]. The results are shown that the vertical heating rate is tightly related to aerosol profile. References: 1. IPCC. 2007. Climate Change 2007: The Physical Science Basic. Contribution of Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, Manning M, et al. eds., Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA. 2. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate poly dispersions, Appl. Opt., 35, 2672-2686. 3. Ricchiazzi et al 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,Bulletin of the American Meteorological Society,79,2101-2114.

  19. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  20. Raman-lidar technique for tropospheric and stratospheric sensing of aerosol optical and microphysical properties

    SciTech Connect

    Wandinger, U.

    1995-01-01

    Tropospheric and stratospheric aerosols and clouds are known to influence the earth`s radiation budget as well as chemical processes of the atmosphere. Thus, remote sensing of optical and microphysical properties of atmospheric particles has important applications in weather and climate research, pollution monitoring, and atmospheric chemistry. During the last few years Raman lidars have become very important tools in this field of research. The development of powerful light sources such as Nd:YAG and excimer lasers, of interference filters with narrow bandwidth and high transmission, and of low-noise photomultiplier tubes and counting systems has improved the Raman-lidar technique during the past decade significantly. The technique is based on the detection of two signals resulting from elastic backscattering by air molecules and particles and inelastic (Raman) backscattering by a gas of known number density, i.e., nitrogen or oxygen. The technique has been successfully applied to cirrus-cloud studies. In this presentation, the capability of the Raman-lidar technique for tropospheric and stratospheric profiling of aerosol and cloud properties will be discussed on the basis of measurement examples.

  1. Lidar Measurement of Water Clouds and Its Applications

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Winker, D. M.; Hair, J. W.; Vaughan, M. A.; Hostetler, C. A.; Zeng, S.; Liu, Z.; Omar, A. H.; MacDonnell, D.; Butler, C. F.; Sun, W.

    2015-12-01

    Recent theoretical advances now enable accurate characterization of both the single scattering and multiple scattering contributions to the lidar backscatter signals obtained from opaque water clouds (Hu et al., 2006). As a consequence, lidar measurements of opaque water clouds have increasingly broad applications, especially for space-based polarization-sensitive lidars such as CALIOP. Among the most prominent and useful of these are (1) calibration and assessments of calibration accuracy (e.g., O'Connor et al., 2004; Hu et al., 2006); (2) accurate estimates of extrinsic (e.g., optical depths) and intrinsic (e.g., extinction-to-backscatter ratios) optical properties of clouds and aerosol layers lying above opaque water clouds (Hu et al., 2007; Liu et al., 2015); and (3) retrievals of water cloud microphysical properties such as cloud droplet number concentrations (Hu et al., 2007; Li et al., 2011; Zeng et al., 2014). In the first part of this presentation we give an overview of the recent advances in this subject area. The second part introduces several new studies of water clouds using the multi-wavelength depolarization measurement capabilities of NASA's airborne high spectral resolution lidars (HSRL). We use these measurements to assess existing theory, validate the measurement concept and explore several new application concepts. The third part discusses changes in Arctic water clouds using CALIOP measurements. The HSRL water cloud study is supported by NASA's atmospheric composition program.

  2. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  3. Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data

    NASA Astrophysics Data System (ADS)

    Rogers, R. R.; Vaughan, M. A.; Hostetler, C. A.; Burton, S. P.; Ferrare, R. A.; Young, S. A.; Hair, J. W.; Obland, M. D.; Harper, D. B.; Cook, A. L.; Winker, D. M.

    2014-06-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 years of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the CALIOP 532 nm aerosol layer optical depth (AOD) product, the AOD of individual layers, and the column AOD product, the sum AOD of the complete column, using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer one-standard-deviation uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ± 0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and, therefore, the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ± 0.05 ± 0.07 · (HSRL column AOD) at night and ± 0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of

  4. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season

    NASA Astrophysics Data System (ADS)

    Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R.

    2012-11-01

    For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5°S, 60°W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm-1 and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm-1 in the main pollution layer (up to 2 km height). Ångström exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

  5. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season

    NASA Astrophysics Data System (ADS)

    Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R.

    2011-11-01

    For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5°S, 60°W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm-1 and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm-1 in the main pollution layer (up to 2 km height). Ångström exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

  6. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols.

    PubMed

    Goldsmith, J E; Blair, F H; Bisson, S E; Turner, D D

    1998-07-20

    We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (~5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements. PMID:18285967

  7. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols.

    PubMed

    Goldsmith, J E; Blair, F H; Bisson, S E; Turner, D D

    1998-07-20

    We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (~5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements.

  8. Space-based lidar measurements of global ocean carbon stocks

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; Hu, Yongxiang; Hostetler, Chris A.; Dall'Olmo, Giorgio; Rodier, Sharon D.; Hair, John W.; Trepte, Charles R.

    2013-08-01

    Global ocean phytoplankton biomass (Cphyto) and total particulate organic carbon (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for Cphyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify global Cphyto and POC from retrievals of subsurface particulate backscatter coefficients (bbp). CALIOP bbp data compare favorably with airborne, ship-based, and passive ocean data and yield global average mixed-layer standing stocks of 0.44 Pg C for Cphyto and 1.9 Pg for POC. CALIOP-based Cphyto and POC data exhibit global distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of global plankton systems.

  9. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties.

    PubMed

    Schmidt, Jörg; Wandinger, Ulla; Malinka, Aleksey

    2013-04-10

    Dual-field-of-view Raman lidar measurements, detecting Raman-scattered light with two fields of view simultaneously, are used for the first time to retrieve cloud microphysical properties. The measurements are performed with the Multiwavelength Atmospheric Raman Lidar for Temperature, Humidity, and Aerosol Profiling (MARTHA) at the Leibniz Institute for Tropospheric Research in Leipzig, Germany. Light that is scattered in forward direction by cloud droplets and inelastically backscattered by N2 molecules is detected. A forward iterative algorithm uses the measured signals to derive profiles of the effective cloud droplet radius, extinction coefficient, and liquid-water content of the investigated clouds. The setup, algorithm, error analysis, and a measurement example are presented. The obtained liquid-water path is validated by observations with a microwave radiometer. With the capability to retrieve aerosol properties as well as cloud microphysical properties, the Raman lidar MARTHA is an ideal tool for studies of the aerosol indirect effect.

  10. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  11. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  12. Recent lidar measurements of stratospheric ozone and temperature within the network for the detection of stratospheric change

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Ferrare, Richard; Butler, James J.; Frost, Robert L.; Gross, Michael; Margitan, James

    1991-01-01

    The Goddard mobile lidar was deployed at Cannon Air Force Base near Clovis, New Mexico during the Spring of 1990. Measurements of stratospheric ozone and temperature were made over a period of six weeks. Data from the lidar system is compared with data from a balloon-borne, ultraviolet instrument launched from nearby Ft. Sumner, New Mexico. Along with several improvements to this instrument which are now underway, a second lidar dedicated to temperature and aerosol measurements is now being developed.

  13. Incoherent Doppler lidar for measurement of atmospheric winds

    SciTech Connect

    Skinner, W.R.; Hays, P.B.

    1994-12-31

    A conceptual space-based incoherent Doppler lidar wind measurement system is described. The system employs a Fabry-Perot interferometer to detect the Doppler shift of the backscattered laser line, and uses two channels, one for aerosol and one for molecular backscatter. Previous investigations have considered only the aerosol backscatter as the means to determine the Doppler shift. Several studies have demonstrated that aerosol backscatter, particularly over the oceans and in the southern hemisphere, can be extremely low in the free troposphere. The two channel configuration permits acceptable measurements regardless of the aerosol loading. The system operates in the near UV, which is eye safe and provides a large molecular backscatter. With a 20 Watt laser, 1 meter diameter collecting telescope, and 5 seconds integration time, the horizontal line of sight wind errors would be less than 1 m/s with aerosols typical of a continental loading from the surface to the stratosphere. Areas of low aerosol loading would have errors of about 3 m/s.

  14. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    SciTech Connect

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D.

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  15. Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data

    NASA Astrophysics Data System (ADS)

    Rogers, R. R.; Vaughan, M. A.; Hostetler, C. A.; Burton, S. P.; Ferrare, R. A.; Young, S. A.; Hair, J. W.; Obland, M. D.; Harper, D. B.; Cook, A. L.; Winker, D. M.

    2014-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 yr of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the V3.01 and V3.02 CALIOP 532 nm aerosol layer optical depth (AOD) product (i.e the AOD of individual layers) and the column AOD product (i.e., the sum AOD of the complete column) using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer 1 SD uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ±0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and therefore the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ±0.05 ± 0.07 · (HSRL column AOD) at night and ±0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of

  16. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  17. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  18. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  19. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie-Raman lidar and a sky radiometer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Matsui, Ichiro; Jin, Yoshitaka; Khatri, Pradeep; Irie, Hitoshi; Takamura, Tamio; Aoki, Kazuma; Thana, Boossarasiri

    2015-06-01

    Distributions and optical characteristics of aerosols were continuously observed with a polarization-sensitive (532 nm), Mie-scattering (532 and 1064 nm) and Raman-scattering (607 nm) lidar and a sky radiometer in Phimai, Thailand. Polarization lidar measurements indicated that high concentration plumes of spherical aerosols considered as biomass burning smoke were often observed in the dry season. Plumes of non-spherical aerosols considered as long-range transported soil dust from Africa, the Middle East, or Northeast Asia were occasionally observed. Furthermore, low-concentration non-spherical aerosols were almost always observed in the atmospheric mixing layer. Extinction coefficient profiles of spherical aerosols and non-spherical dust exhibited different diurnal variations, and spherical aerosols including smoke were distributed in higher altitudes in the mixing layer and residual layer. The difference can be explained by hygroscopic growth of smoke particles and buoyancy of the smoke. Analysis of seasonal variations of optical properties derived from the Raman lidar and the sky radiometer confirmed that the lidar ratio, aerosol optical depth, and Angstrom exponent were higher in the dry season (October-May) and lower in the wet season (June-September). The single scattering albedo was lower in the dry season. These seasonal variations are explained by frequent biomass burning in the dry season consistent with previous studies in Southeast Asian region. At the same time, the present work confirmed that soil dust was a major aerosol component in Phimai, Thailand.

  20. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    NASA Technical Reports Server (NTRS)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  1. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  2. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  3. Continuous wave lidar measurement of atmospheric visibility

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Iyer, R. S.

    1978-01-01

    The technique of measurement of phase shift with a modulated CW lidar system for the purpose of atmospheric visibility assessment was evaluated both theoretically and experimentally. A closed form solution for prediction of phase shift as a function of visibility and modulation frequency was developed. Data obtained with a bistatic CW lidar configuration were compared with predictions. Results indicate the expected trends with equipment parameters and call for more extensive experiments.

  4. The Vertical Distribution of Aerosols Over the Atmospheric Radiation Measurement Southern Great Plains Site Measured versus Modeled

    SciTech Connect

    Ferrare, R.; Turner, D.D.; Clayton, M.; Guibert, S.; Schulz, M.; Chin, M.

    2005-03-18

    Aerosol extinction profiles measured by the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidar are used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter- Comparison in global models (AEROCOM) project. This project seeks to diagnose aerosol modules of global models and subsequently identify and eliminate weak components in aerosol modules used for global modeling; AEROCOM activities also include assembling data sets to be used in the evaluations. The AEROCOM average aerosol extinction profiles typically show good agreement with the Raman lidar profiles for altitudes above about 2 km; below 2 km the average model profiles are significantly (30-50%) lower than the Raman lidar profiles. The vertical variability in the average aerosol extinction profiles simulated by these models is less than the variability in the corresponding Raman lidar pro files. The measurements also show a much larger diurnal variability than the Interaction with Chemistry and Aerosols (INCA) model, particularly near the surface where there is a high correlation between aerosol extinction and relative humidity.

  5. The Cloud Physics Lidar: Instrument Description and Initial Measurement Results

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, V. Stanley; Starr, David OC. (Technical Monitor)

    2001-01-01

    The new Cloud Physics Lidar (CPL) has been built for use on the NASA ER-2 high altitude aircraft. The purpose of the CPL is to provide multi-wavelength measurements of cirrus, subvisual cirrus, and aerosols with high temporal and spatial resolution. The CPL utilizes state-of-the-art technology with a high repetition rate, a low pulse energy laser, and photon-counting detection. The first deployment for the CPL was the SAFARI-2000 field campaign during August-September 2000. We provide here an overview of the instrument and initial data results to illustrate the measurement capability of the CPL.

  6. Atmospheric correlation time measurements using coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.

    1986-01-01

    A pulsed TEA-CO2 lidar with coherent detection was used to measure the correlation time of backscatter from an ensemble of atmospheric aerosol particles which are illuminated by the pulsed radiation. The correlation time of the backscatter return signal is important in studies of atmospheric turbulence and its effects on optical propagation and backscatter. If the temporal coherence of the pulse is large enough, then the temporal coherence of the return signal is dominated by the turbulence and shear for a variety of interesting atmospheric conditions. Various techniques for correlation time measurement are discussed and evaluated.

  7. Near-Range Receiver Unit of Next Generation PollyXT Used with Koldeway Aerosol Raman Lidar in Arctic

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Ritter, Christoph; Neuber, Roland; Heese, Birgit; Engelmann, Ronny; Linne, Holger

    2016-06-01

    The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

  8. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  9. Sarychev Volcanic Aerosol and Chemical measurements over Eureka, Canada

    NASA Astrophysics Data System (ADS)

    Perro, C. W.; Duck, T. J.; Bitar, L.; Nott, G. J.; Lesins, G. B.; O'Neill, N. T.; Eloranta, E.; Strong, K.; Carn, S. A.; Lindenmaier, R.; Batchelor, R.; Saha, A.; Pike-Thackray, C.; Drummond, J. R.

    2010-12-01

    On July 01, 2009, lidar measurements from Eureka, Canada (80°N, 85°W) detected unusually high amounts of aerosol in the lower stratosphere which are believed to have originated from the Sarychev Eruption on the Kuril Islands in Russia (48°N,153°E). The suite of instruments that are part of the Canadian Network for the Detection of Atmospheric Change (CANDAC) have been used to measure the optical and chemical properties of the volcanic plume over Eureka. Lidar measurements show significant structure in the stratospheric aerosol that reaches altitudes of approximately 17 km. Initially there were several layers of aerosol in the lower stratosphere, which began to mix vertically so that by the end of August the aerosol was mixed into one homogeneous layer in the lower stratosphere. Lidar and sun photometer measurements are used to track the change in the integrated volume backscatter cross section from July 2009, with an initial peak value of 0.007 sr-1 until March 2010 when values have returned to background levels. Lidar measurements also show the plume descending over time. Satellite data from OMI and CALIPSO are used to track the SO2 and aerosols in the plume as it travels from the Kuril Islands to Eureka. Ground based measurements from a UV-VIS Spectrophotometer detected SO2 that correlated with OMI measurements over Eureka on July 01. A fourier transform spectrometer was used to monitor a number of chemical species in the UTLS region with HCL for example spiking during the same period. Effects of the stratospheric aerosols on the incoming short wave radiation during the summer months are also examined.

  10. The Cloud-Aerosol Transport System (CATS): Demonstrating New Techniques for Cloud and Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Nowottnick, E. P.; Selmer, P. A.

    2015-12-01

    The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that provides vertical profiles of cloud and aerosol properties. The CATS payload has been operating since early February 2015 from the International Space Station (ISS). CATS was designed to operate for six months, and up to three years, providing a combination of operational science, in-space technology demonstration, and technology risk reduction for future Earth Science missions. One of the primary project goals of CATS is to demonstrate technology in support of future space-based lidar mission development. The CATS instrument has been demonstrating the high repetition rate laser and photon counting detection approach to lidar observations, in contrast to the low repetition rate, high energy technique employed by CALIPSO. Due to this technique, cloud and aerosol profile data exhibit high spatial and temporal resolution, which was never before possible from a space-based platform. Another important science goal of the CATS-FO project is accurate determination of aerosol type on a global scale. CATS provided the first space-based depolarization measurements at multiple wavelengths (532 and 1064 nm), and first measurements at 1064 nm from space. The ratio of the depolarization measurements at these two wavelengths enables significant improvement in aerosol typing. The CATS retrievals at 1064 nm also provide improvements to detecting aerosols above clouds. The CATS layer identification algorithm is a threshold-based layer detection method that uses the 1064 nm attenuated scattering ratio and also includes a routine to identify clouds embedded within aerosol layers. This technique allows CATS to detect the full extent of the aerosol layers above the cloud, and differentiate these two layers so that the optical properties can be more accurately determined.

  11. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  12. Double-Edge Molecular Technique for Doppler Lidar Wind Measurement

    NASA Technical Reports Server (NTRS)

    Flesia, Cristina; Korb, C. Laurence

    1998-01-01

    The double-edge lidar technique for measuring the wind using molecular backscatter is described. Two high spectral resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and gives nearly a factor of two improvement in measurement accuracy. The use of a crossover region is described where the sensitivity of a molecular and aerosol-based measurement are equal. This desensitizes the molecular measurement to the effects of aerosol scattering over a frequency range of +/- 100 m/s. We give methods for correcting for short-term frequency jitter and drift using a laser reference frequency measurement and methods for long-term frequency correction using a servo control system. The effects of Rayleigh-Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2-3 m/s for altitudes of 2 to 15 km for a 1 km vertical resolution, a satellite altitude of 400 km and a 200 km x 200 km spatial resolution. Results of ground based wind measurements are presented.

  13. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  14. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

  15. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  16. Linear Estimation of Particle Bulk Parameters from Multi-Wavelength Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Veselovskii, Igor; Dubovik, Oleg; Kolgotin, A.; Korenskiy, M.; Whiteman, D. N.; Allakhverdiev, K.; Huseyinoglu, F.

    2012-01-01

    An algorithm for linear estimation of aerosol bulk properties such as particle volume, effective radius and complex refractive index from multiwavelength lidar measurements is presented. The approach uses the fact that the total aerosol concentration can well be approximated as a linear combination of aerosol characteristics measured by multiwavelength lidar. Therefore, the aerosol concentration can be estimated from lidar measurements without the need to derive the size distribution, which entails more sophisticated procedures. The definition of the coefficients required for the linear estimates is based on an expansion of the particle size distribution in terms of the measurement kernels. Once the coefficients are established, the approach permits fast retrieval of aerosol bulk properties when compared with the full regularization technique. In addition, the straightforward estimation of bulk properties stabilizes the inversion making it more resistant to noise in the optical data. Numerical tests demonstrate that for data sets containing three aerosol backscattering and two extinction coefficients (so called 3 + 2 ) the uncertainties in the retrieval of particle volume and surface area are below 45% when input data random uncertainties are below 20 %. Moreover, using linear estimates allows reliable retrievals even when the number of input data is reduced. To evaluate the approach, the results obtained using this technique are compared with those based on the previously developed full inversion scheme that relies on the regularization procedure. Both techniques were applied to the data measured by multiwavelength lidar at NASA/GSFC. The results obtained with both methods using the same observations are in good agreement. At the same time, the high speed of the retrieval using linear estimates makes the method preferable for generating aerosol information from extended lidar observations. To demonstrate the efficiency of the method, an extended time series of

  17. Lidar Measurements of Industrial Benzene Emissions

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. C.; van der Hoff, G. R.; Gast, L. F. L.

    2016-06-01

    The ability to measure benzene concentrations was added to the RIVM mobile DIAL system. In a ten-days campaign, it was used to measure benzene emissions in the Rijnmond, a heavily industrialised area in the South-west of the Netherlands with petrochemical industry, petrochemical products storage and the port of Rotterdam. On two of the ten days, benzene emissions were found. Combined with measurements of wind speed and wind direction, the Lidar measurements indicated the possible origins of these emissions. This makes the Lidar a valuable tool, augmenting the data collected at fixed monitoring stations.

  18. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  19. Low and optically thin cloud measurements using a Raman-Mie lidar.

    PubMed

    Wu, Yonghua; Chaw, Shuki; Gross, Barry; Moshary, Fred; Ahmed, Sam

    2009-02-20

    We analyze the potential of measuring low-altitude optically thin clouds with a Raman-elastic lidar in the daytime. Optical depths of low clouds are derived by two separate methods from nitrogen Raman and elastic-scattering returns. By correcting for aerosol influences with the combined Raman-elastic returns, Mie retrievals of low-cloud optical depth can be dramatically improved and show good agreement with the direct Raman retrievals. Furthermore, a lidar ratio profile is mapped out and shown to be consistent with realistic water phase cloud models. The variability of lidar ratios allows us to explore the distribution of small droplets near the cloud perimeter.

  20. Implementation of Raman lidar for profiling of atmospheric water vapor and aerosols at the SGP CART site

    SciTech Connect

    Goldsmith, J.E.M.; Bisson, S.E.; Blair, F.H.; Whiteman, D.N.; Melfi, S.H.; Ferrare, R.A.

    1994-05-01

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the SGP CART (southern great plains cloud and radiation testbed) site. Research conducted at several laboratories, including our own collaboration in a previous ARM Instrument Development Project, has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We are currently building a ruggedized Raman lidar system that will reside permanently at the CART site, and that is computer-automated to minimize requirements for operator interaction. In addition to profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar will provide quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

  1. Polarization lidar returns from aerosols and thin clouds: a framework for the analysis.

    PubMed

    Gobbi, G P

    1998-08-20

    Relationships for the interpretation of polarization lidar observations of aerosols and thin clouds are presented. They allow for the separation of contributions to backscatter from solid and liquid phases by the use of either the classical backscatter and depolarization ratio parameters or the particulate cross-polarized backscatter cross sections. It is shown that different aerosol phases can be better separated by use of the latter coordinates. Emphasis is placed on the study of composition and phase properties of polar stratospheric aerosols.

  2. Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method.

    PubMed

    Luo, Tao; Wang, Zhien; Ferrare, Richard A; Hostetler, Chris A; Yuan, Renmin; Zhang, Damao

    2015-06-01

    This paper developed a new retrieval framework of external mixing of the dust and non-dust aerosol to predict the lidar ratio of the external mixing aerosols and to separate the contributions of non-spherical aerosols by using different depolarization ratios among dust, sea salt, smoke, and polluted aerosols. The detailed sensitivity tests and case study with the new method showed that reliable dust information could be retrieved even without prior information about the non-dust aerosol types. This new method is suitable for global dust retrievals with satellite observations, which is critical for better understanding global dust transportation and for model improvements. PMID:26072778

  3. Multi-wavelength Airborne High Spectral Resolution Lidar Observations of Aerosol Above Clouds in California during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Hostetler, C. A.; Burton, S. P.; Ferrare, R. A.; Rogers, R. R.; Mueller, D.; Chemyakin, E.; Cook, A. L.; Harper, D. B.; Ziemba, L. D.; Beyersdorf, A. J.; Anderson, B. E.

    2013-12-01

    Accurately representing the vertical profile of aerosols is important for determining their radiative impact, which is still one of the biggest uncertainties in climate forcing. Aerosol radiative forcing can be either positive or negative depending on aerosol absorption properties and underlying albedo. Therefore, accurately characterizing the vertical distribution of aerosols, and specifically aerosols above clouds, is vital to understanding climate change. Unlike passive sensors, airborne lidar has the capability to make vertically resolved aerosol measurements of aerosols above and between clouds. Recently, NASA Langley Research Center has built and deployed the world's first airborne multi-wavelength High Spectral Resolution Lidar, HSRL-2. The HSRL-2 instrument employs the HSRL technique to measure extinction at both 355 nm and 532 nm and also measures aerosol depolarization and backscatter at 355 nm, 532 nm and 1064 nm. Additional HSRL-2 data products include aerosol type and range-resolved aerosol microphysical parameters (e.g., effective radius, number concentration, and single scattering albedo). HSRL-2 was deployed in the San Joaquin Valley, California, from January 16 to February 6, 2013, on the DISCOVER-AQ field campaign (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality). On February 6, the observation region was mostly cloudy, and HSRL-2 saw two distinct aerosol layers above the clouds. One layer was aged boundary-layer pollution located just above cloud top at approximately 1.5 km above sea level. An aged smoke layer was also observed over land and over the ocean at altitudes 4-7 km ASL. In this study, we will show HSRL-2 products for these cases, and compare them with airborne in situ measurements of the 1.5-km layer from a coincident flight of the NASA P3B. We will also compare and contrast the HSRL-2 measurements of these two aerosol layers with each other and the clear-air boundary

  4. A Preliminary Study of CO2 Flux Measurements by Lidar

    NASA Technical Reports Server (NTRS)

    Gibert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, T.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2008-01-01

    A mechanistic understanding of the global carbon cycle requires quantification of terrestrial ecosystem CO2 fluxes at regional scales. In this paper, we analyze the potential of a Doppler DIAL system to make flux measurements of atmospheric CO2 using the eddy-covariance and boundary layer budget methods and present results from a ground based experiment. The goal of this study is to put CO2 flux point measurements in a mesoscale context. In June 2007, a field experiment combining a 2-m Doppler Heterodyne Differential Absorption Lidar (HDIAL) and in-situ sensors of a 447-m tall tower (WLEF) took place in Wisconsin. The HDIAL measures simultaneously: 1) CO2 mixing ratio, 2) atmosphere structure via aerosol backscatter and 3) radial velocity. We demonstrate how to synthesize these data into regional flux estimates. Lidar-inferred fluxes are compared with eddy-covariance fluxes obtained in-situ at 396m AGL from the tower. In cases where the lidar was not yet able to measure the fluxes with acceptable precision, we discuss possible modifications to improve system performance.

  5. Lidar measurement as support to the ocular hazard distance calculation using atmospheric attenuation

    NASA Astrophysics Data System (ADS)

    Gustafsson, K. Ove S.; Persson, Rolf; Gustafsson, Frank; Berglund, Folke; Malmquist, Jonas

    2015-10-01

    The reduction of the laser hazard distance range using atmospheric attenuation has been tested with series of lidar measurements accomplished at the Vidsel Test Range, Vidsel, Sweden. The objective was to find situations with low level of aerosol backscatter during this campaign, with the implications of low extinction coefficient, since the lowest atmospheric attenuation gives the highest ocular hazards. The work included building a ground based backscatter lidar, performing a series of measurements and analyzing the results. The measurements were performed during the period June to November, 2014. The results of lidar measurements showed at several occasions' very low atmospheric attenuation as a function of height to an altitude of at least 10 km. The lowest limit of aerosol backscatter coefficient possible to measure with this instrument is less than 0.3•10-7 m-1 sr-1. Assuming an aerosol lidar ratio between 30 - 100 sr this leads to an aerosol extinction coefficient of about 0.9 - 3•10-6 m-1. Using a designator laser as an example with wavelength 1064 nm, power 0.180 W, pulse length 15 ns, PRF 11.5 Hz, exposure time of 10 sec and beam divergence of 0.08 mrad, it will have a NOHD of 48 km. With the measured aerosol attenuation and by assuming a molecule extinction coefficient to be 5•10-6 m-1 (calculated using MODTRAN (Ontar Corp.) assuming no aerosol) the laser hazard distance will be reduced with 51 - 58 %, depending on the lidar ratio assumption. The conclusion from the work is; reducing of the laser hazard distance using atmospheric attenuation within the NOHD calculations is possible but should be combined with measurements of the attenuation.

  6. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  7. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    PubMed

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  8. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  9. Combining data from lidar and in situ instruments to characterize the vertical structure of aerosol optical properties

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Browell, E. V.; Grant, W. B.

    1998-01-01

    Over the last decade, the quantification of tropospheric aerosol abundance, composition and radiative impacts has become an important research endeavor. For the most part, the interest in tropospheric aerosols is derived from questions related to the global and local (instantaneous) radiative forcing of climate due to these aerosols. One approach is to study local forcing under well-defined conditions, and to extrapolate such results to global scales. To estimate local aerosol forcing, appropriate radiative transfer models can be employed (e.g., the Fu-Liou radiative transfer code, [Fu and Liou, 1993]). In general, such models require information on derived aerosol properties [Toon, 1994]; namely the aerosol optical depth, single-scattering albedo, and asymmetry factor (phase function), all of which appear in the equations of radiative transfer. In this paper, we report on a method that utilizes lidar data and in situ aerosol size distribution measurements to deduce the vertical structure of the aerosol complex index of refraction in the near IR, thus identifying the aerosol type. Together with aerosol size distributions obtained in situ, the aerosol refractive index can be used to calculate the necessary derived aerosol properties. The data analyzed here were collected during NASA's PEM West-B (Pacific Exploratory Mission) experiment, which took place in February/March 1994. The platform for the measurements was the NASA DC-8 aircraft. The primary goal of the PEM West missions [Browell et al., 1996] was the assessment of potential anthropogenic perturbations of the chemistry in the Pacific Basin troposphere. For this purpose the timing of PEM West-B corresponded to the seasonal peak in transport from the Asian continent into the Pacific basin [Merrill et al., in press]. This period normally occurs during Northern Hemisphere spring, when the Japan jet is well developed.

  10. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  11. Adaptation of the University of Wisconsin High Spectral Resolution Lidar for Polarization and Multiple Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P. K.

    1996-01-01

    Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.

  12. Application of modified Twomey techniques to invert lidar angular scatter and solar extinction data for determining aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Herman, B. M.

    1977-01-01

    Polarization properties of the angularly scattered laser light from a volume of air are used to determine the size distribution of the aerosol particles within the volume by the use of appropriate inversion techniques. Similar techniques are employed to determine a mean size distribution of the particulates within a vertical column through the atmosphere from determinations of the aerosol optical depth as a function of wavelength. In both of these examples, a modification of an inversion technique originally described by Twomey has been employed. Details of this method are presented as well as results from actual measurements employing bistatic lidar and solar radiometer.

  13. Evolution of the Pinatubo volcanic aerosol column above Pasadena, California observed with a mid-infrared backscatter lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.

    1995-01-01

    The evolution of the volcanic debris plume originating from the June 1991 eruption of Mt. Pinatubo has been monitored since its genesis using a ground-based backscatter lidar facility sited at the Jet Propulsion Laboratory (JPL). Both absolute and relative pre- and post-Pinatubo backscatter observations are in accord with Mie scattering projections based on measured aerosol particle size distributions reported in the literature. The post-Pinatubo column-integrated backscatter coefficient peaked approximately 400 days after the eruption, and the observed upper boundary of the aerosol column subsided at a rate of approximately 200 m/mon.

  14. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  15. High Spectral Resolution Lidar Measurements of Extinction and Particle Size in Clouds

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piirronen, P.

    1996-01-01

    The University of Wisconsin High Spectral Resolution Lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler broadened molecular backscatter return from the unbroadened aerosol return. In the past, the HSRL employed a 150 mm diameter Fabry-Perot etalon to separate the aerosol and molecular signals. The replacement of the etalon with an I2 absorption filter significantly improved the ability of the HSRL to separate weak molecular signals inside dense clouds.

  16. Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere.

    PubMed

    Witschas, Benjamin; Lemmerz, Christian; Reitebuch, Oliver

    2012-09-01

    Several atmospheric lidar techniques rely on the exact knowledge of the spectral line shape of molecular scattered light in air, which, however, has not been accurately measured in real atmosphere up to now. In this paper we report on the investigation of spontaneous Rayleigh-Brillouin scattering within the atmosphere, utilizing horizontal lidar measurements (λ=355 nm, θ=180°) performed from the mountain observatory Schneefernerhaus (2650 m), located below Germany's highest mountain, the Zugspitze. These lidar measurements give proof of the effect of Brillouin scattering within the atmosphere for the first time to our knowledge. The measurements confirm that the Tenti S6 model can be used to adequately describe spontaneous Rayleigh-Brillouin spectra of light scattered in air under real atmospheric conditions. The presented results are of relevance for spectrally resolving lidars like those deployed on the Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) andthe Earth Clouds, Aerosols, and Radiation Explorer Mission (EarthCARE).

  17. AGLITE Lidar: Calibration and Retrievals of Well Characterized Aerosols from Agricultural Operations using a Three-wavelength Elastic Lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (Light Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system developed at the Space Dynamic Laboratory (SDL) to measure the spa...

  18. Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system built at the Space Dynamic Laboratory (SDL) to measure the spatial...

  19. A New Raman DIAL Technique for Measuring Stratospheric Ozone in the Presence of Volcanic Aerosols

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Mcgee, Thomas J.; Gross, Michael; Heaps, William S.; Ferrare, Richard

    1992-01-01

    This paper describes a new lidar scheme to measure stratospheric ozone in the presence of heavy volcanic aerosol loading. The eruptions of the Philippine volcano Pinatubo during June 1991 ejected large amounts of sulfur dioxide into the atmosphere to altitudes of at least 30 km. The resulting aerosols have severely affected the measurements of stratospheric ozone when using traditional Rayleigh differential absorption lidar (DIAL) technique, in which the scattering mechanism is almost entirely Rayleigh and which assumes a small amount or no aerosols. In order to extract an ozone profile in the regions below about 30 km where the Rayleigh lidar returns are contaminated by aerosol scattering from Mt. Pinatubo cloud, we have used a Raman lidar technique, where the scattering mechanism depends solely on molecular nitrogen. In this scheme there is no aerosol scattering component to the backscattered lidar return. Using this technique in conjunction with the Rayleigh DIAL measurement, the GSFC stratospheric ozone lidar has measured ozone profiles between 15 and 50 km during the recently held UARS correlative measurement campaign (February-March 1992) at JPL's Table Mountain Facility in California.

  20. Two years of free-tropospheric aerosol layers observed over Portugal by lidar

    NASA Astrophysics Data System (ADS)

    PreißLer, J.; Wagner, F.; Guerrero-Rascado, J. L.; Silva, A. M.

    2013-05-01

    Multi-wavelength Raman light detection and ranging (lidar) observations were analyzed, which were performed in Évora, Portugal, during more than 2 years on a regular basis in the framework of the European Aerosol Research Lidar Network (EARLINET). An aerosol characterization in terms of the lidar ratios at 355 and 532 nm and the extinction and backscatter related Ångström exponents is presented. Aerosol layers in the free troposphere were classified according to their origin. Clear differences in the intensive optical properties were found for layers of mineral dust from the Sahara and from Asia, of anthropogenic aerosol from Europe and from North America, as well as of biomass burning smoke from the Iberian Peninsula and from North America, respectively. In general, the mean Ångström exponents of aerosol layers of the same type, but from closer source regions, were smaller than those from aerosol layers transported over a longer distance. This hints at the deposition of large particles along the transportation path, especially for anthropogenic aerosol and mineral dust. Besides, the seasonal behavior of aerosol in the free troposphere over Évora was studied. Seventy-three percent of the detected layers were observed during spring and summer. On average, the layers were highest in summer with an overall mean layer height of (3.8 ±1.9) km above sea level (asl), and lowest in winter with (2.3 ±0.9) km asl.

  1. The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Ma, Xin; Dong, Yanni; Lin, Hong; Li, Jun

    2014-03-01

    CO2 is a major component of greenhouse gases. When CO2 concentration is measured by satellites, calibration of the lower atmosphere becomes an essential procedure. Since the 1572 nm infrared region is widely used in remote sensing of CO2, we constructed a Mie LiDAR system, designed to work at 1572 nm, for measuring the optical properties of aerosols in the lower troposphere. Based on the particle size distribution measured by the heliograph, the LiDAR ratio is independently determined for Wuhan, China. The LiDAR echo signal is then processed by the Fernald method to calculate the extinction coefficient on both clear and cloudy days. The maximum detection height is restricted by the low laser energy and quantum efficiency of the Photomultiplier Tube (PMT) used. Moreover, a simplified method for detecting the position of clouds is presented and this method is verified using a variety of passive radiation instruments that offer partial support for calibrating and verifying LiDAR data. The observed results indicate that this LiDAR system could be a reliable source of data support for the spaceborne remote sensing of CO2.

  2. Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements.

    PubMed

    Pal, S R; Bissonnette, L R

    1998-09-20

    Single-scattering and multiple-scattering lidar signals are calculated for a spaceborne differential absorption lidar system for global ozone measurements at the on and off wavelength pair at 305 and 315 nm. The effect of multiple scattering is found to be negligible on stratospheric and tropospheric ozone retrieval under background stratospheric aerosol. Under low-visibility conditions in the planetary boundary layer the presence of multiple scattering causes an overestimation in maritime aerosol and an underestimation in urban as well as in rural aerosol. This effect is also examined in three cirrus models. The multiple scattering does not permit accurate ozone retrieval within cirrus; however, below it the solution recovers somewhat with generally an underestimation depending on the type and density of cirrus. The effect of aerosol and Rayleigh extinction on the ozone retrieval is also discussed.

  3. High Spectral Resolution Lidar (HSRL)-2 Observations of Aerosol Variability and Mixing during Boundary Layer Evolution in Houston

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Scarino, A. J.; Rogers, R. R.; Hostetler, C. A.; Ferrare, R. A.; Sawamura, P.; Berkoff, T.; Harper, D. B.; Cook, A. L.; Saide, P. E.

    2014-12-01

    The NASA Langley airborne multi-wavelength High Spectral Resolution Lidar (HSRL-2) provides the vertical distribution of aerosol optical properties as "curtains" of aerosol extinction, backscatter and depolarization along the flight track, plus intensive properties that are used to infer aerosol type and external mixing of types. Deployed aboard the NASA Langley King Air on the DISCOVER-AQ field mission in Houston in September 2013, HSRL-2 flew a pattern that included 18 ground sites, repeated four times a day, coordinated with a suite of airborne in situ measurements. The horizontally and vertically resolved curtains of HSRL-2 measurements give an unparalleled view of the spatial and temporal variability of aerosol, which provide broad context for interpreting other measurements and models. In Houston, HSRL-2 generally observed significant variability with distinct layering: boundary layer, residual layer, and frequent upper layers of smoke transported from the Mississippi Valley. The period from Sep. 11-14 is notable for a large aerosol build-up and persistent layers in the free troposphere. We investigate the aerosol properties and evolution using the vertically resolved HSRL-2 measurements, typing and mixture analysis techniques, and boundary layer detection. Between morning and afternoon overpasses, as the boundary layer grows, many distinctions between the layers are lost as the aerosols become mixed. As the boundary layer collapses overnight, the aerosols are cut off and are observed in a distinct residual layer the following morning. HSRL-2 measurements of the upper smoke layers suggest slightly different properties each day as new smoke enters the region, while the morning boundary layer indicates more similarity in local emissions day-to-day. HSRL-2 intensive variables (indicators of aerosol type) reflect complex yet predictable mixing. We will present the analysis of aerosol mixtures, and explore the WRF-Chem chemical transport model along the HSRL-2

  4. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation

    NASA Astrophysics Data System (ADS)

    Guerrero-Rascado, Juan Luis; Landulfo, Eduardo; Antuña, Juan Carlos; de Melo Jorge Barbosa, Henrique; Barja, Boris; Bastidas, Álvaro Efrain; Bedoya, Andrés Esteban; da Costa, Renata Facundes; Estevan, René; Forno, Ricardo; Gouveia, Diego Alvés; Jiménez, Cristofer; Larroza, Eliane Gonçalves; da Silva Lopes, Fábio Juliano; Montilla-Rosero, Elena; Arruda Moreira, Gregori de; Nakaema, Walker Morinobu; Nisperuza, Daniel; Alegria, Dairo; Múnera, Mauricio; Otero, Lidia; Papandrea, Sebastián; Pallota, Juan Vicente; Pawelko, Ezequiel; Quel, Eduardo Jaime; Ristori, Pablo; Rodrigues, Patricia Ferrini; Salvador, Jacobo; Sánchez, Maria Fernanda; Silva, Antonieta

    2016-02-01

    LALINET (Latin American Lidar Network), previously known as ALINE, is the first fully operative lidar network for aerosol research in South America, probing the atmosphere on regular basis since September 2013. The general purpose of this network is to attempt to fill the gap in the knowledge on aerosol vertical distribution over South America and its direct and indirect impact on weather and climate by the establishment of a vertically-resolved dataset of aerosol properties. Similarly to other lidar research networks, most of the LALINET instruments are not commercially produced and, consequently, configurations, capabilities and derived-products can be remarkably different among stations. It is a fact that such un-biased 4D dataset calls for a strict standardization from the instrumental and data processing point of view. This study has been envisaged to investigate the ongoing network configurations with the aim of highlighting the instrumental strengths and weaknesses of LALINET.

  5. Microphysical aerosol parameters of spheroidal particles via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine

    2015-04-01

    One of the main topics in understanding the aerosol impact on climate requires the investigation of the spatial and temporal variability of microphysical properties of particles, e.g., the complex refractive index, the effective radius, the volume and surface-area concentration, and the single-scattering albedo. Remote sensing is a technique used to monitor aerosols in global coverage and fill in the observational gap. This research topic involves using multi-wavelength Raman lidar systems to extract the microphysical properties of aerosol particles, along with depolarization signals to account for the non-sphericity of the latter. Given, the optical parameters (measured by a lidar), the kernel functions, which summarize the size, shape and composition of particles, we solve for the size distribution of the particles modeled by a Fredholm integral system and further calculate the refractive index. This model works well for spherical particles (e.g. smoke); the kernel functions are derived from relatively simplified formulas (Mie scattering theory) and research has led to successful retrievals for particles which at least resemble a spherical geometry (small depolarization ratio). Obviously, more complicated atmospheric structures (e.g dust) require employment of non-spherical kernels and/or more complicated models which are investigated in this paper. The new model is now a two-dimensional one including the aspect ratio of spheroidal particles. The spheroidal kernel functions are able to be calculated via T-Matrix; a technique used for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped particles. In order to speed up the process and massively perform simulation tests, we created a software interface using different regularization methods and parameter choice rules. The following methods have been used: Truncated singular value decomposition and Pade iteration with the discrepancy principle, and Tikhonov regularization with the L

  6. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  7. In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

    2014-05-01

    We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are

  8. Temporal consistency of lidar observations during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Totems, Julien; Ancellet, Gérard; Pelon, Jacques; Sicard, Michaël

    2016-03-01

    We performed synergetic daytime and nighttime active and passive remote-sensing observations at Minorca (Balearic Islands, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ˜ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote-sensing measurements, coupled with satellite observations, allowed the documentation of (i) dust particles up to 5 km (above sea level) in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid-troposphere. For the field campaign period, we also show linearity with SEVIRI retrievals of the aerosol optical thickness despite 35 % relative bias, which is discussed as a function of aerosol type.

  9. Temporal consistency of lidar observables during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Menorca Island in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Totems, J.; Ancellet, G.; Pelon, J.; Sicard, M.

    2015-11-01

    We performed synergetic daytime and night-time active and passive remote sensing observations at Menorca (Balearic Island, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ∼ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote sensing measurements, coupled with satellite observations, allowed to document (i) dust particles up to 5 km a.s.l. in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid troposphere. We show also linearity with SEVIRI retrievals of the aerosol optical thickness within 35 % relative bias, which is discussed as a function of aerosol type.

  10. Nd:YAG and ruby based lidar systems for remote sensing of atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Fuller, W. H., Jr.

    1985-01-01

    The application of solid-state lasers to the study of stratospheric and tropospheric aerosols is analyzed. A 48-inch mobile lidar which operates in the 0.6943, 1.06, 0.3472, and 0.5300 micron ranges is utilized to monitor the stratosphere. The detectors of the system consist of photomultipliers, and the dual-channel, computer-based data-acquisition-system which provides on-line plotting of scattering ratio profiles. The components of the 14-inch aperture, dual-wavelength airborne lidar system that operates with ruby and Nd:YAG transmitters are described. An 8-inch, down-looking airborne lidar with silicon diode or photomultiplier detectors was developed. The capabilities of the system alone and when combined with the 14-inch lidar are discussed. Examples of the data provided by the three lidar systems are presented, revealing the reliability and operational efficiency of the systems.

  11. High-resolution measurements of humidity and temperature with lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  12. Lidar measurements of solid rocket propellant fire particle plumes.

    PubMed

    Brown, David M; Brown, Andrea M; Willitsford, Adam H; Dinello-Fass, Ryan; Airola, Marc B; Siegrist, Karen M; Thomas, Michael E; Chang, Yale

    2016-06-10

    This paper presents the first, to our knowledge, direct measurement of aerosol produced by an aluminized solid rocket propellant (SRP) fire on the ground. Such fires produce aluminum oxide particles small enough to loft high into the atmosphere and disperse over a wide area. These results can be applied to spacecraft launchpad accidents that expose spacecraft to such fires; during these fires, there is concern that some of the plutonium from the spacecraft power system will be carried with the aerosols. Accident-related lofting of this material would be the net result of many contributing processes that are currently being evaluated. To resolve the complexity of fire processes, a self-consistent model of the ground-level and upper-level parts of the plume was determined by merging ground-level optical measurements of the fire with lidar measurements of the aerosol plume at height during a series of SRP fire tests that simulated propellant fire accident scenarios. On the basis of the measurements and model results, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) team was able to estimate the amount of aluminum oxide (alumina) lofted into the atmosphere above the fire. The quantification of this ratio is critical for a complete understanding of accident scenarios, because contaminants are transported through the plume. This paper provides an estimate for the mass of alumina lofted into the air. PMID:27409023

  13. Lidar measurements of solid rocket propellant fire particle plumes.

    PubMed

    Brown, David M; Brown, Andrea M; Willitsford, Adam H; Dinello-Fass, Ryan; Airola, Marc B; Siegrist, Karen M; Thomas, Michael E; Chang, Yale

    2016-06-10

    This paper presents the first, to our knowledge, direct measurement of aerosol produced by an aluminized solid rocket propellant (SRP) fire on the ground. Such fires produce aluminum oxide particles small enough to loft high into the atmosphere and disperse over a wide area. These results can be applied to spacecraft launchpad accidents that expose spacecraft to such fires; during these fires, there is concern that some of the plutonium from the spacecraft power system will be carried with the aerosols. Accident-related lofting of this material would be the net result of many contributing processes that are currently being evaluated. To resolve the complexity of fire processes, a self-consistent model of the ground-level and upper-level parts of the plume was determined by merging ground-level optical measurements of the fire with lidar measurements of the aerosol plume at height during a series of SRP fire tests that simulated propellant fire accident scenarios. On the basis of the measurements and model results, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) team was able to estimate the amount of aluminum oxide (alumina) lofted into the atmosphere above the fire. The quantification of this ratio is critical for a complete understanding of accident scenarios, because contaminants are transported through the plume. This paper provides an estimate for the mass of alumina lofted into the air.

  14. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  15. Measuring Oscillating Walking Paths with a LIDAR

    PubMed Central

    Teixidó, Mercè; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2011-01-01

    This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR) laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk. PMID:22163891

  16. Measuring oscillating walking paths with a LIDAR.

    PubMed

    Teixidó, Mercè; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2011-01-01

    This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR) laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk. PMID:22163891

  17. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  18. Lidar measurement campaign at CNR-IMAA in the framework of the EAQUATE Italian phase

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; Boselli, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.; Cuomo, V.

    2005-10-01

    The European AQUA Thermodynamic Experiment was devoted to study atmosphere, ocean and land with high resolution measurements. It consisted of two phases: the first one took place in Italy in the 6-10 September period and the second one in England on 13-22 September. In the framework of the EAQUATE Italian phase, an intensive lidar measurement campaign was performed at CNR-IMAA, sited in Tito Scalo (40°36'N 15°44'E, 760 m a.s.l.). Independent measurements of aerosol extinction and backscatter coefficient at 355nm, and aerosol backscatter coefficient at 532 nm were obtained by means of an elastic\\Raman lidar. Another Raman lidar allowed the vertical profiling of the water vapour mixing ratio. Both the lidar systems have high vertical and temporal resolution (15 m - 1 minute), allowing a characterization of the Planetary Boundary Layer as well as of the Free Troposphere also in terms of dynamical behaviour. Ancillary instruments were utilized contemporaneously with lidar measurements. In particular 17 Vaisala radiosondes for PTU measurements were launched during the campaign, 10 of these equipped with RS90 sensors, while 7 utilized RS92 sondes equipped with GSP sensors for wind velocity and direction measurement. Furthermore a 12 channels microwave radiometer providing all around the clock measurements of temperature, relative humidity and water vapour content, was used during the campaign together with a ceilometer for continuous indication of the cloud cover.

  19. A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1991-01-01

    An aerosol size distribution model for the stratosphere is inferred based on 5 years of Stratospheric Aerosol and Gas Experiment (SAGE) II measurements of multispectral aerosol and water vapor extinction. The SAGE II aerosol and water vapor extinction data strongly suggest that there is a critical particle radius below which there is a relatively weak dependence of particle number density with size and above which there are few, if any, particles. A segmented power law model, as a simple representation of this dependence, is used in theoretical calculations and intercomparisons with a variety of aerosol measurements including dustsondes, longwave lidar, and wire impactors and shows a consistently good agreement.

  20. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  1. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  2. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  3. Comparison of aerosol extinction profiles from lidar and SAGE II data at a tropical station

    NASA Technical Reports Server (NTRS)

    Parameswaran, K.; Rose, K. O.; Murthy, B. V. K.; Osborn, M. T.; Mcmaster, L. R.

    1991-01-01

    Aerosol extinction profiles obtained from lidar data at Trivandrum (8.6 deg N, 77 deg E) are compared with corresponding Stratospheric Aerosol and Gas Experiment II extinction profiles. The agreement between the two is found to be satisfactory. The extinction profiles obtained by both the experiments showed a prominent peak at 23-24 km altitude in the stratosphere. The study revealed large variability in upper tropospheric extinction with location (latitude).

  4. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  5. Mixing-height measurement by lidar, particle counter, and rawinsonde in the Williamette Valley, Oregon

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Melfi, S. H.; Olsson, L. E.; Tuft, W. L.; Elliott, W. P.; Egami, R.

    1972-01-01

    The feasibility of using laser radar (lidar) to measure the spatial distribution of aerosols and water vapor in the earth's mixing or boundary layer is shown. From these data the important parameter of actual mixing height was determined, that is, the maximum height to which particulate pollutants actually mix. Data are shown for simultaneous lidar, rawinsonde, and aircraft-mounted condensation nuclei counter and temperature measurements. The synoptic meteorology is also presented. The Williamette Valley, Oregon, was chosen for the measurements because of its unique combination of meteorology, terrain, and pollutant source, along with an ongoing Oregon State University study of the natural ventilation of this valley.

  6. Evaluation of cloudless-sky periods detected by shortwave and longwave algorithms using lidar measurements

    SciTech Connect

    Dupont, Jean-Charles; Haeffelin, M.; Long, Charles N.

    2008-05-30

    Identifying cloud-free period is an important task as they are common references in cloud and aerosol radiative forcing studies. Their identification requires precise methods to distinguish condensed water from other aerosols (eg mineral or moist hydrophyle aerosols). In this study we combine analyses of wide field of view shortwave and longwave irradiances and lidar backscatter measurements to explore situations that are considered neither completely clear nor cloudy. We find that cloud-free periods detected by analysis of the broadband measurements are also identified as cloud free by the lidar in more than 60% of situations. Residual occurrences are composed of 90% high-altitude cirrus clouds, partitioned equally between subvisible and semi-transparent optical thickness classes.

  7. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc

    2016-04-01

    Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow

  8. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  9. Intercomparison of Remote and Flight Level Measured Aerosol Backscatter Coefficient During GLOBE 2 Pacific Survey Mission

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhime, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.

  10. Limits to the information gain from lidar measurements.

    PubMed

    Belmonte, Aniceto

    2015-04-15

    Measurements over the return signal are an integral part of lidar remote sensing by which we gather information about the characteristics of specific targets. But how much information is gained by performing a given lidar measurement? By defining Shannon's mutual information of a lidar observation, here we consider the bits of information content on the measurement and describe mathematically the capacity of lidar estimates to represent a corresponding property in the target. For heterodyne Doppler lidars in particular, we have found simple analytical formulas that consider the information gain in mean-frequency estimates.

  11. An assessment of a software simulation tool for lidar atmosphere and ocean measurements

    NASA Astrophysics Data System (ADS)

    Powell, K. A.; Vaughan, M.; Burton, S. P.; Hair, J. W.; Hostetler, C. A.; Kowch, R. S.

    2014-12-01

    A high-fidelity lidar simulation tool is used to generate synthetic lidar backscatter data that closely matches the expected performance of various lidars, including the noise characteristics inherent to analog detection and uncertainties related to the measurement environment. This tool supports performance trade studies and scientific investigations for both the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which flies aboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL). CALIOP measures profiles of attenuated backscatter coefficients (532 and 1064 nm) and volume depolarization ratios at 532 nm. HSRL measures the same profiles plus volume depolarization at 1064 nm and a molecular-only profile which allows for the direct retrieval of aerosol extinction and backscatter profiles at 532 nm. The simulation tool models both the fundamental physics of the lidar instruments and the signals generated from aerosols, clouds, and the ocean surface and subsurface. This work presents the results of a study conducted to verify the accuracy of the simulated data using data from both HSRL and CALIOP. The tool was tuned to CALIOP instrument settings and the model atmosphere was defined using profiles of attenuated backscatter and depolarization obtained by HSRL during underflights of CALIPSO. The validated HSRL data provide highly accurate measurements of the particulate intensive and extensive optical properties and thus were considered as the truth atmosphere. The resulting simulated data were processed through the CALIPSO data analysis system. Comparisons showed good agreement between the simulated and CALIOP data. This verifies the accuracy of the tool to support studies involving the characterization of instrument components and advanced data analysis techniques. The capability of the tool to simulate ocean surface scattering and subsurface

  12. Satellite measurements of tropospheric aerosols

    NASA Technical Reports Server (NTRS)

    Griggs, M.

    1981-01-01

    This investigation uses LANDSAT 2 radiance data and ground-truth measurements of the aerosol optical thickness, obtained previously from five inland sites, to study the usefulness and limitations of the near infrared radiance over inland bodies of water. The linear relationship between LANDSAT 2 MSS7 and aerosol content found in this study can be used to estimate the aerosol content with a standard deviation of 0.42N. Analysis of the data for MSS6 and MSS7 suggest that the larger uncertainty is mostly due to water turbidity, with little contribution from the adjacency effect. The relationship found is best applied to determine an average aerosol content over a period of time at a given target, or an area average at a given time over several targets close together.

  13. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  14. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  15. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  16. Saharan and Arabian Dust Aerosols: A Comparative Case Study of Lidar Ratio

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Sabbah, Ismail; Sorribas, Mar; Adame, José Antonio; Cuevas, Emilio; Sharifi, Faisal Al; Gil-Ojeda, Manuel

    2016-06-01

    This work presents a first comparative study of the Lidar Ratio (LR) values obtained for dust particles in two singular dust-influenced regions: the Canary Islands (Spain, close to the African coast in the North Atlantic Ocean), frequently affected by Saharan dust intrusions, and the Kuwait area (Arabian Peninsula) as usually influenced by Arabian dust storms. Synergetic lidar and sun-photometry measurements are carried out in two stations located in these particular regions for that purpose. Several dusty cases were observed during 2014 in both stations and, just for illustration, two specific dusty case studies have been selected and analyzed to be shown in this work. In general, mean LR values of 54 sr and 40 sr were obtained in these studies cases for Saharan and Arabian dust particles, respectively. Indeed, these results are in agreement with other studies performed for dust particles arriving from similar desert areas. In particular, the disparity found in Saharan and Arabian dust LR values can be based on the singular composition of the suspended dust aerosols over each station. These results can be useful for CALIPSO extinction retrievals, where a single LR value (40 sr) is assumed for pure dust particles independently on the dust source region.

  17. Lidar observations of stratospheric aerosol over Mauna Loa Observatory, 1974 - 1981

    NASA Astrophysics Data System (ADS)

    Deluisi, J.; Defoor, T.; Coulson, K.; Fernald, F.; Thorne, K.

    1984-08-01

    One hundred seventy-three lidar profiles obtained during the year 1974 to 1981, inclusively are presented. Backscattering ratios are displayed in graphical form for 1-km intervals. Aerosol backscattering cross section, Rayleigh backscattering cross section, backscattering ratio and integrated optical depth are tabulated, also for 1-km intervals. The data reduction computer program is included.

  18. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Nepomuceno Pereira, Sérgio; Bortoli, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A. F.; Prakesh Sharma, Ved; Gideon van Zyl, Pieter; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix

    2016-04-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  19. Transmittance ratio constrained retrieval technique for lidar cirrus measurements.

    PubMed

    Su, Jia; McCormick, M Patrick; Liu, Zhaoyan; Lee, Robert B; Leavor, Kevin R; Lei, Liqiao

    2012-05-01

    This letter describes a lidar retrieval technique that uses the transmittance ratio as a constraint to determine an average lidar ratio as well as extinction and backscatter coefficients of transparent cirrus clouds. The cloud transmittance ratio is directly obtained from two adjacent elastic lidar backscatter signals. The technique can be applied to cirrus measurements where neither the molecular scattering dominant signals above and below the cloud layer are found nor cloudfree reference profiles are available. The technique has been tested with simulated lidar signals and applied to backscatter lidar measurements at Hampton University, Hampton, Virginia.

  20. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-01

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research. PMID:27607724

  1. New capabilities for space-based cloud and aerosols measurements: The Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.

    2013-12-01

    Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite

  2. Dust aerosol optical properties using ground-based and airborne lidar in the framework of FENNEC

    NASA Astrophysics Data System (ADS)

    Marnas, Fabien; Chazette, Patrick; Flamant, Cyrille; Royer, Philippe; Boytard, Mai-Lan; Genau, Pascal; Doira, Pascal; Bruneau, Didier; Pelon, Jacques; Sanak, Joseph

    2013-04-01

    The FENNEC program aims to improve our knowledge of both the role of the Saharan Heat Low (SHL) on the West African monsoon and the interactions between the African continent and the Mediterranean basin through the Saharan dust transport. The Saharan desert is the major source of mineral dust in the world and may significantly impact the air quality over the Western Europe by increasing the particular matter content. Two lidar systems were operated by the French component of the FENNEC project: an airborne lidar which was flown aboard the French Falcon 20 research aircraft and a ground-based lidar which was located in the southeastern part of Spain, close to Marbella. The presence of dust in the Saharan atmospheric boundary layer has been easily highlighted using the lidars and confirmed by ground-based sunphotometer and observations from both MODIS and SEVIRI spaceborne instruments. The simultaneous use of the sunphotometer-derived Angstrom exponent and the lidar-derived backscatter to extinction ratio is appeared to be a good approach to separate the optical contribution of dust from local aerosols for the coastal site. Over Spain, the dust layer was mainly located above the planetary boundary layer with several kilometers thick. Over the tropical Atlantic Ocean and the Mauritania the airborne lidar shows a high planetary boundary layer (~5 km above the mean sea level) associated to strong aerosol optical thickness (> 0.8 at 532 nm). The airborne lidar data have been inverted using both MODIS and SEVIRI-derived aerosol optical thickness. The differences between dust optical properties close to and remote from the sources will be discussed.

  3. Photon-counting lidar for aerosol detection and 3D imaging

    NASA Astrophysics Data System (ADS)

    Marino, Richard M.; Richardson, Jonathan; Garnier, Robert; Ireland, David; Bickmeier, Laura; Siracusa, Christina; Quinn, Patrick

    2009-05-01

    Laser-based remote sensing is undergoing a remarkable advance due to novel technologies developed at MIT Lincoln Laboratory. We have conducted recent experiments that have demonstrated the utility of detecting and imaging low-density aerosol clouds. The Mobile Active Imaging LIDAR (MAIL) system uses a Lincoln Laboratory-developed microchip laser to transmit short pulses at 14-16 kHz Pulse Repetition Frequency (PRF), and a Lincoln Laboratory-developed 32x32 Geiger-mode Avalanche-Photodiode Detector (GmAPD) array for singlephoton counting and ranging. The microchip laser is a frequency-doubled passively Q-Switched Nd:YAG laser providing an average transmitted power of less than 64 milli-Watts. When the avalanche photo-diodes are operated in the Geiger-mode, they are reverse-biased above the breakdown voltage for a time that corresponds to the effective range-gate or range-window of interest. The time-of-flight, and therefore range, is determined from the measured laser transmit time and the digital time value from each pixel. The optical intensity of the received pulse is not measured because the GmAPD is saturated by the electron avalanche. Instead, the reflectivity of the scene, or relative density of aerosols in this case, is determined from the temporally and/or spatially analyzed detection statistics.

  4. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  5. [Raman Lidar measuring tropospheric temperature profiles with many rotational Raman lines].

    PubMed

    Su, Jia; Zhang, Yin-chao; Hu, Shun-xing; Cao, Kai-fa; Zhao, Pei-tao; Wang, Shao-lin; Xie, Jun

    2008-08-01

    Due to lower tropospheric aerosols, the Rayleigh and vibrational Raman methods can't measure lower tropospheric temperature profiles accurately. By using N2 and O2 molecular pure rotational Raman scattering signals, lower tropospheric temperature profiles can be gained without influence of lower tropospheric aerosols. So we decide to use a pure rotational Raman Lidar to get lower tropospheric temperature profiles. At present, because the most light-splitting systems of pure rotational Raman Lidar measure temperature by gaining a single rotational Raman line, the signal to noise ratio (SNR) of these Lidar systems are very low. So we design a new kind of Lidar light-splitting system which can sum different rotational Raman lines and it can improve SNR And we can find the sensitivity of the temperature of the ratios of multi rotational Raman lines is as same as single rotational Raman line's through theoretical analysis. Moreover, we can obtain the temperature profiles with good SNR fromthis new the system with a normal laser and a small telescope up to several kilometers. At last, with the new light-splitting system, the lower tropospheric temperature profiles are measured from 0.3 km to 5 km altitude. They agree well with radiosonde observations, which demonstrate the results of our rotational Raman lidar are reasonable.

  6. Alexandrite laser source for atmospheric lidar measurements

    NASA Technical Reports Server (NTRS)

    Pelon, J.; Loth, C.; Flamant, P.; Megie, G.

    1986-01-01

    During the past years, there has been a marked increase in interest in the applications of vibronic solid state lasers to meteorology and atmospheric physics. Two airborne lidar programs are now under development in France. The differential absorption lidar (DIAL) method with vibronic solid state lasers is very attractive for water vapor, temperature and pressure measurements. Alexandrite laser and titanium-sapphire are both suitable for these applications. However, only alexandrite rods are commercially available. The requirements on the laser source for airborne dial applications are two fold: (1) a restriction on laser linewidth and a requirement on stability and tunability with a good spectral purity; and (2) a requirement on the time separation between the two pulses. These constraints are summarized.

  7. Long range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M.

    2015-11-01

    Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.

  8. Radiative effects of African dust and smoke observed from Clouds and the Earth's Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data

    NASA Astrophysics Data System (ADS)

    Yorks, John E.; McGill, Matt; Rodier, Sharon; Vaughan, Mark; Hu, Yongxiang; Hlavka, Dennis

    2009-09-01

    Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the tropical Atlantic Ocean were analyzed for the month of July for 3 years (2006-2008) using colocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Aqua satellites. Aerosol layer height and type can be accurately determined using CALIOP data through directly measured parameters such as optical depth, volume depolarization ratio, attenuated backscatter, and color ratio. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 ± 16.9 W/m2 and thin cirrus clouds had a SW radiative flux of 208.0 ± 12.7 W/m2. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 ± 13.0 W/m2. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 ± 16.6 W/m2. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system.

  9. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  10. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    NASA Astrophysics Data System (ADS)

    Aggarwal, Monika; Whiteway, James; Seabrook, Jeffrey; Gray, Lawrence; Strawbridge, Kevin B.

    2016-06-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL), while the ozone concentration remained at background levels (30-45 ppb) downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  11. Atmospheric temperature measurements, using Raman lidar

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Coney, T. A.

    1974-01-01

    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution.

  12. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  13. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  14. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.

  15. A stratospheric aerosol increase during 1981, observed by lidar over mid-Europe

    NASA Astrophysics Data System (ADS)

    Reiter, R.; Jaeger, H.; Carnuth, W.; Funk, W.

    1982-04-01

    Lidar observations of variations in the aerosol layer due to the eruptions of Mt. St. Helens and the volcano Alaid in the Kurile Islands are reported and compared. One year after the Mt. St. Helens activity the backscattering coefficient had reduced to within 10% of the values observed in the pre-eruption period. Observed peaks were found to be moving upward, eventually forming a broad aerosol layer at 15-17 km height in July, 1981. The Alaid plume moved west to east and was determined to be the cause of aerosol disturbances up to the 20 km level. Data is presented of the time variation of the aerosol quantities and the time variation of the space resolved integral backscattering. Additional data has shown that both the Mt. St. Helens and the Alaid eruptions caused only one-third the aerosol perturbations as the Fuego eruption of 1974.

  16. Continuous wave synthetic low-coherence wind sensing Lidar: motionless measurement system with subsequent numerical range scanning.

    PubMed

    Brinkmeyer, Ernst; Waterholter, Thomas

    2013-01-28

    A continuous wave (CW) Lidar system for detection of scattering from atmospheric aerosol particles is presented which is useful in particular for remote sensing of wind velocities. It is based on a low-coherence interferometric setup powered by a synthetic broadband laser source with Gaussian power density spectrum. The laser bandwidth is electronically adjustable and determines the spatial resolution which is independent of range. The Lidar system has no moving parts. The location to be resolved can be shifted numerically after the measurement meaning that a single measurement already contains the full range information. The features of constant resolution and numerical range scanning are in sharp contrast to ordinary CW Lidar systems.

  17. Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere.

    PubMed

    Meki, K; Yamaguchi, K; Li, X; Saito, Y; Kawahara, T D; Nomura, A

    1996-09-01

    A bistatic imaging lidar system using a cooled CCD camera as a detector has been developed for the observation of aerosols, fog, and clouds in the lower atmosphere, especially within several hundred meters of the Earth's surface. Theoretical discussion showed that the received signal does not depend on the measured range. The potential of the bistatic imaging lidar was confirmed through results of nighttime observations of atmospheric phenomena up to 300 m. A range-resolved profile was obtained without scanning and with a very short time resolution, within 1 min.

  18. The Carbon Aerosol / Particles Nucleation with a Lidar: Numerical Simulations and Field Studies

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Anselmo, Christophe; Francis, Mirvatte; David, Gregory; Rairoux, Patrick

    2016-06-01

    In this contribution, we present the results of two recent papers [1,2] published in Optics Express, dedicated to the development of two new lidar methodologies. In [1], while the carbon aerosol (for example, soot particles) is recognized as a major uncertainty on climate and public health, we couple lidar remote sensing with Laser-Induced-Incandescence (LII) to allow retrieving the vertical profile of very low thermal radiation emitted by the carbon aerosol, in agreement with Planck's law, in an urban atmosphere over several hundred meters altitude. In paper [2], awarded as June 2014 OSA Spotlight, we identify the optical requirements ensuring an elastic lidar to be sensitive to new particles formation events (NPF-events) in the atmosphere, while, in the literature, all the ingredients initiating nucleation are still being unrevealed [3]. Both papers proceed with the same methodology by identifying the optical requirements from numerical simulation (Planck and Kirchhoff's laws in [1], Mie and T-matrix numerical codes in [2]), then presenting lidar field application case studies. We believe these new lidar methodologies may be useful for climate, geophysical, as well as fundamental purposes.

  19. Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption

    NASA Technical Reports Server (NTRS)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.

  20. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  1. AROTEL - An Airborne Ozone, Aerosol and Temperature Lidar

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Heaps, William; Silbert, Donald; Twigg, Laurence; Sumnicht, Grant; Nueber, Roland; Schmidt, Thomas; Hostetler, Chris

    2000-01-01

    The AROTEL instrument is a collaboration between scientists at NASA, Goddard Space Flight Center and NASA Langley Research Center. The instrument was designed and constructed to be flown on the NASA DC-8, and to measure vertical profiles of ozone, temperature and aerosol. The instrument transmits radiation at 308, 355, 532, and 1064 nm. Depolarization is measured at 532 nm. In addition to the transmitted wavelengths, Raman scattered signals at 332 nm and 387 nm are also collected. The instrument was installed aboard the DC-8 for the SAGE III Ozone Loss and Validation Experiment (SOLVE) which deployed from Kiruna, Sweden, during the winter of 1999-2000 to study the polar stratosphere. During this time, profile measurements of polar stratospheric clouds, ozone and temperature were made. This paper provides an instrumental overview as an introduction to several data papers to be presented in the poster sessions. In addition to samples of the measurements, examples will be given to establish the quality of the various data products.

  2. Advances in lidar applications

    NASA Astrophysics Data System (ADS)

    Lewandowski, Piotr Andrzej

    Quantitative laser remote sensing (lidar) measurements have always posed a challenge for the research community. The complexity of the data inversion and the instrumentation itself makes lidar results difficult to interpret. This dissertation presents a suite of 3 elastic lidar experiments. The goal of these studies was to quantitatively approach atmospheric physical phenomena such as rainfall (chapter 3), a distribution of concentration of particulates in Mexico City (chapter 4) and emission rates and emission factors from an agricultural facility in Iowa (chapter 5). The studies demonstrate that elastic lidar measurements are possible not only in a qualitative sense but also in a quantitative sense. The lidar study of rainfall was intended to provide rainfall data in small spatial and temporal scales (1.5m and 1s resolution). The two levels of lidar inversion algorithms allowed the calculation of rainfall rates in small scales. The problem of the distribution of particles over Mexico City required mobile lidar measurements. The elastic lidar data were successfully inverted to extinction coefficients which were then combined with aerosol size distribution. As a result, a spatial distribution of particulate concentration was created to illustrate the transport processes and intensity of Mexico City pollution. The measurements of particulate emission fluxes from a livestock facility involved a stationary scanning elastic lidar, in-situ aerosol size distribution measurements and wind measurements. The data from the 3 independent measurement platforms combined together resulted in emission rates and emission factors. The results from this experiment demonstrated that the new lidar approach is an adequate tool for measurement of aerosol emissions from livestock production facilities. The studies presented in the dissertation show quantitative lidar measurements in combination with other instruments measurements. This approach significantly extends the applications of

  3. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g., particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  4. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g. particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  5. Evaluation of vegetation fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2013-08-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterize the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently concern by wildfire with low dense shrubs. Using Lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterized by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycenter technique. The smoke plume displacement was determined using a digital video camera coupled with the Lidar. The simulation was performed using a meso-scale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire) taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycenter was systematically below the barycenter derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosols particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  6. Evaluation of wildland fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2014-03-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterise the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently subject to wildfire with low dense shrubs. Using lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterised by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycentre technique. The smoke plume displacement was determined using a digital video camera coupled with the lidar. The simulation was performed using a mesoscale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire), taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycentre was systematically below the barycentre derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosol particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  7. Modifications and Moving Measurements of Mobile Doppler LIDAR

    NASA Astrophysics Data System (ADS)

    Liu, Bing-Yi; Liu, Zhi-Shen; Song, Xiao-Quan; Wu, Song-Hua; Bi, De-Cang; Wang, Xi-Tao; Yin, Qi-Wei; Reitebuch, Oliver

    2010-10-01

    In the last annual report of ID. 5291 LIDAR Cal/Val, a mobile Doppler lidar had been developed for 3D wind measurements by the Chinese partners from Ocean Remote Sensing Institute, Ocean University of China. In this year, in order to further improve the mobility of the mobile Doppler lidar for lidar calibration and validation, both GPS and inertial navigation system are integrated on the vehicle for performing measurements during movement. The modifications of the system and the results of the moving measurements are presented. This work simplifies the construction of the mobile Doppler system and makes the lidar more flexible for ground-based wind measurements and validation with the ADM-Aeolus spaceborne Doppler lidar.

  8. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  9. Three-Dimensional Analysis of Urban Aerosols by use of a Combined Lidar, Scanning Electron Microscopy, and X-Ray Microanalysis.

    PubMed

    Frejafon, E; Kasparian, J; Rambaldi, P; Yu, J; Vezin, B; Wolf, J P

    1998-04-20

    We present a novel method of characterizing urban aerosols that combines scanning-electron microscopy, x-ray microanalysis, and lidar measurements. Inversion algorithms, based on fractal aerosol models, allowed us to compute the scattering coefficients of the measured size distribution. The alpha and beta coefficients were used to invert lidar data, yielding what to our knowledge are the first quantitative three-dimensional measurements of the aerosol mass concentrations in urban conditions. The combined method was used during an extensive experiment in Lyon in the summer of 1996. Size distributions exhibit two main modes, at 0.1 and 0.9 mum, the composition of which was determined by x-ray microanalysis. The first mode is soot, and the second is composed of 60% coarse soot particles and 40% silica particles. Lidar measurements showed a homogeneous aerosol concentration within the mixing layer and a steep gradient above. Measurements made over 24 h also showed loads that were due to traffic rush hours and the dynamics of the height of the planetary boundary layer. PMID:18273146

  10. Implementation of Raman lidar for profiling of atmospheric water vapor and aerosols at the Southern Great Plains Cloud and Radiation Testbed Site

    SciTech Connect

    Goldsmith, J.E.M.; Bisson, S.E.; Blair, F.H.; Whiteman, D.N.; Melfi, S.H.

    1995-04-01

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. Research conducted at several laboratories, including our own collaboration in a previous Instrument Development Project for the Atmospheric Radiation Measurement (ARM) Program, has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We are currently building a rugged Raman lidar system that will reside permanently at the CART site and that is computer-automated to reduce the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar is intended to provide quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies. Raman lidar systems detect selected species by monitoring the wavelength-shifted molecular return produced by Raman scattering from the chosen molecule or molecules. For water-vapor measurements, the nitrogen Raman signal is observed simultaneously with the water-vapor Raman signal; proper ratioing of the signals yields the water-vapor mixing ratio. Similarly, when the backscatter signal at the laser wavelength (which contains contributions from both Rayleigh and aerosol scattering) is also recorded simultaneously, the ratio of the backscatter signal to the nitrogen Raman signal yields a quantitative measurement of the aerosol scattering ratio. A variety of aerosol and cloud parameters can be derived from this measurement. In aerosol-free regions of the atmosphere, temperature profiles can be derived from the density measurements obtained from the nitrogen Raman signal.

  11. Lidar measurements carried out during the 28 February 2013 lava fountain event at Mt. Etna, in Italy

    NASA Astrophysics Data System (ADS)

    Scollo, Simona; Boselli, Antonella; Coltelli, Mauro; Leto, Giuseppe; Pisani, Gianluca; Spinelli, Nicola; Wang, Xuan; Zanmar Sanchez, Ricardo

    2015-04-01

    Mt. Etna, in Italy, is one of the most active volcanoes in the world. Since 2011, the New South East Crater produced lava fountains that formed eruption columns rising up to several kilometers above sea level and fine ash dispersed hundreds kilometers away from the central craters. One of these events occurred during the 28 February 2013. The volcanic plume was directed toward the E and reached, during the climax phase, an height greater than 9 km above sea level. Lidar measurements were performed immediately after the lava fountain activity by a new portable Raman scanning Lidar system that is operating in Catania since 2013. The Lidar is operated at the Serra La Nave station, only 7 km away far from the Etna summits, and, during the winter seasons, at the INAF-Astrophysical Observatory in Catania. The Lidar named AMPLE is a portable multiwavelength scanning lidar system with depolarization measurement capability, able to carry out high quality 3D map of particle optical and microphysical properties. The laser source is a doubled and tripled diode pumped Nd:YAG laser, with a repetition rate of 1KHz. The Lidar system detects the elastic Lidar returns at 355nm and the N2 Raman Lidar echoes at 386nm. Each signal is acquired with