Science.gov

Sample records for aerosol loading conditions

  1. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    SciTech Connect

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.; Kosmopoulos, P. G.; Tripathi, S. N.; Misra, Amit; Sharma, M.; Singh, R. P.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may cause

  2. The global atmospheric loading of dust aerosols

    NASA Astrophysics Data System (ADS)

    Kok, J. F.; Ridley, D. A.; Haustein, K.; Miller, R. L.; Zhao, C.

    2015-12-01

    Mineral dust is one of the most ubiquitous aerosols in the atmosphere, with important effects on human health and the climate system. But despite its importance, the global atmospheric loading of dust has remained uncertain, with model results spanning about a factor of five. Here we constrain the particle size-resolved atmospheric dust loading and global emission rate, using a novel theoretical framework that uses experimental constraints on the optical properties and size distribution of dust to eliminate climate model errors due to assumed dust properties. We find that most climate models underestimate the global atmospheric loading and emission rate of dust aerosols.

  3. Genesis of elevated aerosol loading over the Indian region

    NASA Astrophysics Data System (ADS)

    Prijith, S. S.; Rao, P. V. N.; Mohan, Mannil

    2016-05-01

    Elevated aerosols assume importance as the diabatic heating due to aerosol absorption is more intense at higher altitudes where the atmosphere becomes thinner. Indian region, especially its central and northern latitudes, experiences significant loading of elevated aerosols during pre-monsoon and summer months. Genesis of elevated aerosol loading over Indian region is investigated in the present study, using multi-year satellite observations from Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with reanalysis winds from MERRA. Central India is observed to have prominent aerosols loading at higher altitudes during pre-monsoon season, whereas it is during summer months over north-west India. Further analysis reveals that the elevated aerosols over Indian region in pre-monsoon and summer months are significantly contributed by transported mineral dust from the arid continental regions at west. In addition to the mineral dust advection, aerosols at higher altitudes over Indian region are enriched by strong convection and associated vertical transport of surface level aerosols. Vertical transport of aerosols observed over Indian region during pre-monsoon and summer months is aided by intense convergence at the surface level and divergence at the upper level. Moreover, aerosol source/sink strength estimated using aerosol flux continuity equation show significant aerosol production over central India during pre-monsoon. Strong vertical transport prevails during pre-monsoon uplifts the locally produced aerosols, with considerable anthropogenic fraction, to higher altitudes where their impacts would be more intense.

  4. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    seemed to be reducing the negative impact of OA loading on O/C ratio via oxidation through aqueous processing. Average O/C ratio difference between HL and LL period during no-fog condition is 0.13 while it is reduced to 0.06 during foggy condition. This indicates that fog processing to an extent negating the OA loading impact on O/C ratio. This is happening due to the fact that aqueous oxidation efficiency doesn't depend on OA loading but on fog LWC (liquid water content), RH, NOx and presence/absence of transition metals. These findings indicate that only aerosol volatility based approach to predict particle phase concentration, composition and oxidation ratio of organics may result in some misleading outcome.

  5. Aerosols and contrasting monsoon conditions over the Himalayan region

    NASA Astrophysics Data System (ADS)

    Singh, Charu; Ganguly, Dilip; Dash, S. K.

    2016-05-01

    Impact of aerosols on the Indian summer monsoon (ISM) variability is well documented; however there are limited studies which have quantified the role of aerosols in modifying the amount of rainfall. To address this research problem, we make use of the remotely sensed data set of precipitation and aerosols from different observations. In the present study remotely sensed precipitation data set has been utilised to define contrasting monsoon conditions over the Himalayan region. As per the classical definition, active and break spells are defined over the central part of the Indian land region, and during the break spells over the central Indian region, the Himalayan region receives substantial amount of rainfall. It is found that accumulation of more dust over the Uttarakhand region significantly (negative correlation with rainfall; significant at 5% significance level) suppresses the rainfall during break spells. We propose that the substantial aerosol loading and its associated dynamical feedback over the Himalayan foothills may have considerable impact on the amount of rainfall over the mountainous regions of the Indian subcontinent. Results presented in this paper are supported by the statistically robust significance test and would be useful to develop the understanding of the role of aerosols in modulating the rainfall intensity during the summer monsoon season.

  6. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  7. Allostatic load and work conditions.

    PubMed

    Schnorpfeil, Pia; Noll, Alexander; Schulze, Renate; Ehlert, Ulrike; Frey, Karl; Fischer, Joachim E

    2003-08-01

    Adverse work characteristics and poor social support have been associated with an increased risk for cardiovascular disease and other adverse health outcomes in otherwise apparently healthy adults. We undertook a cross-sectional study to evaluate the relationship between objective health status and work characteristics in industrial workers in Germany. Volunteers (n=324) were recruited from a representative random sample (n=537) of employees of an airplane manufacturing plant. Psychosocial work characteristics were assessed by the 52-item, 13-subscale salutogenetic subjective work analysis (SALSA) questionnaire, which assesses potentially salutogenic and pathogenic conditions. Factor analysis revealed three factors: decision latitude, job demands and social support. Biological health status was determined by the revised allostatic load score with 14 components: body-mass index, waist-to-hip ratio; systolic and diastolic blood pressure; plasma levels of C-reactive protein (CRP), tumor-necrosis factor-alpha, HDL, cholesterol, dehydroepiandrosterone sulfate; glycosylated hemoglobin; urinary cortisol, epinephrine, norepinephrine, and albumin. Score points were given for values in the high-risk quartile (maximum=14). General linear models revealed that older individuals and men had significantly higher allostatic load scores than younger participants or women. Of the SALSA factors, only job demands related significantly to allostatic load. The effect of demands was stronger in older individuals. Post-hoc analysis showed possible positive associations between high job demands and blood pressure or CRP, and between low social support and nocturnal excretion of cortisol or plasma levels of CRP. We conclude that this cross-sectional study on industrial employees found a weak association between a health summary score based on objective medical data and self-reported adverse work characteristics. PMID:12821013

  8. Non-Refractory Submicron Aerosol Mass Loadings during NEAQS

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Matthew, B. M.; Canagaratna, M. R.; Worsnop, D. R.; Quinn, P. K.; Degouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; McKeen, S. A.

    2003-12-01

    During the New England Air Quality Study (NEAQS) in July-August 2002, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN and collected 2-minute averaged data. The AMS, which measures non-refractory components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm, produced particle mass spectra as well as aerosol organic, sulfate, ammonium, and nitrate mass distributions. A wide variety of air masses were sampled, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of ammonium and nitrate and the mass loadings typically peaked around 400-600 nm in vacuum aerodynamic diameter. Although the AMS sulfate and ammonium concentrations were highly correlated with the sulfate and ammonium concentrations from the Particle into Liquid (PILS) instrument also deployed on the ship, the AMS and PILS nitrate concentrations were not correlated and at times anti-correlated. In contrast, the AMS nitrate and organic concentrations as well as the AMS nitrate and gas phase alkyl nitrate concentrations were highly correlated. These results suggest that organic nitrate was present in the submicron aerosol phase. The AMS organic concentrations were generally higher than the AMS sulfate concentrations, consistent with other shipboard measurements. Whenever the sulfate concentration increased, the organic concentration also increased, indicating that sulfate and organic aerosol growth are influenced by the same processes or that sulfate may play a role in organic aerosol growth. The exception to this pattern occurred during a sea fog event where the sulfate concentration increased and the organic concentration decreased, probably due to rapid aqueous phase sulfur oxidation and relatively less oxidation of organic compounds. Furthermore, the organic concentration often increased without concurrent increases in

  9. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  10. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  11. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  12. Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation

    NASA Astrophysics Data System (ADS)

    Sheng, Jian-Xiong; Weisenstein, Debra K.; Luo, Bei-Ping; Rozanov, Eugene; Stenke, Andrea; Anet, Julien; Bingemer, Heinz; Peter, Thomas

    2015-01-01

    The global atmospheric sulfur budget and its emission dependence have been investigated using the coupled aerosol-chemistry-climate model SOCOL-AER. The aerosol module comprises gaseous and aqueous sulfur chemistry and comprehensive microphysics. The particle distribution is resolved by 40 size bins spanning radii from 0.39 nm to 3.2 μm, including size-dependent particle composition. Aerosol radiative properties required by the climate model are calculated online from the aerosol module. The model successfully reproduces main features of stratospheric aerosols under nonvolcanic conditions, including aerosol extinctions compared to Stratospheric Aerosol and Gas Experiment II (SAGE II) and Halogen Occultation Experiment, and size distributions compared to in situ measurements. The calculated stratospheric aerosol burden is 109 Gg of sulfur, matching the SAGE II-based estimate (112 Gg). In terms of fluxes through the tropopause, the stratospheric aerosol layer is due to about 43% primary tropospheric aerosol, 28% SO2, 23% carbonyl sulfide (OCS), 4% H2S, and 2% dimethyl sulfide (DMS). Turning off emissions of the short-lived species SO2, H2S, and DMS shows that OCS alone still establishes about 56% of the original stratospheric aerosol burden. Further sensitivity simulations reveal that anticipated increases in anthropogenic SO2 emissions in China and India have a larger influence on stratospheric aerosols than the same increase in Western Europe or the U.S., due to deep convection in the western Pacific region. However, even a doubling of Chinese and Indian emissions is predicted to increase the stratospheric background aerosol burden only by 9%. In contrast, small to moderate volcanic eruptions, such as that of Nabro in 2011, may easily double the stratospheric aerosol loading.

  13. Road traffic impact on urban atmospheric aerosol loading at Oporto, Portugal

    NASA Astrophysics Data System (ADS)

    Oliveira, César; Pio, Casimiro; Caseiro, Alexandre; Santos, Patrícia; Nunes, Teresa; Mao, Hongjun; Luahana, Lakhumal; Sokhi, Ranjeet

    2010-08-01

    At urban areas in south Europe atmospheric aerosol levels are frequently above legislation limits as a result of road traffic and favourable climatic conditions for photochemical formation and dust suspension. Strategies for urban particulate pollution control have to take into account specific regional characteristics and need correct information concerning the sources of the aerosol. With these objectives, the ionic and elemental composition of the fine (PM 2.5) and coarse (PM 2.5-10) aerosol was measured at two contrasting sites in the centre of the city of Oporto, roadside (R) and urban background (UB), during two campaigns, in winter and summer. Application of Spatial Variability Factors, in association with Principal Component/Multilinear Regression/Inter-site Mass Balance Analysis, to aerosol data permitted to identify and quantify 5 main groups of sources, namely direct car emissions, industry, photochemical production, dust suspension and sea salt transport. Traffic strongly influenced PM mass and composition. Direct car emissions and road dust resuspension contributed with 44-66% to the fine aerosol and with 12 to 55% to the coarse particles mass at both sites, showing typically highest loads at roadside. In fine particles secondary origin was also quite important in aerosol loading, principally during summer, with 28-48% mass contribution, at R and UB sites respectively. Sea spray has an important contribution of 18-28% to coarse aerosol mass in the studied area, with a highest relative contribution at UB site. Application of Spatial Variability/Mass Balance Analysis permitted the estimation of traffic contribution to soil dust in both size ranges, across sites and seasons, demonstrating that as much as 80% of present dust can result from road traffic resuspension.

  14. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  15. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    SciTech Connect

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.

  16. Observations of Aerosol Conditions Associated with Precipitation Events in the Remote Sierra Nevada Foothills

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Kingsmill, D.; Roberts, G. C.; Noblitt, S.; Prather, K. A.

    2011-12-01

    Recent investigations of atmospheric aerosols have suggested their importance in affecting clouds and precipitation patterns, especially in regions where anthropogenic contributions to aerosol loadings are large. Aerosols entrained into precipitating clouds have been shown to either enhance or suppress precipitation based on the characteristics of the cloud condensation nuclei (CCN) or ice nuclei (IN) introduced. Due to the inherent chemical dependence of CCN activity, the chemical composition of aerosols introduced into precipitating clouds will determine their effect on precipitation. This presentation will utilize ground-based chemical and physical measurements of aerosols and precipitation from multiple winter seasons gathered at Sugar Pine Dam (Foresthill, CA) as part of the CalWater experiment. The coupled behavior of landfalling frontal systems, regional terrain-parallel flow along the windward slopes of the Sierra Nevada (i.e., the Sierra Barrier Jet), and observed aerosol conditions in the Sierra Nevada foothills will be demonstrated and related issues explored. Temporally correlated changes in aerosol chemical composition with approaching winter storms may provide key insights into the evolution of the Sierra Barrier Jet, a dynamic feature that can have a major influence on orographically-forced precipitation in this region, and could provide clues to the coupling of Central Valley pollution with winter-time orographic precipitation episodes (or lack thereof). Gaining an overall understanding of the frequency and magnitude of the entrainment of Central Valley pollutants on winter storm systems will ultimately provide an estimate of how much aerosols affect precipitation in California.

  17. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  18. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  19. Influence of dust loading on the alpha-particle energy resolution of continuous air monitors for thin deposits of radioactive aerosols.

    PubMed

    Huang, Suilou; Schery, Stephen D; Alcantara, Raul E; Rodgers, John C; Wasiolek, Piotr T

    2002-12-01

    Alpha-particle continuous air monitors must sometimes be operated in dusty environments where significant dust loading of the filter can be anticipated. It is important to understand how this dust loading affects the response of the continuous air monitors. Not only must a filter be changed if there is a reduction in airflow, but a change may be necessary if the energy resolution deteriorates and the continuous air monitor loses sensitivity and specificity for the radioactive aerosols of interest. A series of experiments were conducted to investigate alpha-particle energy resolution of continuous air monitor filters, particularly under dust loading conditions. Aerosol particles of various sizes were tagged with radon decay products to serve as surrogates for radioactive aerosols of interest such as plutonium or uranium. While the size of radioactive aerosols, filter type, and dust type affected the energy resolution, the thickness of an underlying (nonradioactive) dust layer did not show significant effect for the materials studied and a loading range of 0.01-10 mg x cm(-2). Our results indicate that it is possible for continuous air monitors to detect the release of radioactive aerosols with little deterioration in energy resolution under conditions of significant dust loading provided that the deposited layer of radioactive aerosols remains thin (< or = 0.1 mg x cm(-2)).

  20. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  1. Low-Load Space Conditioning Needs Assessment

    SciTech Connect

    Puttagunta, Srikanth

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  2. Effects on stratospheric ozone from high-speed civil transport: Sensitivity to stratospheric aerosol loading

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Rodriguez, Jose M.; Sze, Nien-Dak

    1993-01-01

    The potential impact of high-speed civil transport (HSCT) aircraft emissions on stratospheric ozone and the sensitivity of these results to changes in aerosol loading are examined with a two-dimensional model. With aerosols fixed at background levels, calculated ozone changes due to HSCT aircraft emissions range from negligible up to 4-6% depletions in column zone at northern high latitudes. The magnitude of the ozone change depends mainly on the NO(x) increase due to aircraft emissions, which depends on fleet size, cruise altitude, and engine design. The partitioning of the odd nitrogen species in the lower stratosphere among NO, NO2, N2O5, is strongly dependent on the concentration of sulfuric acid aerosol particles, and thus the sensitivity of O3 to NO(x) emissions changes when the stratospheric aerosol loading changes. Aerosol concentrations 4 times greater than background levels have not been unusual in the last 2 decades. Our model results show that a factor of 4 increase in aerosol loading would significantly reduce the calculated ozone depletion due to HSCT emissions. Because of the neutral variabiltiy of stratospheric aerosols, the possible impact of HSCT emissions on ozone must be viewed as a range of possible results.

  3. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions.

    PubMed

    Artaxo, Paulo; Rizzo, Luciana V; Brito, Joel F; Barbosa, Henrique M J; Arana, Andrea; Sena, Elisa T; Cirino, Glauber G; Bastos, Wanderlei; Martin, Scot T; Andreae, Meinrat O

    2013-01-01

    In the wet season, a large portion of the Amazon region constitutes one of the most pristine continental areas, with very low concentrations of atmospheric trace gases and aerosol particles. However, land use change modifies the biosphere-atmosphere interactions in such a way that key processes that maintain the functioning of Amazonia are substantially altered. This study presents a comparison between aerosol properties observed at a preserved forest site in Central Amazonia (TT34 North of Manaus) and at a heavily biomass burning impacted site in south-western Amazonia (PVH, close to Porto Velho). Amazonian aerosols were characterized in detail, including aerosol size distributions, aerosol light absorption and scattering, optical depth and aerosol inorganic and organic composition, among other properties. The central Amazonia site (TT34) showed low aerosol concentrations (PM2.5 of 1.3 +/- 0.7 microg m(-3) and 3.4 +/- 2.0 microg m(-3) in the wet and dry seasons, respectively), with a median particle number concentration of 220 cm(-3) in the wet season and 2200 cm(-3) in the dry season. At the impacted site (PVH), aerosol loadings were one order of magnitude higher (PM2.5 of 10.2 +/- 9.0 microg m(-3) and 33.0 +/- 36.0 microg m(-3) in the wet and dry seasons, respectively). The aerosol number concentration at the impacted site ranged from 680 cm(-3) in the wet season up to 20 000 cm(-3) in the dry season. An aerosol chemical speciation monitor (ACSM) was deployed in 2013 at both sites, and it shows that organic aerosol account to 81% to the non-refractory PM1 aerosol loading at TT34, while biomass burning aerosols at PVH shows a 93% content of organic particles. Three years of filter-based elemental composition measurements shows that sulphate at the impacted site decreases, on average, from 12% of PM2.5 mass during the wet season to 5% in the dry season. This result corroborates the ACSM finding that the biomass burning contributed overwhelmingly to the organic

  4. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  5. 14 CFR 23.473 - Ground load conditions and assumptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may...

  6. The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

    SciTech Connect

    Shao, H.; Liu, G.

    2005-03-18

    An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.

  7. 14 CFR 23.521 - Water load conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for...

  8. 14 CFR 23.521 - Water load conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for...

  9. 14 CFR 23.521 - Water load conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for...

  10. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  11. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  12. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  13. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  14. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  15. Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kharol, S. Kumar; Sinha, P. R.; Singh, R. P.; Kambezidis, H. D.; Rani Sharma, A.; Badarinath, K. V. S.

    2011-07-01

    Ship-borne observations of spectral aerosol optical depth (AOD) have been carried out over the entire Bay of Bengal (BoB) as part of the W-ICARB cruise campaign during the period 27 December 2008-30 January 2009. The results reveal a pronounced temporal and spatial variability in the optical characteristics of aerosols mainly due to anthropogenic emissions and their dispersion controlled by local meteorology. The highest aerosol amount, with mean AOD500>0.4, being even above 1.0 on specific days, is found close to the coastal regions in the western and northern parts of BoB. In these regions the Ångström exponent is also found to be high (~1.2-1.25) indicating transport of strong anthropogenic emissions from continental regions, while very high AOD500 (0.39±0.07) and α380-870 values (1.27±0.09) are found over the eastern BoB. Except from the large α380-870 values, an indication of strong fine-mode dominance is also observed from the AOD curvature, which is negative in the vast majority of the cases, suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand, clean maritime conditions are rather rare over the region, while the aerosol types are further examined through a classification scheme based on the relationship between α and dα. It was found that even for the same α values the fine-mode dominance is larger for higher AODs showing the strong continental influence over the marine environment of BoB. Furthermore, there is also an evidence of aerosol-size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The results obtained using OPAC model show significant fraction of soot aerosols (~6 %-8 %) over the eastern and northwestern BoB, while coarse-mode sea salt particles are found to dominate in the southern parts of BoB.

  16. Tribological Behaviour of PTFE Under Variable Loading Dry Sliding Condition

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Ahuja, B. B.

    2014-04-01

    To study the tribological behaviour of materials subjected to variable and constant loading the pin-on-disk tribometer has been modified. This paper discusses the wear and friction behaviour of Poly Tetra Fluoro Ethylene (PTFE) operating under variable loading dry unidirectional sliding condition using the modified tribometer. The results under variable loading are compared with corresponding maximum, minimum and mean constant load situations. Wear and specific wear rate of PTFE subjected to variable loading under dry unidirectional sliding condition lies above those of corresponding mean constant load but no such comparative behaviour was observed for coefficient of friction.

  17. Low-Load Space Conditioning Needs Assessment

    SciTech Connect

    Puttagunta, Srikanth

    2015-05-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset.

  18. Simulations of Stratospheric Aerosol Under Volcanic and Background Conditions

    NASA Astrophysics Data System (ADS)

    Weisenstein, D. K.; Ko, M. K.; Yue, G. K.; Jackman, C. H.; Fleming, E. L.

    2002-05-01

    The 17 year record of SAGE II aerosol observations has been extremely valuable to the understanding of stratospheric aerosols. This talk will focus on comparisons of the SAGE II version 6.1 aerosol observations with simulations from the AER 2-D sulfate aerosol model. Model simulations for the period from 1982 to 2002, including the eruptions of El Chichon, Ruiz, Kelut, Pinatubo, and Cerro Hudson, are performed with three different transport circulations, one from AER and two from GSFC. Decay rates from the simulated eruptions are compared with the SAGE II record and LIDAR observations from Hampton, Virginia. Since observed aerosol amounts are currently lower than any other period of SAGE II observations, we will compare the non-volcanic aerosol simulated by the models with the the low aerosol periods before and after the eruption of Mt. Pinatubo. Sensitivity to variations in the prescribed emissions of the source gases and to transport rates will be discussed.

  19. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with...

  20. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with...

  1. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with...

  2. Miniature instruments for aerosol extinction at ambient conditions

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.

    2015-12-01

    Aerosol extinction is a fundamental parameter for the direct forcing of climate, visibility, and comparisons to remote sensing. Bringing air into an instrument "box" almost always changes the relative humidity and loses some dust or other large particles. I will show two techniques for miniature instruments that measure extinction at ambient conditions. One is a miniature sun photometer for vertical profiles. In the last year it has successfully gathered data on test flights with excellent performance and signal to noise. The second instrument is a miniature cavity ring down instrument open to the air. In both cases, small instruments require decisions about just what is necessary for the measurement rather than just scaling down larger designs. I will explore the rationale for some of these design choices.

  3. Heavy aerosol loading over the Bohai Bay as revealed by ground and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Chen, Jing; Xia, Xiangao; Che, Huizheng; Fan, Xuehua; Xie, Yiyang; Han, Zhiwei; Chen, Hongbin; Lu, Daren

    2016-01-01

    Heavy aerosol loading over the Bohai Bay, the innermost gulf of the Yellow Sea, was often recorded by the satellite observations. In order to understand aerosol optical properties and potential causes for the high aerosol loading there, a Cimel sunphotometer station (BH) was established on an offshore platform over the Bay for the first time in June 2012. The aerosol optical properties between July 2012 and July 2013 were employed to validate the satellite retrievals and to characterize temporal variability of aerosol optical properties. In particular, aerosol optical properties at BH were compared with those at Beijing (BJ), an urban station of the North China Plain (NCP), to discuss their potential difference during the same months of the same years. Mean aerosol optical depth at 550 nm (AOD) retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over the Bohai Bay was 0.79 ± 0.68 during 2004-2013, that even exceeded value over the NCP (0.50 ± 0.57). This fact was supported by the comparison of ground-based remote sensing AODs at BH and BJ. The annual mean Cimel AOD at BH was 0.76 ± 0.62, which was larger than that at BJ (0.64 ± 0.52). The MODIS AOD difference between the Bohai Bay and the NCP was 0.29, being more than two times larger than the Cimel AOD difference between BH and BJ (0.12). This strongly implied that the MODIS retrievals had significant biases over the Bohai Bay that was likely due to sediment in the water and also sea ice in winter. A distinct seasonal variation of AOD was revealed over ocean. The maxima Cimel AOD was observed in summer (1.02 ± 0.75), which was followed by spring (0.86 ± 0.61), autumn (0.54 ± 0.41), and winter (0.39 ± 0.24); this was in good agreement with that over the NCP. High AOD over the Bohai Bay was associated with the heavy exhaust emissions from the ships across the Bay and transport of aerosols from the NCP. Furthermore, a much strong hygroscopic growth of fine mode aerosols over

  4. Aerosol Retrievals under Partly Cloudy Conditions: Challenges and Perspectives

    SciTech Connect

    Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; Flynn, Connor J.

    2011-06-01

    There are lots of interesting and intriguing features of aerosols near clouds – many of which can be quite engaging, as well being useful and climate-related. Exploring aerosol with the aid of the remote sensing, in situ observations and numerical modeling has piqued our curiosity and led to improve insights into the nature of aerosol and clouds and their complex relationship. This chapter conveys the outstanding issues of cloudy-sky aerosol retrievals of important climate properties and outlines their fruitful connections to other research areas such as in situ measurements and model simulations. The chapter focuses mostly on treating the inverse problems in the context of the passive satellite remote sensing and how they can improve our understanding of the cloud-aerosol interactions. The presentation includes a basis in the inverse problem theory, reviews available approaches and discusses their applications to partly cloudy situations. Potential synergy of observations and model simulations is described as well.

  5. Numerical optimization of composite hip endoprostheses under different loading conditions

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.

    1992-01-01

    The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.

  6. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    NASA Astrophysics Data System (ADS)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  7. SAGE and SAM II measurements of global stratospheric aerosol optical depth and mass loading

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Mccormick, M. P.

    1984-01-01

    Several volcanic eruptions between November 1979 and April 1981 have injected material into the stratosphere. The SAGE and SAM II satellite systems have measured, with global coverage, the 1-micron extinction produced by this material, and examples of the data product are shown in the form of global maps of stratospheric optical depth and altitude-latitude plots of zonal mean extinction. These data, and that for the volcanically quiet period in early 1979, have been used to determine the changes in the total stratospheric mass loading. Estimates have also been made of the contribution to the total aerosol mass from each eruption. It has been found that between 1979 and mid-1981, the total stratospheric aerosol mass increased from a background level of approximately 570,000 metric tons to a peak of approximately 1,300,000 metric tons.

  8. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads...

  9. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads...

  10. Structures under extreme loading conditions -- 1996. PVP-Volume 325

    SciTech Connect

    Shin, Y.S.; Zukas, J.A.

    1996-12-31

    High-energy excitations are a continuing challenge to experimental, analytical, and computational approaches for learning the behavior of materials and structures under extreme loading conditions. Problems involving underwater explosions and their effects on structures lead off this volume. These are followed by problems traditionally falling in the category of structural dynamics: the buckling and large plastic deformation of structures and structural elements subjected to intense, short-duration distributed or localized loads. As load intensity increases and both load duration and response times decrease, analyses using wave propagation concepts become important. The focus shifts to the local response of the material at the load point rather than the global response of the structure. Many papers herein present experimental, analytical, and numerical solutions to problems of blast and impact loading on diverse structures or structural elements. Others deal with techniques required to generate such loading in the laboratory and the instrumentation required to establish loading conditions and measure response characteristics. This broad coverage of topics should make this a valuable volume for those working in shock and impact loading, high rate material behavior, penetration and perforation, and also hypervelocity impact. Separate abstracts were prepared for some papers in this volume.

  11. Aerosol speciation and mass prediction from toluene oxidation under high NO x conditions

    NASA Astrophysics Data System (ADS)

    Kelly, Janya L.; Michelangeli, Diane V.; Makar, Paul A.; Hastie, Donald R.; Mozurkewich, Michael; Auld, Janeen

    2010-01-01

    A kinetically based gas-particle partitioning box model is used to highlight the importance of parameter representation in the prediction of secondary organic aerosol (SOA) formation following the photo-oxidation of toluene. The model is initialized using experimental data from York University's indoor smog chamber and provides a prediction of the total aerosol yield and speciation. A series of model sensitivity experiments were performed to study the aerosol speciation and mass prediction under high NO x conditions (VOC/NO x = 0.2). Sensitivity experiments indicate vapour pressure estimation to be a large area of weakness in predicting aerosol mass, creating an average total error range of 70 μg m -3 (range of 5-145 μg m -3), using two different estimation methods. Aerosol speciation proved relatively insensitive to changes in vapour pressure. One species, 3-methyl-6-nitro-catechol, dominated the aerosol phase regardless of the vapour pressure parameterization used and comprised 73-88% of the aerosol by mass. The dominance is associated with the large concentration of 3-methyl-6-nitro-catechol in the gas-phase. The high NO x initial conditions of this study suggests that the predominance of 3-methyl-6-nitro-catechol likely results from the cresol-forming branch in the Master Chemical Mechanism taking a significant role in secondary organic aerosol formation under high NO x conditions. Further research into the yields and speciation leading to this reaction product is recommended.

  12. Effects of Relative Humidity and Spraying Medium on UV Decontamination of Filters Loaded with Viral Aerosols

    PubMed Central

    Woo, Myung-Heui; Grippin, Adam; Anwar, Diandra; Smith, Tamara; Wander, Joseph D.

    2012-01-01

    Although respirators and filters are designed to prevent the spread of pathogenic aerosols, a stockpile shortage is anticipated during the next flu pandemic. Contact transfer and reaerosolization of collected microbes from used respirators are also a concern. An option to address these potential problems is UV irradiation, which inactivates microbes by dimerizing thymine/uracil in nucleic acids. The objective of this study was to determine the effects of transmission mode and environmental conditions on decontamination efficiency by UV. In this study, filters were contaminated by different transmission pathways (droplet and aerosol) using three spraying media (deionized water [DI], beef extract [BE], and artificial saliva [AS]) under different humidity levels (30% [low relative humidity {LRH}], 60% [MRH], and 90% [HRH]). UV irradiation at constant intensity was applied for two time intervals at each relative humidity condition. The highest inactivation efficiency (IE), around 5.8 logs, was seen for DI aerosols containing MS2 on filters at LRH after applying a UV intensity of 1.0 mW/cm2 for 30 min. The IE of droplets containing MS2 was lower than that of aerosols containing MS2. Absorption of UV by high water content and shielding of viruses near the center of the aggregate are considered responsible for this trend. Across the different media, IEs in AS and in BE were much lower than in DI for both aerosol and droplet transmission, indicating that solids present in AS and BE exhibited a protective effect. For particles sprayed in a protective medium, RH is not a significant parameter. PMID:22685135

  13. Fault detection in reciprocating compressor valves under varying load conditions

    NASA Astrophysics Data System (ADS)

    Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias

    2016-03-01

    This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.

  14. Free-edge delamination: Laminate width and loading conditions effects

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1987-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progrssive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  15. Free-edge delamination - Laminate width and loading conditions effects

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1989-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progressive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  16. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  17. Measurements of skylight polarization: a case study in urban region with high-loading aerosol.

    PubMed

    Wu, Lianghai; Gao, Jun; Fan, Zhiguo; Zhang, Jun

    2015-02-01

    We investigate skylight polarization patterns in an urban region using our developed full-Stokes imaging polarimeter. A detailed description of our imaging polarimeter and its calibration are given, then, we measure skylight polarization patterns at wavelength λ=488  nm and at solar elevation between -05°10' and +35°42' in the city of Hefei, China. We show that in an urban region with high-loading aerosols: (1) the measured degree of linear polarization reaches the maximum near sunset, and large areas of unpolarized sky exist in the forward sunlight direction close to the Sun; (2) the position of neural points shifts from the local meridian plane and, if compared with a clear sky, alters the symmetrical characteristics of celestial polarization pattern; and (3) the observed circular polarization component is negligible. PMID:25967834

  18. Stratifying Tropical Fires by Land Cover: Insights into Amazonian Fires, Aerosol Loading, and Regional Deforestation

    NASA Technical Reports Server (NTRS)

    TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2010-01-01

    This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.

  19. Aging of beryllium bronze under programmed loading conditions

    SciTech Connect

    Duraev, P.P.; Kaplun, Yu.A.

    1987-07-01

    Results are provided from a study of different aging methods for beryllium bronze BrBNT1.9Mg under tensile stress conditions created by an applied load. Aging, both in the original hardened condition and after low-temperature treatment, is found to lead to an increase in yield strength and elastic limit. Ultimate breaking strength, hardness, and ductility do not change. An increase in deformation resistance after aging is connected with oriented precipitation of gamma-phase particles.

  20. Is muscle coordination affected by loading condition in ballistic movements?

    PubMed

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: P<0.001; peak occurrence: P=0.02) illustrating the specific role of each muscle during the push-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump.

  1. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  2. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  3. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  4. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions.

    PubMed

    Colenutt, C; Gonzales, J L; Paton, D J; Gloster, J; Nelson, N; Sanders, C

    2016-06-30

    Foot-and-mouth disease virus (FMDV) control measures rely on understanding of virus transmission mechanisms. Direct contact between naïve and infected animals or spread by contaminated fomites is prevented by quarantines and rigorous decontamination procedures during outbreaks. Transmission of FMDV by aerosol may not be prevented by these control measures and this route of transmission may allow infection of animals at distance from the infection source. Understanding the potential for aerosol spread of specific FMDV strains is important for informing control strategies in an outbreak. Here, the potential for transmission of an FMDV Asia 1 strain between pigs and cattle by indirect aerosol exposure was evaluated in an experimental setting. Four naïve calves were exposed to aerosols emitted from three infected pigs in an adjacent room for a 10h period. Direct contact between pigs and cattle and fomite transfer between rooms was prevented. Viral titres in aerosols emitted by the infected pigs were measured to estimate the dose that calves were exposed to. One of the calves developed clinical signs of FMD, whilst there was serological evidence for spread to cattle by aerosol transmission in the remaining three calves. This highlights the possibility that this FMDV Asia 1 strain could be spread by aerosol transmission given appropriate environmental conditions should an outbreak occur in pigs. Our estimates suggest the exposure dose required for aerosol transmission was higher than has been previously quantified for other serotypes, implying that aerosols are less likely to play a significant role in transmission and spread of this FMDV strain. PMID:27259825

  5. Direct radiative forcing of aerosols in cloudy condition using CALIPSO satellite data

    NASA Astrophysics Data System (ADS)

    Oikawa, E.; Nakajima, T.; Winker, D. M.

    2013-12-01

    The aerosol direct effect occurs by direct scattering and absorption of solar and thermal radiation. Shortwave direct aerosol radiative forcing (DARF) under clear-sky condition is estimated about 5 Wm-2 from satellite retrievals and model simulations [Yu et al., 2006ACP]. Simultaneous observations of aerosols and clouds are very limited, thus it is difficult to validate the estimation of DARF under cloudy-sky condition. In 2006, the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite was launched with the space-borne lidar, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). This enabled us to get data of the vertical distribution of aerosols and clouds all over the world. Oikawa et al. [2013JGR] estimated DARF under clear-sky, cloudy-sky, and all-sky conditions using CALIPSO and MODIS (Moderate resolution Imaging Spectrometer) data. Over Atlantic Ocean off southwest Africa, biomass burning aerosols are transported above low-level clouds and cause large positive DARF [Oikawa et al., 2013JGR; Chand et al., 2009Nat. Geosci.; De Graaf et al., 2012JGR; Takemura et al., 2005JGR]. We calculate DARF using CALIOP Level 2 Cloud and Aerosol Layer Products Version 3 and the method of Oikawa et al. [2013]. In this study, we focus on the case that aerosols exist above clouds (above-cloud case) in 2007. Over Atlantic Ocean off southwest Africa, DARF caused by smoke aerosols is +7.1 Wm-2 in September. On the other hand, aerosol optical thickness (AOT) of smoke is small as close to 0 Wm-2 in spring season. Over North Pacific, yellow sand and industrial smoke are transported from Asia and DARF is +5.2 Wm-2 in May. Dust AOT at 532 nm is 0.014 and polluted dust AOT at 532 nm is 0.052; in other words, a large part of dust emitted from Taklamakan and Gobi deserts are mixed with the industrial smoke and transported to the Pacific Ocean according to the CALIPSO algorithms.

  6. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  7. Estimated Muscle Loads During Squat Exercise in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.

    2012-01-01

    Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.

  8. Modeling the responses of TSM resonators under various loading conditions

    SciTech Connect

    BANDEY,HELEN L.; MARTIN,STEPHEN J.; CERNOSEK,RICHARD W.; HILLMAN,A. ROBERT

    1999-03-01

    The authors developed a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface conditions. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media, and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite load is not a linear combination of the individual component responses. The authors discuss application of the model in a qualitative diagnostic fashion to gain insight into the nature of the interfacial structure, and in a quantitative fashion to extract appropriate physical parameters such as liquid viscosity and density, and polymer shear moduli.

  9. Vibration condition monitoring of planetary gearbox under varying external load

    NASA Astrophysics Data System (ADS)

    Bartelmus, W.; Zimroz, R.

    2009-01-01

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It is found that a planetary gearbox in bad condition is more susceptible to load than a gearbox in good condition. The estimated load time traces obtained by a demodulation process of the vibration acceleration signal for a planetary gearbox in good and bad conditions are given. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered. Typical local faults such as cracking or breakage of a gear tooth, or local faults in rolling element bearings, have not been found in the cases considered. In real practice, local faults of planetary gearboxes have not occurred, but heavy destruction of planetary gearboxes have

  10. Conditional load and store in a shared memory

    SciTech Connect

    Blumrich, Matthias A; Ohmacht, Martin

    2015-02-03

    A method, system and computer program product for implementing load-reserve and store-conditional instructions in a multi-processor computing system. The computing system includes a multitude of processor units and a shared memory cache, and each of the processor units has access to the memory cache. In one embodiment, the method comprises providing the memory cache with a series of reservation registers, and storing in these registers addresses reserved in the memory cache for the processor units as a result of issuing load-reserve requests. In this embodiment, when one of the processor units makes a request to store data in the memory cache using a store-conditional request, the reservation registers are checked to determine if an address in the memory cache is reserved for that processor unit. If an address in the memory cache is reserved for that processor, the data are stored at this address.

  11. Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes

    PubMed Central

    Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592

  12. Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study

    NASA Astrophysics Data System (ADS)

    Jones, Anthony C.; Haywood, James M.; Jones, Andy; Aquila, Valentina

    2016-06-01

    Using a global climate model (Hadley Centre Global Environment Model version 2-Carbon Cycle Stratosphere ) with a well-resolved stratosphere, we test the sensitivity of volcanic aerosol plume dispersion to meteorological conditions by simulating 1 day Mount Pinatubo-like eruptions on 10 consecutive days. The dispersion of the volcanic aerosol is found to be highly sensitive to the ambient meteorology for low-altitude eruptions (16-18 km), with this variability related to anomalous anticyclonic activity along the subtropical jet, which affects the permeability of the tropical pipe and controls the amount of aerosol that is retained by the tropical reservoir. Conversely, a high-altitude eruption scenario (19-29 km) exhibits low meteorological variability. Overcoming day-to-day meteorological variability by spreading the emission over 10 days is shown to produce insufficient radiative heating to loft the aerosol into the stratospheric tropical aerosol reservoir for the low eruption scenario. This results in limited penetration of aerosol into the southern hemisphere (SH) in contrast to the SH transport observed after the Pinatubo eruption. Our results have direct implications for the accurate simulation of past/future volcanic eruptions and volcanically forced climate changes, such as Intertropical Convergence Zone displacement.

  13. Characterization of aerosols above the Northern Adriatic Sea: Case studies of offshore and onshore wind conditions

    NASA Astrophysics Data System (ADS)

    Piazzola, J.; Mihalopoulos, N.; Canepa, E.; Tedeschi, G.; Prati, P.; Zarmpas, P.; Bastianini, M.; Missamou, T.; Cavaleri, L.

    2016-05-01

    Aerosol particles in coastal areas result from a complex mixing between sea spray aerosols locally generated at the sea surface by the wind-waves interaction processes and a continental component resulting from natural and/or anthropogenic sources. This paper presents a physical and chemical analysis of the aerosol data acquired from May to September 2014 in the Adriatic Sea. Aerosol distributions were measured on the Acqua Alta platform located 15 km off the coast of Venice using two Particle Measuring System probes and a chemical characterization was made using an Ion Chromatography analysis (IC). Our aim is to study both the sea-spray contribution and the anthropogenic influence in the coastal aerosol of this Mediterranean region. To this end, we focus on a comparison between the present data and the aerosol size distributions measured south of the French Mediterranean coast. For air masses of marine origin transported by southern winds on the French coast and by the Sirocco in the Adriatic, we note a good agreement between the concentrations of super-micrometer aerosols measured in the two locations. This indicates a similar sea surface production of sea-spray aerosols formed by bubble bursting processes in the two locations. In contrast, the results show larger concentrations of submicron particles in the North-Western Mediterranean compared to the Adriatic, which result probably from a larger anthropogenic background for marine conditions. In contrast, for a coastal influence, the chemical analysis presented in the present paper seems to indicate a larger importance of the anthropogenic impact in the Northern Adriatic compared to the North-Western Mediterranean.

  14. Efficacy of Aerosol-Cloud Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs. Pt. Reyes

    SciTech Connect

    Dunn, M.; Schwartz, S.; Kim, B.-G.; Miller, M.; Liu, Y.; Min, Q.

    2008-03-10

    Several studies have demonstrated that cloud dynamical processes such as entrainment mixing may be the primary modulator of cloud optical properties in certain situations. For example, entrainment of dry air alters the cloud drop size distribution by enhancing drop evaporation. However, the effect of entrainment mixing and other forms or turbulence is still quite uncertain. Although these factors and aerosol-cloud interactions should be considered together when evaluating the efficacy of aerosol indirect effects, the underlying mechanisms appear to be dependent upon each other. In addition, accounting for them is impossible with the current understanding of aerosol indirect effect. Therefore, careful objective screening and analysis of observations are needed to determine the extent to which mixing related properties affect cloud optical properties, apart from the aerosol first indirect effect. This study addresses the role of aerosol-cloud interactions in the context of varying meteorological conditions based on ARM data obtained at the Southern Great Plains (SGP) site in Oklahoma and at Pt. Reyes, California. Previous analyses of the continental stratiform clouds at the SGP site have shown that the thicker clouds of high liquid water path (LWP) tend to contain sub adiabatic LWPs. These sub adiabatic LWPs, which result from active mixing processes, correspond to a lower susceptibility of the clouds to aerosol-cloud interactions, and, hence, to reduced aerosol indirect effects. In contrast, the consistently steady and thin maritime stratus clouds observed at Pt. Reyes are much closer to adiabatic. These clouds provide an excellent benchmark for the study of the aerosol influence on modified marine clouds relative to continental clouds, since they form in a much more homogeneous meteorological environment than those at the continental site.

  15. Numerical investigation of aerosolized drug delivery in the human lungs under mechanical ventilator conditions

    NASA Astrophysics Data System (ADS)

    Vanrhein, Timothy; Banerjee, Arindam

    2010-11-01

    Particle deposition for aerosolized drug delivery in the human airways is heavily dependent upon flow conditions. Numerical modeling techniques have proven valuable for determining particle deposition characteristics under steady flow conditions. For the case of patients under mechanical ventilation, however, flow conditions change drastically and there is an increased importance to understand particle deposition characteristics. This study focuses on mechanically ventilated conditions in the upper trachea-bronchial (TB) region of the human airways. Solution of the continuous phase flow is done under ventilator waveform conditions with a suitable turbulence model in conjunction with a realistic model of upper TB airways. A discrete phase Euler-Lagrange approach is applied to solve for particle deposition characteristics with a focus on the effect of the ventilator inlet waveform. The purpose of this study is to accurately model flow conditions in the upper TB airways under mechanically ventilated conditions with a focus on real-time patient specific targeted aerosolized drug delivery.

  16. Aerosol accumulation intensity and composition variations under different weather conditions in urban environment

    NASA Astrophysics Data System (ADS)

    Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva

    2014-05-01

    During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic

  17. Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station

    NASA Astrophysics Data System (ADS)

    Bindu, G.; Nair, Prabha R.; Aryasree, S.; Hegde, Prashant; Jacob, Salu

    2016-02-01

    Aerosol sampling was carried out at four locations in and around Cochin (9°58‧ N, 76°17‧ E), an urban area, located on the southwest coast of India. The gravimetric estimates of aerosol mass loading showed wide range from 78 μg m-3 to >450 μg m-3, occasionally reaching values >500 μg m-3, associated with regional source characteristics. Most of the values were above the air quality standard. Both boundary layer and synoptic scale airflow pattern play role in the temporal features in aerosol mass loading and chemical composition. Chemical analysis of the aerosol samples were done for anionic species viz; F-, Cl-, Br-, NO2-,   NO3-,   PO43-,   SO42- and metallic/cationic species viz; Na, Ca, K, Mg, NH4+, Fe, Al, Cu, Mg, Pb, etc using Ion Chromatography, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES). At all the locations, extremely high mass concentration of SO42- was observed with the mean value of 13±6.4 μg m-3 indicating the strong anthropogenic influence. Statistical analysis of the chemical composition data was carried out and the principal factors presented. Seasonal variation of these chemical species along with their percentage contributions and regional variations were also examined. Increase in level of Na in aerosol samples indicated the influence of monsoonal activity. Most of the species showed mass concentrations well above those measured over another coastal site Thiruvananthapuram (8°29‧ N, 76°57‧ E) situated ~220 km south of Cochin revealing the highly localized aerosol features.

  18. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  19. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings

    NASA Astrophysics Data System (ADS)

    King, S. M.; Rosenoern, T.; Shilling, J. E.; Chen, Q.; Martin, S. T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.

  20. Increased Cloud Activation Potential of Secondary Organic Aerosol for Atmospheric Mass Loadings

    SciTech Connect

    King, Stephanie M.; Rosenoern, Thomas; Shilling, John E.; Chen, Qi; Martin, Scot T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. Of possible changes in surface tension, effective molecular weight, and effective density, a sensitivity analysis implicated a decrease of up to 10% in surface tension at low mass loadings as the plausible dominant mechanism for the observed increase in CCN activity.

  1. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  2. Infection of mice by aerosols of Klebsiella pneumoniae under hyperbaric conditions.

    PubMed Central

    Heckly, R J; Chatigny, M A; Dimmick, R L

    1980-01-01

    Both the physical behavior of aerosols and survival of airborne Serratia marcescens in hyperbaric chambers with a helium-air mixture at 20 atm of pressure was approximately the same as in the system at ambient pressures. Exposure of mice to aerosols of Klebsiella pneumoniae at 1-, 2-, and 17-atm (ca. 101-, 203-, and 1,722-kPa) pressures of helium-oxygen mixture showed that the number of viable organisms constituting a 50% lethal dose was not significantly affected by the hyperbaric conditions. Images PMID:6996616

  3. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  4. Emission Controls Versus Meteorological Conditions in Determining Aerosol Concentrations in Beijing during the 2008 Olympic Games

    SciTech Connect

    Gao, Yi; Liu, Xiaohong; Zhao, Chun; Zhang, Meigen

    2011-12-12

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on August 8th-24th, 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that emission control strategy should focus on the regional scale instead of the local scale to improve the air quality over Beijing.

  5. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  6. Relative influence of meteorological conditions and aerosols on the lifetime of mesoscale convective systems.

    PubMed

    Chakraborty, Sudip; Fu, Rong; Massie, Steven T; Stephens, Graeme

    2016-07-01

    Using collocated measurements from geostationary and polar-orbital satellites over tropical continents, we provide a large-scale statistical assessment of the relative influence of aerosols and meteorological conditions on the lifetime of mesoscale convective systems (MCSs). Our results show that MCSs' lifetime increases by 3-24 h when vertical wind shear (VWS) and convective available potential energy (CAPE) are moderate to high and ambient aerosol optical depth (AOD) increases by 1 SD (1σ). However, this influence is not as strong as that of CAPE, relative humidity, and VWS, which increase MCSs' lifetime by 3-30 h, 3-27 h, and 3-30 h per 1σ of these variables and explain up to 36%, 45%, and 34%, respectively, of the variance of the MCSs' lifetime. AOD explains up to 24% of the total variance of MCSs' lifetime during the decay phase. This result is physically consistent with that of the variation of the MCSs' ice water content (IWC) with aerosols, which accounts for 35% and 27% of the total variance of the IWC in convective cores and anvil, respectively, during the decay phase. The effect of aerosols on MCSs' lifetime varies between different continents. AOD appears to explain up to 20-22% of the total variance of MCSs' lifetime over equatorial South America compared with 8% over equatorial Africa. Aerosols over the Indian Ocean can explain 20% of total variance of MCSs' lifetime over South Asia because such MCSs form and develop over the ocean. These regional differences of aerosol impacts may be linked to different meteorological conditions. PMID:27313203

  7. Relative influence of meteorological conditions and aerosols on the lifetime of mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sudip; Fu, Rong; Massie, Steven T.; Stephens, Graeme

    2016-07-01

    Using collocated measurements from geostationary and polar-orbital satellites over tropical continents, we provide a large-scale statistical assessment of the relative influence of aerosols and meteorological conditions on the lifetime of mesoscale convective systems (MCSs). Our results show that MCSs’ lifetime increases by 3-24 h when vertical wind shear (VWS) and convective available potential energy (CAPE) are moderate to high and ambient aerosol optical depth (AOD) increases by 1 SD (1σ). However, this influence is not as strong as that of CAPE, relative humidity, and VWS, which increase MCSs’ lifetime by 3-30 h, 3-27 h, and 3-30 h per 1σ of these variables and explain up to 36%, 45%, and 34%, respectively, of the variance of the MCSs’ lifetime. AOD explains up to 24% of the total variance of MCSs’ lifetime during the decay phase. This result is physically consistent with that of the variation of the MCSs’ ice water content (IWC) with aerosols, which accounts for 35% and 27% of the total variance of the IWC in convective cores and anvil, respectively, during the decay phase. The effect of aerosols on MCSs’ lifetime varies between different continents. AOD appears to explain up to 20-22% of the total variance of MCSs’ lifetime over equatorial South America compared with 8% over equatorial Africa. Aerosols over the Indian Ocean can explain 20% of total variance of MCSs’ lifetime over South Asia because such MCSs form and develop over the ocean. These regional differences of aerosol impacts may be linked to different meteorological conditions.

  8. Synoptic conditions favouring the occurrence of strong aerosol episodes over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gkikas, A.; Houssos, E. E.; Bartzokas, A.; Hatzianastassiou, N.

    2010-09-01

    The present work aims at determining the synoptic conditions that favour the occurrence of strong aerosol episodes over the broader Mediterranean basin. In a first step, an objective and dynamic algorithm was set up to identify the strong aerosol episodes, based on daily aerosol optical depth values at 550nm (AOD550nm) from MODIS-Terra satellite database over the period 2000-2007. According to the algorithm, strong aerosol episodes occurred in each geographical cell (1o x 1o spatial resolution) of the study area whenever AODmean+2STDV≤AOD550nmaerosol episodes occurred at the pixel-level over the study region. Finally, the total number of selected days with strong aerosol episodes was equal to 219. In order to study the synoptic conditions, prevailing during the days of strong aerosol episodes, the fields of geopotential height at 500mb and mean sea level pressure (SLP) taken from the NCEP/NCAR reanalysis project, were used. At first, Factor analysis (S-mode) has been applied, in order to decrease the dimensionality of the raw atmospheric field data (500hPa and SLP). In a further step, Cluster Analysis was also applied to identify/classify the prevailing atmospheric circulation types during the aerosol episodes, into 7 representative clusters. The intra-annual variation of the frequency of occurrence, for each cluster, reveals that strong aerosol episodes mostly occur during spring and summer (89%). This can be attributed either to the stable atmospheric conditions and to the small precipitation amounts (especially in summer) that lead to the accumulation of aerosol particles in the atmosphere or to the prevailing synoptic conditions

  9. Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2008-12-01

    Chamber studies of glyoxal uptake onto neutral ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. These compounds are likely to be imidazoles formed by reaction of glyoxal with the ammonium sulphate seed. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active oxidative photochemistry, similar to that found in cloud processing, was found to occur within aerosol during irradiated experiments. Organosulphates, carboxylic acids, and organic esters were identified within the aerosol. Our study suggests that both C-N compound formation and photochemical processes should be considered in models of secondary organic aerosol formation via glyoxal.

  10. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load

    NASA Astrophysics Data System (ADS)

    Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Schebeske, G.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Kolle, O.; Ciccioli, P.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O.

    2010-05-01

    As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by total aerosol number concentration (CN) and cloud condensation nuclei (CCN) concentrations, and light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios in the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h-1. Within the plume core, aerosol concentrations were strongly enhanced, with ΔCN/ΔCO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. ΔCN/ΔCO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 ± 12%) of the plume particles were

  11. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load

    NASA Astrophysics Data System (ADS)

    Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Schebeske, G.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Kolle, O.; Ciccioli, P.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O.

    2010-10-01

    As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h-1. Within the plume core, aerosol concentrations were strongly enhanced, with ΔCN/ΔCO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. ΔCN/ΔCO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16±12%) of the plume particles were CCN

  12. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  13. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  14. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-02-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps) are here revisited in view to reconstruct past aerosol load of the free European troposphere from prior World War II to present. The extended array of inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, HUmic LIke Substances, dissolved organic carbon, water insoluble organic carbon, and black carbon) compounds and fractions already investigated permit to examine the overall aerosol composition and its change over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). It is shown that not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarii dealing with climate forcing by atmospheric aerosol.

  15. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-07-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.

  16. Identification of columnar aerosol types under high aerosol optical depth conditions for a single AERONET site in Korea

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung; Holben, B. N.

    2016-02-01

    Dominant aerosol types were classified using level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET) site in Korea for the period 1999-2007. The aerosol types were mineral dust (MD), MD mixed with carbon, and black carbon mixed coarse particles (BCCP) for coarse mode aerosols, black carbon (BC), organic carbon (OC), and secondary inorganic ions (SII) for fine mode aerosols, and mixed particles between. The classification was carried out using a clustering method based on parameters, including single scattering albedo (SSA), absorption Angstrom exponent (AAE), and fine mode volume fraction (FMVF). Among the seven aerosol types, MD was distinct, with the highest AAE and a very low FMVF and SII with the highest SSA and FMVF. BCCP was introduced to designate coarse particles mixed with BC, of which the AAE was lower than 1, despite a low FMVF. In addition to a large difference in AAE between BC and OC, the SSA of OC was larger than that of BC, indicating the effects of the white smoke produced from the smoldering phase of biomass burning. Monthly variations of the aerosol types were well interpreted by meteorology and emissions and coincided with those in the previous studies. Applying our results to well-characterized global AERONET sites, we confirmed that the aerosol types at Anmyon were valid at other sites. However, the results also showed that the mean properties for aerosol types were influenced by the specific aerosols prevalent at the study sites.

  17. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  18. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  19. Calculation of Rotor Performance and Loads Under Stalled Conditions

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo

    2003-01-01

    Rotor behavior in stalled conditions is investigated using wind tunnel test data of a l/l0-scale CH-47B/C type rotor, which provides a set of test conditions extending from unstalled to light stall to some deep stall conditions over a wide range of advance ratios. The rotor performance measured in the wind tunnel is similar to the main rotor performance measured during the NASA/Army UH-60A Airloads Program, although the two rotors are quite different. The analysis CAMRAD II has been used to predict the rotor performance and loads. Full-scale airfoil test data are corrected for Reynolds number effects for comparison with the model-scale rotor test. The calculated power coefficient shows good correlation with the measurements below stall with the Reynolds number-corrected airfoil table. Various dynamic stall models are used in the calculations. The Boeing model shows the lift augmentation at low advance ratios and the Leishman-Beddoes model shows better correlation of torsion moment than the other models at mu = 0.2. However, the dynamic stall models, in general, show only a small influence on the rotor power and torsion moment predictions especially at higher advance ratios.

  20. Comment on "Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport".

    PubMed

    Fromm, Michael; Nedoluha, Gerald; Charvát, Zdenek

    2013-02-01

    Bourassa et al. (Reports, 6 July 2012, p. 78) report on the 13 June 2011 eruption of the Nabro volcano and satellite observations of stratospheric aerosol that they attribute to troposphere to stratosphere ascent via the Asian monsoon. They claim (citing another source) that the 13 June top injection height was well below the tropopause. We will show that the 13 June Nabro eruption plume was clearly stratospheric and contained both volcanic gases and aerosols. Moreover, we will show height-resolved stratospheric sulfur dioxide and volcanic aerosol enhancements 1 to 3 days old, unaffected by the Asian monsoon, precisely connected to the volcano. The observed stratospheric aerosols and gases are fully explained by the 13 June eruption and do not require a monsoon vehicle. PMID:23393246

  1. Spinning Reserve from Hotel Air Conditioning Load - SHORT VERSION

    SciTech Connect

    Kueck, John D; Kirby, Brendan J

    2008-01-01

    Even though preliminary tests were not conducted during times of highest system or hotel loading during the summer, they showed that hotel load can be curtailed by 22 to 37 percent depending on the outdoor temperature and time of day. Full response occurred in 12 to 60 seconds from when the system operator's command to shed load was issued and the load drop was very rapid.

  2. Desert dust in rural western US; the influence of dust storms, large particles, and land-use change on aerosol loads

    NASA Astrophysics Data System (ADS)

    Parks, D.; MacDonald, A. E.; Rosen, R. D.; Edmonds, H. N.; Key, E.; Swanberg, N.; Wiseman, W. J.; Sandgathe, S. A.; Neff, J. C.; Fernandez, D.; Munson, S.; Reynolds, R. L.

    2011-12-01

    Atmospheric aerosols are common in urban settings as well as dryland rural environments and are important to both climate and biogeochemical cycling. Most urban and far traveled aerosols are less than 10 micrometers in diameter with many particles in the less than 2.5 or 1 micrometer-size classes. Small aerosols, including many generated by industrial activity, are the focus of federal environmental law and have a major impact on human health. In rural areas of the western US, however, these small industrially derived particles appear to make up a small part of the overall aerosol load. Rather, dust in the rural West is dominated by mineral aerosols including a large amount of particles that range in size from 10 to 40 microns. These particles can travel for hundreds of kilometers, particularly during periods when dust storms are common. In the dusty spring and summer periods in and around Canyonlands and Mesa Verde National Parks, large particles (particles greater than 10 micrometers in diameter) appear to contribute between 50 and 90% to the overall particle load several meters above the ground. During large dust storms, concentrations of total suspended particulates increase by a factor of 8 to 10 while particles less than 10 micrometers in diameter are minimally affected. The presence of large particles in the atmosphere of the rural West is notable for several reasons. First, the majority of the existing aerosol monitoring networks focus on the small particle-size classes of less than 2.5 and 10 microns. Because many aerosol-collection instruments are designed with specific particle-size cutoff criteria, these instruments and the networks that depend on them are effectively blind to the larger particles that can dominate aerosol loads in the West. Second, for large portions of the year including the spring and summer months when dust storms are common, large particles likely play a major role in visibility restrictions across the protected airsheds of the

  3. [Effect of weather condition on the aerosol scattering property at Shangdianzi].

    PubMed

    Zhao, Xiu-Juan; Zhang, Xiao-Ling; Pu, Wei-Wei; Meng, Wei

    2011-11-01

    A study on the effect of weather condition on the aerosol scattering property has been carried out using one year measurement data sets of aerosol scattering coefficient (ASC) and meteorological parameters at Shangdianzi (SDZ). The results showed that the ASC was highest in haze-fog day with 608.4 Mm(-1) and higher in fog day with 500.6 Mm(-1) and haze day with 423.7 Mm (-1) those were 6.4-9.2 times higher than the ASC in normal day. The ASC was highest in summer in all kinds of weather conditions. The lower ASC in fog day and haze-fog day was observed in autumn and winter, respectively. There was no evident difference of the ASC between other three seasons in haze day and normal day. Pronounced seasonal variation of the mass scattering efficiency (MSE) of PM2.5 was observed in fog day with the highest value in summer. Significant diurnal variations in ASC were observed in haze-fog day and normal day with a unimodal pattern and a bimodal pattern, respectively. The wind was the most important factor for the ASC at SDZ. The transport of aerosol particles by the strong southwest wind should be responsible for the higher level of ASC in SDZ area and regional scale in low visibility weather conditions. The northeast wind was favourable to the reduction of ASC, especially in normal day.

  4. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  5. Implications of MODIS impression of aerosol loading over urban and rural settlements in Nigeria: Possible links to energy consumption patterns in the country

    NASA Astrophysics Data System (ADS)

    Dom Onyeuwaoma, Nnaemeka

    2016-07-01

    A study of aerosol loading patterns in some selected cities in Nigeria was carried out using MODIS, TOMS/OMI AND AIRS satellite imageries for a period of 10 years. The results showed that an aerosol optical depth (AOD) loading obtained ranged from 0.02-0.9, UV aerosol index (AI) and carbon monoxide (CO) results ranged from 1.32- 2.43 and 2.22-2.6 molecule/cm2, respectively. The CO data was used to infer the presence of carbonecous aerosols from biomass, fossil combustion and industrial activities. This result indicates that areas with higher AOD and AI do not correspond in high CO loading. From the HYSPLIT and HAT analysis conducted it showed that advection plays important role in the dispersion of aerosols. This implies that aerosols can reside in a place remote from where they are generated. Also, the high concentration of CO aerosol in the southern cities suggests a high rate of industrial pollution as a result of fossil fuel burning, vehicular emissions, high population density and gas flaring. Therefore, emphasis should be on the need to switch to renewable energy options as an alternative to fossil fuel. Furthermore, plans for mitigations should not be limited to industrialized cities only but extended to other cities which might be bearing the real brunt of industrial emissions as shown in this work.

  6. Supersonic jet deposition of silver nanoparticle aerosols: Correlations of impact conditions and film morphologies

    SciTech Connect

    Huang, Chong; Nichols, William T.; O'Brien, Daniel T.; Becker, Michael F.; Kovar, Desiderio; Keto, John W.

    2007-03-15

    We describe experiments and modeling for the deposition of silver lines and films via the impaction of a silver nanoparticle aerosol delivered through a supersonic jet. The aerosol gas dynamics of the jet flow field, nanoparticle acceleration in the jet, and deposition by impaction onto the substrate were modeled for both a flat-plate nozzle and for a conical nozzle designed to obtain higher impaction velocities. We modeled nanoparticle dynamics for He, Ar, and N{sub 2} gasses, all initially at room temperature and 1 atm pressure, flowing through a 250 {mu}m orifice into vacuum with a pressure ratio of {approx}5000. Experiments were conducted to deposit silver nanoparticle aerosols under the same conditions as were modeled. The silver nanoparticles were generated by laser ablation of a flowing microparticle aerosol entrained in either He or Ar that produced nanoparticles 5-10 and 15-20 nm in diameter, respectively. Deposition was made onto an unheated substrate in vacuum. The morphology of the deposited films was determined by scanning electron microscope cross-section images and crystallite size was determined by x-ray diffraction analysis. The morphological features and crystallite size were correlated with the nanoparticle impaction velocity and impaction energy derived from the model. We found that, for a given gas type, the size of the grains and morphological features within the impacted films were similar to the size of the nanoparticles from which the films were formed. The density and the degree of consolidation of the films were highly dependent on the nanoparticle impaction velocity/energy and were highest for helium. Control of film morphology, grain size, and film density during supersonic impaction of nanoparticle aerosols are discussed in light of these results.

  7. Climatology of columnar aerosol properties and the influence of synoptic conditions: First-time results from the northeastern region of India

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Krishna Moorthy, K.; Babu, S. Suresh; Bhuyan, Pradip K.

    2009-04-01

    Six years of spectral aerosol optical depths (AODs), from the northeastern part of India (Dibrugarh), are used to evolve a climatology for this region. The results indicate that the seasonal mean AODs at 500 nm go as high as 0.45 ± 0.05 during premonsoon season (March to May), decrease gradually through the monsoon (June to September) to reach the lowest value of 0.19 ± 0.06 during the retreating-monsoon season (October and November), and increase to 0.31 ± 0.04 in winter (December to February). The AOD spectra are generally flatter than those seen typically over continental sites of India (and elsewhere in the neighboring regions) with Ångström exponent α remaining below 1.0 during February through August, indicating a relatively low abundance of fine and accumulation mode aerosols. The columnar size distributions (CSD) retrieved from spectral AODs are, in general, bimodal with primary mode at ˜ 0.1 μm and secondary mode at ˜ 1.0 μm. High mass loading (˜309.5 ± 65.9 mg m-2) and effective radius (˜0.40 ± 0.09 μm) occur during premonsoon and are attributed to significant abundance of coarse (natural) aerosols. Cluster analysis of air mass back trajectories indicate significant transport of mineral dust from the arid regions of west Asia and northwest India across the Indo-Gangetic plains and marine aerosols advected from the Bay of Bengal contributing largely to the coarse mode aerosols during this season. On the other hand, the peculiar topography combined with the local conditions and the widespread rainfall lead to a more pristine environment during retreating-monsoon season with quite low AODs and columnar loading.

  8. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.

    PubMed

    Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven

    2015-12-01

    Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results.

  9. Investigation of biomass burning and aerosol loading and transport in South America utilizing geostationary satellites

    NASA Technical Reports Server (NTRS)

    Menzel, Paul; Prins, Elaine

    1995-01-01

    This study attempts to assess the extent of burning and associated aerosol transport regimes in South America and the South Atlantic using geostationary satellite observations, in order to explore the possible roles of biomass burning in climate change and more directly in atmospheric chemistry and radiative transfer processes. Modeling and analysis efforts have suggested that the direct and indirect radiative effects of aerosols from biomass burning may play a major role in the radiative balance of the earth and are an important factor in climate change calculations. One of the most active regions of biomass burning is located in South America, associated with deforestation in the selva (forest), grassland management, and other agricultural practices. As part of the NASA Aerosol Interdisciplinary Program, we are utilizing GOES-7 (1988) and GOES-8 (1995) visible and multispectral infrared data (4, 11, and 12 microns) to document daily biomass burning activity in South America and to distinguish smoke/aerosols from other multi-level clouds and low-level moisture. This study catalogues the areal extent and transport of smoke/aerosols throughout the region and over the Atlantic Ocean for the 1988 (July-September) and 1995 (June-October) biomass burning seasons. The smoke/haze cover estimates are compared to the locations of fires to determine the source and verify the haze is actually associated with biomass burning activities. The temporal resolution of the GOES data (half-hourly in South America) makes it possible to determine the prevailing circulation and transport of aerosols by considering a series of visible and infrared images and tracking the motion of smoke, haze and adjacent clouds. The study area extends from 40 to 70 deg W and 0 to 40 deg S with aerosol coverage extending over the Atlantic Ocean when necessary. Fire activity is estimated with the GOES Automated Biomass Burning Algorithm (ABBA). To date, our efforts have focused on GOES-7 and GOES-8 ABBA

  10. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2011-05-01

    Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dynamics, the deposition of 1- and 3-μm aerosol particles was predicted in models of human alveolar sac and terminal acinar bifurcation under rhythmic wall motion for two breathing conditions (functional residual capacity = 3 liter, tidal volume = 0.5 and 0.9 liter, breathing period = 4 s). Particles entering the model during one inspiration period were tracked for multiple breathing cycles until all particles deposited or escaped from the model. Flow recirculation inside alveoli occurred only during transition between inspiration and expiration and accounted for no more than 1% of the whole cycle. Weak flow irreversibility and convective transport were observed in both models. The average deposition efficiency was similar for both breathing conditions and for both models. Under normal gravity, total deposition was ~33 and 75%, of which ~67 and 96% occurred during the first cycle, for 1- and 3-μm particles, respectively. Under zero gravity, total deposition was ~2-5% for both particle sizes. These results support previous findings that gravitational sedimentation is the dominant deposition mechanism for micrometer-sized aerosols in acinar airways. The results also showed that moving walls and multiple breathing cycles are needed for accurate estimation of aerosol deposition in acinar airways.

  11. Comparison of the impact of volcanic eruptions and aircraft emissions on the aerosol mass loading and sulfur budget in the stratosphere

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Poole, Lamont R.

    1992-01-01

    Data obtained by the Stratospheric Aerosol and Gas Experiment (SAGE) 1 and 2 were used to study the temporal variation of aerosol optical properties and to assess the mass loading of stratospheric aerosols from the eruption of volcanos Ruiz and Kelut. It was found that the yearly global average of optical depth at 1.0 micron for stratospheric background aerosols in 1979 was 1.16 x 10(exp -3) and in 1989 was 1.66 x 10(exp -3). The eruptions of volcanos Ruiz and Kelut ejected at least 5.6 x 10(exp 5) and 1.8 x 10(exp 5) tons of materials into the stratosphere, respectively. The amount of sulfur emitted per year from the projected subsonic and supersonic fleet is comparable to that contained in the background aerosol particles in midlatitudes from 35 deg N to 55 deg N.

  12. Buildup of Aerosol Loading over the Indian Ocean during the Monsoon Transition

    NASA Astrophysics Data System (ADS)

    Corrigan, C.; Ramanathan, V.; Schauer, J. J.; Carmichael, G.

    2005-12-01

    In recent years, black carbon has been recognized to significantly affect radiative forcing and global climate change. The Atmospheric Brown Cloud project (ABC-Asia) has focused on measuring the anthropogenic influence of aerosols, including black carbon, to determine the extent of sunlight dimming and radiative forcing over the Asian region. The first station in the ABC network is located in the Republic of Maldives, which is located in the Indian Ocean near the southern tip of India. The presence of black carbon over the Indian Ocean varies with the cyclic nature of the Asian-Australian Monsoon. Every 6 months, the winds change directions. From May to October, the wet season brings clean air into the region from the southern hemisphere. Conversely, the dry season brings polluted air from the Indian subcontinent and South East Asia from November thru April. As a result, the region becomes charged with black carbon and other anthropogenic pollutants during the dry season. During 2004, the transition between the clean and polluted seasons resulted in nearly a 10 fold increase of scattering and absorbing aerosols. The change occurred very abruptly over a period of a few days as air from India and South East Asia arrived in the Maldives at the surface level. The new, polluted aerosol was characteristically darker since the black carbon increased more substantially than the overall aerosol scattering. As a result, the single scatter albedo was reduced from an average of 0.98 to 0.92. In addition, aerosol particles were collected using filter samplers and the aerosol composition and mass were obtained. Observed results have been compared to the CFORS regional model and show good agreement for trends and concentrations.

  13. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    NASA Technical Reports Server (NTRS)

    Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.

  14. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  15. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... transient dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b... Administration 14 CFR Part 25 Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... load imposed by sudden engine stoppage. These special conditions pertain to their effects on...

  16. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  17. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  18. Long-term visibility variation in Athens (1931-2013): a proxy for local and regional atmospheric aerosol loads

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Kazadzis, Stelios; Mihalopoulos, Nikolaos; Gerasopoulos, Evangelos; Lianou, Maria; Raptis, Panagiotis I.

    2016-09-01

    This study explores the interdecadal variability and trends of surface horizontal visibility at the urban area of Athens from 1931 to 2013, using the historical archives of the National Observatory of Athens (NOA). A prominent deterioration of visibility in the city was detected, with the long-term linear trend amounting to -2.8 km decade-1 (p < 0.001), over the entire study period. This was not accompanied by any significant trend in relative humidity or precipitation over the same period. A slight recovery of visibility levels seems to be established in the recent decade (2004-2013). It was found that very good visibility (> 20 km) occurred at a frequency of 34 % before the 1950s, while this percentage drops to just 2 % during the decade 2004-2013. The rapid impairment of the visual air quality in Athens around the 1950s points to the increased levels of air pollution on a local and/or regional scale, related to high urbanization rates and/or increased anthropogenic emissions on a global scale at that period. Visibility was found to be negatively/positively correlated with relative humidity/wind speed, the correlation being statistically valid at certain periods. Wind regime and mainly wind direction and corresponding air mass origin were found to highly control visibility levels in Athens. The comparison of visibility variation in Athens and at a non-urban reference site on Crete island revealed similar negative trends over the common period of observations. This suggests that apart local sources, visibility in Athens is highly determined by aerosol load of regional origin. AVHRR and MODIS satellite-derived aerosol optical depth (AOD) retrievals over Athens and surface measurements of PM10 confirmed the relation of visibility to aerosol load.

  19. Columnar and surface aerosol load over the Iberian Peninsula establishing annual cycles, trends, and relationships in five geographical sectors.

    PubMed

    Mateos, D; Cachorro, V E; Toledano, C; Burgos, M A; Bennouna, Y; Torres, B; Fuertes, D; González, R; Guirado, C; Calle, A; de Frutos, A M

    2015-06-15

    The study of atmospheric aerosol load over the Iberian Peninsula (IP) under a climatological perspective is accomplished by means of PM10 and AOD440 nm measurements from EMEP and AERONET networks, respectively, in the period 2000-2013. The PM10 annual cycles in five Iberian sectors show a main maximum in summer and a secondary maximum in spring, which is only observed in the southern area for the AOD climatology. The characteristics of PM10-AOD annual cycles of each geographical sector are explained by the different climatology of the air mass origins and their apportioning. The two magnitudes are correlated with a factor ranging between 20 and 90 depending on the sector. The temporal evolution of the aerosol load has shown a notable decrease in the IP since the 1980s. Statistically significant trends are obtained in the Northeastern sector with a reduction of 26% (period 1985-2000) for the total suspended particles, which continues for the PM10 data with a value of 35% per decade (2001-2013), and also in the whole column, 61% per decade in the AOD440 nm (2004-2013).

  20. Columnar and surface aerosol load over the Iberian Peninsula establishing annual cycles, trends, and relationships in five geographical sectors.

    PubMed

    Mateos, D; Cachorro, V E; Toledano, C; Burgos, M A; Bennouna, Y; Torres, B; Fuertes, D; González, R; Guirado, C; Calle, A; de Frutos, A M

    2015-06-15

    The study of atmospheric aerosol load over the Iberian Peninsula (IP) under a climatological perspective is accomplished by means of PM10 and AOD440 nm measurements from EMEP and AERONET networks, respectively, in the period 2000-2013. The PM10 annual cycles in five Iberian sectors show a main maximum in summer and a secondary maximum in spring, which is only observed in the southern area for the AOD climatology. The characteristics of PM10-AOD annual cycles of each geographical sector are explained by the different climatology of the air mass origins and their apportioning. The two magnitudes are correlated with a factor ranging between 20 and 90 depending on the sector. The temporal evolution of the aerosol load has shown a notable decrease in the IP since the 1980s. Statistically significant trends are obtained in the Northeastern sector with a reduction of 26% (period 1985-2000) for the total suspended particles, which continues for the PM10 data with a value of 35% per decade (2001-2013), and also in the whole column, 61% per decade in the AOD440 nm (2004-2013). PMID:25770951

  1. Investigation of Techniques to Improve Continuous Air Monitors Under Conditions of High Dust Loading in Environmental Settings

    SciTech Connect

    Suilou Huang; Stephen D. Schery; John C. Rodgers

    2002-07-23

    A number of DOE facilities, such as the Los Alamos National Laboratory (LANL) and the Waste Isolation Pilot Plant (WIPP), use alpha-particle environmental continuous air monitors (ECAMs) to monitor air for unwanted releases of radioactive aerosols containing such materials as plutonium and uranium. High sensitivity, ease of operation, and lack of false alarms are all important for ECAMs. The object of the project was to conduct investigations to improve operation of ECAMs, particularly under conditions where a lot of nonradioactive dust may be deposited on the filters (conditions of high dust loading). The presence of such dust may increase the frequency with which filters must be changed and can lead to an increased incidence of false alarms due to deteriorated energy resolution and response specificity to the radionuclides of interest. A major finding of the investigation, not previously documented, was that under many conditions thick layers of underlying nonradioactive dust do not decrease energy resolution and specificity for target radionuclides if the radioactive aerosol arrives as a sudden thin burst deposit, as commonly occurs in the early-warning alarm mode. As a result, operators of ECAMs may not need to change filters as often as previously thought and have data upon which to base more reliable operating procedures.

  2. Vegetation fires in the himalayan region - Aerosol load, black carbon emissions and smoke plume heights

    NASA Astrophysics Data System (ADS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Giglio, Louis; Badarinath, K. V. S.; Vermote, Eric; Justice, Chris; Lau, William K. M.

    2012-02-01

    In this study, we investigate the potential of multi-satellite datasets for quantifying the biomass burning emissions from the Himalayan region. A variety of satellite products were used for characterizing fire events including active fire counts, burnt areas, aerosol optical depth (AOD) variations, aerosol index and smoke plume heights. Results from the MODerate-resolution Imaging Spectroradiometer (MODIS) fire product suggest March-June as the major fire season with the peak during the April. An average of 3908 fire counts per year were recorded with sixty four percent of the fires occurring in the low elevation areas in the Himalayan Region. We estimate average burnt areas of 1129 sq. km, with the black carbon emissions of 431 Mg, per year. The mean AOD (2005-2010) was 0.287 ± 0.105 (one sigma) with peak values in May. Correlation analysis between the fire counts and AOD resulted in a Pearson correlation coefficient of 0.553; the correlation between the FRP and AOD is relatively weaker ( r = 0.499). Planetary boundary layer height retrieved from the Modern Era Retrospective-Analysis For Research And Applications (MERRA) product suggests typical PBL height of 1000-1200 m during the April-May peak biomass burning season. Cloud-Aerosol Lidar Orthogonal Polarisation (CALIOP) retrievals show the extent of smoke plume heights beyond the planetary boundary layer during the peak biomass burning month of April. However, comparison of fires in the Himalayan region with other regions and comparisons to aerosol index data from the Ozone Monitoring Instrument (OMI) suggest smoke plumes reaching less than 3 km. Our results on fires and smoke plume height relationships provide valuable information for addressing aerosol transport in the region.

  3. 14 CFR 23.485 - Side load conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... positions. (b) The limit vertical load factor must be 1.33, with the vertical ground reaction divided... reaction divided between the main wheels so that— (1) 0.5 (W) is acting inboard on one side; and (2)...

  4. Experimental characterization of materials subjected to combined loading conditions

    NASA Astrophysics Data System (ADS)

    Andrusca, L.; Goanta, V.; Barsanescu, P. D.; Savin, A.

    2016-08-01

    In real life experience, machine and structure elements are subjected to complex loading history. Combined loading testes facilitate the understanding of materials behavior subjected to multiaxial stress state. In this paper are presented experimental investigations used to evaluate the influence of an initial type of loading on material properties which will be subsequently tested through another load type. Initial tests are tension tests, by different elongations, and subsequent tests are torsion tests, until break. Circular cross section specimens will be used in these tests. Tension tests have been performed on a universal testing machine. Subsequently torsion tests have been conducted through an attachable device. It was found that the energy associated with plastic deformation obtained by subsequent torsional tests has the dominant influence on the material total plastic energy, although initial test was tension.

  5. Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions

    SciTech Connect

    Goldsborough, S.S.; Johnson, M.V.; Zhu, G.S.; Aggarwal, S.K.

    2011-01-15

    Wet compression of a fuel aerosol has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The use of high concentration aerosols (e.g., {proportional_to}0.1 mL{sub fuel}/L{sub gas}, {proportional_to}1 x 10{sup 9} droplets/L{sub gas} for stoichiometric fuel loading at ambient conditions) can result in droplet-droplet interactions which lead to significant gas-phase fuel saturation and evaporative cooling during the volumetric compression process. In addition, localized stratification (i.e., on the droplet scale) of the fuel vapor and of temperature can lead to non-homogeneous reaction and heat release processes - features which could prevent adequate segregation of the underlying chemical kinetic rates from rates of physical transport. These characteristics are dependent on many factors including physical parameters such as overall fuel loading and initial droplet size relative to the compression rate, as well as fuel and diluent properties such as the boiling curve, vaporization enthalpy, heat capacity, and mass and thermal diffusivities. This study investigates the physical issues, especially fuel saturation and evaporative cooling effects, using a spherically-symmetric, single-droplet wet compression model. n-Dodecane is used as the fuel with the gas containing 21% O{sub 2} and 79% N{sub 2}. An overall compression time and compression ratio of 15.3 ms and 13.4 are used, respectively. It is found that smaller droplets (d{sub 0}{proportional_to} 2-3 {mu}m) are more affected by 'far-field' saturation and cooling effects, while larger droplets (d{sub 0}{proportional_to} 14 {mu}m) result in greater localized stratification of the gas-phase due to the larger diffusion distances for heat and mass transport. Vaporization of larger droplets is more affected by the volumetric compression process since evaporation requires more time to be completed

  6. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Haylett, D. R.; Davidson, D. F.; Hanson, R. K.

    2016-07-01

    This article introduces an algorithm that determines the thermodynamic conditions behind incident and reflected shocks in aerosol-laden flows. Importantly, the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component-fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm's calculations given typical experimental uncertainties.

  7. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.

    PubMed

    Joe, Yun Haeng; Park, Dae Hoon; Hwang, Jungho

    2016-01-15

    In this study, the effect of dust loading on the anti-viral ability of an anti-viral air filter was investigated. Silver nanoparticles approximately 11 nm in diameter were synthesized via a spark discharge generation system and were used as anti-viral agents coated onto a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter against aerosolized bacteriophage MS2 virus particles were tested with dust loading. The filtration efficiency and pressure drop increased with dust loading, while the anti-viral ability decreased. Theoretical analysis of anti-viral ability with dust loading was carried out using a mathematical model based on that presented by Joe et al. (J. Hazard. Mater.; 280: 356-363, 2014). Our model can be used to compare anti-viral abilities of various anti-viral agents, determine appropriate coating areal density of anti-viral agent on a filter, and predict the life cycle of an anti-viral filter. PMID:26434534

  8. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  9. Influence of Aerosol Chemical Composition on Heterogeneous Ice Formation under Mid-Upper Troposphere Conditions

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Niemand, M.; Saathoff, H.; Möhler, O.; Chou, C.; Abbatt, J.; Stetzer, O.

    2011-12-01

    Aerosols are involved in cooling/warming the atmosphere directly via interaction with incoming solar radiation (aerosol direct effect), or via their ability to act as cloud condensation or ice nuclei (IN) and thus play a role in cloud formation (indirect effect). In particular, the physical properties of aerosols such as size and solubility and chemical composition can influence their behavior and fate in the atmosphere. Ice nucleation taking place via IN is termed as heterogeneous ice nucleation and can take place with via deposition (ice forming on IN directly from the vapor phase), condensation/immersion (freezing via formation of the liquid phase on IN) or condensation (IN colliding with supercooled liquid drops). This presentation shows how the chemical composition and surface area of various tropospherically relevant aerosols influence conditions of temperature (T) and relative humidity (RH) required for heterogeneous ice formation conditions in the mid-upper troposphere regime (253 - 220K)? Motivation for this comes first from, the importance of being able to predict ice formation accurately so as to understand the hydrological cycle since the ice is the primary initiator of precipitation forming clouds. Second, the tropospheric budget of water vapour, an especially active greenhouse gas is strongly influenced by ice nucleation and growth. Third, ice surfaces in the atmosphere act as heterogeneous surfaces for chemical reactions of trace gases (e.g., SO2, O3, NOx and therefore being able to accurately estimate ice formation rates and quantify ice surface concentrations will allow a more accurate calculation of trace gas budgets in the troposphere. Ice nucleation measurements were conducted using a self-developed continuous flow diffusion chamber and static chamber. A number of tropospherically relevant particulates with naturally-varying and laboratory-modified surface chemistry/structure were investigated for their ice formation efficiency based on highest

  10. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization.

    PubMed

    Parumasivam, Thaigarajan; Leung, Sharon S Y; Quan, Diana Huynh; Triccas, Jamie A; Britton, Warwick J; Chan, Hak-Kim

    2016-06-10

    Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake. PMID:27049049

  11. Distinct loading conditions reveal various patterns of right ventricular adaptation.

    PubMed

    Borgdorff, Marinus A J; Bartelds, Beatrijs; Dickinson, Michael G; Steendijk, Paul; de Vroomen, Maartje; Berger, Rolf M F

    2013-08-01

    Right ventricular (RV) failure due to chronically abnormal loading is a main determinant of outcome in pulmonary hypertension (PH) and congenital heart disease. However, distinct types of RV loading have been associated with different outcomes. To determine whether the adaptive RV response depends on loading type, we compared hemodynamics, exercise, and hypertrophy in models of pressure overload due to pulmonary artery banding (PAB), pressure overload due to PH, combined pressure and volume overload, and isolated volume load. Ninety-four rats were subjected to either PAB, monocrotaline-induced PH (PH), aortocaval shunt (shunt), or combined monocrotaline and aortocaval shunt (PH + shunt). We performed pressure-volume analysis and voluntary exercise measurements at 4 wk. We compared PAB to PH (part I) and PH + shunt to either isolated PH or shunt (part II). In part I, enhanced contractility (end-systolic elastance and preload recruitable stroke work) was present in PH and PAB, but strongest in PAB. Frank-Starling mechanism was active in both PAB and PH. In PAB this was accompanied by diastolic dysfunction (increased end-diastolic elastance, relaxation constant), clinical signs of RV failure, and reduced exercise. These distinct responses were not attributable to differences in hypertrophy. In part II, in PH + shunt the contractility response was blunted compared with PH, which caused pseudonormalization of parameters. Additional volume overload strongly enhanced hypertrophy in PH. We conclude that different types of loading result in distinct patterns of RV adaptation. This is of importance for the approach to patients with chronically increased RV load and for experimental studies in various types of RV failure.

  12. Effect of operation conditions of the drop-on-demand aerosol generator on aerosol characteristics: Pseudo-cinematographic and plasma mass spectrometric studies

    NASA Astrophysics Data System (ADS)

    Orlandini v. Niessen, Jan O.; Krone, Karin M.; Bings, Nicolas H.

    2014-02-01

    The recently presented drop-on-demand (DOD) aerosol generator overcomes some of the drawbacks of pneumatic nebulization, as its aerosol is no longer generated by gas-liquid interaction. In the current study, an advanced imaging technique is presented, based on a CCD camera equipped with magnifying telecentric optics to allow for fast, automated and precise aerosol characterization as well as fundamental studies on the droplet generation processes by means of pseudo-cinematography. The DOD aerosol generator is thoroughly characterized regarding its droplet size distribution, which shows few distinct populations rather than a continuous distribution. Other important figures, such as the Sauter diameter (D3,2) of 22 μm and the span of 0.4 were also determined. Additionally, the influence of the electrical operation conditions of the dosing device on the aerosol generation process is described. The number and volume of the generated droplets were found to be very reproducible and user-variable, e.g. from 17 to 27 μm (D3,2), within a span of 0.07-0.89. The performances of different setups of the DOD as liquid sample introduction system in ICP-MS are correlated to the respective achievable aerosol characteristics and are also compared to the performance of a state-of-the-art μ-flow nebulizer (EnyaMist). The DOD system allowed for improved sensitivity, but slightly elevated signal noise and overall comparable limits of detection. The results are critically discussed and future directions are outlined.

  13. 14 CFR 23.473 - Ground load conditions and assumptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... descent velocity) allowed under paragraphs (b) and (c) of this section. (b) The design landing weight may... velocity (V), in feet per second, equal to 4.4 (W/S)1/4, except that this velocity need not be more than 10... are made to determine the limit load factor corresponding to the required limit descent...

  14. 14 CFR 23.473 - Ground load conditions and assumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... descent velocity) allowed under paragraphs (b) and (c) of this section. (b) The design landing weight may... velocity (V), in feet per second, equal to 4.4 (W/S)1/4, except that this velocity need not be more than 10... are made to determine the limit load factor corresponding to the required limit descent...

  15. 14 CFR 23.473 - Ground load conditions and assumptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... descent velocity) allowed under paragraphs (b) and (c) of this section. (b) The design landing weight may... velocity (V), in feet per second, equal to 4.4 (W/S)1/4, except that this velocity need not be more than 10... are made to determine the limit load factor corresponding to the required limit descent...

  16. 14 CFR 23.473 - Ground load conditions and assumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... descent velocity) allowed under paragraphs (b) and (c) of this section. (b) The design landing weight may... velocity (V), in feet per second, equal to 4.4 (W/S)1/4, except that this velocity need not be more than 10... are made to determine the limit load factor corresponding to the required limit descent...

  17. The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation

    NASA Astrophysics Data System (ADS)

    Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A. S. H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; Hansen, A. D. A.

    2014-09-01

    Aerosol black carbon is a unique primary tracer for combustion emissions. It affects the optical properties of the atmosphere and is recognized as the second most important anthropogenic forcing agent for climate change. It is the primary tracer for adverse health effects caused by air pollution. For the accurate determination of mass equivalent black carbon concentrations in the air and for source apportionment of the concentrations, optical measurements by filter-based absorption photometers must take into account the "filter loading effect". We present a new real-time loading effect compensation algorithm based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer model AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier Aethalometer models, and other filter-based absorption photometers. The real-time loading effect compensation algorithm provides the high-quality data necessary for real-time source apportionment, and for determination of the temporal variation of the compensation parameter k.

  18. The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation

    NASA Astrophysics Data System (ADS)

    Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A. S. H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; Hansen, A. D. A.

    2015-05-01

    Aerosol black carbon is a unique primary tracer for combustion emissions. It affects the optical properties of the atmosphere and is recognized as the second most important anthropogenic forcing agent for climate change. It is the primary tracer for adverse health effects caused by air pollution. For the accurate determination of mass equivalent black carbon concentrations in the air and for source apportionment of the concentrations, optical measurements by filter-based absorption photometers must take into account the "filter loading effect". We present a new real-time loading effect compensation algorithm based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer model AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier Aethalometer models and other filter-based absorption photometers. The real-time loading effect compensation algorithm provides the high-quality data necessary for real-time source apportionment and for determination of the temporal variation of the compensation parameter k.

  19. Diffusion loading and drug delivery characteristics of alginate gel microparticles produced by a novel impinging aerosols method.

    PubMed

    Hariyadi, Dewi M; Lin, Sharon Chien-Yu; Wang, Yiwei; Bostrom, Thor; Turner, Mark S; Bhandari, Bhesh; Coombes, Allan G A

    2010-12-01

    Microencapsulation of a hydrophilic active (gentamicin sulphate (GS)) and a hydrophobic non-steroidal anti-inflammatory drug (ibuprofen) in alginate gel microparticles was accomplished by molecular diffusion of the drug species into microparticles produced by impinging aerosols of alginate solution and CaCl(2) cross-linking solution. A mean particle size in the range of 30-50 µm was measured using laser light scattering and high drug loadings of around 35 and 29% weight/dry microparticle weight were obtained for GS and ibuprofen respectively. GS release was similar in simulated intestinal fluid (phosphate buffer saline (PBS), pH 7.4, 37°C) and simulated gastric fluid (SGF) (HCl, pH 1.2, 37°C) but was accelerated in PBS following incubation of microparticles in HCl. Ibuprofen release was restricted in SGF but occurred freely on transfer of microparticles into PBS with almost 100% efficiency. GS released in PBS over 7 h, following incubation of microparticles in HCl for 2 h was found to retain at least 80% activity against Staphylococcus epidermidis while Ibuprofen retained around 50% activity against Candida albicans. The impinging aerosols technique shows potential for producing alginate gel microparticles of utility for protection and controlled delivery of a range of therapeutic molecules.

  20. Development of the Rules Governing the Strength of Airplanes. Part I : German Loading Conditions up to 1926

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Thalau, Karl

    1933-01-01

    Load factors and loading conditions are presented for German aircraft. Loading conditions under various stress factors are presented along with a breakdown of individual aircraft components such as landing gear, wings, etc.

  1. Modeling the Responses of TSM Resonators under Various Loading Conditions

    SciTech Connect

    Bandey, H.L.; Cernosek, R.W.; Hillman, A.R.; Martin, S.J.

    1998-12-04

    We develop a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface loadkgs. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite is not a linear combination of the individual component responses. We discuss application of the model in a qualitative diagnostic fashion, to gain insight into the nature of the interracial structure, and in a quantitative fashion, to extract appropriate physical parameters, such as liquid viscosity and density and polymer shear moduli.

  2. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective. PMID:26561964

  3. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  4. Ciliary activity under normal conditions and under viscous load.

    PubMed

    Gheber, L; Priel, Z

    1990-01-01

    Ciliary metachronism and motility were examined optically in muco-ciliary tissue cultures from three different systems: a) frog's palate epithelium, b) frog's oesophagus, and c) human nasal polyps. In addition, lateral cilia of Mytilus edulis (water transporting cilia) were examined. It was revealed that the degree of synchronization between muco-ciliary systems is lower than that of water transporting cilia. There are no significant differences between different muco-ciliary systems, within the accuracy of our measurement although relatively large statistical ensembles were used. In addition the wavelength and wave direction of the metachronal wave was examined. All four systems exhibit similar wavelength. The metachronal parameters of muco-ciliary systems exhibit fluctuations (as was demonstrated by the degree of synchronization), however, the magnitude and repetitivity of these fluctuations, is dependent on the loading of the ciliary system. We have loaded the system by increasing the viscosity of the medium. Under viscous load the frequency of the beating decreased. The metachronal wavelength became longer and the metachronal coordination type more orthoplectic.

  5. Realization of polyaspartamide-based nanoparticles and in vivo lung biodistribution evaluation of a loaded glucocorticoid after aerosolization in mice.

    PubMed

    Craparo, E F; Di Gioia, S; Trapani, A; Cellamare, S; Belgiovine, G; Mandracchia, D; Giammona, G; Cavallaro, G; Conese, M

    2016-08-20

    In this study, novel polymeric nanoparticles (NPs) were developed and their potential as carriers for beclomethasone dipropionate (BDP) into the lung after aerosolization was demonstrated by in vivo studies in mice. In particular, these NPs were obtained starting from two polyaspartamide-based copolymers which were synthesized by chemical reaction of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) and its pegylated derivative (PHEA-PEG2000) with poly(lactic acid) (PLA). To obtain nanosized particles, the high pressure homogenization (HPH)-solvent evaporation method was followed by using an organic phase containing both PHEA-PLA and PHEA-PEG2000-PLA (at a weight ratio equal to 1:1), lactose as cryoprotectant and no surfactant was adopted. PHEA-PLA/PHEA-PEG2000-PLA NPs were characterized by a quite spherical shape, ζ potential slightly negative, and size lower than 50 and 200nm, respectively, for empty and BDP-loaded NPs. In vivo biodistribution of BDP and its metabolites in various lung compartments, i.e. bronchoalveolar lavage fluid (BALF), alveolar macrophages (MPG) obtained from BALF, and lung tissue, was carried out at 3h post-administration in mice by aerosolization of BDP-loaded NPs or free BDP (commercial formulation, Clenil(®)) at the dose of 0.5mg/kg BDP. Results demonstrated that BDP entrapped into NPs reached all analyzed lung compartments and were internalized by both alveolar MPG and respiratory epithelial cells, and detected amounts were comparable to those of Clenil-treated mice. Moreover, the entrapment into NPs protects the drug from the enzymatic hydrolysis, allowing a significant lower amount of beclomethasone (BOH) into the lung tissue and BALF than that obtained after Clenil administration. PMID:27326484

  6. Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Goto, D.; Nastos, P. T.

    2014-09-01

    This study focuses on analyzing the extreme aerosol loading and the mechanisms, source areas and meteorological conditions that favored the abnormal dust exposure towards Arabian Sea during June 2008. The analysis reveals that the spatial-averaged aerosol optical depth (AOD) over Arabian Sea in June 2008 is 0.5 (78.2%) higher than the 2000-2013 mean June value and is mostly attributed to the enhanced dust activity and several (18) dust storms originated from the Sistan region (Iran-Afghanistan borders). Landsat images show that the marshy lakes in Sistan basin got dried during the second half of June 2008 and the alluvial silt and saline material got easily eroded by the intense Levar winds, which were stronger (>15-20 m s-1) than the climatological mean for the month of June. These conditions led to enhanced dust exposure from Sistan that strongly affected the northern and central parts of the Arabian Sea, as forward air-mass trajectories show. The NCEP/NCAR reanalysis reveals an abnormal intensification and spatial expansion of the Indian low pressure system towards northern Arabian Sea in June 2008. This suggests strengthening of the convection over the arid southwest Asia and exposure of significant amount of dust, which can reach further south over Arabian Sea favored by the enhanced cyclonic circulation. MODIS imagery highlighted several dust storms originated from Sistan and affecting Arabian Sea during June 2008, while the SPRINTARS model simulations of increased AOD and dust concentration over Sistan and downwind areas are in agreement with ground-based and satellite observations.

  7. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wang, Yuxuan; Hao, Jiming

    2015-04-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January 2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg/m3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W/m2, 3.2 oC, 0.8 m/s, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2) and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model performance in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real-time air

  8. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, Y. X.; Hao, J. M.

    2014-10-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January~2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg m-3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W m-2, 3.2 °C, 0.8 m s-1, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2) and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model's performances in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real

  9. Using Vibration Monitoring for Local Fault Detection on Gears Operating Under Fluctuating Load Conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.; Schoombie, W.

    2002-11-01

    Gearboxes often operate under fluctuating load conditions during service. Conventional techniques for monitoring vibration are based on the assumption that changes in the measured structural response are caused by deterioration in the condition of the gearbox. However, this assumption is not valid for fluctuating load conditions. To find a methodology that could deal with such conditions, experiments were conducted on a gearbox test rig with different levels of tooth damage severity and the capability of applying fluctuating loads to the gear system. Different levels of fluctuation in constant loads as well as in sinusoidal, step and chirp loads were considered. The test data were order tracked and time synchronously averaged with the rotation of the shaft in order to compensate for the variation in rotational speed induced by the fluctuating loads. A pseudo-Wigner-Ville distribution was then applied to the test data, in order to identify the influence of the fluctuating load conditions. In this work, a vibration waveform normalisation approach is presented, which enables the use of the pseudo-Wigner-Ville distribution to indicate deteriorating fault conditions under fluctuating load conditions. Statistical parameters and various other features were extracted from the distribution in order to indicate the linear separation of the values for various fault conditions, after applying the vibration waveform normalisation approach. Feature vectors were compiled for the various fault and load conditions. Mahalanobis distances were calculated between the various feature vectors and an average feature vector was compiled from data measured on the undamaged gearbox. It was proved that the Mahalanobis distance could be used as a single parameter, which can readily be monotonically trended to indicate the progression of a fault condition under fluctuating load conditions. It was shown that a single layer perceptron network could be trained with the perceptron learning rule

  10. Effects of heat and moisture on fiberglass composite materials in the load carrying and non-load carrying conditions

    NASA Astrophysics Data System (ADS)

    McClurg, Jack Albert

    The objective set forth in this study was to thoroughly document the effects of heat, moisture, and loading conditions on a variety of pultruded unidirectional fiberglass reinforced composite materials. This study incorporated the use of two environmental control chambers and two water immersion tanks in order to provide the necessary range of environmental exposure conditions. A set of specially designed stainless steel loading fixtures was produced in order to introduce the factor of external loading of the specimens while exposed to the predetermined environmental condition and how that would affect the mechanical and physical properties in question. The properties of interest were the flexural strength (determined using the three-point flexural bending method), flexural modulus (determined using the three-point flexural bending method), and glass transition temperature of the material (determined using differential scanning calorimetry). Other data that was noted during the conditioning and testing of the specimens was the break type (flexural tension, compression, shear, etc...), the change in dimensions (prior to exposure vs. after exposure), and the change in weight (prior to exposure vs. after exposure). Using all of the information that was obtained from this study, a more detailed understanding of how and why fiberglass reinforced materials react the way they do when exposed to moisture and elevated temperature was drawn. This study is different from most others in that it explores the interactions of three independent variables (heat, moisture, and loading condition) on three different fiberglass reinforced composite systems (epoxy, vinylester, and polyester resin).

  11. 14 CFR 25.473 - Landing load conditions and assumptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... descent velocity of 10 fps at the design landing weight (the maximum weight for landing conditions at maximum descent velocity); and (3) With a limit descent velocity of 6 fps at the design take-off weight (the maximum weight for landing conditions at a reduced descent velocity). (4) The prescribed...

  12. 14 CFR 25.473 - Landing load conditions and assumptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... descent velocity of 10 fps at the design landing weight (the maximum weight for landing conditions at maximum descent velocity); and (3) With a limit descent velocity of 6 fps at the design take-off weight (the maximum weight for landing conditions at a reduced descent velocity). (4) The prescribed...

  13. 14 CFR 25.473 - Landing load conditions and assumptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... descent velocity of 10 fps at the design landing weight (the maximum weight for landing conditions at maximum descent velocity); and (3) With a limit descent velocity of 6 fps at the design take-off weight (the maximum weight for landing conditions at a reduced descent velocity). (4) The prescribed...

  14. 14 CFR 25.473 - Landing load conditions and assumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... descent velocity of 10 fps at the design landing weight (the maximum weight for landing conditions at maximum descent velocity); and (3) With a limit descent velocity of 6 fps at the design take-off weight (the maximum weight for landing conditions at a reduced descent velocity). (4) The prescribed...

  15. 14 CFR 25.473 - Landing load conditions and assumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... descent velocity of 10 fps at the design landing weight (the maximum weight for landing conditions at maximum descent velocity); and (3) With a limit descent velocity of 6 fps at the design take-off weight (the maximum weight for landing conditions at a reduced descent velocity). (4) The prescribed...

  16. Biotrickling filtration of isopropanol under intermittent loading conditions.

    PubMed

    San-Valero, Pau; Penya-Roja, Josep M; Sempere, Feliu; Gabaldón, Carmen

    2013-07-01

    This paper investigates the removal of isopropanol by gas-phase biotrickling filtration. Two plastic packing materials, one structured and one random, have been evaluated in terms of oxygen mass transfer and isopropanol removal efficiency. Oxygen mass transfer experiments were performed at gas velocities of 104 and 312 m h⁻¹ and liquid velocities between 3 and 33 m h⁻¹. Both materials showed similar mass transfer coefficients up to liquid velocities of 15 m h⁻¹. At greater liquid velocities, the structured packing exhibited greater oxygen mass transfer coefficients. Biotrickling filtration experiments were carried out at inlet loads (IL) from 20 to 65 g C m⁻³ h⁻¹ and empty bed residence times (EBRT) from 14 to 160 s. To simulate typical industrial emissions, intermittent isopropanol loading (16 h/day, 5 day/week) and intermittent spraying frequency (15 min/1.5 h) were applied. Maximum elimination capacity of 51 g C m⁻³ h⁻¹ has been obtained for the random packing (IL of 65 g C m⁻³ h⁻¹, EBRT of 50 s). The decrease in irrigation frequency to 15 min every 3 h caused a decrease in the outlet emissions from 86 to 59 mg C Nm⁻³ (inlet of 500 mg C Nm⁻³). The expansion of spraying to night and weekend periods promoted the degradation of the isopropanol accumulated in the water tank during the day, reaching effluent concentrations as low as 44 mg C Nm⁻³. After a 7-week starvation period, the performance was recovered in less than 10 days, proving the robustness of the process.

  17. Assessment of the Interactions Among Tropospheric Aerosol Loading, Radiative Balance and Clouds Through Examination of Their Multi-decadal Trends

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of aerosol radiative forcing has remained challenging. Anthropogenic emissions of prima...

  18. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.

    2012-11-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.

  19. Investigation of Dynamic Friction Induced by Shock Loading Conditions

    NASA Astrophysics Data System (ADS)

    Juanicotena, A.; Szarzynski, S.

    2006-07-01

    Modeling the frictional sliding of one surface against another under high pressure is often required to correctly describe the response of complex systems to shock loading. In order to provide data for direct code and model comparison, a new friction experiment investigating dry sliding characteristics of metal on metal at normal pressures up to 10 GPa and sliding velocities up to 400 m/s has been developed. The test consists of a specifically designed target made of two materials. A plane shock wave generated by plate impact results in one material sliding against the other. The material velocity of the rear surface of the target is recorded versus time by Doppler Laser Interferometry. The dynamic friction coefficient μ is then indirectly determined by comparison with results of numerical simulations involving the conventional Coulomb law. Using this new experimental configuration, three dynamic friction experiments were performed on AA 5083-Al (H111) / AISI 321 stainless steel tribo-pair. Results suggest a decrease in the friction coefficient with increasing sliding velocity.

  20. Investigation of dynamic friction induced by shock loading conditions

    NASA Astrophysics Data System (ADS)

    Juanicotena, Antoine

    2005-07-01

    Modelling the frictional sliding of one surface against another under high pressure is often required to correctly describe the response of complex systems to shock loading. In order to provide data for direct code and model comparison, a new dynamic friction experiment investigating dry sliding characteristics of metal on metal at normal pressures up to 10 GPa and sliding velocities up to 400 m/s has been developed. The test consists of a specifically designed target made of two materials. A plane shock wave generated by plate impact results in one material sliding against the other. The material velocity of the rear surface of the target is recorded versus time by Doppler Laser Interferometry. The dynamic friction coefficient μ is then indirectly determined by comparison with results of numerical simulations involving the conventional Coulomb law. Samples can also be recovered in order to carry out metallographic analyses of sub-surface deformation at the interface. Using this new experimental configuration, three dynamic friction experiments with various impact speeds were performed on AA 5083-Al (H111) / AISI 321 stainless steel tribo-pair. Results suggest a decrease in the friction coefficient with increasing sliding velocity, a classic experimentally observed phenomenon.

  1. Investigation of Dynamic Friction Induced by Shock Loading Conditions

    SciTech Connect

    Juanicotena, A.; Szarzynski, S.

    2006-07-28

    Modeling the frictional sliding of one surface against another under high pressure is often required to correctly describe the response of complex systems to shock loading. In order to provide data for direct code and model comparison, a new friction experiment investigating dry sliding characteristics of metal on metal at normal pressures up to 10 GPa and sliding velocities up to 400 m/s has been developed. The test consists of a specifically designed target made of two materials. A plane shock wave generated by plate impact results in one material sliding against the other. The material velocity of the rear surface of the target is recorded versus time by Doppler Laser Interferometry. The dynamic friction coefficient {mu} is then indirectly determined by comparison with results of numerical simulations involving the conventional Coulomb law. Using this new experimental configuration, three dynamic friction experiments were performed on AA 5083-Al (H111) / AISI 321 stainless steel tribo-pair. Results suggest a decrease in the friction coefficient with increasing sliding velocity.

  2. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  3. Impact of plasma induced liquid chemistry and charge on bacteria loaded aerosol droplets

    NASA Astrophysics Data System (ADS)

    Rutherford, David; McDowell, David; Mariotti, Davide; Mahony, Charles; Diver, Declan; Potts, Hugh; Bennet, Euan; Maguire, Paul

    2014-10-01

    The introduction of living organisms, such as bacteria, into atmospheric pressure microplasmas offers a unique opportunity to study the local chemical and electrical effects on cell structure and viability. Individual bacteria, each encapsulated in an aerosol droplet, were successfully transmitted through a non-thermal equilibrium RF coaxial plasma, using a custom-design concentric double gas shroud interface and via adjustment of transit times and plasma parameters, we can control cell viability. Plasma electrical characteristics (ne ~ 1013 cm-3), droplet velocity profiles and aspects of plasma-induced droplet chemistry were determined in order to establish the nature of the bacteria in droplet environment. Plasma-exposed viable E coli cells were subsequently cultured and the growth rate curves (lag and exponential phase gradient) used to explore the effect of radical chemistry and electron bombardment on cell stress. The extent and nature of membrane disruption in viable and non-viable cells were investigated through genomic and protein/membrane lipid content estimation. We will also compare our results with simulations of the effect of bacterial presence on plasma induced droplet charging and evaporation. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  4. High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    PubMed Central

    2012-01-01

    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used. PMID:22283973

  5. Environmental embrittlement of iron aluminides under cyclic loading conditions

    SciTech Connect

    Castagna, A.; Alven, D.A.; Stoloff, N.S.

    1995-08-01

    The tensile and fatigue crack growth behavior in air in hydrogen and in oxygen of an Fe-Al-Cr-Zr alloy is described. The results are compared to data for FA-129. A detailed analysis of frequency effects on fatigue crack growth rates of FA-129, tested in the B2 condition, shows that dislocation transport of hydrogen from the surface is the rate limiting step in fatigue crack growth.

  6. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  7. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  8. Brittle Fracture Resistance of Chinga Ataxite at Different Mechanical Loading Conditions

    NASA Astrophysics Data System (ADS)

    Grokhovsky, V. I.; Gladkovsky, S. V.

    2016-08-01

    In this study comparative results of Chinga meteorite material fracture resistance evaluation at different test temperatures and loading conditions using fracture mechanics approach as well as fractographic data analysis are presented.

  9. Micromechanics of Brittle Creep Under Triaxial Loading Conditions

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Brantut, N.; Baud, P.; Heap, M. J.

    2011-12-01

    In the upper crust, the chemical influence of pore water promotes time-dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail (i) at stresses far below their short-term failure strength, and (ii) even at constant applied stress ("brittle creep"). Here we provide a micromechanical model and experimental results describing time-dependent brittle creep of water-saturated granite under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of microcracks in compression are derived from the sliding wing-crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' law. The macroscopic strain and strain rates are then computed from the change in energy potential due to microcrack growth. They are non-linear, and compare well with complementary experimental results obtained on granite samples. Primary creep (decelerating strain) corresponds to decreasing crack growth rate , due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as merely an inflexion between the two end-member phases.

  10. Effects of Simulated Functional Loading Conditions on Dentin, Composite, and Laminate Structures

    PubMed Central

    Walker, Mary P.; Teitelbaum, Heather K.; Eick, J. David; Williams, Karen B.

    2008-01-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Since mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. The present investigation utilized relevant parameters (specimen size; loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite “laminate” structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post-hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically-loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  11. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    PubMed

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. PMID:27213562

  12. Characterization of biological aerosol exposure risks from automobile air conditioning system.

    PubMed

    Li, Jing; Li, Mingzhen; Shen, Fangxia; Zou, Zhuanglei; Yao, Maosheng; Wu, Chang-yu

    2013-09-17

    Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 μm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.

  13. Trait anxiety and perceptual load as determinants of emotion processing in a fear conditioning paradigm.

    PubMed

    Fox, Elaine; Yates, Alan; Ashwin, Chris

    2012-04-01

    The impact of trait anxiety and perceptual load on selective attention was examined in a fear conditioning paradigm. A fear-conditioned angry face (CS+), an unconditioned angry face (CS-), or an unconditioned face with a neutral or happy expression were used in distractor interference and attentional probe tasks. In Experiments 1 and 2, participants classified centrally presented letters under two conditions of perceptual load. When perceptual load was high, distractors had no effect on selective attention, even with aversive conditioning. However, when perceptual load was low, strong response interference effects for CS+ face distractors were found for low trait-anxious participants. Across both experiments, this enhanced distractor interference reversed to strong facilitation effects for those reporting high trait anxiety. Thus, high trait-anxious participants were faster, rather than slower, when ignoring CS+ distractors. Using an attentional probe task in Experiment 3, it was found that fear conditioning resulted in strong attentional avoidance in a high trait-anxious group, which contrasted with enhanced vigilance in a low trait-anxious group. These results demonstrate that the impact of fear conditioning on attention is modulated by individual variation in trait anxiety when perceptual load is low. Fear conditioning elicits an avoidance of threat-relevant stimuli in high trait-anxious participants.

  14. Strain Distribution in a Kennedy Class I Implant Assisted Removable Partial Denture under Various Loading Conditions

    PubMed Central

    Shahmiri, Reza; Aarts, John M.; Bennani, Vincent; Swain, Michael V.

    2013-01-01

    Purpose. This in vitro study investigates how unilateral and bilateral occlusal loads are transferred to an implant assisted removable partial denture (IARPD). Materials and Methods. A duplicate model of a Kennedy class I edentulous mandibular arch was made and then a conventional removable partial denture (RPD) fabricated. Two Straumann implants were placed in the second molar region, and the prosthesis was modified to accommodate implant retained ball attachments. Strain gages were incorporated into the fitting surface of both the framework and acrylic to measure microstrain (μStrain). The IARPD was loaded to 120Ns unilaterally and bilaterally in three different loading positions. Statistical analysis was carried out using SPSS version 18.0 (SPSS, Inc., Chicago, IL, USA) with an alpha level of 0.05 to compare the maximum μStrain values of the different loading conditions. Results. During unilateral and bilateral loading the maximum μStrain was predominantly observed in a buccal direction. As the load was moved anteriorly the μStrain increased in the mesial area. Unilateral loading resulted in a twisting of the structure and generated a strain mismatch between the metal and acrylic surfaces. Conclusions. Unilateral loading created lateral and vertical displacement of the IARPD. The curvature of the dental arch resulted in a twisting action which intensified as the unilateral load was moved anteriorly. PMID:23737788

  15. Paint spray tests for respirators: aerosol characteristics.

    PubMed

    Ackley, M W

    1980-05-01

    Liquid paint is sprayed from an atomizing nozzle to form an aerosol for testing paint spray respirators. The generated aerosol conditions are dependent upon liguid properties, spray-nozzle flow conditions and droplet evaporation. A technique was developed for controlling the aerosol concentrations reliably. Particle-size distributions of lacquer and enamel have been measured. The lacquer distribution was found to be multi-modal. Aerosol concentration dradients arise when the nozzle is not properly positioned. Filter loading resistance is significantly affected by these concentration variations. With regard to selection of standard aerosol test be improved by modifying the current NIOSH criteria to include a description of the particle-size distribution, a more precise definition of the paint and paint thinner chemical compositions, and a narrower concentration range. PMID:6932174

  16. A modeling study of the aerosol effects on ice microphysics in convective cloud and precipitation development under different thermodynamic conditions

    NASA Astrophysics Data System (ADS)

    Lee, Hannah; Yum, Seong Soo; Lee, Seoung-Soo

    2014-08-01

    An improved approach for cloud droplet activation process parameterization is proposed that can utilize the empirically determined hygroscopicity information and practically limit the sizes of newly activated droplets. With the implementation of the improved approach in a cloud model, the aerosol effects on ice microphysics in convective cloud and precipitation development under different thermodynamic conditions is investigated. The model is run for four different thermodynamic soundings and three different aerosol types, maritime (M), continental (C) and polluted (P). Warm rain suppression by increased aerosol (i.e., CCN) is clearly demonstrated when weakly convective warm clouds are generated but the results are mixed when relatively stronger convective warm clouds are generated. For one of the two soundings that generate strong convective cold clouds, the accumulated precipitation amount is larger for C and P than for M, demonstrating the precipitation enhancement by increased CCN. For the maritime cloud, precipitation is initiated by the warm rain processes but ice hydrometeor particles form fast, which leads to early but weak cloud invigoration. Another stronger cloud invigoration occurs later for M but it is still weaker than that for C and P. It is the delayed accumulation of more water drops and ice particles for a burst of riming process and the latent heat release during the depositional growth of rimed ice particles that invigorate the cloud strongly for C and P. For the other sounding where freezing level is low, ice particles form fast for all three aerosol types and therefore warm rain suppression is not clearly shown. However, there still is more precipitation for C and P than for M until the accumulated precipitation amount becomes larger for M than for C near to the end of the model run. The results demonstrate that the precipitation response to aerosols indeed depends on the environmental conditions.

  17. Substrate removal kinetics and performance assessment of a vermifilter bioreactor under organic shock load conditions.

    PubMed

    Kumar, Tarun; Hari Prasad, K S; Singh, Nitin Kumar

    2016-01-01

    In the present study, the effect of short-term organic shock loads (675, 799, 1,084 and 1,410 mg COD/L) on the treatment performance of a pilot-scale vermifilter (VF), employing an epigeic earthworm Eisenia fetida and treating synthetic domestic wastewater is investigated. The effect of organic shock loads on the performance and stability of vermifiltration reactor was evaluated to identify its feasibility in actual field conditions. Prior to the application of each organic shock load, normal loading conditions were maintained to achieve the pseudo steady state (PSS) conditions. The results showed satisfactory endurance against imposed organic shock loads with negligible reduction in chemical oxygen demand (COD) removals and it was almost similar to PSS condition with removal efficiencies of ∼ 66, 71, 67 and 68%, respectively. The experimental COD data fit well to first-order kinetic model, with a regression value of 0.95. At the end of all shock loads, the nutritional analysis of vermicompost obtained from the top layer of VF, showed increased concentration of total nitrogen (∼31 g/Kg) and total phosphorus (29 g/Kg). Besides, an augmented earthworm biomass, ∼23.2% on weight basis and ∼22% on number basis, was observed at the end of the study. PMID:27642837

  18. Significant radiative impact of volcanic aerosol in the lowermost stratosphere.

    PubMed

    Andersson, Sandra M; Martinsson, Bengt G; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A M; Hermann, Markus; van Velthoven, Peter F J; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  19. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  20. Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions

    SciTech Connect

    Chang, Chin-Yao; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

    2013-02-24

    Demand-side control is playing an increasingly important role in smart grid control strategies. Modeling the dynamical behavior of a large population of appliances is especially important to evaluate the effectiveness of various load control strategies. In this paper, a high accuracy aggregated model is first developed for a population of HVAC units. The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. Furthermore, the model takes into account the lockout effect of the compressor in order to represent the dynamics of the system under control more accurately. Then, a novel closed loop load control strategy is designed to track a desired demand curve and to ensure a stable and smooth response.

  1. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  2. ARX model-based gearbox fault detection and localization under varying load conditions

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Makis, Viliam

    2010-11-01

    The development of the fault detection schemes for gearbox systems has received considerable attention in recent years. Both time series modeling and feature extraction based on wavelet methods have been considered, mostly under constant load. Constant load assumption implies that changes in vibration data are caused only by deterioration of the gearbox. However, most real gearbox systems operate under varying load and speed which affect the vibration signature of the system and in general make it difficult to recognize the occurrence of an impending fault. This paper presents a novel approach to detect and localize the gear failure occurrence for a gearbox operating under varying load conditions. First, residual signal is calculated using an autoregressive model with exogenous variables (ARX) fitted to the time-synchronously averaged (TSA) vibration data and filtered TSA envelopes when the gearbox operated under various load conditions in the healthy state. The gear of interest is divided into several sections so that each section includes the same number of adjacent teeth. Then, the fault detection and localization indicator is calculated by applying F-test to the residual signal of the ARX model. The proposed fault detection scheme indicates not only when the gear fault occurs, but also in which section of the gear. Finally, the performance of the fault detection scheme is checked using full lifetime vibration data obtained from the gearbox operating from a new condition to a breakdown under varying load.

  3. Type of Aerosols Determination Over Malaysia by AERONET Data

    NASA Astrophysics Data System (ADS)

    Lim, H.; Tan, F.; Abdullah, K.; Holben, B. N.

    2013-12-01

    Aerosols are one of the most interesting studies by the researchers due to the complicated of their characteristic and are not yet well quantified. Besides that there still have huge uncertainties associated with changes in Earth's radiation budget. The previous study by other researchers shown a lot of difficulties and challenges in quantifying aerosol influences arise. As well as the heterogeneity from the aerosol loading and properties: spatial, temporal, size, and composition. In this study, we were investigated the aerosol characteristics over two regions with different environmental conditions and aerosol sources contributed. The study sites are Penang and Kuching, Malaysia where ground-based AErosol RObotic NETwork (AERONET) sun-photometer was deployed. The types of the aerosols for both study sites were identified by analyzing aerosol optical depth, angstrom parameter and spectral de-convolution algorithm product from sun-photometer. The analysis was carried out associated with the in-situ meteorological data of relative humidity, visibility and air pollution index. The major aerosol type over Penang found in this study was hydrophobic aerosols. Whereas the hydrophilic type of the aerosols was highly distributed in Kuching. The major aerosol size distributions for both regions were identified in this study. The result also shows that the aerosol optical properties were affected by the types and characteristic of aerosols. Therefore, in this study we generated an algorithm to determine the aerosols in Malaysia by considered the environmental factors. From this study we found that the source of aerosols should always being consider in to retrieve the accurate information of aerosol for air quality study.

  4. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  5. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions.

    PubMed

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-10-17

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.

  6. Evaluation of antagonist coactivation strategies elicited from electrically stimulated muscles under load-moving conditions.

    PubMed

    Zhou, B H; Katz, S R; Baratta, R V; Solomonow, M; D'Ambrosia, R D

    1997-07-01

    Muscle coactivation strategies that produce ankle dorsiflexion and plantar flexion were elicited by electrical stimulation of the tibialis anterior (TA) and soleus (SOL) muscles of the cat, and examined under several loading conditions. Four different load types were used: free-limb motion (no load), fly-wheel, and two pendulums, each with a different lever arm. Three types of coactivation strategies were considered. The first coactivation strategy consisted of antagonist activity that decreased as the agonist activity increased. The second strategy consisted of increasing antagonist activity with increasing agonist activity. And, in the third strategy, antagonist coactivation decreased at low force levels, then increased at high force levels. The three strategies were evaluated based on the joint angle's peak-to-peak movement and its ability to track a linear input command given by the correlation coefficient of the output signal versus linear input. Results showed that increasing antagonist activity resulted in decreasing peak-to-peak angle and a decreased signal tracking capability for each load condition. The latter, however, was not as obvious in the flywheel load (as compared with free-moving and pendulum conditions). A decreasing peak-to-peak torque for pendulum loads was also observed with increasing antagonist activity. In all loading conditions, maximal peak-to-peak angle and torque were present when a moderate degree of antagonist activity was engaged, and signal tracking capability improved with earlier engagement of the antagonist muscles. It is suggested that strategies using a combination of low-level coactivation, as described in the physiological literature and previous functional electrical stimulation (FES) studies, could satisfactorily address the issues of controllability and efficiency while maintaining long-term joint integrity.

  7. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  8. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  9. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.

    PubMed

    Owen, John R; Wayne, Jennifer S

    2011-07-01

    The superficial tangential zone (STZ) plays a significant role in normal articular cartilage's ability to support loads and retain fluids. To date, tissue engineering efforts have not replicated normal STZ function in cartilage repairs. This finite element study examined the STZ's role in normal and repaired articular surfaces under different contact conditions. Contact area and pressure distributions were allowed to change with time, tension-compression nonlinearity modeled collagen behavior in the STZ, and nonlinear geometry was incorporated to accommodate finite deformation. Responses to loading via impermeable and permeable rigid surfaces were compared to loading via normal cartilage, a more physiologic condition, anticipating the two rigid loading surfaces would bracket that of normal. For models loaded by normal cartilage, an STZ placed over the inferior repair region reduced the short-term axial compression of the articular surface by 15%, when compared to a repair without an STZ. Covering the repair with a normal STZ shifted the flow patterns and strain levels back toward that of normal cartilage. Additionally, reductions in von Mises stress (21%) and an increase in fluid pressure (13%) occurred in repair tissue under the STZ. This continues to show that STZ properties of sufficient quality are likely critical for the survival of transplanted constructs in vivo. However, response to loading via normal cartilage did not always fall within ranges predicted by the rigid surfaces. Use of more physiologic contact models is recommended for more accurate investigations into properties critical to the success of repair tissues.

  10. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  11. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  12. A study of the impact of synoptic weather conditions and water vapor on aerosol-cloud relationships over major urban clusters of China

    NASA Astrophysics Data System (ADS)

    Kourtidis, K.; Stathopoulos, S.; Georgoulias, A. K.; Alexandri, G.; Rapsomanikis, S.

    2015-10-01

    The relationships between aerosol optical depth (AOD), cloud cover (CC), and cloud top pressure (CTP) over three major urban clusters in China are studied under different sea level pressure (SLP) and water vapor (WV) regimes using a decade (2003-2013) of MODIS satellite-retrieved data. Over all urban clusters, for all SLP regimes, CC is found to increase with AOD, thus pointing out that the CC dependence on AOD cannot be explained by synoptic covariation, as approximated by SLP, alone. WV is found to have a stronger impact on CC than AOD. This impact is more pronounced at high aerosol load than at low aerosol load. Hence, studies of AOD-CC relationships, based on satellite data, will greatly overestimate the AOD impact on CC in regions where AOD and WV have similar seasonal variations, while they will probably underestimate the AOD impact in regions where AOD and WV have opposite seasonal variations. Further, this impact shows that the hydrological cycle interferes with the aerosol climatic impact and we need to improve our understanding of this interference. Our results also suggest that studies attributing CTP long-term changes to changes in aerosol load might have a WV bias.

  13. Load Dependency of Postural Control - Kinematic and Neuromuscular Changes in Response to over and under Load Conditions

    PubMed Central

    Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert

    2015-01-01

    Introduction Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Methods Balance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Results Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Conclusion Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal

  14. Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic

    NASA Astrophysics Data System (ADS)

    May, N. W.; Quinn, P. K.; McNamara, S. M.; Pratt, K. A.

    2016-08-01

    Thinning of Arctic sea ice gives rise to ice fracturing and leads (areas of open water surrounded by sea ice) that are a potential source of sea salt aerosol. Atmospheric particle inorganic ion concentrations, local sea ice conditions, and meteorology at Barrow, AK, from 2006 to 2009, were combined to investigate the dependence of submicron (aerodynamic diameter < 1 µm) and supermicron (aerodynamic diameter 1-10 µm) sea salt mass concentrations on sea ice coverage and wind speed. Consistent with a wind-dependent source, supermicron sea salt mass concentrations increased in the presence of nearby leads and wind speeds greater than 4 m s-1. Increased supermicron and submicron sea salt chloride depletion was observed for periods of low winds or a lack of nearby open water, consistent with transported sea salt influence. Sea salt aerosol produced from leads has the potential to alter cloud formation, as well as the chemical composition of the Arctic atmosphere and snowpack.

  15. Optimal overlap length in staggered architecture composites under dynamic loading conditions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun; Miklavcic, Milan

    2013-01-01

    Hybrid staggered architecture composites, like nacre and bone, are known for two discernible aspects: superior strength and synergistic toughness. What is lacking is the scientific rationale proving suitability of these materials under impact/time dependent loading. The current investigation aims to address the structure-property correlationship of these materials by development of an analytical model under dynamic rates of loading. Existing literature studies address behavior of staggered materials under quasi-static loading conditions. Critical overlap length was computed for three natural composites-nacre, spider-silk and, collagen in bone/tendon, and showed reasonable agreement with experimental data. Applicability of the analytical approach to predict lap-joint strength has been briefly discussed and quantified against experimental data. Choice of nanometer sized building blocks in natural composites has been addressed and explained from shear transfer efficiency point of view. The potentiality of these composites for use as biomimetic protective material under impact loading has been addressed as well.

  16. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  17. Influence of marine aerosols and aerotechnogenic load on chemical composition of rainwaters on small islands (ludas) of the White Sea

    NASA Astrophysics Data System (ADS)

    Gorbacheva, Tamara; Mazukhina, Svetlana; Isaeva, Ludmila; Shumilov, Oleg

    2013-04-01

    In June 2001 intensive monitoring plots were established on the island part of Kandalaksha Bay of the White Sea (the island Tonnaya Luda; 67o06'60"N; 32o24'12"E) with the installation of stationary rainwater collectors. The purpose was studying the chemical composition of rain waters in the zone of cumulative influence of marine aerosols and aerotechnogenic load. Water sampling was carried out monthly during the vegetative season of 2001 and 2002. pH of rain water was determined by potentiometric method without preliminary filtration. The samples were passed through the paper filter with the pore diameter of 1-2.5 microns, the analysis of filtrate carried out by methods of atomic emission spectrometry (K, Na) and atomic absorption spectrometry (Ca, Mg, Zn, Mn, Cu, Ni, Al, Fe), total P and P of phosphates, Si and NH4+ - by photocolorimetry, total carbon - by bichromate method, NO3-, SO42-, Cl--by ion exchange chromatography method. Balance method was chosen as a research basis to determine the interrelation of rain water organic matter and dynamics of its redistribution under the influence of natural and technogenic factors. The difference between the cations sum (including NH4+and H+) and mineral acids anions sum (SO42-, Cl-, NO3-) was identified as organic acids anions concentration (μeq l-1). The level of Na, Cl-, K, Ca, Mg, SO42-, Sr in rainwaters on the island and the remote areas is indicative of the possible influence of marine aerosols on the island part of the White Sea. The increase of Al, Cu, Ni, Cd, Co concentrations in rainwaters up to one order against the background values points to the cumulative influence of the emissions of industrial enterprises located in the region. The relative stability of pH values of rain waters during all seasons indicates to the buffer action of weak organic acids anions. The correlation analysis of ionic structure in normal concentrations has allowed us to estimate the distribution of the cationic part from the

  18. SMOG CHAMBER STUDIES OF SECONDARY ORGANIC AEROSOLS FROM IRRADIATED HYDROCARBONS UNDER AMBIENT CONDITIONS

    EPA Science Inventory

    Understanding the physics and chemistry of aerosols is fundamental to evaluating health risks and developing and evaluating atmospheric models. However, as noted in a recent NRC report only about 10% of the organics in PM2.5 have been identified. A significant portion of the un...

  19. Ductile-brittle transition behavior of tungsten under shock loading conditions

    SciTech Connect

    Lassila, D.H.; Gray, G.T. III

    1993-02-01

    In an effort to characterize the ductile-brittle transition behavior of warm forged tungsten under shock loading conditions, we have performed shock/soft-recovery experiments at 22 and 4000 C. Results at 22 C indicate that shock (19 GPa) induced strains appear to be accommodated by fracture processes, i.e. there were no indications of shock induced plastic deformation and the test sample was reduced to rubble. At 400 C, the test sample was recovered intact and the shock induced plasticity caused deformation banding and an increase in the dislocation density of the material. For reasons unclear, almost no change in the post shock mechanical behavior was observed, despite the significant changes in the microstructure. The results of these experiments demonstrate the principal of a ductile-brittle transition behavior of tungsten under uniaxial shock loading conditions and indicate that explosively driven deformation of tungsten of this material will result in pulverization due to shock loading.

  20. Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading.

    PubMed

    Carvalheira, Mónica; Oehmen, Adrian; Carvalho, Gilda; Reis, Maria A M

    2014-11-01

    Enhanced biological phosphorus removal (EBPR) is usually limited by organic carbon availability in wastewater treatment plants (WWTPs). Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were operated under extended periods with low organic carbon loading in order to examine its impact on their activity and survival. The decrease in organic carbon load affected PAOs and GAOs in different ways, where the biomass decay rate of GAOs was approximately 4times higher than PAOs. PAOs tended to conserve a relatively high residual concentration of polyhydroxyalkanoates (PHAs) under aerobic conditions, while GAOs tended to deplete their available PHA more rapidly. This slower oxidation rate of PHA by PAOs at residual concentration levels enabled them to maintain an energy source for aerobic maintenance processes for longer than GAOs. This may provide PAOs with an advantage over GAOs in surviving the low organic loading conditions commonly found in full-scale wastewater treatment plants. PMID:25270044

  1. Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China.

    PubMed

    Che, Huizheng; Xia, Xiangao; Zhu, Jun; Wang, Hong; Wang, Yaqiang; Sun, Junying; Zhang, Xiaoye; Shi, Guangyu

    2015-01-01

    In January 2013, several serious haze pollution events happened in North China. Cimel sunphotometer measurements at an urban site of Beijing (Chinese Academy of Meteorological Sciences-CAMS) from 1 to 30 January 2013 were used to investigate the detailed variation of aerosol optical properties. It was found that Angstrom exponents were mostly larger than 0.80 when aerosol optical depth values are higher than 0.60 at the urban region of Beijing during January 2013. The aerosol optical depth (AOD) at the urban region of Beijing can remain steady at approximately 0.40 before haze happening and then increased sharply to more than 1.50 at 500 nm with the onset of haze, which suggests that the fine-mode AOD is a factor of 20 of the coarse-mode AOD during a serious haze pollution event. The single scattering albedo was approximately 0.90 ± 0.03 at 440, 675, 870 and 1,020 nm during the haze pollution period. The single scattering albedo at 440 nm as a function of the fine-mode fraction was relatively consistent, but it was highly variable at 675, 870 and 1,020 nm. Except on January 12 and 18, all the fine-mode particle volumes were larger than those of coarse particles, which suggests that fine particles from anthropogenic activities made up most of the haze. Aerosol type classification analysis showed that the dominant aerosol types can be classified as both "mixed" and "urban/industrial (U/I) and biomass burning (BB)" categories during the heavy haze period of Beijing in January of 2013. The mixed category occurrence was about 31 %, while the U/I and BB was about 69 %.

  2. Effects of vegetation and sewage load on mangrove crab condition using experimental mesocosms

    NASA Astrophysics Data System (ADS)

    Amaral, Valter; Penha-Lopes, Gil; Paula, José

    2009-09-01

    Constructed wetlands, especially mangroves, have been studied for their usefulness in sewage treatment but the effects of mangrove vegetation and a sewage load on mangrove macrofauna have been given little attention. Ocypodid crabs are important components of mangrove forests and constitute good bioindicators of the functioning of the ecosystem as a whole. In constructed mangrove mesocosms, three vegetation treatments (bare substratum, and Avicennia marina and Rhizophora mucronata seedlings) were subjected to 0, 20, 60 and 100% sewage loads from a nearby hotel. The physiological condition of introduced Uca annulipes and Uca inversa was evaluated in terms of their RNA/DNA ratio after one, five and twelve months, and used as an indicator of ecological function in the system. Crab condition in 0% sewage load was similar to that of wild crabs throughout, suggesting no significant effects of the mesocosms on their RNA/DNA ratio. Overall, both species coped well with the administered sewage loads, suggesting good ecological function in the system. Both species manifested similar patterns in RNA/DNA ratio, being more affected by seasonal fluctuations than by sewage load and vegetation presence and type. Higher RNA/DNA ratios were recorded in the long compared to the short rainy season. Sewage enhanced crab condition in the bare substratum and R. mucronata treatments, especially after one year, probably as a result of enhanced food availability. Uca inversa may be more sensitive to sewage pollution than U. annulipes. In A. marina, no difference in crab condition was observed between sewage loads, and this mangrove yielded the best reduction in sewage impacts. Our results support the usefulness of constructed mangrove areas in sewage treatment, especially if planted with A. marina and inhabited by physiologically healthy ocypodid crabs to enhance the system's performance.

  3. Aerosol-CAPE-Cloud Interactions over Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Sarangi, C.

    2015-12-01

    In the last few decades exponential growth of population and rapid industrialization has resulted in high aerosol loading over Gangetic basin (GB) in Northern India. Gangetic basin is the food basket of India and its agricultural yield is mainly dependent on South Asian summer monsoon. Hence, understanding the aerosol-cloud-rainfall interactions is crucial and demand utmost attention. In this study, we have used more than a decade (2002-2013) of Radiosonde measurements from 5 WMO stations over the GB to illustrate enhancement of CAPE and cloud thickness with increase in AOD under deep cloudy conditions. Enhancement in mean atmospheric temperature below cloud layer at higher aerosol loading was also observed. These observations suggest that increase in aerosols increases the atmospheric temperature below cloud base and causes increase in CAPE, which, in turn, invigorates the cloud dynamics and eventually resultsin deeper cloud systems. Simultaneously, analysis of decade long satellite and in-situ observational datasets provided compelling evidence of aerosol-induced cloud invigoration, from cloud macrophysical as well as microphysical observations, which fostered a net atmospheric cooling nearly twice compared to the aerosol direct effect. Moreover, a striking positive association between aerosol loading and daily surface rainfall during Indian summer monsoon was found. The observed aerosol-induced heating of lower atmosphere, intensification of cloud dynamics, deepening of clouds, intensification of precipitation rate and daily rainfall coherently suggested an increase in surface water with increase in aerosol loading. Hence, this study not only demonstrates the importance of aerosol-induced microphysical perturbations during Indian summer monsoon but also is a major step forward in understanding the impact of aerosols on surface water under continental conditions.

  4. Technology Solutions Case Study: Low-Load Space-Conditioning Needs Assessment

    SciTech Connect

    2015-07-01

    Low-load options in the heating, ventilating, and air-conditioning (HVAC) market are limited, so many new-construction housing units are being fitted with oversized equipment that results in penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family home markets. Over the past decade, Steven Winter Associates, Inc. has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. In this project, the research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed the data from 941 low-load buildings in the Northeast and Mid-Atlantic regions to outline the heating and cooling design load characteristics of low-load dwellings. Within this data set, CARB found that only 1% of the dwellings had right-sized (within 25% of design load) heating equipment and 6% had right-sized cooling equipment.

  5. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  6. Response and representation of ductile damage under varying shock loading conditions in tantalum

    DOE PAGES

    Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; Livescu, V.; Bourne, N. K.; MacDonald, S. A.; Withers, P. J.

    2016-02-25

    The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less

  7. Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Mason, R. H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J. D.; Ladino, L. A.; Jones, K.; Leaitch, W. R.; Schiller, C. L.; Abbatt, J. P. D.; Huffman, J. A.; Bertram, A. K.

    2015-11-01

    Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 °C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 °C at this site for the time period studied. At -30 °C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles ≥ 0.5 μm, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving chemical tracers of marine aerosols and marine biological activity, sodium and methanesulfonic acid, indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated. This finding illustrates that additional measurements are needed to improve parameterizations of INPs and their

  8. The Impact of Boundary Conditions on Surface Curvature of Polypropylene Mesh in Response to Uniaxial Loading

    PubMed Central

    Barone, William R.; Amini, Rouzbeh; Maiti, Spandan; Moalli, Pamela A.; Abramowitch, Steven D.

    2015-01-01

    Exposure following pelvic organ prolapse repair has been observationally associated with wrinkling of the implanted mesh. The purpose of this study was to quantify the impact of variable boundary conditions on the out-of-plane deformations of mesh subjected to tensile loading. Using photogrammetry and surface curvature analyses, deformed geometries were accessed for two commercially available products. Relative to standard clamping methods, the amount of out-of-plane deformation significantly increased when point loads were introduced to simulate suture fixation in-vivo. These data support the hypothesis that regional increases in the concentration of mesh potentially enhance the host’s foreign body response, leading to exposure. PMID:25843260

  9. Residual stress analysis on tensile MMC specimens after loading/unloading tests in several conditions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandra; Albertini, Gianni; Manescu, Adrian

    2004-07-01

    Residual stresses have been investigated in samples made of AA6061+22% Al2O3 in order to correlate microstructural characteristics with mechanical performances. In particular, the possible occurrence of a brittle fracture induced by an excessive load transfer from the matrix to the reinforcement was investigated. To this end, macrostresses and microstresses were analysed. A neutron diffraction test on 12 specimens submitted to several loading/unloading conditions at different temperatures was performed. These measurements aimed to establish the optimal temperature for the initial extruded billet in pre-heating stage, before forging the final wheel hub.

  10. Numerical investigations of rib fracture failure models in different dynamic loading conditions.

    PubMed

    Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam

    2016-01-01

    Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.

  11. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Yang, Junhua; Duan, Keqin; Kang, Shichang; Shi, Peihong; Ji, Zhenming

    2016-06-01

    A regional climate model, WRF-Chem, was used to investigate the feedback between aerosols and meteorological conditions in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) and Indo-Gangetic Plain (IGP). The numerical experiments (15-km horizontal resolution) with and without the aerosol effects are driven by reanalysis of data for 1-31 March 2009, when a heavy pollution event (13-19 March) occurred. The results showed that the model captured the spatial and temporal meteorological conditions and aerosol optical characteristics during the heavy pollution days. Aerosols induced cooling at the surface and warming in the middle troposphere due to their radiative effects, and resulted in a more stable PBL over the IGP. Aerosol-induced 2-m relative humidity (RH) was increased. The stable PBL likely led to the surface PM2.5 concentration increase of up to 21 μg m-3 (15 %) over the IGP. For the TP, the atmospheric profile did not drastically change due to fewer radiative effects of aerosols in the PBL compared with those over the IGP. The aerosol-induced RH decreased due to cloud albedo and cloud lifetime effect, and led to a reduction in surface PM2.5 concentration of up to 17 μg m-3 (13 %). These results suggest a negative and positive feedback over the TP and IGP, respectively, between aerosol concentrations and changes of aerosol-induced meteorological conditions. Similar positive feedbacks have been observed in other heavily polluted regions (e.g., the North China Plain). The results have implications for the study of air pollution on weather and environment over the TP and IGP.

  12. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Yang, Junhua; Duan, Keqin; Kang, Shichang; Ji, Zhenming; Shi, Peihong

    2016-04-01

    A regional climate model WRF-Chem was used to investigate the feedback between aerosols and meteorological conditions in atmospheric boundary layer over the Tibetan Plateau (TP) and Indo-Gangetic Plain (IGP). The numerical experiments with and without the aerosol effects are driven by reanalysis from March 1-31, 2009, when a heavy pollution event (March 13-19) occurred. Results showed that the model can capture the spatial and temporal meteorological conditions and aerosols optical characteristics during the heavy pollution days. Aerosols induce cooling at the surface and warming in the middle of troposphere due to their radiative effects, and result in the atmospheric boundary layer (ABL) trend to more stable over the IGP. Aerosols-induced 2-meter relative humidity (RH2) is increased, which superposes the stable ABL lead to the surface PM2.5 concentration increases by up to 21 ug m-3 (15%) over the IGP. For the TP, the atmospheric profile does not change too much due to the fewer aerosols' radiative effects in the ABL comparing to those over the IGP. The aerosols-induced RH2 decreases because of the cloud albedo and cloud lifetime effect and leads to the surface PM2.5 concentration reduce up to 17 ug m-3 (13%). It is implicated that a negative/positive feedback between aerosols concentration and changes of aerosol-induced meteorological conditions over the TP/IGP, which is like/unlike the situations in other heavy polluted regions (e.g., the North China Plain). The results have a potential implication of air pollution on weather and environment over the TP and IGP.

  13. Evidence for the role of organics in aerosol particle formation under atmospheric conditions

    PubMed Central

    Metzger, Axel; Verheggen, Bart; Dommen, Josef; Duplissy, Jonathan; Prevot, Andre S. H.; Weingartner, Ernest; Riipinen, Ilona; Kulmala, Markku; Spracklen, Dominick V.; Carslaw, Kenneth S.; Baltensperger, Urs

    2010-01-01

    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs. PMID:20133603

  14. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  15. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  16. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.

  17. Wavelength dependence of aerosol light absorption in urban and biomass burning impacted conditions: An integrative perspective

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M.; Lewis, K.; Moosmuller, H.

    2009-12-01

    Aerosol light absorption depends on aerosol size, morphology, mixing state, and composition. The wavelength dependence is often characterized with use of the Angstrom coefficient for absorption (AAE) determined from measurements at two or more wavelengths. Low fractal dimension black carbon (BC) particles are often expected to have an AAE near unity. Values of AAE significantly larger than unity are often attributed to the presence of an organic coating that absorbs strongly at lower wavelengths, though we have found that even non absorbing coatings on small, biomass burning related BC cores can have large AAE. Values of AAE significantly less than unity are often ascribed to experimental errors or large particle sizes, however, we find that they are most commonly associated with modest absorbing or non absorbing organic coatings that collapse the fractal soot BC core in urban aerosol to a dimension near that of a sphere. Photoacoustic measurements at 405 nm, 532 nm, 870 nm, and 1047 nm in urban Reno and Las Vegas NV, and for biomass burning experiments are used presented to illustrate the range of AAE possible, and coated sphere modeling results are presented to interpret the measurements.

  18. A decade of dust: Asian dust and springtime aerosol load in the U.S. Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Hsu, N. C.; Jaffe, D. A.; Jeong, M.-J.; Gong, S. L.

    2009-02-01

    We integrate SeaWiFS aerosol optical thickness (AOT) over the Taklamakan and Gobi Deserts with U.S. aerosol observations to study surface aerosol variability in the Northwest U.S. in relation to Asian dust emissions. The results indicate that ~50% of the interannual variability in springtime average PM2.5 and PM10 can be explained by changes in Asian dust emissions. On a seasonal timescale, variations in dust emissions appear to be more important in determining the total material crossing the Pacific than the variations in meteorology represented by the PNA or the LRT3 indices. We are able to explain ~80% of the interannual variability using three variables: AOT, a transport index, and regional precipitation. This suggests that a strong source, favorable transport and sufficient residence time are needed for Asian dust to have a maximum seasonal impact in the Northwest. The results contextualize case studies and demonstrate the utility of the Deep Blue algorithm.

  19. Force-Strain Characteristics and Rupture-Load Capability of Viking-Type Suspension-Line Material Under Dynamic Loading Conditions

    NASA Technical Reports Server (NTRS)

    Poole, Lamont R.; Councill, Earl L., Jr.

    1972-01-01

    A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.

  20. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    SciTech Connect

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of

  1. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  2. Sex-based differences in lifting technique under increasing load conditions: A principal component analysis.

    PubMed

    Sheppard, P S; Stevenson, J M; Graham, R B

    2016-05-01

    The objective of the present study was to determine if there is a sex-based difference in lifting technique across increasing-load conditions. Eleven male and 14 female participants (n = 25) with no previous history of low back disorder participated in the study. Participants completed freestyle, symmetric lifts of a box with handles from the floor to a table positioned at 50% of their height for five trials under three load conditions (10%, 20%, and 30% of their individual maximum isometric back strength). Joint kinematic data for the ankle, knee, hip, and lumbar and thoracic spine were collected using a two-camera Optotrak motion capture system. Joint angles were calculated using a three-dimensional Euler rotation sequence. Principal component analysis (PCA) and single component reconstruction were applied to assess differences in lifting technique across the entire waveforms. Thirty-two PCs were retained from the five joints and three axes in accordance with the 90% trace criterion. Repeated-measures ANOVA with a mixed design revealed no significant effect of sex for any of the PCs. This is contrary to previous research that used discrete points on the lifting curve to analyze sex-based differences, but agrees with more recent research using more complex analysis techniques. There was a significant effect of load on lifting technique for five PCs of the lower limb (PC1 of ankle flexion, knee flexion, and knee adduction, as well as PC2 and PC3 of hip flexion) (p < 0.005). However, there was no significant effect of load on the thoracic and lumbar spine. It was concluded that when load is standardized to individual back strength characteristics, males and females adopted a similar lifting technique. In addition, as load increased male and female participants changed their lifting technique in a similar manner. PMID:26851478

  3. Characterization of Speciated Aerosol Direct Radiative Forcing Over California

    SciTech Connect

    Zhao, Chun; Leung, Lai-Yung R.; Easter, Richard C.; Hand, Jenny; Avise, J.

    2013-03-16

    A fully coupled meteorology-chemistry model (WRF-Chem) with added capability of diagnosing the spatial and seasonal distribution of radiative forcings for individual aerosol species over California is used to characterize the radiative forcing of speciated aerosols in California. Model simulations for the year of 2005 are evaluated with various observations including meteorological data from California Irrigation Management Information System (CIMIS), aerosol mass concentrations from US EPA Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE), and aerosol optical depth from AErosol RObotic NETwork (AERONET) and satellites. The model well captures the observed seasonal meteorological conditions over California. Overall, the simulation is able to reproduce the observed spatial and seasonal distribution of mass concentration of total PM2.5 and the relative contribution from individual aerosol species, except the model significantly underestimates the surface concentrations of organic matter (OM) and elemental carbon (EC), potentially due to uncertainty in the anthropogenic emissions of OM and EC and the outdated secondary organic aerosol mechanism used in the model. A sensitivity simulation with anthropogenic EC emission doubled significantly reduces the model low bias of EC. The simulation reveals high anthropogenic aerosol loading over the Central Valley and the Los Angeles metropolitan regions and high natural aerosol (dust) loading over southeastern California. The seasonality of aerosol surface concentration is mainly determined by vertical turbulent mixing, ventilation, and photochemical activity, with distinct characteristics for individual aerosol species and between urban and rural areas. The simulations show that anthropogenic aerosols dominate the aerosol optical depth (AOD). The ratio of AOD to AAOD (aerosol absorption optical depth) shows distinct seasonality with a winter maximum and a summer minimum

  4. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  5. Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India

    NASA Astrophysics Data System (ADS)

    Nirmalkar, Jayant; Deshmukh, Dhananjay K.; Deb, Manas K.; Tsai, Ying I.; Sopajaree, Khajornsak

    2015-09-01

    The impact of biomass burning in atmospheric aerosols load is poorly known. We investigated the impact of biomass burning through molecular markers on the concentration of PM2.5 aerosol samples collected from a rural site in eastern central India during three episodic periods from October to November 2011. The collected PM2.5 samples were chemically quantified for potassium as well as sugars and dicarboxylic acids using ion chromatography. Levoglucosan and glucose were found as the most abundant sugar compounds and sugar-alcohols showed the predominance of mannitol whereas oxalic acid was the most abundant diacid followed by maleic acid in PM2.5 aerosols. Substantially enhanced concentrations of K+ as well as levoglucosan and glucose were observed in eastern central India. Analysis of the source specific molecular markers and ratios of sugars and diacids infer that combustion of biomass was the major emission sources of organic compounds associated with PM2.5 aerosols over eastern central India. We applied Spearman correlation analysis and principal component analysis to further investigate the sources of measured sugars and diacids. The concentrations of K+ and levoglucosan were significantly correlated with sugars and diacids that verifying their common sources from biomass burning emission. This study demonstrates that biomass burning for domestic heating and cooking purposes and agricultural activities significantly influence the air quality of eastern central India during the investigation period. The obtained data in this research is helpful for the global scientific community to assessments and remedial of air quality parameters in rural areas of developing countries under similar atmospheric circumstances.

  6. An investigation of a potential low bias in the MODIS aerosol products over Asia

    NASA Astrophysics Data System (ADS)

    McHardy, T. M.; Shi, Y.; Zhang, J.; Reid, J. S.; Campbell, J. R.; Hsu, N. Y. C.

    2015-12-01

    Heavy aerosol plumes can be misidentified as clouds in passive satellite-based aerosol retrievals due to their relatively high visible reflectivity. Thus, over regions such as China, where a higher frequency of heavy aerosol plumes is expected, regional aerosol optical depth analyses reported from passive satellite-based aerosol products may biased low. This fundamental error can be suppressed under certain conditions. In this study, with a synergistic use of satellite observations from MODIS, OMI and CALIOP, a low bias in the MODIS Dark Target (DT) and Deep Blue (DB) aerosol products is studied over Asia for the influence of dense aerosol plume undersampling. A new scheme has been developed for detecting heavy aerosol plumes by coupling OMI aerosol index retrievals with available CALIOP level 1B and cloud and aerosol profile data. Collocated CALIOP, MODIS and OMI data are then used to further investigate the potential low bias in the MODIS DT and DB aerosol products, in an attempt to quantify the measure of undersampling in the regional DT and DB archive. Our preliminary results show that DT and DB aerosol algorithms detect about half heavy aerosol loading when CALIPSO and OMI AI believe there are heavy absorbing aerosols.

  7. 76 FR 10213 - Special Conditions: Embraer Model EMB-135BJ (Legacy 650) Airplanes, Limit Engine Torque Loads for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... 650) Airplanes, Limit Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation... engine size and the potential torque load imposed by sudden engine-stoppage conditions. The applicable... incorporate novel or unusual design features involving engine size and the potential torque load imposed...

  8. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  9. Cloud droplet nucleation and its connection to aerosol properties

    SciTech Connect

    Schwartz, S.E.

    1996-04-01

    Anthropogenic aerosols influence the earth`s radiation balance and climate directly, by scattering shortwave (solar) radiation in cloud-free conditions and indirectly, by increasing concentrations of cloud droplets thereby enhancing cloud shortwave reflectivity. These effects are thought to be significant in the context of changes in the earth radiation budget over the industrial period, exerting a radiative forcing that is of comparable magnitude to that of increased concentrations of greenhouse gases over this period but opposite in sign. However the magnitudes of both the direct and indirect aerosol effects are quite uncertain. Much of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties arising from anthropogenic aerosols. This paper examines recent studies pertaining to the influence of anthropogenic aerosols on loading and properties of aerosols affecting their cloud nucleating properties and indicative of substantial anthropogenic influence on aerosol and cloud properties over the North Atlantic.

  10. Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Toliyat, Hamid A.

    2005-01-01

    An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.

  11. A Study Of High Speed Friction Behavior Under Elastic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Crawford, P. J.; Hammerberg, J. E.

    2005-03-01

    The role of interfacial dynamics under high strain-rate conditions is an important constitutive relationship in modern modeling and simulation studies of dynamic events (<100 μs in length). The frictional behavior occurring at the interface between two metal surfaces under high elastic loading and sliding speed conditions is studied using the Rotating Barrel Gas Gun (RBGG) facility. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target. Resulting elastic waves are measured using strain gauges attached to the target rod. The kinetic coefficient of friction is obtained through an analysis of the resulting strain wave data. Experiments performed using Cu/Cu, Cu/Stainless steel and Cu/Al interfaces provide some insight into the kinetic coefficient of friction behavior at varying sliding speeds and impact loads.

  12. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  13. Predicting Ductility and Failure Modes of TRIP Steels under Different Loading Conditions

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2010-06-12

    We study the ultimate ductility and failure modes of a TRIP (TRansformation-Induced Plasticity) 800 steel under different loading conditions with an advanced micromechanics-based finite element analysis. The representative volume element (RVE) for the TRIP800 under examination is developed based on an actual microstructure obtained from scanning electron microscopy (SEM). The evolution of retained austenite during deformation process and the mechanical properties of the constituent phases of the TRIP800 steel are obtained from the synchrotron-based in-situ high-energy X-ray diffraction (HEXRD) experiments and a self-consistent (SC) model. The ductile failure of the TRIP800 under different loading conditions is predicted in the form of plastic strain localization without any prescribed failure criteria for the individual phases. Comparisons of the computational results with experimental measurements suggest that the microstructure-based finite element analysis can well capture the overall macroscopic behavior of the TRIP800 steel under different loading conditions. The methodology described in this study may be extended for studying the ultimate ductile failure mechanisms of TRIP steels as well as the effects of the various processing parameters on the macroscopic behaviors of TRIP steels.

  14. A Network Approach to Fracture: The Effect of Heterogeneity and Loading Conditions

    NASA Astrophysics Data System (ADS)

    Reuschlé, T.

    Fracture in a heterogeneous solid is simulated on a triangular network of bonds which figure the potential cracks of the medium. Heterogeneity is introduced by assuming a statistical strength distribution for the bonds. External stresses are applied to the network and the evolution of the bond population is analyzed when the stresses are increased. Bond-breaking is controlled by the crack-exten sion force which takes into account crack interactions by using an iterative procedure. Crack propaga tion leads to the coalescence of broken bonds crack clusters are formed. By using this kind of approach which combines fracture mechanics and network modelling, we are able to simulate the rupture of a rock specimen under various loading conditions without heavy computation. We discuss physical properties of the rupture process by examining the rupture stress and the geometric properties of the macroscopic fracture and their dependence on loading conditions and heterogeneity. Analysis of the geometric characteristics shows that the number of broken bonds can be fitted by a power law of the lattice size, the exponent depending on the loading conditions. Furthermore, an approximate computation of the mechanical response of the network demonstrates that the threshold secant modulus may be a more legitimate choice for a damage parameter in terms of system size independence.

  15. Fracture toughness of quaternary Al-Li-Cu-Mg alloy under mode I, mode II, and mode III loading conditions

    SciTech Connect

    Prasad, N.E.; Kamat, S.V.; Malakondaiah, G. ); Kutumbarao, V.V. . Dept. of Metallurgical Engineering)

    1994-11-01

    The fracture toughness under mode I, mode II, and mode III loading conditions was evaluated for a quaternary 8090 Al-Li-Cu-Mg alloy in underaged and peak-aged conditions. The effect of aging was found to be significantly different for different loading conditions. The alloy in the underaged (T3) condition exhibited minimum fracture toughness under mode II loading, whereas mode I fracture toughness was the lowest in the case of the peak-aged (T8E51) condition. Significant anisotropy in the fracture resistance is observed only in case of the peak-aged alloy under mode I loading, whereas in all other cases, the fracture resistance is found to be isotropic. The fracture mode was transgranular shear in all three modes of loading in the underaged condition as well as under mode II and mode III loading in the peak-aged condition. The alloy exhibited ductile intergranular fracture under mode I loading in the peak-aged condition. The results obtained are explained on the basis of these dominant fracture mechanisms prevalent under different loading conditions.

  16. The development of a test system for investigating the performances of personal aerosol samplers under actual workplace conditions.

    PubMed

    Botham, R A; Hughson, G W; Vincent, J H; Mark, D

    1991-10-01

    The performances of new "total" aerosol samplers for use in workplaces are required to match the inhalability criteria as contained in the latest recommendations of the International Standards Organization (ISO) and the American Conference of Governmental Industrial Hygienists (ACGIH). In the past, practical evaluations have been carried out under idealized conditions in wind tunnels, and there is now the need to extend these to more realistic workplace conditions. This paper describes a new test system that was designed and built for this purpose. It consisted of a life-size mannequin mounted on a trolley so that it can be taken to and wheeled around in workplaces. The mannequin itself incorporated a robotic arm so that, under joystick control, it can be made to simulate a range of worker movements, orientations, and attitudes. An electronically controlled, compact breathing machine provided a range of typical breathing parameters for the mannequin. The pump also provided air movement for a number of personal samplers that were mounted on the torso of the mannequin and tested in that position. Sampler performance should be assessed by comparing directly the aerosol collected by the sampler with that inhaled by the mannequin (and collected on filters inside the head).

  17. The effect of carrier gas contaminants on the charging probability of aerosols under bipolar charging conditions.

    PubMed

    Steiner, Gerhard; Reischl, Georg P

    2012-12-01

    This work concentrates on the experimental determination of the properties of ionic molecular clusters that are produced in the bipolar ionic atmosphere of a radioactivity based (241)Am charger. The main scope of this study was to investigate the dependency of the ions' properties on carrier gas contaminants caused by the evaporation of trace gases from different kinds of frequently encountered tubing materials. A recently developed high resolution mobility spectrometer allows the precise determination of the ions' electrical mobility; an empirical mass-mobility relationship was used to approximate the corresponding ion masses. It was found that impurities in the carrier gas dramatically change the pattern of the ion mobility/size distribution, resulting in very different ion properties that strongly depend on the carrier gas composition. Since the ion properties control the charging process of aerosols, it was further investigated how the different ion properties affect the calculation of the charging probabilities of aerosols. The results show that despite large variations of the ions' properties, only a minor effect on the calculated charging probabilities can be found.

  18. Saharan dust aerosol over the central Mediterranean Sea: optical columnar measurements vs. aerosol load, chemical composition and marker solubility at ground level

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Sferlazzo, D. M.; Becagli, S.; Bommarito, C.; Calzolai, G.; Chiari, M.; di Sarra, A.; Ghedini, C.; Gómez-Amo, J. L.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Nava, S.; Pace, G.; Piacentino, S.; Rugi, F.; Severi, M.; Traversi, R.; Udisti, R.

    2013-08-01

    This study aims at the determination of the mineral contribution to PM10 in the central Mediterranean Sea on the basis of 7 yr of PM10 chemical composition daily measurements made on the island of Lampedusa (35.5° N, 12.6° E). Aerosol optical depth measurements are carried out in parallel while sampling with a multi-stage impactor, and observations with an optical particle counter were performed in selected periods. Based on daily samples, the total content and soluble fraction of selected metals are used to identify and characterize the dust events. The total contribution is determined by PIXE (particle-induced X-ray emission) while the composition of the soluble fraction by ICP-AES (inductively coupled plasma atomic emission spectroscopy) after extraction with HNO3 at pH 1.5. The average PM10 concentration at Lampedusa calculated over the period June 2004-December 2010 is 31.5 μg m-3, with low interannual variability. The annual means are below the EU annual standard for PM10, but 9.9% of the total number of daily data exceed the daily threshold value established by the European Commission for PM (50 μg m-3, European Community, EC/30/1999). The Saharan dust contribution to PM10 was derived by calculating the contribution of Al, Si, Fe, Ti, non-sea-salt (nss) Ca, nssNa, and nssK oxides in samples in which PIXE data were available. Cases with crustal content exceeding the 75th percentile of the crustal oxide content distribution were identified as dust events. Using this threshold we identify 175 events; 31.6% of them (55 events) present PM10 higher than 50 μg m-3, with dust contributing by 33% on average. The annual average crustal contribution to PM10 is 5.42 μg m-3, reaching a value as high as 67.9 μg m-3, 49% of PM10, during an intense Saharan dust event. The crustal aerosol amount and contribution to PM10 shows a very small seasonal dependence; conversely, the dust columnar burden displays an evident annual cycle, with a strong summer maximum (monthly

  19. A New Retrieval of Aerosol Optical Depth under Partly Cloudy Conditions with Multi-Spectral Measurements of Reflectance

    SciTech Connect

    Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

    2009-02-01

    The three-dimensional (3D) radiative effects may cause large uncertainties of satellite aerosol retrievals under partly cloudy conditions [1,2]. For example, analysis of multi-year aerosol statistics derived from the MODerate-Resolution Imaging Spectroradiometer (MODIS) data in clear patches of cloud fields suggests that aerosol product may be in a large error (up to 140%) as a result of 3D cloud-induced enhancement of clear sky reflectance [3]. Retrievals of AOD τa from satellite observations consist of two basic steps: (1) sampling, which includes detection of clear pixels and (2) and application of an algorithm, which estimates AOD in these pixels. The quality of the final product depends on both steps [4]. The largest errors occur for pixels located within areas of sunlight and shadows where the 3D radiative effects have the greatest impacts on the AOD retrievals [2]. To reduce the 3D radiative effects, clear pixels have to be selected far away (~1-2 km) from clouds and their shadows [3]. For selected clear pixels, the independent pixel approximation approach (IPA) [5] is used to estimate the AOD. Since the IPA ignores the 3D cloud-induced enhancement, the IPA-based retrievals can substantially overestimate AOD even for these clear pixels. To take into account such enhancement, a simple parameterization has been suggested [6]. Here we introduce an approach [7], that provides an effective way to avoid the 3D cloud effects, and illustrate with a model-output inverse problem its capability to detect clear pixels (outside of shadows) and estimate their AOD.

  20. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  1. A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions

    NASA Astrophysics Data System (ADS)

    Antoniadou, I.; Manson, G.; Staszewski, W. J.; Barszcz, T.; Worden, K.

    2015-12-01

    This paper deals with the condition monitoring of wind turbine gearboxes under varying operating conditions. Generally, gearbox systems include nonlinearities so a simplified nonlinear gear model is developed, on which the time-frequency analysis method proposed is first applied for the easiest understanding of the challenges faced. The effect of varying loads is examined in the simulations and later on in real wind turbine gearbox experimental data. The Empirical Mode Decomposition (EMD) method is used to decompose the vibration signals into meaningful signal components associated with specific frequency bands of the signal. The mode mixing problem of the EMD is examined in the simulation part and the results in that part of the paper suggest that further research might be of interest in condition monitoring terms. For the amplitude-frequency demodulation of the signal components produced, the Hilbert Transform (HT) is used as a standard method. In addition, the Teager-Kaiser energy operator (TKEO), combined with an energy separation algorithm, is a recent alternative method, the performance of which is tested in the paper too. The results show that the TKEO approach is a promising alternative to the HT, since it can improve the estimation of the instantaneous spectral characteristics of the vibration data under certain conditions.

  2. Simulation of ionomer membrane fatigue under mechanical and hygrothermal loading conditions

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-04-01

    Understanding the fatigue lifetime of common perfluorosulfonic acid (PFSA) ionomer membranes under fluctuating hygrothermal conditions is essential for the development of durable fuel cell technologies. For this purpose, a finite element based fatigue lifetime prediction model is developed based on an elastic-plastic constitutive model combined with a Smith-Watson-Topper (SWT) fatigue formulation. The model is validated against previously reported experimental results for a membrane under cyclic mechanical loadings. The validated model is then utilized to investigate the membrane fatigue lifetime in ex-situ applications under cyclic humidity and temperature conditions. The simulations suggest that the membrane fatigue lifetime is shorter under fluctuating humidity loadings than for temperature loadings. Additionally, the membrane fatigue lifetime is found to be more sensitive to the amplitude of the strain oscillations than to the mean strain under hygrothermal cycling. Most notably, the model predicts that simultaneous humidity and temperature cycling can exacerbate the fatigue process and reduce the fatigue lifetime by several orders of magnitude compared to isolated humidity or temperature cycling. The combination of measured mechanical fatigue data and the present numerical model provides a useful toolkit for analysis of membrane fatigue due to hygrothermal variations, which can be costly and time-consuming when addressed experimentally.

  3. DYNAMIC ANALYSIS OF HANFORD UNIRRADIATED FUEL PACKAGE SUBJECTED TO SEQUENTIAL LATERAL LOADS IN HYPOTHETICAL ACCIDENT CONDITIONS

    SciTech Connect

    Wu, T

    2008-04-30

    Large fuel casks present challenges when evaluating their performance in the Hypothetical Accident Conditions (HAC) specified in the Code of Federal Regulations Title 10 part 71 (10CFR71). Testing is often limited by cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing by using simplified analytical methods. This paper presents a numerical technique for evaluating the dynamic responses of large fuel casks subjected to sequential HAC loading. A nonlinear dynamic analysis was performed for a Hanford Unirradiated Fuel Package (HUFP) [1] to evaluate the cumulative damage after the hypothetical accident Conditions of a 30-foot lateral drop followed by a 40-inch lateral puncture as specified in 10CFR71. The structural integrity of the containment vessel is justified based on the analytical results in comparison with the stress criteria, specified in the ASME Code, Section III, Appendix F [2], for Level D service loads. The analyzed cumulative damages caused by the sequential loading of a 30-foot lateral drop and a 40-inch lateral puncture are compared with the package test data. The analytical results are in good agreement with the test results.

  4. TALSPEAK EXTRACTION SYSTEM UNDER VARIABLE LOADING CONDITIONS - PART 2: SPECIATION STUDIES

    SciTech Connect

    Robinson, Troy A.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2011-10-03

    The reported investigation was performed to gain structural information on the organic phase complex species in the Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes (TALSPEAK) process under various loading conditions. In conjunction with the distribution studies of the TALSPEAK system constituents, presented in Part 1 of this investigation, loaded bis(2-ethylhexyl) phosphoric acid (HDEHP)/isooctane was evaluated using various spectroscopic techniques including NMR, FTIR and visible absorbance spectroscopy. Liquid-liquid distribution and vapor pressure osmometry (VPO) aggregation results correlate with observed changes in the spectroscopic signatures as a function of organic phase loading and water partitioning. Explicit FTIR spectral interpretation of the HDEHP spectra is complex due to overlapping phosphorus absorbance bands, and in this work a combination of the spectroscopic techniques was utilized to elucidate the phosphorus-lanthanide complex structure and changes in speciation due to aggregation. The results from this research will benefit an overall improved prediction of the TALSPEAK process performance under flow conditions.

  5. Load release balance test under unstable conditions effectively discriminates between physically active and sedentary young adults.

    PubMed

    Zemková, E; Štefániková, G; Muyor, J M

    2016-08-01

    This study investigates test-retest reliability and diagnostic accuracy of the load release balance test under four varied conditions. Young, early and late middle-aged physically active and sedentary subjects performed the test over 2 testing sessions spaced 1week apart while standing on either (1) a stable or (2) an unstable surface with (3) eyes open (EO) and (4) eyes closed (EC), respectively. Results identified that test-retest reliability of parameters of the load release balance test was good to excellent, with high values of ICC (0.78-0.92) and low SEM (7.1%-10.7%). The peak and the time to peak posterior center of pressure (CoP) displacement were significantly lower in physically active as compared to sedentary young adults (21.6% and 21.0%) and early middle-aged adults (22.0% and 20.9%) while standing on a foam surface with EO, and in late middle-aged adults on both unstable (25.6% and 24.5%) and stable support surfaces with EO (20.4% and 20.0%). The area under the ROC curve >0.80 for these variables indicates good discriminatory accuracy. Thus, these variables of the load release balance test measured under unstable conditions have the ability to differentiate between groups of physically active and sedentary adults as early as from 19years of age. PMID:27203382

  6. Aerosol-Cloud Interactions in the South-East Atlantic

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2014-05-01

    In this contribution, a satellite-based study on aerosol-cloud interactions (ACI) in the South-East Atlantic with explicit consideration of meteorological conditions is presented. Aerosol-Cloud Interactions remain difficult to quantify and contribute the largest uncertainty to global radiative forcing. These uncertainties make them one of the most important factors for anthropogenic climate perturbations. Interactions are highly complex as microphysical and macrostructural cloud adjustments to aerosol perturbations do not transpire in a black box but are highly dependent on a variety of factors like cloud regime, meteorology and aerosol properties. To gain understanding of the processes that govern ACI in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. This process study uses multiple statistical approaches to untangle the various influences on ACI. Stratocumulus clouds in the South-East Atlantic are investigated over a time span of 10 years using daily Terra MODIS L3 data for aerosol and cloud parameters. Together with ERA-Interim reanalysis data of cloud-relevant meteorological parameters, statistical relationships between aerosol and cloud properties are derived for different weather types on the basis of a kmeans cluster analysis, in addition to bivariate relationships. Also, the influence of aerosol loading on aerosol-cloud relationships is investigated. Relationships between aerosol and cloud microphysical properties are established. Macrostructural cloud adjustments are more ambiguous, as the observed positive relationship between aerosol and cloud liquid water path (LWP) is inconsistent with the Albrecht hypothesis (more cloud water due to drizzle suppression). Adjustments of cloud optical thickness (COT) to aerosol perturbations are negligible as COT is highly dependent on LWP. Strong relationships between aerosol and cloud fraction are identified, but might be spurious and

  7. Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  8. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  9. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  10. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    PubMed

    Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766

  11. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    PubMed

    Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  12. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads

    PubMed Central

    Vázquez-Guerrero, Jairo; Moras, Gerard

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766

  13. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    SciTech Connect

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated.

  14. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    SciTech Connect

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  15. Influence of tool shape on lattice rearrangement under loading conditions reproducing friction stir welding

    SciTech Connect

    Konovalenko, Ivan S.; Konovalenko, Igor S.

    2015-10-27

    Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.

  16. Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions.

    PubMed

    Li, An-jie; Zhang, Tong; Li, Xiao-yan

    2010-01-01

    Aerobic sludge granulation is an attractive new technology for biological wastewater treatment. However, the instability of aerobic granules caused by fungal growth is still one of the main problems encountered in granular bioreactors. In this study, laboratory experiments were conducted to investigate the fate and transformation of aerobic granules under different organic loading conditions. Bacterial granules (2-3mm) in a poor condition with fungi-like black filamentous growth were seeded into two 1L batch reactors. After more than 100d of cultivation, the small seed granules in the two reactors had grown into two different types of large granules (>20mm) with different and unique morphological features. In reactor R1 with a high organic loading rate of 2.0g COD L(-1)d(-1), the black filaments mostly disappeared from the granules, and the dominance of rod-shaped bacteria was recovered. In contrast, at a low loading of 0.5g COD L(-1)d(-1) in reactor R2, the filaments eventually became dominant in the black fungal granules. The bacteria in R1 granules had a unique web-like structure with large pores of a few hundred microm in size, which would allow for effective substrate and oxygen transport into the interior of the granules. DNA-based molecular analysis indicated the evolution of the bacterial population in R1 and that of the eukaryal community in R2. The experimental results suggest that a high loading rate can be an effective means of helping to control fungal bloom, recover bacterial domination and restore the stability of aerobic granules that suffer from fungal contamination.

  17. Numerical simulations of the cavitation phenomena in a Francis turbine at deep part load conditions

    NASA Astrophysics Data System (ADS)

    Wack, J.; Riedelbauch, S.

    2015-12-01

    In recent years, the operating range of hydraulic machines has been more and more extended. As a consequence, the turbines are facing off-design conditions with highly complex flow phenomena like cavitation. In the present study, the occurrences of cavitating inter blade vortices at deep part load conditions in a Francis turbine are investigated using two-phase flow simulations. The numerical simulations require small time steps and fine meshes to reproduce the required flow characteristics and resolve the minimum pressure in the vortex core. Furthermore, the treatment of the outlet boundary condition is important, as this operating point is facing severe backflow in one diffusor channel in the draft tube. The simulation results indicate that the inter blade vortices can be reproduced.

  18. High-speed propeller noise predictions: Effects of boundary conditions used in blade loading calculations

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Clark, B. J.; Groeneweg, J. F.

    1987-01-01

    The acoustics of an advanced single rotation SR-3 propeller at cruise conditions are studied employing a time-domain approach. The study evaluates the acoustic significance of the differences in blade pressures computed using nonreflecting rather than hard wall boundary conditions in the three-dimensional Euler code solution. The directivities of the harmonics of the blade passing frequency tone and the effects of chordwise loading on tone directivity are examined. The results show that the maximum difference in the computed sound pressure levels due to the use of blade pressure distributions obtained with the nonreflecting rather than the hard wall boundary conditions is about 1.5 dB. The blade passing frequency tone directivity obtained in the present study shows good agreement with jetstar flight data.

  19. Biogenic Contributions to Summertime Arctic Aerosol: Observations of Aerosol Composition from the Netcare 2014 Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Koellner, F.; Schneider, J.; Bozem, H.; Hoor, P. M.; Brauner, R.; Herber, A. B.; Leaitch, W. R.; Abbatt, J.

    2014-12-01

    The Arctic is a complex and poorly studied aerosol environment, impacted by strong anthropogenic contributions during winter months and by regional sources in cleaner summer months. In order to gain a predictive understanding of the changing climate in this region, it is necessary to understand the balance between these two aerosol sources to clarify how aerosol might be altered by or contribute to climate change. We present results of vertically resolved, submicron aerosol composition from an Aerodyne high-resolution aerosol mass spectrometer (AMS) during the NETCARE 2014 Polar6 aircraft campaign. The campaign was based in the high Arctic, at Resolute, NU (74°N), allowing measurements from 60 to 2900 meters over ice, open water and near the ice-edge. Concurrent measurements aboard the Polar6 included ultrafine and accumulation mode particle number and size, cloud condensation nuclei concentrations, trace gas concentrations and single particle composition. Aerosol vertical profiles measured by the AMS can be broadly characterized into two regimes corresponding to different meteorological conditions: the first with very low aerosol loading (<0.1 μg/m3) at low altitudes compared to that aloft and high numbers of nucleation mode particles, and the second with higher concentrations at lower levels. This second regime was associated with low concentrations of nucleation mode particles, and higher observable levels of methane sulphonic acid (MSA) from AMS measurements at low altitudes. MSA, produced during the oxidation of dimethyl sulphide, is a marker for the contribution of ocean-derived biogenic sulphur to particulate sulphur and could be identified and quantified using the high-resolution AMS. MSA to sulphate ratios were observed to increase towards lower altitudes, suggesting a contribution to aerosol loading from the ocean. In addition, we present measurements of aerosol neutralization and the characteristics of organic aerosol that relate to the growth of

  20. Investigation of the Tribology Behaviors of Auto-Restoration Additive Under Heavy Loading Conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wang, Feng; Liu, Zili

    Lubricant additives are crucial in minimizing friction and wear, and protecting surfaces under severe contact condition. The traditional additive can only diminish the wear rate of materials by increasing the sliding distance. As a wear-self-compensation lubricating additive, the auto-restoration technology (ART) of worn surface of metals is a novel technique for the repair of mechanical equipment and breakthrough of tribology theory that cannot obey the traditional law. The previous experiments have measured the friction and wear behaviors of ART additives under low load conditions. This paper presents the tribology behaviors of auto-restoration lubricating additive under heavily loaded condition. The results show that the auto-restoration lubricating additive can reduce pronouncedly the frictional coefficient and wear weight; after 6 h wear examination the friction coefficient is only 0.027. The morphology of the worn surface and the chemical composition of tribofilm have been observed by SEM. It proved that the worn surface is very smooth and there exists a tribochemical reaction between the metal and the auto-restoration lubricating additive.

  1. Friction of total hip replacements with different bearings and loading conditions.

    PubMed

    Brockett, Claire; Williams, Sophie; Jin, Zhongmin; Isaac, Graham; Fisher, John

    2007-05-01

    Metal-on-ultra-high molecular weight polyethylene (UHMWPE) total hip replacements have been the most popular and clinically successful implants to date. However, it is well documented that the wear debris from these prostheses contributes to osteolysis and ultimate failure of the prosthesis, hence alternative materials have been sought. A range of 28 mm diameter bearings were investigated using a hip friction simulator, including conventional material combinations such as metal-on-UHWMPE, ceramic-on-ceramic (CoC), and metal-on-metal (MoM), as well as novel ceramic-on-metal (CoM) pairings. Studies were performed under different swing-phase load and lubricant conditions. The friction factors were lowest in the ceramic bearings, with the CoC bearing having the lowest friction factor in all conditions. CoM bearings also had low friction factors compared with MoM, and the trends were similar to CoC bearings for all test conditions. Increasing swing phase load was shown to cause an increase in friction factor in all tests. Increased serum concentration resulted in increased friction factor in all material combinations, except MoM, where increased serum concentration produced a significant reduction in friction factor.

  2. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  3. Mechanical stability analysis on spherical sandwich sheet at low temperature loading conditions

    NASA Astrophysics Data System (ADS)

    Wang, Shanshuai; Li, Shuhui; Li, Zhimin

    2013-12-01

    The spherical sandwich sheet (S-S-S) is generally used in the aerospace industry, for example, the airplane, the rocket's fairing, the spacecraft and the satellite for the purpose of heat-insulation, weight-saving and dimension-reducing. The stability of the S-S-S is of general concern because of its particularly thin but large size. For some S-S-S used in fuel tank storing liquid oxygen of the rocket, it must be facing low temperature down to about -183 °C. Low temperature condition affects the stability of the S-S-S and then causes buckling of the structure. In this paper, a finite element (FE) model is established for evaluating the stability of the S-S-S via the sequential coupling mode. The material mechanical properties related to temperature are concerned in the FE model. The buckling modes and critical buckling loading are predicted accurately, since the FE model includes heat transfer simulating, thermal stress computing, buckling and post buckling process. It is found that the thermal stress generated from the low temperature loading reduces the critical buckling loading and changes the buckling modes of the S-S-S.

  4. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  5. Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Voigtländer, J.; Duplissy, J.; Rondo, L.; Kürten, A.; Stratmann, F.

    2012-02-01

    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) - particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of few minutes. Particle nucleation and growth was also simulated and particle number size distribution properties of the freshly nucleated particles (particle number, mean size, standard deviation of the assumed log-normal distribution) were found to be distributed over the tank's volume similar to the gas species.

  6. Mass loading of size-segregated atmospheric aerosols in the ambient air during fireworks episodes in eastern Central India.

    PubMed

    Nirmalkar, Jayant; Deb, Manas K; Deshmukh, Dhananjay K; Verma, Santosh K

    2013-04-01

    The effects of combustion of the fire crackers on the air quality in eastern Central India were studied for the first time during Diwali festival. This case study analyzes the size distribution and temporal variation of aerosols collected in the rural area of eastern Central India during pre-diwali, Diwali and post-diwali period for the year of 2011. Fifteen aerosol samples were collected during the special case study of Diwali period using Andersen sampler. The mean concentrations of PM10 (respirable particulate matter) were found to be 212.8 ± 4.2, 555.5 ± 20.2 and 284.4 ± 5.8 during pre-diwali, Diwali and post-diwali period, respectively. During Diwali festival PM10 concentration was about 2.6 and 1.9 times higher than pre-diwali and post-diwali period, respectively. PM2.5 (fine) and PM1 (submicron) concentrations during Diwali festival were more than 2 times higher than pre-diwali and post-diwali.

  7. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  8. Influence of edge conditions on material ejection from periodic grooves in laser shock-loaded tin

    NASA Astrophysics Data System (ADS)

    de Rességuier, T.; Roland, C.; Prudhomme, G.; Lescoute, E.; Loison, D.; Mercier, P.

    2016-05-01

    In a material subjected to high dynamic compression, the breakout of a shock wave at a rough free surface can lead to the ejection of high velocity debris. Anticipating the ballistic properties of such debris is a key safety issue in many applications involving shock loading, including pyrotechnics and inertial confinement fusion experiments. In this paper, we use laser driven shocks to investigate particle ejection from calibrated grooves of micrometric dimensions and approximately sinusoidal profile in tin samples, with various boundary conditions at the groove edges, including single groove and periodic patterns. Fast transverse shadowgraphy provides ejection velocities after shock breakout. They are found to depend not only on the groove depth and wavelength, as predicted theoretically and already observed in the past, but also, unexpectedly, on the edge conditions, with a jet tip velocity significantly lower in the case of a single groove than behind a periodic pattern.

  9. Load following capability of CANDLE reactor by adjusting coolant operation condition

    SciTech Connect

    Sekimoto, Hiroshi; Nakayama, Sinsuke

    2012-06-06

    The load following capability of CANDLE reactor is investigated in the condition that the control rods are unavailable. Both sodium cooled metallic fuel fast reactor (SFR) and {sup 208}Pb cooled metallic fuel fast reactor (LFR) are investigated for their performance in power rate changing by changing its coolant operation condition; either coolant flow rate or coolant inlet temperature. The change by coolant flow rate is difficult especially for SFR because the maximum temperature criteria on cladding material may be violated. The power rate can be changed for its full range easily by changing the coolant temperature at the core inlet. LFR can reduce the same amount of power rate by smaller change of temperature than SFR. However, the coolant output temperature is generally decreased for this method and the thermal efficiency becomes worse.

  10. Load following capability of CANDLE reactor by adjusting coolant operation condition

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi; Nakayama, Sinsuke

    2012-06-01

    The load following capability of CANDLE reactor is investigated in the condition that the control rods are unavailable. Both sodium cooled metallic fuel fast reactor (SFR) and 208Pb cooled metallic fuel fast reactor (LFR) are investigated for their performance in power rate changing by changing its coolant operation condition; either coolant flow rate or coolant inlet temperature. The change by coolant flow rate is difficult especially for SFR because the maximum temperature criteria on cladding material may be violated. The power rate can be changed for its full range easily by changing the coolant temperature at the core inlet. LFR can reduce the same amount of power rate by smaller change of temperature than SFR. However, the coolant output temperature is generally decreased for this method and the thermal efficiency becomes worse.

  11. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Rose, C.; Asmi, E.; Ebling, A. M.; Landing, W. M.; Marro, S.; Pedrotti, M.-L.; Sallon, A.; Iuculano, F.; Agusti, S.; Tsiola, A.; Pitta, P.; Louis, J.; Guieu, C.; Gazeau, F.; Sellegri, K.

    2014-10-01

    The effect of ocean acidification and changing water conditions on primary marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect as well as the indirect effect on aerosol that changing biogeochemical parameters can have, ~52 m3 pelagic mesocosms were deployed for several weeks in the Mediterranean Sea during both winter pre-bloom and summer oligotrophic conditions and were subjected to various levels of CO2 to simulate the conditions foreseen in this region for the coming decades. After seawater sampling, primary bubble-bursting aerosol experiments were performed using a plunging water jet system to test both chemical and physical aerosol parameters. Comparing results obtained during pre-bloom and oligotrophic conditions, we find the same four log-normal modal diameters (18.5, 37.5, 91.5, 260 nm) describing the aerosol size distribution during both campaigns, yet pre-bloom conditions significantly increased the number fraction of the second (Aitken) mode, with an amplitude correlated to virus-like particles, heterotrophic prokaryotes, TEPs, chlorophyll a and other pigments. Organic fractions determined from κ closure calculations for Dp ~50 nm were much larger during the pre-bloom period (64%) than during the oligotrophic period (38%), and the organic fraction increased as the particle size decreased. Combining data from both campaigns together, strong positive correlations were found between the organic fraction of the aerosol and chlorophyll a concentrations, heterotrophic and autotrophic bacteria abundance, and dissolved organic carbon (DOC) concentrations. As a consequence of the changes in the organic fraction and the size distributions between pre-bloom and oligotrophic periods, we find that the ratio of cloud condensation nuclei (CCN) to condensation nuclei (CN) slightly decreased during the pre-bloom period. The enrichment of the seawater samples with microlayer samples did not have any effect on the

  12. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Rose, C.; Asmi, E.; Ebling, A. M.; Landing, W. M.; Marro, S.; Pedrotti, M.-L.; Sallon, A.; Iuculano, F.; Agusti, S.; Tsiola, A.; Pitta, P.; Louis, J.; Guieu, C.; Gazeau, F.; Sellegri, K.

    2015-07-01

    The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect as well as the indirect effect on aerosol that changing biogeochemical parameters can have, ~ 52 m3 pelagic mesocosms were deployed for several weeks in the Mediterranean Sea during both winter pre-bloom and summer oligotrophic conditions and were subjected to various levels of CO2 to simulate the conditions foreseen in this region for the coming decades. After seawater sampling, primary bubble-bursting aerosol experiments were performed using a plunging water jet system to test both chemical and physical aerosol parameters (10-400 nm). Comparing results obtained during pre-bloom and oligotrophic conditions, we find the same four log-normal modal diameters (18.5 ± 0.6, 37.5 ± 1.4, 91.5 ± 2.0, 260 ± 3.2 nm) describing the aerosol size distribution during both campaigns, yet pre-bloom conditions significantly increased the number fraction of the second (Aitken) mode, with an amplitude correlated to virus-like particles, heterotrophic prokaryotes, TEPs (transparent exopolymeric particles), chlorophyll a and other pigments. Organic fractions determined from kappa closure calculations for the diameter, Dp ~ 50 nm, were much larger during the pre-bloom period (64 %) than during the oligotrophic period (38 %), and the organic fraction decreased as the particle size increased. Combining data from both campaigns together, strong positive correlations were found between the organic fraction of the aerosol and chlorophyll a concentrations, heterotrophic and autotrophic bacteria abundance, and dissolved organic carbon (DOC) concentrations. As a consequence of the changes in the organic fraction and the size distributions between pre-bloom and oligotrophic periods, we find that the ratio of cloud condensation nuclei (CCN) to condensation nuclei (CN) slightly decreased during the

  13. Trunk active response and spinal forces in sudden forward loading: analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model.

    PubMed

    Shahvarpour, Ali; Shirazi-Adl, Aboulfazl; Larivière, Christian; Bazrgari, Babak

    2015-01-01

    Understanding the central nervous system (CNS) response strategy to trunk perturbations could help in prevention of back injuries and development of rehabilitation and treatment programs. This study aimed to investigate biomechanical response of the trunk musculoskeletal system under sudden forward loads, accounting for pre-perturbation conditions (preloading, initial posture and abdominal antagonistic coactivation) and perturbation magnitudes. Using a trunk kinematics-driven iterative finite element (FE) model, temporal profiles of measured kinematics and external load along with subjects' weights were prescribed to predict thoracolumbar muscle forces/latencies and spinal loads for twelve healthy subjects when tested in six conditions during pre- and post-perturbation periods. Results demonstrated that preloading the trunk significantly (i.e., p<0.05) increased pre-perturbation back muscle forces but significantly decreased post-perturbation peak muscle active forces and muscle latencies. Initial trunk flexion significantly increased muscle active and passive forces before the perturbation and their peak values after the perturbation, which in turn caused much larger spinal loads. Abdominal muscles antagonistic pre-activation did not alter the internal variables investigated in this study. Increase in sudden applied load increased muscle reflex activities and spinal forces; a 50 N increase in sudden load (i.e., when comparing 50 N to 100 N) increased the L5-S1 compression force by 1327 N under 5 N preload and by 1374 N under 50 N preload. Overall, forces on the spine and hence risk of failure substantially increased in sudden forward loading when the magnitude of sudden load increased and when the trunk was initially in a flexed posture. In contrast, a higher initial preload diminished reflex latencies and compression forces.

  14. Pore Water Pressure Response of a Soil Subjected to Traffic Loading under Saturated and Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Cary, Carlos

    This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further

  15. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore

  16. Dilution and aerosol dynamics within a diesel car exhaust plume—CFD simulations of on-road measurement conditions

    NASA Astrophysics Data System (ADS)

    Uhrner, U.; von Löwis, S.; Vehkamäki, H.; Wehner, B.; Bräsel, S.; Hermann, M.; Stratmann, F.; Kulmala, M.; Wiedensohler, A.

    Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H 2SO 4-H 2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads. Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp˜50 nm) at variable operating conditions. Soot mode number concentrations reached up to 10 13 m -3 depending on operating conditions and mixing. For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H 2SO 4(g). The highest simulated nucleation rates were about 0.05-0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle ( Dp⩽15 nm) concentrations (>10 13 m -3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h -1) and high engine rotational speed (>3800 revolutions per minute (rpm)). Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H 2SO 4

  17. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  18. Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban-fringe aerosols

    NASA Astrophysics Data System (ADS)

    Boreson, Justin; Dillner, Ann M.; Peccia, Jordan

    2004-11-01

    Seasonal allergies and microbial mediated respiratory diseases, can coincide with elevated particulate matter concentrations, often when dry desert soils are disturbed. In addition to effects from the allergens, allergic and asthmatic responses may be enhanced when chemical and biological constituents of particulate matter (PM) are combined together. Because of these associations and also the recent regulatory and health-related interests of monitoring PM2.5, separately from total PM10, the biological loading between the fine (dp<2.5 μm) and coarse (2.5 μmloading within PM, 24-h fine and coarse PM fractions were collected at a natural desert area and an urban fringe site located in the expanding Phoenix, Arizona metropolitan area during winter, spring, and summer seasons. Elemental carbon and inorganic ions were measured to determine the relative influence that anthropogenic sources, such as traffic, had on the aerosol composition. Total protein concentration was used as a surrogate measure of total biological concentration within the PM2.5 and PM10cf (coarse fraction) size ranges. In all seasons, coarse protein at the urban fringe was consistently higher than the natural desert. When high-anthropogenic PM events were separated from the data set, a positive significant correlation (p<0.05) was found between protein and coarse PM fraction, but not in the fine fraction. An 18S rDNA clone library was developed from PM10 aerosol samples to characterize the type and phylogenetic diversity of airborne eukaryotic (non-bacterial) microorganisms existing in ambient PM for the urban fringe and natural desert. Both sites contained allergenic organisms. Some groups of eukaryotic species were exclusive to only one of the sites. The natural desert contained more species of Basidiomycota fungi and the urban fringe contained more species of green plants, suggesting that the

  19. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified.

    PubMed Central

    Redington, A N; Rigby, M L; Shinebourne, E A; Oldershaw, P J

    1990-01-01

    Ventricular pressure-volume diagrams were obtained from the right ventricle in patients before and after relief of right ventricular pressure load, in patients with volume loaded right ventricles, and from the left ventricle in patients after the Mustard procedure for transposition of the great arteries. The patterns of ejection during pressure development and decline were similar in patients after relief of pressure load and in those with isolated volume load. A right ventricular pressure load, however, reduced ejection during the two "isovolumic" periods, and the overall shape of the pressure-volume loop resembled that of the normal left ventricle. Pressure-volume diagrams obtained from the left ventricle after the Mustard procedure were indistinguishable from the normal right ventricle, which accords with the hypothesis that the normal right ventricular contraction pattern is a consequence of loading conditions rather than a reflection of an intrinsic property of the myocardium. PMID:2310644

  20. Reciprocating sliding wear behavior of alendronate sodium-loaded UHMWPE under different tribological conditions.

    PubMed

    Huang, Jie; Qu, Shuxin; Wang, Jing; Yang, Dan; Duan, Ke; Weng, Jie

    2013-07-01

    The aim of this study is to investigate the tribological behaviors and wear mechanisms of ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN), a potential drug to treat osteolysis, under different normal loads and lubrication conditions. A mixture of UHMWPE powder and ALN (1.0 wt.%) solution was dried and hot pressed. The static and dynamic friction coefficients of UHMWPE-ALN were slightly higher than those of UHMWPE except under normal load as 10 N and in 25 v/v % calf serum. The specific wear rates of UHMWPE-ALN and UHMWPE were the lowest in 25 v/v % calf serum compared to those in deionized water or physiological saline. In particular, the specific wear rate of UHMWPE-ALN was lower than that of UHMWPE at 50 N in 25 v/v % calf serum. The main wear mechanisms of UHMWPE and UHMWPE-ALN in deionized water and UHMWPE in physiological saline were abrasive. The main wear mechanism of UHMWPE-ALN in physiological saline was micro-fatigue. In 25 v/v % calf serum, the main wear mechanism of UHMWPE and UHMWPE-ALN was abrasive wear accompanied with plastic deformation. The results of Micro-XRD indicated that the molecular deformation of UHMWPE-ALN and UHMWPE under the lower stress were in the amorphous region but in the crystalline region at the higher stress. These results showed that the wear of UHMWPE-ALN would be reduced under calf serum lubricated, which would be potentially applied to treat osteolysis.

  1. Structural Performance of a Hybrid FRP-Aluminum Modular Triangular Truss System Subjected to Various Loading Conditions

    PubMed Central

    Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Gao, Yifeng

    2014-01-01

    A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254

  2. Structural performance of a hybrid FRP-aluminum modular triangular Truss system subjected to various loading conditions.

    PubMed

    Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Li, Feng; Gao, Yifeng

    2014-01-01

    A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254

  3. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  4. Bifurcation boundary conditions for current programmed PWM DC-DC converters at light loading

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Chieh

    2012-10-01

    Three types of bifurcations (instabilities) in the PWM DC-DC converter at light loading under current mode control in continuous-conduction mode (CCM) or discontinuous-conduction mode (DCM) are analysed: saddle-node bifurcation (SNB) in CCM or DCM, border-collision bifurcation during the CCM-DCM transition, and period-doubling bifurcation in CCM. Different bifurcations occur in some particular loading ranges. Bifurcation boundary conditions separating stable regions from unstable regions in the parametric space are derived. A new methodology to analyse the SNB in the buck converter based on the peak inductor current is proposed. The same methodology is applied to analyse the other types of bifurcations and converters. In the buck converter, multiple stable/unstable CCM/DCM steady-state solutions may coexist. Possibility of multiple solutions deserves careful study, because an ignored solution may merge with a desired stable solution and make both disappear. Understanding of SNB can explain some sudden disappearances or jumps of steady-state solutions observed in switching converters.

  5. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    SciTech Connect

    Sokovikov, Mikhail E-mail: naimark@icmm.ru; Chudinov, Vasiliy E-mail: naimark@icmm.ru; Bilalov, Dmitry E-mail: naimark@icmm.ru; Oborin, Vladimir E-mail: naimark@icmm.ru; Uvarov, Sergey E-mail: naimark@icmm.ru; Plekhov, Oleg E-mail: naimark@icmm.ru; Terekhina, Alena E-mail: naimark@icmm.ru; Naimark, Oleg E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.

  6. Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.

  7. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and

  8. Physiological responses related to moderate mental load during car driving in field conditions.

    PubMed

    Wiberg, Henrik; Nilsson, Emma; Lindén, Per; Svanberg, Bo; Poom, Leo

    2015-05-01

    We measured physiological variables on nine car drivers to capture moderate magnitudes of mental load (ML) during driving in prolonged and repeated city and highway field conditions. Ecological validity was optimized by avoiding any artificial interference to manipulate drivers ML, drivers were alone in the car, they were free to choose their paths to the target, and the repeated drives familiarized drivers to the procedure. Our aim was to investigate if driver's physiological variables can be reliably measured and used as predictors of moderate individual levels of ML in naturally occurring unpredictably changing field conditions. Variables investigated were: heart-rate, skin conductance level, breath duration, blink frequency, blink duration, and eye fixation related potentials. After the drives, with support from video uptakes, a self-rating and a score made by external raters were used to distinguish moderately high and low ML segments. Variability was high but aggregated data could distinguish city from highway drives. Multivariate models could successfully classify high and low ML within highway and city drives using physiological variables as input. In summary, physiological variables have a potential to be used as indicators of moderate ML in unpredictably changing field conditions and to advance the evaluation and development of new active safety systems.

  9. Physiological responses related to moderate mental load during car driving in field conditions.

    PubMed

    Wiberg, Henrik; Nilsson, Emma; Lindén, Per; Svanberg, Bo; Poom, Leo

    2015-05-01

    We measured physiological variables on nine car drivers to capture moderate magnitudes of mental load (ML) during driving in prolonged and repeated city and highway field conditions. Ecological validity was optimized by avoiding any artificial interference to manipulate drivers ML, drivers were alone in the car, they were free to choose their paths to the target, and the repeated drives familiarized drivers to the procedure. Our aim was to investigate if driver's physiological variables can be reliably measured and used as predictors of moderate individual levels of ML in naturally occurring unpredictably changing field conditions. Variables investigated were: heart-rate, skin conductance level, breath duration, blink frequency, blink duration, and eye fixation related potentials. After the drives, with support from video uptakes, a self-rating and a score made by external raters were used to distinguish moderately high and low ML segments. Variability was high but aggregated data could distinguish city from highway drives. Multivariate models could successfully classify high and low ML within highway and city drives using physiological variables as input. In summary, physiological variables have a potential to be used as indicators of moderate ML in unpredictably changing field conditions and to advance the evaluation and development of new active safety systems. PMID:25857673

  10. Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.

    PubMed

    Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A

    2016-06-01

    Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. PMID:26304050

  11. Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition.

    SciTech Connect

    Brannon, Rebecca Moss; Lee, Moo Yul; Bronowski, David R.

    2005-02-01

    To establish mechanical properties and failure criteria of silicon carbide (SiC-N) ceramics, a series of quasi-static compression tests has been completed using a high-pressure vessel and a unique sample alignment jig. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established the failure threshold for the SiC-N ceramics in terms of stress invariants (I{sub 1} and J{sub 2}) over the range 1246 < I{sub 1} < 2405. In this range, results are fitted to the following limit function (Fossum and Brannon, 2004) {radical}J{sub 2}(MPa) = a{sub 1} - a{sub 3}e -a{sub 2}(I{sub 1}/3) + a{sub 4} I{sub 1}/3, where a{sub 1} = 10181 MPa, a{sub 2} = 4.2 x 10{sup -4}, a{sub 3} = 11372 MPa, and a{sub 4} = 1.046. Combining these quasistatic triaxial compression strength measurements with existing data at higher pressures naturally results in different values for the least-squares fit to this function, appropriate over a broader pressure range. These triaxial compression tests are significant because they constitute the first successful measurements of SiC-N compressive strength under quasistatic conditions. Having an unconfined compressive strength of {approx}3800 MPa, SiC-N has been heretofore tested only under dynamic conditions to achieve a sufficiently large load to induce failure. Obtaining reliable quasi-static strength measurements has required design of a special alignment jig and load-spreader assembly, as well as redundant gages to ensure alignment. When considered in combination with existing dynamic strength measurements, these data significantly advance the characterization of pressure-dependence of strength, which is important for penetration simulations where failed regions are often at lower pressures than intact regions.

  12. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  13. Mechanical Behavior of Tissue Simulants and Soft Tissues Under Extreme Loading Conditions

    NASA Astrophysics Data System (ADS)

    Kalcioglu, Zeynep Ilke

    Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such as gels and soft tissues, particularly for small sample volumes. One goal of such developments is to quantitatively predict and mimic tissue deformation due to high rate impact events typical of industrial accidents and ballistic insults. This aim requires advances in mechanical characterization to establish tools and design principles for tissue simulant materials that can recapitulate the mechanical responses of hydrated soft tissues under dynamic contact-loading conditions. Given this motivation, this thesis studies the mechanical properties of compliant synthetic materials developed for tissue scaffold applications and of soft tissues, via modifying an established contact based technique for accurate, small scale characterization under fully hydrated conditions, and addresses some of the challenges in the implementation of this method. Two different engineered material systems composed of physically associating block copolymer gels, and chemically crosslinked networks including a solvent are presented as potential tissue simulants for ballistic applications, and compared directly to soft tissues from murine heart and liver. In addition to conventional quasistatic and dynamic bulk mechanical techniques that study macroscale elastic and viscoelastic properties, new methodologies are developed to study the small scale mechanical response of the aforementioned material systems to concentrated impact loading. The resistance to penetration and the energy dissipative constants are quantified in order to compare the deformation of soft tissues and mechanically optimized simulants, and to identify the underlying mechanisms by which the mechanical response of these tissue simulant candidates are modulated. Finally, given that soft tissues are biphasic in

  14. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2014-03-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated.

  15. Characterizing interactions between aerosols and cloud droplets in marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2016-04-01

    This contribution presents a method to characterize the nonlinearities of interactions between aerosols and cloud droplets in marine boundary layer clouds based on global MODIS observations. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. The ways in which aerosols as condensation nuclei in particular influence the optical, micro- and macrophysical properties of clouds are one of the largest remaining uncertainties in climate-change research. In particular, cloud droplet size is believed to be impacted, and thereby cloud reflectivity, lifetime, and precipitation susceptibility. However, the connection between aerosols and cloud droplets is nonlinear, due to various factors and processes. The impact of aerosols on cloud properties is thought to be strongest with low aerosol loadings, whereas it saturates with high aerosol loadings. To gain understanding of the processes that govern low cloud water properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, global Terra MODIS L3 data sets are used to characterize the nonlinearities of the interactions between aerosols and cloud droplets in marine boundary layer clouds. MODIS observations are binned in classes of aerosol loading to identify at what loading aerosol impact on cloud droplets is the strongest and at which loading it saturates. Results are connected to ERA-Interim and MACC data sets to identify connections of detected patterns to meteorology and aerosol species.

  16. Multi-Decadal Analysis of Atmospheric Aerosol Loading Based on Major Ion and Stable Isotope Geochemistry of Glacial Ice From the Siberian Altai

    NASA Astrophysics Data System (ADS)

    Joswiak, D.; Aizen, E.; Aizen, V.

    2006-12-01

    Analysis of a deep alpine ice core from the mid-latitude Siberian Altai is presented. The 170m core in storage and processing at the University of Idaho is examined to 50m on the basis of annual layer identification and dating, visual stratigraphy, major ion concentration, stable (δ18O,δ2H) and radiogenic (δ3H) isotope variability using multivariate and time series statistical methods. The core depth has recorded atmospheric precipitation since the recent industrial (post-1940) time period and into the intermediate transition of the early 20^{th}Century based on multi-parameter dating techniques. The time series is evaluated as a proxy for high-resolution examination of aerosol loading through the ion chemistry and mineral dust records preserved in the glacial ice. Aerosol loading estimations are achieved through major element analysis (to 20m depth) for dust particles ranging in size from 0.52-5.04μm. Average ion concentrations corroborate well with another ice core from the Altai Mts. for the industrialized (post-1940) time in this geographic region, with slightly elevated concentrations of all species analyzed and localized differences in peak variability. The ion chemistry is characterized by a significant increase in sulfate concentrations (0-33m mean SO4=10.54μEq/L, 33-50m mean SO4=2.91μEq/L) and a slight increase in nitrate concentrations in the upper portion of core corresponding to the recent (<50yrs) past. This level of increased aerosol loading is typically associated with anthropogenic activities, including industrialization, biomass burning, and agricultural activity that may accompany increasing temperature trends. However, oxygen isotopes ratios do not show a statistically significant difference in mean oxygen isotope ratios expected for the associated (0-33m, 33-50m) time periods of increased sulfate and nitrate concentrations. Other central Asian aeolian dust species (magnesium, calcium, chloride and sodium) do not show significant increasing

  17. Daily spectral effects on concentrating PV solar cells as affected by realistic aerosol optical depth and other atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.

    2009-08-01

    provides a preliminary quantitative assessment of how local atmospheric conditions interact with the spectral response of different CPV technologies. Most importantly, it is shown that the effect of aerosol optical depth (AOD, also referred to as atmospheric turbidity) has the largest impact on both the average direct normal irradiance (DNI) during a given month and the cell's DSEF. It is found that DSEF can be as low as 0.993 under clean conditions (low AOD), and as high as 1.215 under hazy conditions (high AOD). Under most conditions, all simulated solar cells perform significantly better than under rating conditions due to the spectral effect alone. There is no important difference in DSEF from cell to cell, except in one instance of very high AOD. The methodology and results proposed here constitute a step towards a better performance prediction of CPV systems, by assessing the variable spectral effect more accurately. It is anticipated that a more detailed simulation, which would also model temperature effects, as well as current-limiting effects in multijunction cells, would indicate even larger DSEF values than found here. Accurate aerosol data with higher spatial resolution in the "sun belt" than what exists today would also be desirable for the development of CPV applications.

  18. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  19. Loading and Boundary Condition Influences in a Poroelastic Finite Element Model of Cartilage Stresses in a Triaxial Compression Bioreactor

    PubMed Central

    Kallemeyn, Nicole A; Grosland, Nicole M; Pedersen, Doug R; Martin, James A; Brown, Thomas D

    2006-01-01

    Background: We developed a poroelastic finite element (FE) model of cartilage in dynamic triaxial compression to parametrically analyze the effects of loading and boundary conditions on a baseline model. Conventional mechanical tests on articular cartilage such as confined and unconfined compression, indentation, etc., do not fully allow for modulation of compression and shear at physiological levels whereas triaxial compression does. A Triaxial Compression Bioreactor, or TRIAX, has been developed to study chondrocyte responses to multi-axial stress conditions under cyclic loading. In the triaxial setting, however, a cartilage explant's physical testing environment departs from the ideal homogeneous stress state that would occur from strict linear superposition of the applied axial and transverse pressure. Method of Approach: An axisymmetric poroelastic FE model of a cartilage explant (4 mm diameter, 1.5 mm thick) in cyclic triaxial compression was created. Axial and transverse loads (2 MPa at 1 Hz.) were applied via a platen and containment sheath. Parameters of interest included the rise time and magnitude of the applied load, in addition to the containment sheath modulus and the friction coefficient at the cartilage/platen interfaces. Metrics of interest in addition to whole explant axial strain included axial (surface normal) stress, shear stress, pore pressure, and the fluid load carriage fraction within the explant. Results: Strain results were compared to experimental data from explants tested in the TRIAX under conditions similar to the baseline model. Explant biomechanics varied considerably over numbers of load cycles and parameter values. Cyclic loading caused an increase in accumulated strain for the various loading and boundary conditions. Conclusions: Unlike what would be expected from linear superposition of the homogeneous stresses from the applied axial and transverse pressure, we have shown that the stress state within the TRIAX is considerably

  20. 76 FR 25648 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b) Separately... Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... design features include ] engine size and the potential torque load imposed by sudden engine...

  1. 14 CFR 27.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....471 through 27.475; (2) The vertical load at each axle must be combined with a drag load at that axle... drag load must be applied, at the ground contact point, of not less than the lesser of— (i) 0.8...

  2. 14 CFR 27.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....471 through 27.475; (2) The vertical load at each axle must be combined with a drag load at that axle... drag load must be applied, at the ground contact point, of not less than the lesser of— (i) 0.8...

  3. 14 CFR 29.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....471 through 29.475; (2) The vertical load at each axle must be combined with a drag load at that axle... drag load must be applied, at the ground contact point, of not less than the lesser of— (i) 0.8...

  4. 14 CFR 27.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....471 through 27.475; (2) The vertical load at each axle must be combined with a drag load at that axle... drag load must be applied, at the ground contact point, of not less than the lesser of— (i) 0.8...

  5. 14 CFR 29.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....471 through 29.475; (2) The vertical load at each axle must be combined with a drag load at that axle... drag load must be applied, at the ground contact point, of not less than the lesser of— (i) 0.8...

  6. 14 CFR 29.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....471 through 29.475; (2) The vertical load at each axle must be combined with a drag load at that axle... drag load must be applied, at the ground contact point, of not less than the lesser of— (i) 0.8...

  7. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  8. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9N, 2.7ms) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via a secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed in these

  9. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9 N, 2.7 m/s) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (approx. 0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via the secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed

  10. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  11. Monitoring of inner wall condition in mass-production plasma etching process using a load impedance monitoring system

    NASA Astrophysics Data System (ADS)

    Kasashima, Yuji; Kurita, Hiroyuki; Kimura, Naoya; Ando, Akira; Uesugi, Fumihiko

    2015-06-01

    This work describes the detection of changes in the inner wall condition of mass-production plasma etching equipment using a load impedance monitoring system. The system detects the change in the imaginary part of the load impedance from a 50-Ω transmission line when the inner wall condition changes following exposure to the atmosphere. The results demonstrate that the system can be used as a practical method for real-time and noninvasive monitoring of the wall condition of etching chambers. This method will contribute to improvements in production yield and overall equipment effectiveness, and the development of predictive maintenance in semiconductor manufacturing.

  12. Contributions of the Stochastic Shape Wake Model to Predictions of Aerodynamic Loads and Power under Single Wake Conditions

    NASA Astrophysics Data System (ADS)

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; Churchfield, M. J.

    2016-09-01

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. These results indicate that the stochastic shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.

  13. Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Mikheevskiy, S.; Glinka, G.; Lee, E.

    2013-03-01

    model. The method can be also used to predict fatigue crack growth under constant amplitude and spectrum loading in various environmental conditions such as vacuum, air, and corrosive environment providing that appropriate limited constant amplitude fatigue crack growth data obtained in the same environment are available. The proposed methodology is equally suitable for fatigue analysis of smooth, notched, and cracked components.

  14. Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Cocker, David R., III

    2016-08-01

    The molecular structure of volatile organic compounds determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of 12 different eight- to nine-carbon aromatic hydrocarbons under low-NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution conjecture developed by Li et al. (2016) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl-substituted aromatic hydrocarbon.

  15. Daytime resolved analysis of polycyclic aromatic hydrocarbons in urban aerosol samples - impact of sources and meteorological conditions.

    PubMed

    Sklorz, Martin; Schnelle-Kreis, Jürgen; Liu, Yongbo; Orasche, Jürgen; Zimmermann, Ralf

    2007-03-01

    Urban aerosol was collected in a summer and a winter campaign for 7 and 3 days, respectively. Low volume samples were taken with a time resolution of 160 min using a filter/sorption cartridge system extended by an ozone scrubber. Concentrations of mainly particle associated polycyclic aromatic hydrocarbons (PAH) and oxidised PAH (O-PAH) were determined by gas chromatography/high resolution mass spectrometry. The sampling site was located in the city centre of Augsburg, Germany, near major roads with high traffic volume. The daily concentrations and profiles were mainly governed by local emissions from traffic and domestic heating, as well as by the meteorological conditions. During the winter campaign, concentrations were more than 10 fold higher than during the summer campaign. Highest concentrations were found concurrent with low boundary layer heights and low wind speeds. Significant diurnal variation of the PAH profiles was observed. Enhanced influences of traffic related PAH on the PAH profiles were evident during daytime in summer, whereas emissions from hot water generation and domestic heating were obvious during the night time of both seasons. A general idea about the global meteorological situation was acquired using back trajectory calculations (NOAA ARL HYSPLIT4). Due to high local emissions in combination with low air exchange during the two sampling campaigns, effects of mesoscale transport were not clearly observable.

  16. The effects of heterogeneities and loading conditions in the development of shear zones

    NASA Astrophysics Data System (ADS)

    Morales, Luiz F. G.; Rybacki, Erik; Dresen, Georg

    2016-04-01

    Shear zones are regions of localized deformation and are frequently nucleated by material and/or structural heterogeneities and may develop under transient boundary conditions of strain rate and stress. Here we investigate shear zone nucleation and development due to mechanical heterogeneities. Experiments were performed in constant twist rate (CTR) and constant torque (CT) torsion tests to simulate the end member conditions of constant strain rate and constant stress. We have used hollow cylinders of Carrara marble samples containing weak inclusions of Solnhofen limestone. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure to maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. Local shear strain values in the process zone are between 5 to 10 times higher than the bulk applied strain. In CT experiments, a narrow shear zone marked by intense grain size reduction is developed in front of the inclusion and the surrounding material remains relatively intact, whereas in CTR experiments the deformation is more widely distributed. The volume of recrystallized grains is nevertheless similar in the samples deformed at same bulk strains in both CT and CTR. At similar bulk strain, the crystallographic preferred orientation (CPO) in the process zone of CT experiments is stronger than in CTR experiments and CPO strength varies with grain size. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  17. Allostatic load is associated with chronic conditions in the Boston Puerto Rican Health Study.

    PubMed

    Mattei, Josiemer; Demissie, Serkalem; Falcon, Luis M; Ordovas, Jose M; Tucker, Katherine

    2010-06-01

    Puerto Ricans living in the United States mainland present multiple disparities in prevalence of chronic diseases, relative to other racial and ethnic groups. Allostatic load (AL), or the cumulative wear and tear of physiological responses to stressors such as major life events, social and environmental burden, has been proposed as a possible mechanism for the inequalities observed in minority groups, but has not been studied in Puerto Ricans. The aim of this study was to determine the association of AL to six chronic diseases (abdominal obesity, hypertension, diabetes, and self-reported cardiovascular disease (CVD), arthritis and cancer) in Puerto Ricans, and to contrast AL to metabolic syndrome (MetS). Participants of the Boston Puerto Rican Health Study (n=1116, ages 45-75 years) underwent a home-based interview, where questionnaires were completed and biological samples collected. A summary definition of AL was constructed using clinically-defined cutoffs and medication use for 10 physiological parameters in different body systems. Logistic regression models were run to determine associations between AL score and disease status, controlling for age, sex, smoking, alcohol use, physical activity, total fat intake and energy intake. Parallel models were also run with MetS score replacing AL. We found that increasing categories of AL score were significantly associated with abdominal obesity, hypertension, diabetes and self-reported cardiovascular disease (CVD) and arthritis, but not with self-reported cancer. The strength of associations of AL with all conditions, except diabetes and cancer, was similar to or larger than those of MetS score. In conclusion, Puerto Rican older adults experienced physiological dysregulation that was associated with increased odds of chronic conditions. AL was more strongly associated with most conditions, compared to MetS, suggesting that this cumulative measure may be a better predictor of disease. These results have prospective

  18. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    boomerang shape varies with season. For moderate aerosol loading (AOD<0.4), the effect on the droplet size for the "Mixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm season. It is likely associated with an increase in the emission of light absorbing aerosol like smoke (black carbon), mainly caused by coal-fired heating during the cold season in China. As expected, the sensitivity of CDR to AOD is much weaker for "Separated" cases, irrespective of warm or cold seasons, indicating no real aerosol indirect effect occurring in this case. In contrast, for heavy aerosol loading (AOD>0.4), an increasing CDR with AOD can be seen in "Mixed" scenario during the warm season. Conversely, a closer look at the responses of CDR during the cold season shows that CDR decreases with AOD, although the strength is not much large. Therefore, we argue that cloud droplet size decreases with aerosol loading during cold season, irrespective of moderate or heavy atmospheric pollution. Finally, we discuss the possible factors that may influence the aerosol indirect effects on warm clouds investigated here. For instance, aerosol-cloud interaction conundrum might be affected by aerosol humidification, which is the case for MODIS AOD during warm seasons. But this issue can be partly overcome by categorizing dataset into warm-season and cold-season subsets, representing different ambient humidity condition in the atmosphere. The different boomerang shapes observed during various seasons, particularly after transition zone due to droplet saturation effect, have great implications for climate forcing by aerosol in eastern China.

  19. Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates: I. Effects of Loading and Processing Conditions

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Pang, J. H. L.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2012-02-01

    During service, microcracks form inside solder joints, making microelectronic packages highly prone to failure on dropping. Hence, the fracture behavior of solder joints under drop conditions at high strain rates and under mixed-mode conditions is a critically important design consideration for robust joints. This study reports on the effects of joint processing and loading conditions on the microstructure and fracture response of Sn-3.8%Ag-0.7%Cu (SAC387) solder joints attached to Cu substrates. The impact of parameters which control the microstructure (reflow condition, aging) as well as loading conditions (strain rate and loading angle) are explicitly studied. A methodology based on the calculation of the critical energy release rate, G C, using compact mixed-mode (CMM) samples was developed to quantify the fracture toughness of the joints under conditions of adhesive (i.e., interface-related) fracture. In general, higher strain rate and increased mode-mixity resulted in decreased G C. G C also decreased with increasing dwell time at reflow temperature, which produced a thicker intermetallic layer at the solder-substrate interface. Softer solders, produced by slower cooling following reflow, or post-reflow aging, showed enhanced G C. The sensitivity of the fracture toughness to all of the aforementioned parameters reduced with an increase in the mode-mixity. Fracture mechanisms, elucidating the effects of the loading conditions and process parameters, are briefly highlighted.

  20. Elemental Composition of Primary Aerosols Emitted from Burning of 21 Biomass Fuels Measured by Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Mack, L.; Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Jimenez, J. L.; Worsnop, D. R.

    2010-12-01

    Biomass burning emissions are an important contributor to regional aerosol loading and have a large impact of on air quality, visibility, and radiative forcing. However, the detailed chemical composition of the aerosols emitted during biomass burning is largely unknown. In order to gain a better understanding of the chemical and physical properties of these emissions, 92 burns were undertaken in the combustion chamber of the USDA/FS Fire Sciences Laboratory in Missoula, Montana, in well-defined laboratory conditions. A set of 21 different fuels was tested that represents biomass burned annually in the western and southeastern U.S. The chemical composition of the resulting biomass smoke aerosols was analyzed with a high-resolution aerosol mass spectrometer (Aerodyne HR-ToF-AMS). Simultaneous measurements of CO2 and CO concentrations allowed flaming and smoldering fire regimes to be distinguished. The elemental composition of the organic portion of the aerosols was extracted from the AMS measurements. Here we present the variation of O/C, H/C and organic mass to organic carbon ratios (OM/OC) versus fire regime and fuel type. We also discuss the influence on the organic aerosol chemical composition of various factors such as fuel moisture content and total aerosol loading, as well as the approach used to account for water vapor ions derived from water originally present in sampled particles versus water vapor ions produced by electron impact fragmentation of organic molecules.

  1. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  2. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    SciTech Connect

    Ayari, F.

    2011-01-17

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  3. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    NASA Astrophysics Data System (ADS)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  4. Evolution of microbial aerosol behaviour in heating, ventilating and air-conditioning systems--quantification of Staphylococcus epidermidis and Penicillium oxalicum viability.

    PubMed

    Forthomme, A; Andrès, Y; Joubert, A; Simon, X; Duquenne, P; Bemer, D; Le Coq, L

    2012-01-01

    The aim of this study was to develop an experimental set-up and a methodology to uniformly contaminate several filter samples with high concentrations of cultivable bacteria and fungi. An experimental set-up allows contaminating simultaneously up to four filters for range of velocities representative of heating, ventilating and air-conditioning systems. The test aerosol was composed of a microbial consortium of one bacterium (Staphylococcus epidermidis) and one fungus (Penicillium oxalicum) and aerosol generation was performed in wet conditions. Firstly, the experimental set-up was validated in regards to homogeneity of the air flows. The bioaerosol was also characterized in terms of the number and particle size distribution using two particle counters: optical particle counter Grimm 1.109 (optical diameters) and TSI APS 3321 (aerodynamic diameters). Moreover, stabilities of the number of particles generated were measured. Finally, concentrations of cultivable microorganisms were measured with BioSamplers SKC downstream of the four filters.

  5. Evolution of microbial aerosol behaviour in heating, ventilating and air-conditioning systems--quantification of Staphylococcus epidermidis and Penicillium oxalicum viability.

    PubMed

    Forthomme, A; Andrès, Y; Joubert, A; Simon, X; Duquenne, P; Bemer, D; Le Coq, L

    2013-01-01

    The aim of this study was to develop an experimental set-up and a methodology to uniformly contaminate several filter samples with high concentrations of cultivable bacteria and fungi. An experimental set-up allows contaminating simultaneously up to four filters for range of velocities representative of heating, ventilating and air-conditioning systems. The test aerosol was composed of a microbial consortium of one bacterium (Staphylococcus epidermidis) and one fungus (Penicillium oxalicum) and aerosol generation was performed in wet conditions. Firstly, the experimental set-up was validated in regards to homogeneity of the air flows. The bioaerosol was also characterized in terms of number and particle size distribution using two particle counters: optical particle counter Grimm 1.109 (optical diameters) and TSI APS 3321 (aerodynamic diameters). Moreover, stabilities of the number of particles generated were measured. Finally, concentrations of cultivable microorganisms were measured with BioSamplers (SKC) downstream of the four filters.

  6. Evolution of microbial aerosol behaviour in heating, ventilating and air-conditioning systems--quantification of Staphylococcus epidermidis and Penicillium oxalicum viability.

    PubMed

    Forthomme, A; Andrès, Y; Joubert, A; Simon, X; Duquenne, P; Bemer, D; Le Coq, L

    2012-01-01

    The aim of this study was to develop an experimental set-up and a methodology to uniformly contaminate several filter samples with high concentrations of cultivable bacteria and fungi. An experimental set-up allows contaminating simultaneously up to four filters for range of velocities representative of heating, ventilating and air-conditioning systems. The test aerosol was composed of a microbial consortium of one bacterium (Staphylococcus epidermidis) and one fungus (Penicillium oxalicum) and aerosol generation was performed in wet conditions. Firstly, the experimental set-up was validated in regards to homogeneity of the air flows. The bioaerosol was also characterized in terms of the number and particle size distribution using two particle counters: optical particle counter Grimm 1.109 (optical diameters) and TSI APS 3321 (aerodynamic diameters). Moreover, stabilities of the number of particles generated were measured. Finally, concentrations of cultivable microorganisms were measured with BioSamplers SKC downstream of the four filters. PMID:23393961

  7. Evolution of microbial aerosol behaviour in heating, ventilating and air-conditioning systems--quantification of Staphylococcus epidermidis and Penicillium oxalicum viability.

    PubMed

    Forthomme, A; Andrès, Y; Joubert, A; Simon, X; Duquenne, P; Bemer, D; Le Coq, L

    2013-01-01

    The aim of this study was to develop an experimental set-up and a methodology to uniformly contaminate several filter samples with high concentrations of cultivable bacteria and fungi. An experimental set-up allows contaminating simultaneously up to four filters for range of velocities representative of heating, ventilating and air-conditioning systems. The test aerosol was composed of a microbial consortium of one bacterium (Staphylococcus epidermidis) and one fungus (Penicillium oxalicum) and aerosol generation was performed in wet conditions. Firstly, the experimental set-up was validated in regards to homogeneity of the air flows. The bioaerosol was also characterized in terms of number and particle size distribution using two particle counters: optical particle counter Grimm 1.109 (optical diameters) and TSI APS 3321 (aerodynamic diameters). Moreover, stabilities of the number of particles generated were measured. Finally, concentrations of cultivable microorganisms were measured with BioSamplers (SKC) downstream of the four filters. PMID:23837350

  8. Aerosol Deposition and Solar Panel Performance

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Rollings, A.; Taylor, S. J.; Parks, J.; Barnard, J.; Holmes, H.

    2015-12-01

    Passive and active solar collector farms are often located in relatively dry desert regions where cloudiness impacts are minimized. These farms may be susceptible to reduced performance due to routine or episodic aerosol deposition on collector surfaces. Intense episodes of wind blown dust deposition may negatively impact farm performance, and trigger need to clean collector surfaces. Aerosol deposition rate depends on size, morphology, and local meteorological conditions. We have developed a system for solar panel performance testing under real world conditions. Two identical 0.74 square meter solar panels are deployed, with one kept clean while the other receives various doses of aerosol deposition or other treatments. A variable load is used with automation to record solar panel maximum output power every 10 minutes. A collocated sonic anemometer measures wind at 10 Hz, allowing for both steady and turbulent characterization to establish a link between wind patterns and particle distribution on the cells. Multispectral photoacoustic instruments measure aerosol light scattering and absorption. An MFRSR quantifies incoming solar radiation. Solar panel albedo is measured along with the transmission spectra of particles collected on the panel surface. Key questions are: At what concentration does aerosol deposition become a problem for solar panel performance? What are the meteorological conditions that most strongly favor aerosol deposition, and are these predictable from current models? Is it feasible to use the outflow from an unmanned aerial vehicle hovering over solar panels to adequately clean their surface? Does aerosol deposition from episodes of nearby forest fires impact performance? The outlook of this research is to build a model that describes environmental effects on solar panel performance. Measurements from summer and fall 2015 will be presented along with insights gleaned from them.

  9. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    NASA Astrophysics Data System (ADS)

    Pejkowski, Łukasz; Skibicki, Dariusz

    2016-08-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The criterion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S-N curves: tension-compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promising. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  10. Direct radiative effect by multicomponent aerosol over China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  11. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions.

    PubMed

    Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H

    2013-07-01

    This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics. PMID:23636759

  12. Radiative Impact of Aerosols on the Regional Boundary Layer Features in Strong and Weak Wind Conditions using WRF Modeling System

    NASA Astrophysics Data System (ADS)

    Rajagopalan, R. A.; Sharan, M.

    2015-12-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Radiation is the main source that regulates the surface energy budget. Surface temperature and planetary boundary layer (PBL) height depends on accurate calculation of both shortwave and longwave radiation. The weakening of the ambient winds is known to influence the structure of PBL. This study examines the sensitivity of the performance of Weather Research Forecasting (WRF) ARW Model to the use of different radiation schemes [For Long wave Radiation: Rapid Radiative Transfer Model (RRTM), Eta Geophysical Fluid Dynamics Laboratory (GFDL), Goddard, New Goddard, NCAR Community Atmosphere Model (CAM 3.0), New Goddard scheme, Fu-Liou-Gu scheme and for Short wave Radiation: Dudhia scheme, Eta Geophysical Fluid Dynamics Laboratory (GFDL), NCAR Community Atmosphere Model (CAM 3.0), New Goddard scheme]. Two different simulations are conducted one for the summer (14-15 May 2009) and winter (14-15 Dec 2008) season characterized by strong and weak wind conditions over India. Comparison of surface temperatures from different schemes for different cities (New Delhi, Ahmedabad, Lucknow, Kanpur, Jaipur and Jodhpur) on 14-15 May 2009 and 14-15 Dec 2008 with those observed shows the simulation with RRTM , New Goddard, and Fu-Liou-Gu schemes are closer to the observations as compared to other schemes. The temperature simulated from all the radiation schemes have more than 0.9 correlation coefficient but the root mean square error is relatively less in summer compared to winter season. It is surmised that Fu-Liou-Gu scheme performs better in almost all the cases. The reason behind can be the greater absorption of solar and IR radiative fluxes in the atmosphere and the surface provided in Fu-Liou-Gu radiation scheme than those computed in

  13. A PCR assay used to study aerosol transmission of Actinobacillus pleuropneumoniae from samples of live pigs under experimental conditions.

    PubMed

    Savoye, C; Jobert, J L; Berthelot-Hérault, F; Keribin, A M; Cariolet, R; Morvan, H; Madec, F; Kobisch, M

    2000-05-11

    The study describes a polymerase chain reaction (PCR) assay for the detection of Actinobacillus pleuropneumoniae. The test is based on the amplification of the omlA gene coding for an outer membrane protein of A. pleuropneumoniae. To test the specificity of the reaction, 19 other bacterial species related to A. pleuropneumoniae or isolated from pigs were assayed. They were all found negative in the PCR assay. The detection threshold of the test was 10(2) A. pleuropneumoniae CFU/assay. The test was then applied to the detection of A. pleuropneumoniae from tonsillar biopsies and tracheobronchial lavage fluids of pigs without a culture step. The detection of A. pleuropneumoniae in these samples was performed by PCR, by conventional culture and by bacteriology with immunomagnetic beads. The number of samples that were found positive by PCR was almost three times higher than the number of samples from which A. pleuropneumoniae was isolated by both bacteriological techniques. The detection of A. pleuropneumoniae in these samples allowed us to demonstrate its aerosol transmission to pigs under experimental conditions. The trial involved 18 specific pathogen free pigs. Six pigs, infected with A. pleuropneumoniae, were located in a unit A, together with four non-infected animals (contact pigs). Eight non-infected pigs (reporter pigs) were located in a unit B, adjacent to A. We detected A. pleuropneumoniae in samples from infected animals but also from 'contact' (unit A) and 'reporter' (unit B) pigs. The results of this study show that the simple preparation of the samples followed by the PCR assay may be a useful tool for epidemiological studies. PMID:10781732

  14. The Effect of Aerosol-Cloud-Vegetation Interactions and Intraseasonal Meteorological Variability on Warm Cloud Development during the Amazonian Biomass Burning Season

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2009-12-01

    The effect of aerosols on the hydrological cycle remains one of the largest uncertainties in our climate system. Biomass burning, from both deforestation and annual agricultural burning, is the largest anthropogenic source of these aerosols in the Southern Hemisphere. Biomass burning aerosols have competing effects on clouds: Depending on the level of aerosol loading and the background cloud characteristics, biomass burning aerosols have been shown in observational studies to invigorate or inhibit cloud formation and/or growth through microphysical and absorptive pathways, respectively. Many of these previous studies have employed all days during the Amazonian burning season months of August through October to formulate aerosol-cloud correlations, assuming relatively constant meteorological conditions exist throughout these months. This study investigates how intraseasonal trends of precipitable water vapor and aerosol loading between August and October impact these aerosol-cloud correlations. Other factors affecting aerosol-cloud relationships, such as atmospheric stability, are also investigated. This study is focused on a small 3 degree NE x 4 degree WE region in Rondonia, Brazil that encompasses extensive, contiguous areas of both forested and deforested land. High resolution aerosol, cloud, water vapor, and atmospheric profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, as well as aerosol and water vapor data from the Aerosol Robotic Network (AERONET), are used collectively to explore the effect of aerosols on water vapor loading and warm cloud development over the Amazon. The difference in aerosol effects on the local hydrological cycle over forested and deforested areas is also examined. This final exercise provides insight into the relationship between aerosols, land-atmosphere processes, and warm clouds.

  15. The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics under Isolated Loading Conditions

    PubMed Central

    Dhaher, Yasin Y.; Kwon, Tae-Hyun; Barry, Megan

    2012-01-01

    Although variability in connective tissue parameters is widely reported and recognized, systematic examination of the effect of such parametric uncertainties on predictions derived from a full anatomical joint model is lacking. As such, a sensitivity analysis was performed to consider the behavior of a three-dimensional, non-linear, finite element knee model with connective tissue material parameters that varied within a given interval. The model included the coupled mechanics of the tibio-femoral and patellofemoral degrees of freedom. Seven primary connective tissues modeled as nonlinear continua, articular cartilages described by a linear elastic model, and menisci modeled as transverse isotropic elastic materials were included. In this study, a multi-factorial global sensitivity analysis is proposed, which can detect the contribution of influential material parameters while maintaining the potential effect of parametric interactions. To illustrate the effect of material uncertainties on model predictions, exemplar loading conditions reported in a number of isolated experimental paradigms were used. Our findings illustrated that the inclusion of material uncertainties in a coupled tibio-femoral and patello-femoral model reveals biomechanical interactions that otherwise would remain unknown. For example, our analysis revealed that the effect of anterior cruciate ligament parameter variations on the patello-femoral kinematic and kinetic response sensitivities were significantly larger, over a range of flexion angles, when compared to variations associated with material parameters of tissues intrinsic to the patello-femoral joint. We argue that the systematic sensitivity framework presented herein will help identify key material uncertainties that merit further research, as well as provide insight on those uncertainties that may not be as relative to a given response. PMID:20810114

  16. The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions.

    PubMed

    Dhaher, Yasin Y; Kwon, Tae-Hyun; Barry, Megan

    2010-12-01

    Although variability in connective tissue parameters is widely reported and recognized, systematic examination of the effect of such parametric uncertainties on predictions derived from a full anatomical joint model is lacking. As such, a sensitivity analysis was performed to consider the behavior of a three-dimensional, non-linear, finite element knee model with connective tissue material parameters that varied within a given interval. The model included the coupled mechanics of the tibio-femoral and patello-femoral degrees of freedom. Seven primary connective tissues modeled as non-linear continua, articular cartilages described by a linear elastic model, and menisci modeled as transverse isotropic elastic materials were included. In this study, a multi-factorial global sensitivity analysis is proposed, which can detect the contribution of influential material parameters while maintaining the potential effect of parametric interactions. To illustrate the effect of material uncertainties on model predictions, exemplar loading conditions reported in a number of isolated experimental paradigms were used. Our findings illustrated that the inclusion of material uncertainties in a coupled tibio-femoral and patello-femoral model reveals biomechanical interactions that otherwise would remain unknown. For example, our analysis revealed that the effect of anterior cruciate ligament parameter variations on the patello-femoral kinematic and kinetic response sensitivities was significantly larger, over a range of flexion angles, when compared to variations associated with material parameters of tissues intrinsic to the patello-femoral joint. We argue that the systematic sensitivity framework presented herein will help identify key material uncertainties that merit further research and provide insight on those uncertainties that may not be as relative to a given response.

  17. Space-borne and ground-based observation of Aerosols in China and an overview of the EAST-AIRE

    NASA Astrophysics Data System (ADS)

    Li, Z.; Holben, B.; Xia, X.; Xin, J.; Dickerson, R.

    2006-05-01

    China is a region of heavy aerosol loading of distinct and complex properties. To date, few in-situ measurements were made of the physical properties and chemical composition of the aerosols near the source regions. A lack of aerosol properties, together with relative bright surfaces, makes the retrieval of aerosols from space challenging and uncertain. In order to gain a basic knowledge of the characteristics of aerosols and to improve satellite retrievals, a team of scientists from U.S. and China conduct joint field measurements in the form of routine observations at fixed sites, and intensive observation campaigns. Major findings will be presented concerning both the aerosol properties and their spatial and temporal variations using ground-based and space-borne remote sensing techniques, as well as in-situ observation techniques. The results reveal that the mean aerosol loading is on average larger by several factors than the global mean values. All existing satellite aerosol retrieved products contain exceptionally large errors. Yet, the aerosol absorption is so strong that lead to extremely large forcing at the surface but very small at the TOA. A large fraction of major aerosol episodes are caused by anthropogenic emissions that are built up by stable atmospheric conditions.

  18. Computational fluid dynamics modeling of bun baking process under different oven load conditions.

    PubMed

    Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C

    2014-09-01

    A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.

  19. 78 FR 64415 - Special Conditions: Airbus, Model A350-900 Series Airplane; Ground Pivoting Loads

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo... vertical load factor must be 1.0, and: (i) For wheels with brakes applied, the coefficient of friction...

  20. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  1. Development of aerosol retrieval algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS)

    NASA Astrophysics Data System (ADS)

    Kim, Mijin; Kim, Jhoon; Park, Sang Seo; Jeong, Ukkyo; Ahn, Changwoo; Bhartia, Pawan. K.; Torres, Omar; Song, Chang-Keun; Han, Jin-Seok

    2014-05-01

    A scanning UV-Visible spectrometer, the GEMS (Geostationary Environment Monitoring Spectrometer) onboard the GEO-KOMPSAT2B (Geostationary Korea Multi-Purpose Satellite) is planned to be launched in geostationary orbit in 2018. The GEMS employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol optical properties such as aerosol optical depth (AOD) and single scattering albedo (SSA). This study presents a UV-VIS algorithm to retrieve AOD and SSA from GEMS. The algorithm is based on the general inversion method, which uses pre-calculated look-up table (LUT) with assumed aerosol properties and measurement condition. To calculate LUT, aerosol optical properties over Asia [70°E-145°E, 0°N-50°N] are obtained from AERONET inversion data (level 2.0) at 46 AERONET sites, and are applied to VLIDORT (spur, 2006). Because the backscattering radiance in UV-Visible range has significant sensitivity to radiance absorptivity and size distribution of loading aerosol, aerosol types are classified from AERONET inversion data by using aerosol classification method suggested in Lee et al. (2010). Then the LUTs are calculated with average optical properties for each aerosol type. The GEMS aerosol algorithm is tested with OMI level-1B dataset, a provisional data for GEMS measurement. The aerosol types for each measured scene are selected by using both of UVAI and VISAI, and AOD and SSA are simultaneously retrieved by comparing simulated radiance with selected aerosol type and the measured value. The AOD and SSA retrieved from GEMS aerosol algorithm are well matched with OMI products, although the retrieved AOD is slightly higher than OMI value. To detect cloud pixel, spatial standard deviation test of radiance is applied in the

  2. Source apportionment of absorbing aerosols in the central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Vaishya, Aditya; Singh, Prayagraj; Rastogi, Shantanu; Babu, S. Suresh

    2016-05-01

    Atmospheric aerosols in the Indo-Gangetic Plain (IGP) depicts high spatial and temporal heterogeneity in their radiative properties. Despite the fact that significant advancement in terms of characterizing aerosols radiative and physiochemical properties in the IGP have been made, information regarding the organic content towards total absorbing aerosol budget is lacking. In the present study we have analyzed two years of aerosol spectral light absorption measurements from the central-IGP, Gorakhpur (26.75°N, 83.38°E, 85m amsl), in order to study their seasonal behavior and to quantify their magnitude in terms of absorbing aerosols loading and source speciation. Remote sensing data in the form of 'Cloud corrected Fire Count' from MODIS Terra and 'Absorption Aerosol Index' from OMI satellites platform have been used to identify absorbing aerosol source regions. Spectral absorption analysis reveals a four-fold enhancement in absorption in the winter (W) and the post-monsoon (PoM) seasons at UV wavelengths as compared to 880 nm on account of increased biomass aerosol contribution to total absorbing aerosol load. Despite having higher fire events and absorption aerosol index, both indicating high biomass burning activities, in the pre-monsoon (PM) season, aerosols from the biomass sources contribute ~ 27% during the W and the PoM seasons as against ~17% in the PM season to the total absorbing aerosol content. This is due to near stagnant wind conditions and shallow height of air masses travelling to the central IGP in the W and the PoM seasons.

  3. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    SciTech Connect

    Yu, Linwen; François, Raoul; Dang, Vu Hiep; L'Hostis, Valérie; Gagné, Richard

    2015-01-15

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order to investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.

  4. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  5. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  6. Merging the SAGE II and OSIRIS Stratospheric Aerosol Records

    NASA Astrophysics Data System (ADS)

    Rieger, Landon; Bourassa, Adam; Degenstein, Doug

    2016-04-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction at 750nm are retrieved. The Stratospheric Aerosol and Gas (SAGE) II instrument was operational from 1985 to 2005, and provided aerosol extinction at several visible and near infrared wavelengths. This work compares the SAGE II and OSIRIS aerosol extinction measurements during the four years of instrument overlap by interpolating the SAGE II data to 750nm using the 525 and 1020nm channels. Agreement is generally favourable in the tropics and mid-latitudes with differences less than 10% for the majority of the aerosol layer. However, near the UTLS and outside of the tropics agreement is poorer and reasons for this are investigated. Comparisons between the OSIRIS and SAGE II aerosol extinction measurements at 750nm are used to develop a merged aerosol climatology as a function of time, latitude and altitude at the native SAGE II wavelength of 525nm. Error due to assumptions in the OSIRIS retrieval and wavelength conversion are explored through simulation studies over a range of particle size distributions and is found to be approximately 20% for the majority of low-to-moderate volcanic loading conditions and OSIRIS geometries. Other sources of error such as cloud contamination in the UTLS are also explored.

  7. Relationship between the Presence of Bartonella Species and Bacterial Loads in Cats and Cat Fleas (Ctenocephalides felis) under Natural Conditions.

    PubMed

    Gutiérrez, Ricardo; Nachum-Biala, Yaarit; Harrus, Shimon

    2015-08-15

    Cats are considered the main reservoir of three zoonotic Bartonella species: Bartonella henselae, Bartonella clarridgeiae, and Bartonella koehlerae. Cat fleas (Ctenocephalides felis) have been experimentally demonstrated to be a competent vector of B. henselae and have been proposed as the potential vector of the two other Bartonella species. Previous studies have reported a lack of association between the Bartonella species infection status (infected or uninfected) and/or bacteremia levels of cats and the infection status of the fleas they host. Nevertheless, to date, no study has compared the quantitative distributions of these bacteria in both cats and their fleas under natural conditions. Thus, the present study explored these relationships by identifying and quantifying the different Bartonella species in both cats and their fleas. Therefore, EDTA-blood samples and fleas collected from stray cats were screened for Bartonella bacteria. Bacterial loads were quantified by high-resolution melt real-time quantitative PCR assays. The results indicated a moderate correlation between the Bartonella bacterial loads in the cats and their fleas when both were infected with the same Bartonella species. Moreover, a positive effect of the host infection status on the Bartonella bacterial loads of the fleas was observed. Conversely, the cat bacterial loads were not affected by the infection status of their fleas. Our results suggest that the Bartonella bacterial loads of fleas are positively affected by the presence of the bacteria in their feline host, probably by multiple acquisitions/accumulation and/or multiplication events.

  8. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, S.; Riley, F.S.

    1990-01-01

    The response to Earth tides is strongly governed by a dimensionless aquifer frequency Q???u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q???u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q???u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q???u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. -from Authors

  9. 14 CFR 29.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reaction (on one side) acting inward, and 0.6 times the vertical reaction (on the other side) acting outward; and (ii) For the rear wheel, 0.8 times the vertical reaction. (2) The loads specified in... method to account for the moment arm between the rear wheel ground reaction and the rotorcraft center...

  10. 14 CFR 27.497 - Ground loading conditions: landing gear with tail wheels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vertical reaction (on one side) acting inward, and 0.6 times the vertical reaction (on the other side) acting outward; and (ii) For the rear wheel, 0.8 times the vertical reaction. (2) The loads specified in... method to account for the moment arm between the rear wheel ground reaction and the rotorcraft center...

  11. Corticospinal influences on the distal muscles of the hand in conditions of inertial loading.

    PubMed

    Kazennikov, O V

    2010-07-01

    Electromyographic activity and synchronous discharges in the muscles of the wrist induced by transcranial magnetic stimulation of the motor cortex as the thumb and index finger were used to hold a handle bearing a weight were studied during performance of a number of motor tasks. When the subject increased grip force, for example, in response to increases in the weight of the attached load or by voluntarily squeezing the handle, the evoked response increased proportionally to muscle activity. If the subject moved the hand holding the handle up and down with an amplitude of 10 cm and a frequency of 0.5-1 Hz, grip force changed in accordance with the predicted inertial loading. The muscle response in the adductor pollicis muscle increased to a greater extent than the activity in the muscle. The response to sudden inertial loading consisted of a reflex increase in grip force, the muscle response increasing to a lesser extent than activity in the muscle. This suggests that larger increases in evoked muscle responses on up and down movement of the hand with a load are associated with anticipatory changes in grip force. These results are assessed from the point of view of the involvement of the motor cortex in generating anticipatory changes in muscle activity in the distal muscles. PMID:20544393

  12. Computational fluid dynamics modeling of bun baking process under different oven load conditions.

    PubMed

    Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C

    2014-09-01

    A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product. PMID:25190860

  13. A two species thermodynamic Preisach approach for simulating superelastic responses of shape memory alloys under tension and bending loading conditions

    NASA Astrophysics Data System (ADS)

    Doraiswamy, Srikrishna; Rao, Ashwin; Srinivasa, A. R.

    2013-04-01

    Modeling superelastic behavior of shape memory alloys (SMA) has received considerable attention due to SMAs ability to recover large strains with associated loading{unloading hysteresis enabling them to find many applications. In this work, a simple mechanics of materials modeling approach for simulating superelastic responses of SMA components under tension and bending loading conditions is developed. Following Doraiswamy, Rao and Srinivasa's1 approach, the key idea here would be in separating the thermoelastic and the dissipative part of the hysteretic response with a Gibbs potential based formulation which includes both thermal and mechanical loading in the same framework. The dissipative part is then handled by a discrete Preisach model. The model is formulated directly using tensile stress{strain or bending moment{curvature rather than solving for non-homogeneous stress and strains across the specimen cross-sections and then integrating the same especially for bending loading conditions. The model is capable of simulating complex superelastic responses with multiple internal loops and provides an improved treatment for temperature dependence associated with superelastic responses. The model results are verified with experimental results on SMA components like wires and beams at different temperatures.

  14. High Temperature Expansion Due to Compression Test for the Determination of a Cladding Material Failure Criterion under RIA Loading Conditions

    SciTech Connect

    Le Saux, M.; Poussard, C.; Averty, X.; Sainte Catherine, C.; Carassou, S.

    2007-07-01

    This paper is mainly dedicated to the development of an out-of-pile test reproducing the thermo-mechanical loading conditions encountered during the first stage of a Reactivity Initiated Accidents (RIA) transient, dominated by Pellet Clad Mechanical Interaction (PCMI). In particular, the strain-controlled clad loading under high strain rate associated with temperatures up to 600 deg. C expected during the PCMI phase is simulated by an Expansion Due to Compression (EDC) test achievable at high temperature. The use of appropriate materials for the inner pellet made it possible to achieve the tests from 20 deg. C up to 900 deg. C. The interpretation of the test data is supported by Finite Element Analysis (FEA) including parameters tuned using an inverse method coupling FEA and tests results. A deformation model, identified upon the PROMETRA (Transient Mechanical Properties) experimental database and describing the anisotropic viscoplastic behavior of Cold-Worked Stress Relieved Zircaloy-4 cladding alloys under typical RIA loading conditions, is exploited. The combined analysis of experimental results and finite element simulations provides a deeper understanding of the deformation mode (near pure hoop tension) that arises during the tests. The failure mode appears to be representative of that obtained on tubes during the PCMI stage of RIA experiments. An appropriate device is currently developed in order to reach a bi-axiality of the loading path closer to that expected during the PCMI stage (between plane-strain and equal-biaxial tension). (authors)

  15. Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station.

    PubMed

    Emetere, Moses Eterigho; Akinyemi, Marvel Lola; Akin-Ojo, Omololu

    2015-12-01

    The size characteristics of atmospheric aerosol over the tropical region of Lagos, Southern Nigeria were investigated using two years of continuous spectral aerosol optical depth measurements via the AERONET station for four major bands i.e. blue, green, red and infrared. Lagos lies within the latitude of 6.465°N and longitude of 3.406°E. Few systems of dispersion model was derived upon specified conditions to solve challenges on aerosols size distribution within the Stokes regime. The dispersion model was adopted to derive an aerosol size distribution (ASD) model which is in perfect agreement with existing model. The parametric nature of the formulated ASD model shows the independence of each band to determine the ASD over an area. The turbulence flow of particulates over the area was analyzed using the unified number (Un). A comparative study via the aid of the Davis automatic weather station was carried out on the Reynolds number, Knudsen number and the Unified number. The Reynolds and Unified number were more accurate to describe the atmospheric fields of the location. The aerosols loading trend in January to March (JFM) and August to October (ASO) shows a yearly 15% retention of aerosols in the atmosphere. The effect of the yearly aerosol retention can be seen to partly influence the aerosol loadings between October and February. PMID:26452005

  16. Towards understanding the variability of aerosol characteristics over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Pandey, Satyendra K.

    2016-05-01

    Ground and satellite based measurements show significant loading of atmospheric aerosols over the highly populated Indo-Gangetic Plains with implications to both air quality and regional climate. Recent studies have found varying trends in aerosol loading over this region during different seasons. However, most of these trends were associated or linked to changes in the strength of emission sources of both natural and anthropogenic origin. In this study, using data from multiple satellites (MODIS and MISR) and reanalysis (ECMWF, NCEP) products, we show that emission characteristics over the West or North-western part of India have significant impact on aerosol loading over the IGP irrespective of the seasons. Though it is known that variability in a combination of meteorological parameters impact aerosol loading conditions, we show that it is possible to explain them by using just the wind speed as a proxy. This shows that even slight changes to emission over Northwestern part of the Indian region may have significant impact on aerosol loading conditions over IGP with implications to air quality and regional climate.

  17. Merging the OSIRIS and SAGE II stratospheric aerosol records

    NASA Astrophysics Data System (ADS)

    Rieger, L. A.; Bourassa, A. E.; Degenstein, D. A.

    2015-09-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction are retrieved. The Stratospheric Aerosol and Gas Experiment (SAGE) II was launched in 1984 and provided measurements of stratospheric aerosol extinction until mid-2005. This provides approximately 4 years of mission overlap which has allowed us to consistently extend the SAGE II version 7.00 record to the present using OSIRIS aerosol extinction retrievals. In this work we first compare coincident aerosol extinction observations during the overlap period by interpolating the SAGE II 525nm and 1020nm channels to the OSIRIS extinction wavelength of 750nm. In the tropics to midlatitudes mean differences are typically less than 10%, although larger biases are seen at higher latitudes and at altitudes outside the main aerosol layer. OSIRIS aerosol extinction retrievals at 750nm are used to create a monthly time series zonally averaged in 5°bins and qualitatively compared to SAGE II 525nm observations averaged in the same way. The OSIRIS time series is then translated to 525nm with an Ângström exponent relation and bias corrected. For most locations, this provides agreement during the overlap time period to better than 15%. Uncertainty in the resulting OSIRIS time series is estimated through a series of simulation studies over the range of aerosol particle size distributions observed by in situ balloon instruments and is found to be approximately 20% for background and moderately volcanic aerosol loading conditions for the majority of OSIRIS measurement conditions.

  18. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    NASA Astrophysics Data System (ADS)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  19. Effect of different percent loadings of nanoparticles and food processing conditions on the properties of nylon 6 films

    NASA Astrophysics Data System (ADS)

    Allafi, Ahmad R.

    Nylon 6 organoclay nanocomposites were prepared by melt processing using a twin screw extruder. Five different films were produced with five different % loadings (0, 2, 4, 6, and 8%). This study had three main objectives. The first was to investigate the effects of loading percentages on the barrier, thermal and mechanical properties of nylon 6 nanocomposite materials. The second was to study the effects of 0, 50 and 80% RH on the oxygen permeation of the nylon 6/nanocomposite films. The third was to investigate the properties of nylon 6 nanocomposite materials exposed to typical food processing conditions. These films were tested for their permeabilities to oxygen (OTR), carbon dioxide (CO2TR), and water vapor (WVTR). Thermal properties testing on the samples included differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Tensile strength at break, tensile modulus at break, and the percent elongation for the five films were examined using an INSTRON tester. Transmission electron microscopy (TEM) was used to investigate the morphology of the five films. Results showed that all gas barriers significantly increased with percent loading but there were no significant differences (P>0.05) between the 6 and 8% for the CO2TR. For the DMA, the storage modulus also significantly increased (P<0.05) with increasing loading except between the 2 and 4% concentrations. For the DSC analyses, enthalpy of fusion decreased slightly from an average of 39 J/g (control) to 32J/g (8% loading). The melt temperature also decreased from 227 to 222°C between those loadings. High pressure processed samples had the highest barrier against oxygen permeation when compared with the retorted and controls. Retorting seemed to reduce the tensile strength slightly; however, no significant changes in modulus and elongation occurred after retorting and HPP. These results showed that increasing percent loadings increased the stiffness of the material at the expense of its

  20. Effect of temperature, atmospheric condition, and particle size on extinction in a plume of volatile aerosol dispersed in the atmospheric surface layer.

    PubMed

    Tsang, T T; Pai, P; Korgaonkar, N V

    1988-02-01

    The objective of this work is to study the effects of ambient temperature, atmospheric condition, and particle size on the extinction coefficient of diesel fuel and fog oil smoke. A first-order closure model is used to describe the turbulent diffusion of the smoke in the atmospheric surface layer. Mean values of wind speed and diffusivity in the vertical direction are obtained by the use of the Monin-Obukhov similarity theory. The 2-D crosswind line source model also includes the aerosol kinetic processes of evaporation, sedimentation, and deposition. Numerical results are obtained from simulations on a supercomputer.

  1. Characterization of wake effects and loading status of wind turbine arrays under different inflow conditions

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyu

    The objective of the present work is to improve the accuracy of Actuator Line Modeling (ALM) in predicting the unsteady aerodynamic loadings on turbine blades and turbine wake by assessing different methods used to determine the relative velocity between the rotating blades and wind. ALM is incorporated into a Large Eddy Simulation (LES) solver in OpenFOAM (Open Field Operations and Manipulations). The aerodynamic loadings are validated by experiment results from National Renewable Energy Laboratory (NREL). Turbine wakes are validated by predictions of large eddy simulation using exact 3D blade geometries from a two-blade NREL Phase VI turbine. Three different relative velocity calculation methods are presented: iterative process in Blade Element Momentum (BEM) theory, local velocity sampling, and Lagrange-Euler Interpolation (LEI). Loadings and wakes obtained from these three methods are compared. It is discovered that LEI functions better than the conventional BEM with iterative process in both loading and wake prediction. Then LES-ALM with LEI is performed on a small wind farm deploying five NREL Phase VI turbines in full wake setting. The power outputs and force coefficients of downstream turbines are evaluated. The LES-ALM with LEI is also performed on a small wind farm deploying 25 NREL Phase VI turbines with different inflow angles (from full wake setting to partial wake setting). The power outputs and force coefficients of each turbine are evaluated under different inflow angles (the angle the rotor has to turn to make the rotor plane face the incoming wind) (0, 5, 15, 30 and 45 degree). The power coefficient distributions and thrust coefficient distributions of the wind farm under each inflow angle are compared. The range of inflow angle which is best for power generation is also discussed. The results demonstrate that the LES-ALM with LEI has the potential to optimize wind farm arrangement and pitch angle of individual turbines.

  2. Causes and Characteristics of the Electromagnetic Vibration of a Capacitor Motor under Load Condition

    NASA Astrophysics Data System (ADS)

    Hirotsuka, Isao; Tsuboi, Kazuo

    The capacitor motors (CRMs) are widely used to drive industrial equipment and electric home appliances. Recently, the reduction of the vibration and noise of CRMs has become increasingly important from the standpoint of environmental improvement. However, electromagnetic vibration of CRMs under load has not been analyzed sufficiently. The present paper theoretically and experimentally discusses the causes and characteristics of CRM electromagnetic vibration under load. The primary conclusions are as follows: (1) The general formula for dominant electromagnetic vibration caused by electromagnetic force wave was derived, including the influences not only of a backward magnetic field but also of magnetic saturation. (2) The dominant electromagnetic vibration of CRMs was theoretically attributed to three types of electromagnetic force waves. Two types of electromagnetic force wave are generated by the interaction of two forward magnetic fluxes, such as those of a three-phase squirrel-cage induction motor, and the other type of electromagnetic force wave is generated under the influence of a backward magnetic flux. (3) The characteristics of dominant electromagnetic vibration depending on load and running capacitor were classified theoretically and experimentally into three types based on the characteristics of the electromagnetic force wave and equivalent circuit current. (4) The influences of magnetic saturation in dominant electromagnetic vibration were verified experimentally and their causes were clarified theoretically in relation to electromagnetic force waves.

  3. Swabbing Often Fails to Detect Amphibian Chytridiomycosis under Conditions of Low Infection Load

    PubMed Central

    Shin, Jaehyub; Bataille, Arnaud; Kosch, Tiffany A.; Waldman, Bruce

    2014-01-01

    The pathogenic chytrid fungus, Batrachochytrium dendrobatidis (denoted Bd), causes large-scale epizootics in naïve amphibian populations. Intervention strategies to rapidly respond to Bd incursions require sensitive and accurate diagnostic methods. Chytridiomycosis usually is assessed by quantitative polymerase chain reaction (qPCR) amplification of amphibian skin swabs. Results based on this method, however, sometimes yield inconsistent results on infection status and inaccurate scores of infection intensity. In Asia and other regions where amphibians typically bear low Bd loads, swab results are least reliable. We developed a Bd-sampling method that collects zoospores released by infected subjects into an aquatic medium. Bd DNA is extracted by filters and amplified by nested PCR. Using laboratory colonies and field populations of Bombina orientalis, we compare results with those obtained on the same subjects by qPCR of DNA extracted from swabs. Many subjects, despite being diagnosed as Bd-negative by conventional methods, released Bd zoospores into collection containers and thus must be considered infected. Infection loads determined from filtered water were at least 1000 times higher than those estimated from swabs. Subjects significantly varied in infection load, as they intermittently released zoospores, over a 5-day period. Thus, the method might be used to compare the infectivity of individuals and study the periodicity of zoospore release. Sampling methods based on water filtration can dramatically increase the capacity to accurately diagnose chytridiomycosis and contribute to a better understanding of the interactions between Bd and its hosts. PMID:25333363

  4. Online analysis of single cyanobacteria and algae cells under nitrogen-limited conditions using aerosol time-of-flight mass spectrometry.

    PubMed

    Cahill, John F; Darlington, Thomas K; Fitzgerald, Christine; Schoepp, Nathan G; Beld, Joris; Burkart, Michael D; Prather, Kimberly A

    2015-08-18

    Metabolomics studies typically perform measurements on populations of whole cells which provide the average representation of a collection of many cells. However, key mechanistic information can be lost using this approach. Investigating chemistry at the single cell level yields a more accurate representation of the diversity of populations within a cell sample; however, this approach has many analytical challenges. In this study, an aerosol time-of-flight mass spectrometer (ATOFMS) was used for rapid analysis of single algae and cyanobacteria cells with diameters ranging from 1 to 8 μm. Cells were aerosolized by nebulization and directly transmitted into the ATOFMS. Whole cells were determined to remain intact inside the instrument through a combination of particle sizing and imaging measurements. Differences in cell populations were observed after perturbing Chlamydomonas reinhardtii cells via nitrogen deprivation. Thousands of single cells were measured over a period of 4 days for nitrogen-replete and nitrogen-limited conditions. A comparison of the single cell mass spectra of the cells sampled under the two conditions revealed an increase in the dipalmitic acid sulfolipid sulfoquinovosyldiacylglycerol (SQDG), a chloroplast membrane lipid, under nitrogen-limited conditions. Single cell peak intensity distributions demonstrate the ability of the ATOFMS to measure metabolic differences of single cells. The ATOFMS provides an unprecedented maximum throughput of 50 Hz, enabling the rapid online measurement of thousands of single cell mass spectra. PMID:26237223

  5. Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector

    NASA Astrophysics Data System (ADS)

    Arboleda-Monsalve, Luis G.; Zapata-Medina, David G.; Aristizabal-Ochoa, J. Darío

    2008-03-01

    The dynamic-stiffness matrix and load vector of a Timoshenko beam-column resting on a two-parameter elastic foundation with generalized end conditions are presented. The proposed model includes the frequency effects on the stiffness matrix and load vector as well as the coupling effects of: (1) bending and shear deformations along the member; (2) translational and rotational lumped masses at both ends; (3) translational and rotational masses uniformly distributed along its span; (3) axial load (tension or compression) applied at both ends; and (4) shear forces along the span induced by the applied axial load as the beam deforms according to the "modified shear equation" proposed by Timoshenko. The dynamic analyses of framed structures can be performed by including the effects of the imposed frequency ( ω>0) on the dynamic-stiffness matrix and load vector while the static and stability analyses can be carried out by making the frequency ω=0. The proposed model and corresponding dynamic-stiffness matrix and load vector represent a general solution capable to solve, just by using a single segment per element, the static, dynamic and stability analyses of any elastic framed structure made of prismatic beam-columns with semi-rigid connections resting on two-parameter elastic foundations. Analytical results indicate that the elastic behavior of framed structures made of beam-columns is frequency dependent and highly sensitive to the coupling effects just mentioned. Three comprehensive examples are presented to show the capacities and validity of the proposed method and the obtained results are compared with the finite element method and other analytical approaches.

  6. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption.

  7. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption. PMID:17776243

  8. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    NASA Astrophysics Data System (ADS)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  9. X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions

    USGS Publications Warehouse

    Braun, Andreas; Shah, N.; Huggins, Frank E.; Kelly, K.E.; Sarofim, A.; Jacobsen, C.; Wirick, S.; Francis, H.; Ilavsky, J.; Thomas, G.E.; Huffman, G.P.

    2005-01-01

    Diesel soot from reference diesel fuel and oxygenated fuel under idle and load engine conditions was investigated with X-ray scattering and X-ray carbon K-edge absorption spectroscopy. Up to five characteristic size ranges were found. Idle soot was generally found to have larger primary particles and aggregates but smaller crystallites, than load soot. Load soot has a higher degree of crystallinity than idle soot. Adding oxygenates to diesel fuel enhanced differences in the characteristics of diesel soot, or even reversed them. Aromaticity of idle soot from oxygenated diesel fuel was significantly larger than from the corresponding load soot. Carbon near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was applied to gather information about the presence of relative amounts of carbon double bonds (CC, CO) and carbon single bonds (C-H, C-OH, COOH). Using scanning X-ray transmission microspectroscopy (STXM), the relative amounts of these carbon bond states were shown to vary spatially over distances approximately 50 to 100 nm. The results from the X-ray techniques are supported by thermo-gravimetry analysis and high-resolution transmission electron microscopy. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  11. Atmospheric aerosol characterization during Saharan dust outbreaks at Naples EARLINET station

    NASA Astrophysics Data System (ADS)

    Pisani, Gianluca; Armenante, Mario; Boselli, Antonella; Frontoso, Maria Grazia; Spinelli, Nicola; Wang, Xuan

    2007-10-01

    The optical properties and the spatial distribution of the tropospheric aerosols over Naples under Saharan dust outbreaks conditions have been studied by means of lidar measurements performed between May 2000 and August 2003 in the frame of the EARLINET project. Climatological analysis of sand plume has been done by comparing normal and dust affected conditions. Results in terms of backscattering and extinction coefficient as well as their integrated quantities show that the aerosol load from the ground level up to 2 Km during Saharan dust transport events is almost the same of normal conditions. This is probably due to the relevant widespread of local aerosol sources, such as vehicular traffic, industrial activities, etc. Nevertheless, when sand outbreaks occur, the extinction to backscattering ratio, i.e. the lidar ratio, clearly shows that the aerosol type in the lowest atmospheric layer changes. Moreover, Saharan dust transport events strong increase both integrated backscatter and optical dept above 2 km.

  12. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-11-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  13. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  14. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-08-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  15. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  16. A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species.

    PubMed

    Megía-Palma, Rodrigo; Martínez, Javier; Merino, Santiago

    2016-08-01

    Pigment-based ornaments in vertebrates may reflect the body condition or health status of the individual in correlation with environmental stress and hormonal balance. Among the environmental factors shaping sexual colouration, parasitic infections have been stressed as an important evolutionary pressure constraining the maintenance of pigment-based ornaments. However, the honesty of structure-based ornaments in vertebrates is still under debate. Structural UV-biased ornaments in Gallotia lizards were described as a trait used by conspecifics during mate and rival assessment suggesting the reliability of these signals. We investigated the relationship between parasitaemia, body condition and a structural-based ornament present in the cheek of the sexually dichromatic Canarian lacertid Gallotia galloti in a population with an almost 100 % prevalence of haemoparasites. Using spectrophotometric techniques, we found that males with higher values of cheek UV chroma were infected with more haemoparasites. No significant relationship was found between haemoparasite load and body condition. However, males with higher cheek UV chroma showed significantly better body condition. In addition, we found that cheek hue was significantly related to body condition of individuals in both sexes. In males, cheek reflectivity biased towards the UV range was significantly related to better body condition. In females, those individuals with better body condition showed more whitish cheeks with less UV suggesting that cheek hue serves as an intersexual signal for sex recognition. We conclude that the positive relationship between cheek chroma and parasite load in male lizards is compatible with both differential density of melanin and iridophore arrangement in the dermis conveying an individual's ability to cope with environmental stress. PMID:27262291

  17. A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species

    NASA Astrophysics Data System (ADS)

    Megía-Palma, Rodrigo; Martínez, Javier; Merino, Santiago

    2016-08-01

    Pigment-based ornaments in vertebrates may reflect the body condition or health status of the individual in correlation with environmental stress and hormonal balance. Among the environmental factors shaping sexual colouration, parasitic infections have been stressed as an important evolutionary pressure constraining the maintenance of pigment-based ornaments. However, the honesty of structure-based ornaments in vertebrates is still under debate. Structural UV-biased ornaments in Gallotia lizards were described as a trait used by conspecifics during mate and rival assessment suggesting the reliability of these signals. We investigated the relationship between parasitaemia, body condition and a structural-based ornament present in the cheek of the sexually dichromatic Canarian lacertid Gallotia galloti in a population with an almost 100 % prevalence of haemoparasites. Using spectrophotometric techniques, we found that males with higher values of cheek UV chroma were infected with more haemoparasites. No significant relationship was found between haemoparasite load and body condition. However, males with higher cheek UV chroma showed significantly better body condition. In addition, we found that cheek hue was significantly related to body condition of individuals in both sexes. In males, cheek reflectivity biased towards the UV range was significantly related to better body condition. In females, those individuals with better body condition showed more whitish cheeks with less UV suggesting that cheek hue serves as an intersexual signal for sex recognition. We conclude that the positive relationship between cheek chroma and parasite load in male lizards is compatible with both differential density of melanin and iridophore arrangement in the dermis conveying an individual's ability to cope with environmental stress.

  18. A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species.

    PubMed

    Megía-Palma, Rodrigo; Martínez, Javier; Merino, Santiago

    2016-08-01

    Pigment-based ornaments in vertebrates may reflect the body condition or health status of the individual in correlation with environmental stress and hormonal balance. Among the environmental factors shaping sexual colouration, parasitic infections have been stressed as an important evolutionary pressure constraining the maintenance of pigment-based ornaments. However, the honesty of structure-based ornaments in vertebrates is still under debate. Structural UV-biased ornaments in Gallotia lizards were described as a trait used by conspecifics during mate and rival assessment suggesting the reliability of these signals. We investigated the relationship between parasitaemia, body condition and a structural-based ornament present in the cheek of the sexually dichromatic Canarian lacertid Gallotia galloti in a population with an almost 100 % prevalence of haemoparasites. Using spectrophotometric techniques, we found that males with higher values of cheek UV chroma were infected with more haemoparasites. No significant relationship was found between haemoparasite load and body condition. However, males with higher cheek UV chroma showed significantly better body condition. In addition, we found that cheek hue was significantly related to body condition of individuals in both sexes. In males, cheek reflectivity biased towards the UV range was significantly related to better body condition. In females, those individuals with better body condition showed more whitish cheeks with less UV suggesting that cheek hue serves as an intersexual signal for sex recognition. We conclude that the positive relationship between cheek chroma and parasite load in male lizards is compatible with both differential density of melanin and iridophore arrangement in the dermis conveying an individual's ability to cope with environmental stress.

  19. Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2014-12-01

    An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the

  20. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    NASA Technical Reports Server (NTRS)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  1. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-08-01

    This study extends the application of the previously developed Aerosol Single-scattering albedo and layer Height Estimation (ASHE) algorithm, which was originally applied to smoke aerosols only, to both smoke and dust aerosols by including nonspherical dust properties in the retrieval process. The main purpose of the algorithm is to derive aerosol height information over wide areas using aerosol products from multiple satellite sensors simultaneously: aerosol optical depth (AOD) and Ångström exponent from the Visible Infrared Imaging Radiometer Suite (VIIRS), UV aerosol index from the Ozone Mapping and Profiler Suite (OMPS), and total backscatter coefficient profile from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The case studies suggest that the ASHE algorithm performs well for both smoke and dust aerosols, showing root-mean-square error of the retrieved aerosol height as compared to CALIOP observations from 0.58 to 1.31 km and mean bias from -0.70 to 1.13 km. In addition, the algorithm shows the ability to retrieve single-scattering albedo to within 0.03 of Aerosol Robotic Network inversion data for moderate to thick aerosol loadings (AOD of ~1.0). For typical single-layered aerosol cases, the estimated uncertainty in the retrieved height ranges from 1.20 to 1.80 km over land and from 1.15 to 1.58 km over ocean when favorable conditions are met. Larger errors are observed for multilayered aerosol events, due to the limited sensitivities of the passive sensors to such cases.

  2. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.

    PubMed

    Fottner, Andreas; Nies, Berthold; Kitanovic, Denis; Steinbrück, Arnd; Mayer-Wagner, Susanne; Schröder, Christian; Heinemann, Sascha; Pohl, Ulrich; Jansson, Volkmar

    2016-09-01

    In the past, bioactive bone cement was investigated in order to improve the durability of cemented arthroplasties by strengthening the bone-cement interface. As direct bone-cement bonding may theoretically lead to higher stresses within the cement, the question arises, whether polymethylmethacrylate features suitable mechanical properties to withstand altered stress conditions? To answer this question, in vivo experiments and finite element simulations were conducted. Twelve rabbits were divided into two groups examining either bioactive polymethylmethacrylate-based cement with unchanged mechanical properties or commercially available polymethylmethacrylate cement. The cements were tested under load-bearing conditions over a period of 7 months, using a spacer prosthesis cemented into the femur. For the finite element analyses, boundary conditions of the rabbit femur were simulated and analyses were performed with respect to different loading scenarios. Calculations of equivalent stress distributions within the cements were applied, with a completely bonded cement surface for the bioactive cement and with a continuously interfering fibrous tissue layer for the reference cement. The bioactive cement revealed good in vivo bioactivity. In the bioactive cement group two failures (33 %), with complete break-out of the prosthesis occurred, while none in the reference group. Finite element analyses of simulated bioactive cement fixation showed an increase in maximal equivalent stress by 49.2 to 109.4 % compared to the simulation of reference cement. The two failures as well as an increase in calculated equivalent stress highlight the importance of fatigue properties of polymethylmethacrylate in general and especially when developing bioactive cements designated for load-bearing conditions. PMID:27530301

  3. A comparison of river water quality sampling methodologies under highly variable load conditions.

    PubMed

    Facchi, A; Gandolfi, C; Whelan, M J

    2007-01-01

    When river water quality fluctuates over relatively short periods of time with respect to the sampling frequency, the collection of grab samples may be inappropriate for characterising average water quality. This paper presents the results of a water quality monitoring study carried out on a stretch of the river Lambro (northern Italy) dominated by a periodically overloaded sewage treatment works (STW) located near its upstream end. Water quality was strongly influenced by a pronounced diurnal cycle in pollutant loads caused by the regular emission of untreated waste water during periods of high domestic flow (daytime). Two different sampling techniques were employed: grab sampling and 24-h composite sampling using automatic samplers. Samples were collected at the plant overflow and at several sites along the river and analysed for two common ingredients of household detergents, linear alkylbenzene sulphonate (LAS) and boron (B) and for routine water quality variables. The results obtained show that: (1) The diurnal variability of point-source-derived chemical concentrations in the river downstream of the undersized STW increased with increasing removal efficiency in sewage treatment. (2) The shape of the diurnal concentration signal remained relatively intact for a considerable distance downstream of the STW for several water quality variables, suggesting that hydrodynamic dispersion plays a relatively minor role in controlling concentration patterns in this river. (3) In-stream degradation of LAS was consistent with first order kinetics with a rate constant of 0.05-0.06 h(-1). (4) Grab sampling is a relatively inefficient methodology for capturing mean concentrations for rivers subjected to highly variable loads, especially when it is restricted to office hours. The inefficiency of grab sampling is more marked for substances (e.g. LAS) which are effectively removed during sewage treatment than for substances which are not. (5) For LAS, diurnal variability in the

  4. The effect of unstable loading versus unstable support conditions on spine rotational stiffness and spine stability during repetitive lifting.

    PubMed

    Beaudette, Shawn M; Graham, Ryan B; Brown, Stephen H M

    2014-01-22

    Lumbar spine stability has been extensively researched due to its necessity to facilitate load-bearing human movements and prevent structural injury. The nature of certain human movement tasks are such that they are not equivalent in levels of task-stability (i.e. the stability of the external environment). The goal of the current study was to compare the effects of dynamic lift instability, administered through both the load and base of support, on the dynamic stability (maximal Lyapunov exponents) and stiffness (EMG-driven model) of the lumbar spine during repeated sagittal lifts. Fifteen healthy males performed 23 repetitive lifts with varying conditions of instability at the loading and support interfaces. An increase in spine rotational stiffness occurred during unstable support scenarios resulting in an observed increase in mean and maximum Euclidean norm spine rotational stiffness (p=0.0011). Significant stiffening effects were observed in unstable support conditions about all lumbar spine axes with the exception of lateral bend. Relative to a stable control lifting trial, the addition of both an unstable load as well as an unstable support did not result in a significant change in the local dynamic stability of the lumbar spine (p=0.5592). The results suggest that local dynamic stability of the lumbar spine represents a conserved measure actively controlled, at least in part, by trunk muscle stiffening effects. It is evident therefore that local dynamic stability of the lumbar spine can be modulated effectively within a young-healthy population; however this may not be the case in a patient population.

  5. Examination of the damage and failure response of tantalum and copper under varied shock loading conditions

    SciTech Connect

    Bronkhorst, Curt A; Dennis - Koller, Darcie; Cerreta, Ellen K; Gray Ill, George T; Bourne, Neil

    2010-12-16

    A number of plate impact experiments have been conducted on high purity polycrystalline tantalum and copper samples using graded flyer plate configurations to alter the loading profile. These experiments are designed in a way so that a broad range of damage regimes are probed. The results show that the nucleation of damage primarily occurs at the grain boundaries of the materials. This affords us the opportunity to propose a porosity damage nucleation criterion which begins to account for the length scales of the microstructure (grain size distribution) and the mechanical response of the grain boundary regions (failure stress distribution). This is done in the context of a G-T-N type model for the ductile damage and failure response of both the materials examined. The role of micro-inertial effects on the porosity growth process is also considered.

  6. Built to fight: variable loading conditions and stress distribution in stag beetle jaws.

    PubMed

    Goyens, Jana; Dirckx, Joris; Aerts, Peter

    2015-08-01

    Designing very robust structures in an efficient way is a reoccurring challenge in engineering. For male stag beetle weaponry, the solution to this problem was evolved by natural and sexual selection. Stag beetle armature is adapted to perform under extreme circumstances: male stag beetles fight pugnacious battles over females, by using their extremely large jaws as ferocious weapons. During violent encounters, these jaws have to withstand forces with a wide range of unpredictable directions at several application points. We constructed 1020 finite element models with different input forces to investigate how the male jaws are structurally adapted to avoid failure. The cross-sectional shape of the jaw is adapted to provide robustness against the reaction forces of biting. Nevertheless, the jaw's shape cannot prevent the fact that bite forces induce relatively high material stresses compared to other force directions. Also, males do not confine themselves in combats to bite with the most robust jaw regions. Both observations emphasize the usefulness of bite force modulation to avoid jaw failure. This is likely effectuated by a sensory network in the jaw exoskeleton, as sensor densities are nicely correlated to the maximal material stress caused by 510 different loading directions. Probably, stag beetles use this sensory information to adjust their fighting strategy as well. Finally, male jaws also need to resist the forceful bites inflicted by opponents. Even though this loading applies at other locations along the jaw, and bends the jaw in the opposite direction, our models show that the jaws are equally robust against these external forces as they are against the forces caused by their own biting.

  7. PFBC freeboard firing under part load conditions development of a CFD based design tool

    SciTech Connect

    Edens, T.; Werther, J.; Hartge, E.U.; Jansson, S.A.; Bergqvist, S.

    1999-07-01

    ABB is currently building a second generation Pressurized Fluidized Bed Combined-Cycle (PFBC) plant in Cottbus, Germany. It will generate heat and electricity for the city of Cottbus, burning locally mined brown coal. In this plant, which is based on ABB's P200 PFBC module, a freeboard firing system operated with light oil will for the first time ever be used to maintain a high inlet temperature to the GT35P machine also at part load. This promotes oxidation of CO and makes selective non-catalytic NO{sub x} reduction effective also in this load range. In the present work a modeling tool is being developed in support of the design of the freeboard firing system and to help evaluate the performance of this system during operation. Another purpose of this tool is to check the sensitivity of the temperature distribution in the freeboard against a maldistribution of the fuel. For these purposes a model based on the full set of mass, momentum and energy balances was established. A commercially available computational fluid dynamics (CFD) program package was used to implement and solve the model. For the solution a stepwise approach has been chosen: in a first step the penetration of the oil jet into the freeboard, its dispersion, gasification and combustion has been modeled for a single jet. For these calculations a locally very fine grid was used. In a second step the freeboard with multiple oil jets will be described. In this latter step it will be necessary to reduce the spatial resolution significantly due to the limitation of computational resources. In the present paper the approach will be described in detail and some first computational results concerning the combustion of an oil spray will be presented.

  8. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    NASA Astrophysics Data System (ADS)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  9. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  10. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  11. Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air.

    PubMed

    Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D

    2009-09-01

    Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems.

  12. Relationship between volatility, hygroscopicity, and CCN activity of winter aerosols: Kanpur, Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, Sachchida

    2016-04-01

    Aerosol volatility is one of the key property in deciding their lifetime and fate. The volatile species have the potential to affect SOA estimation, so their characterization and establishment of relationship with mass loading, chemical composition, hygroscopicity and CCN activity is required. A 42 days long winter campaign was conducted in an anthropogenically polluted location (Kanpur, India) where CCN activity of both ambient and thermally treated aerosols was characterized. Enhanced partitioning of semi-volatile molecules into particle phase at higher loading conditions was observed. Unexpectedly, the most oxidized organic factor was observed both least volatile and hygroscopic in nature. Lower

  13. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  14. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.

  15. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGES

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less

  16. 77 FR 42949 - Special Conditions: Tamarack Aerospace Group, Cirrus Model SR22; Active Technology Load...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... special conditions No. 23-12-01-SC for the Cirrus SR22 airplanes was published on May 15, 2012 (77 FR... flight hour, an independent system functional test must be accomplished at a periodic interval to limit time exposure to an undetected failed system. The time interval for the system functional test must...

  17. Deformation and Flexibility Equations for Idealized ARIS Umbilicals, Under Planar End-Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Quraishi, Naveed; Rupert, Jason K.

    2000-01-01

    The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARIS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth. at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This paper develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on:orbit application. The analysis assumes an initially straight. cantilevered umbilical with uniform cross-section. which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals. under the indicated assumptions.

  18. Deformation and Flexibility Equations for Idealized ARIS Umbilicals, Under Planar End-Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Quraishi, Naveed (Technical Monitor)

    2003-01-01

    The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARTS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth, at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This report develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially straight, cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals, under the indicated assumptions.

  19. Does Computer-Assisted Femur First THR Improve Musculoskeletal Loading Conditions?

    PubMed Central

    Weber, Tim A.; Dendorfer, Sebastian; Grifka, Joachim; Verkerke, Gijsbertus J.; Renkawitz, Tobias

    2015-01-01

    We have developed a novel, computer-assisted operation method for minimal-invasive total hip replacement (THR) following the concept of “femur first/combined anteversion,” which incorporates various aspects of performing a functional optimization of the prosthetic stem and cup position (CAS FF). The purpose of this study is to assess whether the hip joint reaction forces and patient's gait parameters are being improved by CAS FF in relation to conventional THR (CON). We enrolled 60 patients (28 CAS FF/32 CON) and invited them for gait analysis at three time points (preoperatively, postop six months, and postop 12 months). Data retrieved from gait analysis was processed using patient-specific musculoskeletal models. The target parameters were hip reaction force magnitude (hrf), symmetries, and orientation with respect to the cup. Hrf in the CAS FF group were closer to a young healthy normal. Phase-shift symmetry showed an increase in the CAS FF group. Hrf orientation in the CAS FF group was closer to optimum, though no edge or rim-loading occurred in the CON group as well. The CAS FF group showed an improved hrf orientation in an early stage and a trend to an improved long-term outcome. PMID:26582355

  20. A Novel Experimental Technique for the Study of High-Speed Friction under Elastic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Crawford, Paula; Rainey, Kevin; Rightley, Paul; Hammerberg, J. E.

    2004-07-01

    The role of friction in high strain-rate events is not well understood despite being an important constitutive relationship in modern modeling and simulation studies of explosive events. There is a lack of experimental data available for the validation ofmodels of dynamic sliding. The Rotating Barrel Gas Gun (RBGG) is a novel, small-scale experimental facility designed to investigate interfacial dynamics at high loads and sliding speeds. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target at a timescale relevant to explosively-driven events. Resulting elastic waves are measured using strain gages attached to the target rod. The coefficient of friction is obtained through an analysis of the resulting strain wave data. Initial experiments have been performed using dry copper/copper interfaces. We find that the measured coefficient of friction can evolve significantly over a 30 μs event.

  1. Damping efficiency of the Tchamwa-Wielgosz explicit dissipative scheme under instantaneous loading conditions

    NASA Astrophysics Data System (ADS)

    Mahéo, Laurent; Grolleau, Vincent; Rio, Gérard

    2009-11-01

    To deal with dynamic and wave propagation problems, dissipative methods are often used to reduce the effects of the spurious oscillations induced by the spatial and time discretization procedures. Among the many dissipative methods available, the Tchamwa-Wielgosz (TW) explicit scheme is particularly useful because it damps out the spurious oscillations occurring in the highest frequency domain. The theoretical study performed here shows that the TW scheme is decentered to the right, and that the damping can be attributed to a nodal displacement perturbation. The FEM study carried out using instantaneous 1-D and 3-D compression loads shows that it is useful to display the damping versus the number of time steps in order to obtain a constant damping efficiency whatever the size of element used for the regular meshing. A study on the responses obtained with irregular meshes shows that the TW scheme is only slightly sensitive to the spatial discretization procedure used. To cite this article: L. Mahéo et al., C. R. Mecanique 337 (2009).

  2. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  3. Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP

    NASA Astrophysics Data System (ADS)

    Toth, Travis D.; Zhang, Jianglong; Campbell, James R.; Reid, Jeffrey S.; Vaughan, Mark A.

    2016-08-01

    Temporal variability in the vertical distribution of aerosol optical thickness (AOT) derived from the 0.532 µm aerosol extinction coefficient is described using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations over 8.5 years (June 2006 to December 2014). Temporal variability of CALIOP column-integrated AOT is largely consistent with total column AOT trends from several passive satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and the Sea-viewing Wide Field-of-view Sensor. Globally, a 0.0002 AOT per year positive trend in deseasonalized CALIOP total column AOT for daytime conditions is attributed to corresponding changes in near-surface (i.e., 0.0-0.5 km or 0.5-1.0 km above ground level (agl)) aerosol particle loading, while a -0.0006 AOT per year trend during nighttime is attributed to elevated (i.e., 1.0-2.0 km or >2.0 km agl) aerosols. Regionally, increasing daytime CALIOP AOTs are found over Southern Africa and India, mostly due to changes in aerosol loading at the 1.0-2.0 km and 0.0-0.5 km agl layers, respectively. Decreasing daytime CALIOP AOTs are observed over Northern Africa, Eastern U.S., and South America (due mostly to elevated aerosol loading), while the negative CALIOP AOT trends found over Eastern China, Europe, and Western U.S. are due mostly to aerosol layers nearer the surface. To our knowledge, this study is the first to provide both a globally comprehensive estimation of the temporal variation in aerosol vertical distribution and an insight into passive sensor column AOT trends in the vertical domain.

  4. The determination of equivalent bearing loading for the BSMT that simulate SSME high pressure oxidizer turbopump conditions using the SHABERTH/SINDA computer programs

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gary H.

    1987-01-01

    The MSFC bearing seal material tester (BSMT) can be used to evaluate the SSME high pressure oxygen turbopump (HPOTP) bearing performance. The four HPOTP bearings have both an imposed radial and axial load. These radial and axial loads are caused by the HPOTP's shaft, main impeller, preburner impeller, turbine and by the LOX coolant flow through the bearings, respectively. These loads coupled with bearing geometry and operating speed can define bearing contact angle, contact Hertz stress, and heat generation rates. The BSMT has the capability of operating at HPOTP shaft speeds, provide proper coolant flowrates but can only apply an axial load. Due to the inability to operate the bearings in the BSMT with an applied radial load, it is important to develop an equivalency between the applied axial loads and the actual HPOTP loadings. A shaft-bearing-thermal computer code (SHABERTH/SINDA) is used to simulate the BSMT bearing-shaft geometry and thermal-fluid operating conditions.

  5. Experimental and theoretical studies of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions

    NASA Astrophysics Data System (ADS)

    Radchenko, V. P.; Kocherov, E. P.; Saushkin, M. N.; Smyslov, V. A.

    2015-03-01

    This paper presents an experimental and theoretical study of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen of ZhS6KP alloy under creep conditions at 800°C. An experimental study was conducted to investigate the distribution of the axial residual stress tensor component across the thickness of the hardened layer after hardening by air shot blasting using microbeads and after creep loading for 50 and 200 h under a tensile load of 150 and 250 MPa. A detailed theoretical analysis of the problem was performed. In all loading regimes, the calculated and experimental values of the residual stresses were found to be in good agreement. It was shown that at low tensile load, the relaxation rate decreased in comparison with the case of thermal exposure in the absence of a tensile load and, with increasing load intensity, it increased.

  6. Uncertainties of aerosol retrieval from neglecting non-sphericity of dust aerosols

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xue, Yong; Yang, Leiku; Guang, Jie

    2013-04-01

    The Mie theory is conventionally applied to calculate aerosol optical properties in satellite remote sensing applications, while dust aerosols cannot be well modeled by the Mie calculation for their non-sphericity. It has been cited in Mishchenko et al. (1995; 1997) that neglecting non-sphericity can severely influence aerosol optical depth (AOD, ?) retrieval in case of dust aerosols because of large difference of phase functions under spherical and non-spherical assumptions, whereas this uncertainty has not been thoroughly studied. This paper aims at a better understanding of uncertainties on AOD retrieval caused by aerosol non-sphericity. A dust aerosol model with known refractive index and size distribution is generated from long-term AERONET observations since 1999 over China. Then aerosol optical properties, such as the extinction, phase function, single scattering albedo (SSA) are calculated respectively in the assumption of spherical and non-spherical aerosols. Mie calculation is carried out for spherical assumption, meanwhile for non-spherical aerosol modeling, we adopt the pre-calculated scattering kernels and software package presented by Dubovik et al. (2002; 2006), which describes dust as a shape mixture of randomly oriented polydisperse spheroids. Consequently we generate two lookup tables (LUTspheric and LUTspheroid) from simulated satellite received reflectance at top of atmosphere (TOA) under varieties of observing conditions and aerosol loadings using Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV) code. All the simulations are made at 550 nm, and for simplicity the Lambertian surface is assumed. Using the obtained LUTs we examine the differences of TOA reflectance (Δ?TOA = ?spheric - ?spheroid) under different surface reflectance and aerosol loadings. Afterwards AOD is retrieved using LUTspheric from the simulated TOA reflectance by LUTspheroid in order to detect the retrieval errors (Δ? = ?retreived -?input) induced

  7. Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions.

    PubMed

    Hennersdorf, Philipp; Kleinertz, Sonja; Theisen, Stefan; Abdul-Aziz, Muslihudeen A; Mrotzek, Grit; Palm, Harry W; Saluz, Hans Peter

    2016-01-01

    In this study we analysed fecal bacterial communities and parasites of three important Indonesian fish species, Epinephelus fuscoguttatus, Epinephelus sexfasciatus and Atule mate. We then compared the biodiversity of bacterial communities and parasites of these three fish species collected in highly polluted Jakarta Bay with those collected in less polluted Indonesian areas of Cilacap (E. sexfasciatus, A. mate) and Thousand Islands (E. fuscoguttatus). In addition, E. fuscoguttatus from net cages in an open water mariculture facility was compared with free living E. fuscoguttatus from its surroundings. Both core and shared microbiomes were investigated. Our results reveal that, while the core microbiomes of all three fish species were composed of fairly the same classes of bacteria, the proportions of these bacterial classes strongly varied. The microbial composition of phylogenetically distant fish species, i.e. A. mate and E. sexfasciatus from Jakarta Bay and Cilacap were more closely related than the microbial composition of more phylogentically closer species, i.e. E. fuscoguttatus, E. sexfasciatus from Jakarta Bay, Cilacap and Thousand Islands. In addition, we detected a weak negative correlation between the load of selected bacterial pathogens, i.e. Vibrio sp. and Photobacterium sp. and the number of endoparasites. In the case of Flavobacterium sp. the opposite was observed, i.e. a weak positive correlation. Of the three recorded pathogenic bacterial genera, Vibrio sp. was commonly found in E. fuscoguttatus from mariculture, and lessly in the vicinity of the net cages and rarely in the fishes from the heavily polluted waters from Jakarta Bay. Flavobacterium sp. showed higher counts in mariculture fish and Photobacteria sp. was the most prominent in fish inside and close to the net cages. PMID:27018789

  8. Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions.

    PubMed

    Hennersdorf, Philipp; Kleinertz, Sonja; Theisen, Stefan; Abdul-Aziz, Muslihudeen A; Mrotzek, Grit; Palm, Harry W; Saluz, Hans Peter

    2016-01-01

    In this study we analysed fecal bacterial communities and parasites of three important Indonesian fish species, Epinephelus fuscoguttatus, Epinephelus sexfasciatus and Atule mate. We then compared the biodiversity of bacterial communities and parasites of these three fish species collected in highly polluted Jakarta Bay with those collected in less polluted Indonesian areas of Cilacap (E. sexfasciatus, A. mate) and Thousand Islands (E. fuscoguttatus). In addition, E. fuscoguttatus from net cages in an open water mariculture facility was compared with free living E. fuscoguttatus from its surroundings. Both core and shared microbiomes were investigated. Our results reveal that, while the core microbiomes of all three fish species were composed of fairly the same classes of bacteria, the proportions of these bacterial classes strongly varied. The microbial composition of phylogenetically distant fish species, i.e. A. mate and E. sexfasciatus from Jakarta Bay and Cilacap were more closely related than the microbial composition of more phylogentically closer species, i.e. E. fuscoguttatus, E. sexfasciatus from Jakarta Bay, Cilacap and Thousand Islands. In addition, we detected a weak negative correlation between the load of selected bacterial pathogens, i.e. Vibrio sp. and Photobacterium sp. and the number of endoparasites. In the case of Flavobacterium sp. the opposite was observed, i.e. a weak positive correlation. Of the three recorded pathogenic bacterial genera, Vibrio sp. was commonly found in E. fuscoguttatus from mariculture, and lessly in the vicinity of the net cages and rarely in the fishes from the heavily polluted waters from Jakarta Bay. Flavobacterium sp. showed higher counts in mariculture fish and Photobacteria sp. was the most prominent in fish inside and close to the net cages.

  9. Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions

    PubMed Central

    Theisen, Stefan; Abdul-Aziz, Muslihudeen A.; Mrotzek, Grit; Palm, Harry W.; Saluz, Hans Peter

    2016-01-01

    In this study we analysed fecal bacterial communities and parasites of three important Indonesian fish species, Epinephelus fuscoguttatus, Epinephelus sexfasciatus and Atule mate. We then compared the biodiversity of bacterial communities and parasites of these three fish species collected in highly polluted Jakarta Bay with those collected in less polluted Indonesian areas of Cilacap (E. sexfasciatus, A. mate) and Thousand Islands (E. fuscoguttatus). In addition, E. fuscoguttatus from net cages in an open water mariculture facility was compared with free living E. fuscoguttatus from its surroundings. Both core and shared microbiomes were investigated. Our results reveal that, while the core microbiomes of all three fish species were composed of fairly the same classes of bacteria, the proportions of these bacterial classes strongly varied. The microbial composition of phylogenetically distant fish species, i.e. A. mate and E. sexfasciatus from Jakarta Bay and Cilacap were more closely related than the microbial composition of more phylogentically closer species, i.e. E. fuscoguttatus, E. sexfasciatus from Jakarta Bay, Cilacap and Thousand Islands. In addition, we detected a weak negative correlation between the load of selected bacterial pathogens, i.e. Vibrio sp. and Photobacterium sp. and the number of endoparasites. In the case of Flavobacterium sp. the opposite was observed, i.e. a weak positive correlation. Of the three recorded pathogenic bacterial genera, Vibrio sp. was commonly found in E. fuscoguttatus from mariculture, and lessly in the vicinity of the net cages and rarely in the fishes from the heavily polluted waters from Jakarta Bay. Flavobacterium sp. showed higher counts in mariculture fish and Photobacteria sp. was the most prominent in fish inside and close to the net cages. PMID:27018789

  10. Development of a multi-component fiber-reinforced composite implant for load-sharing conditions.

    PubMed

    Zhao, D S; Moritz, N; Laurila, P; Mattila, R; Lassila, L V J; Strandberg, N; Mäntylä, T; Vallittu, P K; Aro, H T

    2009-05-01

    Fiber-reinforced composites (FRC) have the potential for use as load-bearing orthopaedic implants if the high strength and elastic modulus of FRC implant can be matched with local requirements. This study tested the in vivo performance of novel FRC implants made of unidirectional glass fibers (E-glass fibers in Bis-GMA and TEGDMA polymeric matrix). The implant surface was covered with bioactive glass granules. Control implants were made of surface-roughened titanium. Stress-shielding effects of the implants were predicted by finite element modelling (FEM). Surgical stabilization of bone metastasis in the subtrochanteric region of the femur was simulated in 12 rabbits. An oblong subtrochanteric defect of a standardized size (reducing the torsional strength of the bones approximately by 66%) was created and an intramedullary implant made of titanium or the FRC composite was inserted. The contralateral femur served as the intact control. At 12 weeks of healing, the femurs were harvested and analyzed by radiography, torsional testing, micro-CT imaging and hard tissue histology. The functional recovery was unremarkable in both groups, although the final analysis revealed two healed undisplaced peri-implant fractures in the group of FRC implants. FEM studies demonstrated differences in stress-shielding effects of the titanium and FRC implants, but the expected biological consequences did not become evident during the follow-up time of the animal study. Biomechanical testing of the retrieved femurs showed no significant differences between the groups. The torsional strength of the fixed bones had returned the level of contralateral intact femurs. Both implants showed ongrowth of intramedullary new bone. No adverse tissue reactions were observed. Based on these favorable results, a large-scale EU-project (NewBone, www.hb.se/ih/polymer/newbone) has been launched for development of orthopaedic FRC implants. PMID:19109047

  11. Numerical simulation of pressure fluctuation of a pump-turbine with MGV at no-load condition

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.

    2012-11-01

    In order to analyse the pressure fluctuation caused by misaligned guide vanes (MGV) during starting period at no-load condition, 3-D (three dimensional), unsteady flows in a pump-turbine were numerically studied. Pressure fluctuations of different points at no-load condition are obtained. Fast Fourier Transform(FFT) was used to analyse the frequency spectrum of pressure fluctuations. The amplitude and dominant frequency of pressure fluctuation at vaneless space between the runner and guide vane, as well as the inlet of draft tube, was investigated. The amplitude of pressure fluctuation of the pump-turbine with MGV device is twice that of synchronous vanes. This might be caused by the non-uniform flow in the pump-turbine due to the pre-opened guide vanes. The pump-turbine with synchronous vanes has a low frequency which is 0.33fn, while the low frequency changes into 0.63fn when the MGV device is used. The vortex rope in the draft tube is large than that of synchronize vanes. Resultsof pressure fluctuations with synchronous vanes agree with each other between computational and testing results. The numerical study of pressure fluctuations with MGV can provide a basic understanding for the improvement of the instability of a pump-turbine.

  12. Determination of the elasticity of parachute materials under dynamic loading conditions

    SciTech Connect

    Behr, V.L.; Clements, P.J.; Silbert, M.N.

    1996-12-31

    In the design of parachute systems it is important to use material properties that have been acquired under representative strain rates expected in flight. Without such data the designer is potentially forced to incorporate unrealistic safety margins resulting in a heavier and costlier than required design. Laboratory test data has generally been limited to that which can be acquired at quasi-steady strain rates. This paper investigates a technique, which takes advantage of advances in solid state electronics in the past ten years, to achieve an economical means of acquiring material properties under dynamic strain conditions. Data obtained with this technique is compared to standard test data for representative parachute materials.

  13. Deformation behavior of reinforced ECC flexural members under reversed cyclic loading conditions

    NASA Astrophysics Data System (ADS)

    Fischer, Gregor D.

    In this dissertation, the use of engineered cementitious composites (ECC) in reinforced members and model seismic resistant frames is investigated. The development from composite material to structural system behavior is presented, bridging the dimensional scales associated with microstructures, composite materials and composite structures. The fundamental cause of damage in reinforced concrete (R/C) structures is the brittle deformation behavior of concrete in tension. Engineered cementitious composites (ECC) are fiber reinforced cementitious composites designed to achieve a deformation behavior analogous to that of metals, specifically strain hardening and multiple cracking behavior. The combination of such a ductile ECC with ductile reinforcing steel in direct tension results in deformation compatibility of these R/ECC components, leading to a reduction of interfacial bond stresses and bond splitting cracks while maintaining composite integrity. Test results show that the performance of R/ECC structural composites in reversed cyclic flexure benefits from this deformation compatibility, resulting in a decrease of peak curvature at a given flexural deformation. It is further observed that beyond localization of cracking in ECC, enhanced confinement, shear strength and buckling resistance in R/ECC members make transverse steel reinforcement redundant and lead to stable energy dissipation by yielding of longitudinal steel reinforcement. Furthermore, R/ECC members with longitudinal FRP reinforcement show reduced residual displacements after unloading. On the structural system scale, the particular interaction of R/ECC members reinforced with steel and FRP reinforcement in a moment resisting frame is found to result in a structural system with considerable energy dissipation capacity and reduced residual displacement. This composite structural system shows a bi-linear elastic load-deformation behavior and intrinsic stiffness modification capabilities, which are

  14. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  15. Evaluation of Human and Anthropomorphic Test Device Finite Element Models under Spaceflight Loading Conditions

    NASA Technical Reports Server (NTRS)

    Putnam, Jacob P.; Untaroiu, Costin; Somers. Jeffrey

    2014-01-01

    In an effort to develop occupant protection standards for future multipurpose crew vehicles, the National Aeronautics and Space Administration (NASA) has looked to evaluate the test device for human occupant restraint with the modification kit (THOR-K) anthropomorphic test device (ATD) in relevant impact test scenarios. With the allowance and support of the National Highway Traffic Safety Administration, NASA has performed a series of sled impact tests on the latest developed THOR-K ATD. These tests were performed to match test conditions from human volunteer data previously collected by the U.S. Air Force. The objective of this study was to evaluate the THOR-K finite element (FE) model and the Total HUman Model for Safety (THUMS) FE model with respect to the tests performed. These models were evaluated in spinal and frontal impacts against kinematic and kinetic data recorded in ATD and human testing. Methods: The FE simulations were developed based on recorded pretest ATD/human position and sled acceleration pulses measured during testing. Predicted responses by both human and ATD models were compared to test data recorded under the same impact conditions. The kinematic responses of the models were quantitatively evaluated using the ISO-metric curve rating system. In addition, ATD injury criteria and human stress/strain data were calculated to evaluate the risk of injury predicted by the ATD and human model, respectively. Results: Preliminary results show well-correlated response between both FE models and their physical counterparts. In addition, predicted ATD injury criteria and human model stress/strain values are shown to positively relate. Kinematic comparison between human and ATD models indicates promising biofidelic response, although a slightly stiffer response is observed within the ATD. Conclusion: As a compliment to ATD testing, numerical simulation provides efficient means to assess vehicle safety throughout the design process and further improve the

  16. Phosphorus mass balance and internal load in an impacted subtropical isolated wetland subject to transient hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Jawitz, J. W.; Min, J.

    2009-12-01

    Internal loading is a critical component of the phosphorus (P) budget of aquatic systems, and can control the trophic conditions. While diffusion is generally considered the dominant process controlling internal P load to the water column, advection due to water table fluctuations resulting from episodic flooding and drying cycles can be a significant component of the P budget of depressional wetlands. Within the drainage basin of Lake Okeechobee, Florida, P is exported annually to the lake from impacted isolated wetlands located on beef farming facilities via ditches and canals. The objective of this study was to evaluate the role of diffusive and advective fluxes in relation to the total P loads entering and exiting one of these isolated wetlands. Diffusive fluxes were calculated from depth-variable pore water concentrations measured using multilevel samplers and pore water equilibrators. Advective fluxes were estimated based on groundwater fluctuations calculated within a hydrologic-budget framework. Results from an eleven-month monitoring period (May 2005-March 2006) indicated that the diffusive flux of soluble reactive P (SRP) was 0.42 ± 0.24 mg m-2 d-1 and occurred for 230 days out of 335. In comparison, the advective flux occurred over a shorter duration of just 21 days, yet generated a greater flux controlled by the concentrations of shallow pore water and the velocity of the ground water moving upwards into the wetland water column. The highest advective flux of SRP was estimated at 27.4 mg m-2 d-1. Based on these fluxes the corresponding P load to the wetland via internal modes was estimated at 5.2 kg and 0.93 kg from diffusion and advection respectively, representing a significant fraction of the total P load entering the wetland water column. Plant colonization during dry periods in P enriched soils is also a significant mechanism for P release from the soil at the time of flooding, however, this component to the wetland P budget was not evaluated as

  17. In situ studies on volatile jet exhaust particle emissions: Impact of fuel sulfur content and environmental conditions on nuclei mode aerosols

    NASA Astrophysics Data System (ADS)

    Schröder, F.; Brock, C. A.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M.

    2000-08-01

    In situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the Deutsches Zentrum für Luft-und Raumfahrt ATTAS research jet (Rolls-Royce/Snecma M45H M501 engines) and a B737-300 aircraft (CFM International 56-3B1 engines). Measurements were made 0.15-20 s after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56, or 118mg kg-1. Particle size distributions of from 3- to 60-nm diameter were determined by using condensationnuclei-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60mg kg-1, reaching minimum values of about 2×1017kg-1 and 2×1016kg-1 for particles >3nm and >5nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60mg kg-1. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4×1014kg-1) than from the older RR M45H M501 engines (1.8×1015kg-1). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors of 2-10 depending on particle size. These and previously published data are consistent with volatile particle emissions of 2.4×1017kg-1 independent of environmental conditions, engine type and FSCs ranging between 2.6 and 2700mg kg-1. There are clear experimental indications that

  18. Dynamic response of berea sandstone shock-loaded under dry, wet and water-pressurized conditions

    SciTech Connect

    Carney, T C; Hagelberg, C R; Hilt, M; Nellis, W J; Swift, R P

    1999-09-03

    A single-stage light-gas gun was used to perform shock-recovery experiments on Berea sandstone under dry, wet and hydrostatically water-pressurized conditions. The samples were impacted by flyer-plates to achieve stress levels in the range 1.3 to 9.8 GPa. The microstructure of the shocked samples was analyzed using scanning electron microscopy (SEM), laser particle analysis and X-ray computed microtomography (XCMT). The dry samples show strongly fragmented and irregularly fractured quartz grains with a considerably reduced porosity, whereas the wet and water-pressurized specimens show less grain damage and less porosity reduction. During shock compression the water in the pores distributes the stresses and therefore the contact force between the grains is reduced. The interaction between the grains during the shock process was modeled by explicitly treating the grain-pore structure using Smooth Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM).

  19. Compression creep rupture of an E-glass/vinyl ester composite subjected to combined mechanical and fire loading conditions

    NASA Astrophysics Data System (ADS)

    Boyd, Steven Earl

    Polymer matrix composites are seeing increasing use in structural systems (e.g. ships, bridges) and require a quantitative basis for describing their performance under combined mechanical load and fire. Although much work has been performed to characterize the flammability, fire resistance and toxicity of these composite systems, an understanding of the structural response of sandwich type structures and laminate panels under combined mechanical and thermal loads (simulating fire conditions) is still largely unavailable. Therefore a research effort to develop a model to describe the structural response of these glass/vinyl esters systems under fire loading conditions is relevant to the continuing and future application of polymer matrix composites aboard naval ships. The main goal of the effort presented here is to develop analytical models and finite element analysis methods and tools to predict limit states such as local compression failures due to micro-buckling, residual strength and times to failure for composite laminates at temperatures in the vicinity of the glass transition where failure is controlled by viscoelastic effects. Given the importance of compression loading to a structure subject to fire exposure, the goals of this work are succinctly stated as the: (a) Characterization of the non-linear viscoelastic and viscoplastic response of the E-glass/vinyl ester composite above Tg. (b) Description of the laminate compression mechanics as a function of stress and temperature including viscoelasticity. (c) Viscoelastic stress analysis of a laminated panel ([0/+45/90/-45/0] S) using classical lamination theory (CLT). Three manuscripts constitute this dissertation which is representative of the three steps listed above. First, a detailed characterization of the nonlinear thermoviscoelastic response of Vetrotex 324/Derakane 510A--40 through Tg was conducted using the Time--Temperature--Stress--Superposition Principle (TTSSP) and Zapas--Crissman model. Second

  20. Statistics concerning the Apollo command module water landing, including the probability of occurrence of various impact conditions, sucessful impact, and body X-axis loads

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1971-01-01

    Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.

  1. Simulation of South Asian aerosols for regional climate studies

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Solmon, Fabien; Giorgi, Filippo; Mariotti, Laura; Babu, S. Suresh; Moorthy, K. Krishna

    2012-02-01

    Extensive intercomparison of columnar and near-surface aerosols, simulated over the South Asian domain using the aerosol module included in the regional climate model (RegCM4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) have been carried out using ground-based network of Sun/sky Aerosol Robotic Network (AERONET) radiometers, satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR), and ground-based black carbon (BC) measurements made at Aerosol Radiative Forcing over India (ARFI) network stations. In general, RegCM4 simulations reproduced the spatial and seasonal characteristics of aerosol optical depth over South Asia reasonably well, particularly over west Asia, where mineral dust is a major contributor to the total aerosol loading. In contrast, RegCM4 simulations drastically underestimated the BC mass concentrations over most of the stations, by a factor of 2 to 5, with a large spatial variability. Seasonally, the discrepancy between the measured and simulated BC tended to be higher during winter and periods when the atmospheric boundary layer is convectively stable (such as nighttime and early mornings), while during summer season and during periods when the boundary layer is convectively unstable (daytime) the discrepancies were much lower, with the noontime values agreeing very closely with the observations. A detailed analysis revealed that the model does not reproduce the nocturnal high in BC, observed at most of the Indian sites especially during winter, because of the excessive vertical transport of aerosols under stable boundary layer conditions. As far as the vertical distribution was concerned, the simulated vertical profiles of BC agreed well with airborne measurements during daytime. This comprehensive validation exercise reveals the strengths and weaknesses of the model in simulating the spatial and temporal heterogeneities of the aerosol fields over

  2. Impact of reduced exhaust and ventilation rates at ``no-load`` cooking conditions in a commercial kitchen during winter operation

    SciTech Connect

    Spata, A.J.; Turgeon, S.M.

    1995-12-31

    While previous studies have examined the effect of reduced exhaust and ventilation rates on comfort levels and air-conditioning requirements in commercial kitchens when cooling of this space was required, no investigation had been performed to document energy savings that may be obtainable by a similar technique during periods when heating of make-up air was dictated. In addition, these prior studies examined the resultant kitchen conditions with lower exhaust and ventilation rates applied while the hooded appliances were actively being used for cooking. This paper presents the field evaluation findings by a major quick-service restaurant chain. These findings resulted from the reduction of exhaust and make-up air quantities during periods when heating of kitchen make-up air was required and no cooking was occurring on the grills. The initial results indicate that these reductions yield significant utility savings, with no detrimental effect on the environment within the kitchen, by minimizing the amount of outside air tempered by the heating, ventilating, and air-conditioning (HVAC) equipment during ``no load`` cooking conditions.

  3. Pulmonary venous flow determinants of left atrial pressure under different loading conditions in a chronic animal model with mitral regurgitation

    NASA Technical Reports Server (NTRS)

    Yang, Hua; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Kim, Yong Jin; Popovic, Zoran B.; Pu, Min; Greenberg, Neil L.; Cardon, Lisa A.; Eto, Yoko; Sitges, Marta; Zetts, Arthur D.; Thomas, James D.

    2002-01-01

    BACKGROUND: The aim of our study was to quantitatively compare the changes and correlations between pulmonary venous flow variables and mean left atrial pressure (mLAP) under different loading conditions in animals with chronic mitral regurgitation (MR) and without MR. METHODS: A total of 85 hemodynamic conditions were studied in 22 sheep, 12 without MR as control (NO-MR group) and 10 with MR (MR group). We obtained pulmonary venous flow systolic velocity (Sv) and diastolic velocity (Dv), Sv and Dv time integrals, their ratios (Sv/Dv and Sv/Dv time integral), mLAP, left ventricular end-diastolic pressure, and MR stroke volume. We also measured left atrial a, x, v, and y pressures and calculated the difference between v and y pressures. RESULTS: Average MR stroke volume was 10.6 +/- 4.3 mL/beat. There were good correlations between Sv (r = -0.64 and r = -0.59, P <.01), Sv/Dv (r = -0.62 and r = -0.74, P <.01), and mLAP in the MR and NO-MR groups, respectively. Correlations were also observed between Dv time integral (r = 0.61 and r = 0.57, P <.01) and left ventricular end-diastolic pressure in the MR and NO-MR groups. In velocity variables, Sv (r = -0.79, P <.001) was the best predictor of mLAP in both groups. The sensitivity and specificity of Sv = 0 in predicting mLAP 15 mm Hg or greater were 86% and 85%, respectively. CONCLUSION: Pulmonary venous flow variables correlated well with mLAP under altered loading conditions in the MR and NO-MR groups. They may be applied clinically as substitutes for invasively acquired indexes of mLAP to assess left atrial and left ventricular functional status.

  4. Capacity fade modelling of lithium-ion battery under cyclic loading conditions

    NASA Astrophysics Data System (ADS)

    Ashwin, T. R.; Chung, Yongmann M.; Wang, Jihong

    2016-10-01

    A pseudo two-dimensional (P2D) electro-chemical lithium-ion battery model is presented in this paper to study the capacity fade under cyclic charge-discharge conditions. The Newman model [1,2] has been modified to include a continuous solvent reduction reaction responsible for the capacity fade and power fade. The temperature variation inside the cell is accurately predicted using a distributed thermal model coupled with the internal chemical heat generation. The model is further improved by linking the porosity variation with the electrolyte partial molar concentration, thereby proving a stronger coupling between the battery performance and the chemical properties of electrolyte. The solid electrolyte interface (SEI) layer growth is estimated for different cut-off voltages and charging current rates. The results show that the convective heat transfer coefficient as well as the porosity variation influences the SEI layer growth and the battery life significantly. The choice of an electrolyte decides the conductivity and partial molar concentration, which is found to have a strong influence on the capacity fade of the battery. The present battery model integrates all essential electro-chemical processes inside a lithium-ion battery under a strong implicit algorithm, proving a useful tool for computationally fast battery monitoring system.

  5. Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Gleeson, Emily; Toll, Velle; Pagh Nielsen, Kristian; Rontu, Laura; Masek, Jan

    2016-05-01

    The direct shortwave radiative effect of aerosols under clear-sky conditions in the Aire Limitee Adaptation dynamique Developpement InterNational - High Resolution Limited Area Model (ALADIN-HIRLAM) numerical weather prediction system was investigated using three shortwave radiation schemes in diagnostic single-column experiments: the Integrated Forecast System (IFS), acraneb2 and the hlradia radiation schemes. The multi-band IFS scheme was formerly used operationally by the European Centre for Medium Range Weather Forecasts (ECMWF) whereas hlradia and acraneb2 are broadband schemes. The former is a new version of the HIRLAM radiation scheme while acraneb2 is the radiation scheme in the ALARO-1 physics package. The aim was to evaluate the strengths and weaknesses of the numerical weather prediction (NWP) system regarding aerosols and to prepare it for use of real-time aerosol information. The experiments were run with particular focus on the August 2010 Russian wildfire case. Each of the three radiation schemes accurately (within ±4 % at midday) simulates the direct shortwave aerosol effect when observed aerosol optical properties are used. When the aerosols were excluded from the simulations, errors of more than +15 % in global shortwave irradiance were found at midday, with the error reduced to +10 % when standard climatological aerosols were used. An error of -11 % was seen at midday if only observed aerosol optical depths at 550 nm, and not observation-based spectral dependence of aerosol optical depth, single scattering albedos and asymmetry factors, were included in the simulations. This demonstrates the importance of using the correct aerosol optical properties. The dependency of the direct radiative effect of aerosols on relative humidity was tested and shown to be within ±6 % in this case. By modifying the assumptions about the shape of the IFS climatological vertical aerosol profile, the inherent uncertainties associated with assuming fixed vertical

  6. Determination of Fissile Loadings onto Monosodium Titanate (MST) under Conditions Relevant to the Actinide Removal Process Facility

    SciTech Connect

    Peters, T

    2005-11-15

    This report describes the results of an experimental study to measure the sorption of fissile actinides on monosodium titanate (MST) at conditions relevant to operation of the Actinide Removal Process (ARP). The study examined the effect of a single contact of a large volume of radionuclide-spiked simulant solution with a small mass of MST. The volume of simulant to MST (8.5 L to 0.2 g of MST solids) was designed to mimic the maximum phase ratio that occurs between the multiple contacts of MST and waste solution and washing of the accumulated solids cycle of ARP. This work provides the following results. (1) After a contact time of {approx}2 weeks, we measured the following actinide loadings on the MST (average of solution and solids data), Pu: 2.79 {+-} 0.197 wt %, U: 14.0 {+-} 1.04 wt %, and Np: 0.839 {+-} 0.0178 wt %. (2) The plutonium and uranium loadings reported above are considerably higher than previously reported values. The higher loading result from the very high phase ratio and the high initial mass concentrations of uranium and plutonium. A separate upcoming document details the predicted values for this system versus the results. (3) The strontium DF values measured in these tests proved much lower than those reported previously with simulants having the same bulk chemical composition. The low strontium DF values reflect the very low initial mass concentration of strontium in this simulant (<100 {micro}g/L) compared to that in previous testing (> 600 {micro}g/L).

  7. Biodegradable nanoparticles for protein delivery: analysis of preparation conditions on particle morphology and protein loading, activity and sustained release properties.

    PubMed

    Coleman, Jason; Lowman, Anthony

    2012-01-01

    PLGA particles have been extensively used as a sustained drug-delivery system, but there are multiple drawbacks when delivering proteins. The focus of this work is to address the most significant disadvantages to the W/O/W double emulsion procedure and demonstrate that simple changes to this procedure can have significant changes to particle size and dispersity and considerable improvements to protein loading, activity and sustained active protein release. A systematic approach was taken to analyze the effects of the following variables: solvent miscibility (dichloromethane (DCM), ethyl acetate, acetone), homogenization speed (10 000-25 000 rpm), PLGA concentration (10-30 mg/ml) and additives in both the organic (sucrose acetate isobutyrate (SAIB)) and aqueous (bovine serum albumin (BSA)) phases. Increasing solvent miscibility decreased particle size, dispersity and protein denaturation, while maintaining adequate protein loading. Increasing solvent miscibility also lowered the impact of homogenization on particle size and dispersity and protein activity. Changes to PLGA concentration demonstrated a minimum impact on particle size and dispersity, but showed an inverse relationship between protein encapsulation efficiency and particle protein weight percent. Most particles tested provided sustained release of active protein over 60 days. Increasing solvent miscibility resulted in increases in the percent of active protein released. When subjected to synthesis conditions with DCM as the solvent, BSA as a stabilizer resulted in the maximum stabilization of protein at a concentration of 100 mg/ml. At this concentration, BSA allowed for increases in the total amount of active protein delivered for all three solvents. The benefit of SAIB was primarily increased protein loading.

  8. Insight into fiber Bragg sensor response at 100-MHz interrogation rates under various dynamic loading conditions

    NASA Astrophysics Data System (ADS)

    Rodriguez, George; Jaime, Marcelo; Mielke, Chuck H.; Balakirev, Fedor F.; Azad, Abul; Sandberg, Richard L.; Marshall, Bruce; La Lone, Brandon M.; Henson, Bryan F.; Smilowitz, Laura; Marr-Lyon, Mark; Sandoval, Tom

    2015-05-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain, pressure, and shock position sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber was used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor were detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals were recorded using a single 35 GHz photodetector and a 25 GHz bandwidth digitizing oscilloscope. Application of this approach to high-speed strain sensing of magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts were used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application to FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Then, as final demonstration, we use a chirped FBG (CFBG) to resolve shock propagation dynamics in 1-D from an explosive detonation that produces fragmentation in an inert confinement vessel. These applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  9. Job load and hazard analysis: a method for the analysis of workplace conditions for occupational health care.

    PubMed Central

    Mattila, M K

    1985-01-01

    One requirement for successful occupational health care is reliable information on occupational hazards. The aim of this study was to develop a simple, standardised method for workplace investigations for use in occupational health care. The theoretical framework of the method comprises the stress-strain model, the hazard-danger model, and risk behaviour theory. The new method, termed job load and hazard analysis, includes four stages: identification of hazards, their evaluation, conclusions and proposals, and follow up. Different methods are available for hazard identification. The identification starts with a rough analysis of five factors, chemical hazards, physical hazards, physical load, mental stress, and accident risk. Hazards and stress factors are assessed with an ordinal scale. Specialised methods are used if all hazards cannot otherwise be identified. The analytical procedure comprises: detection of hazards through observations and interviews at the workplace and with a questionnaire; assessment of findings as teamwork; and evaluation of the results of these assessments to yield conclusions and proposals made by occupational health care personnel. A data processing system has been developed for data storage and future use. The method has functioned in practice, improving the contents of the occupational health care programme and generating preventive measures. The method offers many new possibilities for controlling occupational hazards and studying relations between working conditions and workers' health. PMID:4041383

  10. The Influence of Sorbent Properties and Reaction Conditions on Attrition of Limestone by Impact Loading in Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Scala, Fabrizio; Salatino, Piero

    The extent of attrition associated with impact loading was studied for five different limestones pre-processed in fluidized bed under different reaction conditions. The experimental procedure was based on the measurement of the amount and the particle size distribution of the debris generated upon impact of sorbent samples against a target at velocities between 10 and 45 m/s. The effect of calcination, sulfation and calcination/re-carbonation on impact damage was assessed. Fragmentation by impact loading of the limestones was significant and increased with the impact velocity. Lime samples displayed the largest propensity to undergo impact damage, followed by sulfated, re-carbonated and raw limestones. Fragmentation of the sulfated samples followed a partem typical of the failure of brittle materials. On the other hand, the behavior of lime samples better conformed to a disintegration failure mode, with extensive generation of very fine fragments. Raw limestone and re-carbonated lime samples followed either of the two patterns depending on the sorbent nature. The extent of particle fragmentation increased after multiple impacts, but the incremental amount of fragments generated upon one impact decreased with the number of successive impacts.

  11. Improved wear resistance of functional diamond like carbon coated Ti-6Al-4V alloys in an edge loading conditions.

    PubMed

    Choudhury, Dipankar; Lackner, Jürgen M; Major, Lukasz; Morita, Takehiro; Sawae, Yoshinori; Bin Mamat, Azuddin; Stavness, Ian; Roy, Chanchal K; Krupka, Ivan

    2016-06-01

    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading. PMID:27085502

  12. The boundary conditions of priming of visual search: from passive viewing through task-relevant working memory load.

    PubMed

    Kristjánsson, Arni; Saevarsson, Styrmir; Driver, Jon

    2013-06-01

    Priming of visual search has a dominating effect upon attentional shifts and is thought to play a decisive role in visual stability. Despite this importance, the nature of the memory underlying priming remains controversial. To understand more fully the necessary conditions for priming, we contrasted passive versus active viewing of visual search arrays. There was no priming from passive viewing of search arrays, while it was strong for active search of the same displays. Displays requiring no search resulted in no priming, again showing that search is needed for priming to occur. Finally, we introduced working memory load during visual search in an effort to disrupt priming. The memorized items had either the same colors as or different colors from the visual search items. Retaining items in working memory inhibited priming of the working memory task-relevant colors, while little interference was observed for unrelated colors. The picture that emerges of priming is that it requires active attentional processing of the search items in addition to the operation of visual working memory, where the task relevance of the working memory load plays a key role.

  13. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  14. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  15. Dynamic finite element analysis of the crack-inclusion interaction in aligned CNF composites under impact loading conditions

    NASA Astrophysics Data System (ADS)

    Ting, Huat Tung

    The interaction between a crack and an inclusion of microfiber in an aligned carbon nanofiber (CNF) toughened composite under impact loading conditions was studied by using dynamic finite element analysis (FEA). The nanocomposite material used in this study was T300/Epon 862 enhanced with aligned carbon nanofibers (CNFs). The dynamic stress intensity factors (DSIFs) were evaluated to describe the dynamic fracture behavior of the fracture model. In this study, a numerical homogenization model using FEA was first employed to determine the effective material properties of the equivalent matrix material of Epon 862 and aligned CNFs. The effects of T300 microfiber inclusion eccentricity and CNF alignment angle on the DSIFs were examined in this study. The displacement extrapolation method for monoclinic materials was utilized to calculate the DSIFs. The numerical results demonstrated a mechanism known as "crack-tip shielding" and demonstrated that the CNF alignment angle has an impact on the DSIFs.

  16. Structural-scale levels of development of inelastic martensitic deformation during isothermal loading of submicrocrystalline titanium nickelide in premartensitic condition

    SciTech Connect

    Bakach, G. P.; Dudarev, E. F. Skosyrskii, A. B.; Maletkina, T. Yu.

    2015-10-27

    The results are presented of an experimental investigation into the regularities and mechanisms of the development of thermoelastic martensitic transformation in submicrocrystalline alloy Ti{sub 49.4}Ni{sub 50.6} with different ways of thermo-power actions using the methods of optical microscopy in situ and X-ray diffraction. The peculiarities of localization of martensite transformation at the meso- and macroscale levels in this alloy with submicrocrystalline structure are considered. Experimental data on the relay mechanism of propagation of the martensitic transformation are presented. The interrelation between the localization of the martensitic transformation on the meso-and macroscale levels and deformation behavior under isothermal loading alloy Ti{sub 49.4}Ni5{sub 0.6} in submicrocrystalline condition are shown and discussed.

  17. Temporal and spatial long-term characterizations of aerosol optical depth and its radiative effects over Spain

    NASA Astrophysics Data System (ADS)

    Cachorro, Victoria E.; Toledano, Carlos; Joao Costa, Maria; Anton, Manuel; Mateos, D.; Alados-Arboledas, L.; Sorribas, M.; Baldasano, Jose M.

    A better understanding of the aerosol radiative properties is a crucial challenge for climate change studies. This study aims to provide a complete characterization of aerosol radiative effects in different spectral ranges within the shortwave (SW) solar spectrum. Six long-term datasets of aerosol properties of AERONET (AErosol RObotic NETwork) over the Iberian Peninsula are analyzed. The aerosol load over the Iberian Peninsula shows a decrease trend between 2004 and 2012 (-0.04 per unit of aerosol optical depth per decade). Continental aerosols are identified as the main type over the peninsula, although desert dust events are phenomena registered at the six sites with a clear South-North gradient, which modulates the aerosol climatology over the analyzed area. Aerosol data are used as input in the libRadtran model to simulate ultraviolet (UV), visible (VIS), near-infrared (NIR), and SW radiation. Then, the aerosol radiative effect (ARE) and aerosol forcing efficiency (AFE) can be evaluated. ARE values at the six stations differ because of the different aerosol types over each station. Considering the whole Iberian Peninsula, ARE is in the ranges: -1.1 < ARE _{UV} < -0.7 W m (-2) , -5.7 < ARE _{VIS} < -3.8 W m (-2) , -2.8 < ARE _{NIR} < -1.7 W m (-2) , and -9.5 < ARE _{SW} < -6.1 W m (-2) . The four variables show positive statistically significant trends between 2004 and 2012 (e.g., ARE _{SW} increased +3.6 W m (-2) per decade). I.e., a reduction of ARE on solar radiation at the surface is observed in this period. The intra-annual ARE cycle exhibits larger values during the spring and summer months when the likelihood of high aerosol loading over the Iberian Peninsula increases. Finally, AFE exhibits a clear dependence on single scattering albedo and a weaker one on Ångström exponent. AFE is larger (in absolute value) for small and absorbing particles. The contributions of the UV, VIS, and NIR ranges to the SW efficiency vary with the aerosol types. Conditions

  18. Aerosol single-scattering albedo retrieval over North Africa using critical reflectance

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.

    The sign and magnitude of the aerosol radiative forcing over bright surfaces is highly dependent on the absorbing properties of the aerosol. Thus, the determination of aerosol forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA). However, the brightness of desert surfaces complicates the retrieval of aerosol optical properties using passive space-based measurements. The aerosol critical reflectance is one parameter that can be used to relate top-of-atmosphere (TOA) reflectance changes over land to the aerosol absorption properties, without knowledge of the underlying surface properties or aerosol loading. Physically, the parameter represents the TOA reflectance at which increased aerosol scattering due to increased aerosol loading is balanced by increased absorption of the surface contribution to the TOA reflectance. It can be derived by comparing two satellite images with different aerosol loading, assuming that the surface reflectance and background aerosol are similar between the two days. In this work, we explore the utility of the critical reflectance method for routine monitoring of spectral aerosol absorption from space over North Africa, a region that is predominantly impacted by absorbing dust and biomass burning aerosol. We derive the critical reflectance from Moderate Resolution Spectroradiometer (MODIS) Level 1B reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, a site in the Algerian Sahara, and Banizoumbou, a Sahelian site in Niger. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties, as well as solar and viewing geometry, using the Santa Barbara DISORT Radiative Transfer (SBDART) model, and apply our findings to retrieve SSA from the MODIS critical reflectance values. We compare our results to AERONET-retrieved estimates, as well as to measurements of the TOA albedo and surface fluxes from the

  19. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women.

    PubMed

    Falcinelli, Cristina; Schileo, Enrico; Balistreri, Luca; Baruffaldi, Fabio; Bordini, Barbara; Viceconti, Marco; Albisinni, Ugo; Ceccarelli, Francesco; Milandri, Luigi; Toni, Aldo; Taddei, Fulvia

    2014-10-01

    This is a preliminary case-control study on osteopenic/osteoporotic elderly women, testing the association of proximal femur fracture with minimum femoral strength, as derived from finite element (FE) analysis in multiple loading conditions. Fracture cases (n=22) in acute conditions were enrolled among low-trauma fractures admitted in various hospitals in the Emilia Romagna Region, Italy. Women with no history of low-trauma fractures were enrolled as controls (n=33). Patients were imaged with DXA to obtain aBMD, and with a bilateral full femur CT scan. FE-strength was derived in stance and fall configurations: (i) as the minimum strength among those obtained for multiple loading conditions spanning a domain of plausible force directions, and (ii) as the strength associated to the most commonly used single loading conditions. The association of FE-strength and aBMD with fractures was tested with logistic regression models, deriving odds ratios (ORs) and area under the receiver operating characteristic curve (AUC). FE-strength from multiple loading conditions better classified fracture cases from controls (OR per SD change=9.6, 95% CI=3.0-31.3, AUC=0.87 in stance; OR=9.5, 95% CI=2.9-31.2, AUC=0.88 in fall) compared to aBMD (OR=3.6, 95% CI=1.6-8.2, AUC=0.79 for total femur aBMD), while FE-strength results from the most commonly used single loading conditions were similar to aBMD. Only FE-strength from multiple loading conditions remained significant in age- and aBMD-adjusted models (OR=10.5, 95% CI=1.8-61.3, AUC=0.95). In summary, we highlighted the importance of considering different loading conditions to identify bone weakness, and confirmed that femoral FE-strength estimates may add value to aBMD predictions in elderly osteopenic/osteoporotic women.

  20. Application of Satellite and Ground-based Data to Investigate the UV Radiative Effects of Australian Aerosols

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don

    2007-01-01

    An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340

  1. Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus

    PubMed Central

    Morgan, Sophie B.; Hemmink, Johanneke D.; Porter, Emily; Harley, Ross; Shelton, Holly; Aramouni, Mario; Everett, Helen E.; Brookes, Sharon M.; Bailey, Michael; Townsend, Alain M.; Charleston, Bryan

    2016-01-01

    Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate. PMID:27183611

  2. Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus.

    PubMed

    Morgan, Sophie B; Hemmink, Johanneke D; Porter, Emily; Harley, Ross; Shelton, Holly; Aramouni, Mario; Everett, Helen E; Brookes, Sharon M; Bailey, Michael; Townsend, Alain M; Charleston, Bryan; Tchilian, Elma

    2016-06-15

    Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate. PMID:27183611

  3. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&

  4. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2001-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.

  5. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.

  6. Effect of Preparation Taper, Height and Marginal Design Under Varying Occlusal Loading Conditions on Cement Lute Stress: A Three Dimensional Finite Element Analysis.

    PubMed

    Tripathi, Siddhi; Amarnath, Gowdagere Shamanna; Muddugangadhar, Byrasandra Channapa; Sharma, Ashish; Choudhary, Suchismita

    2014-12-01

    To assess the effect of preparation taper, height and margin design under different loading conditions on cement lute stress. A 3-D FE model of an upper second premolar and molar was developed from CT scan of human skull using software programmes (MIMICS, Hypermesh and ANSYS). 10° and 30° taper, 3 and 5 mm preparation height and shoulder and chamfer finish lines were used. Type 1 Glass ionomer cement with 24 μm lute width was taken and the model was loaded under 100 N horizontal point load, vertical point load distributed axial load. The maximum shear stress and Von Mises stress within the cement lute were recorded. The maximum shear stresses ranged from 1.70 to 3.93 MPa (horizontal point loading), 0.66 to 3.04 MPa (vertical point loading), 0.38 to 0.87 MPa (distributed loading). The maximum Von Mises stresses ranged from 3.39 to 10.62 MPa (horizontal point loading), 1.93 to 8.58 MPa (vertical point loading) and 1.49 to 3.57 MPa (distributed loading). The combination of 10° taper and 5 mm height had the lowest stress field while the combination of 30° taper and 5 mm height had the highest stress field. Distributed axial loading shows least stress, better stress homogenization and gives a favorable prognosis for the fixed prostheses. Smaller preparation taper of 10° is biomechanically more acceptable than a 30° taper. It is desirable to decrease taper as height increases. The chamfer margin design is associated with greater local cement stresses toward the margins that could place the cement at greater risk for microfracture and failure.

  7. Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.

    This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.

  8. Effects of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, G.; Dragoni, E.

    2014-07-01

    The availability of engineering strength data on shape memory alloys (SMAs) under cyclic thermal activation (thermomechanical fatigue) is central to the rational design of smart actuators based on these materials. Test results on SMAs under thermomechanical fatigue are scarce in the technical literature, and even the few data that are available are mainly limited to constant-stress loading. Since the SMA elements used within actuators are normally biased by elastic springs or by antagonist SMA elements, their stress states are far from being constant in operation. The mismatch between actual working conditions and laboratory settings leads to suboptimal designs and undermines the prediction of the actuator lifetime. This paper aims at bridging the gap between experiment and reality by completing an experimental campaign involving four fatigue test conditions, which cover most of the typical situations occurring in practice: constant stress, constant-strain, constant stress with limited maximum strain, and linear stress-strain variation with limited maximum strain. The results from the first three test settings, recovered from the previously published works, are critically reviewed and compared with the outcome of the newly performed tests under the fourth arrangement (linear stress-strain variation). General design recommendations emerging from the experimental data are put forward for engineering use.

  9. Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Guo, Jianping; Zhang, Jiahua; Huang, Jingfeng; Min, Min; Chen, Tianmeng; Liu, Huan; Deng, Minjun; Li, Xiaowen

    2015-07-01

    Aerosol-cloud (AC) interactions remain uncharacterized due to difficulties in obtaining accurate aerosol and cloud observations. In this study, we quantified the aerosol indirect effects (AIE) on warm clouds over Eastern China based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO, and CPR/CLOUDSAT between June 2006 and December 2010. The seasonality of aerosols from ground-based PM10 (aerosol particles with diameter of 10 μm or less) significantly differed from that estimated using MODIS aerosol optical depth (AOD). This result was supported by the lower level frequency profile of aerosol occurrence from CALIOP, indicative of the significant role of CALIOP in the AC interaction. To focus on warm clouds, cloud layers with base (top) altitudes above 7 (10) km were excluded. The combination of CALIOP and CPR was applied to determine the exact position of warm clouds relative to aerosols out of the following six scenarios in terms of AC mixing states: 1) aerosol only (AO); 2) cloud only (CO); 3) single aerosol layer-single cloud layer (SASC); 4) single aerosol layer-double cloud layers (SADC); 5) double aerosol layers - single cloud layer (DASC); and 6) others. The cases with vertical distance between aerosol and cloud layer less (more) than 100 m (700 m) were marked mixed (separated), and the rest as uncertain. Results showed that only 8.95% (7.53%) belonged to the mixed (separated and uncertain) state among all of the collocated AC overlapping cases, including SASC, SADC, and DASC. Under mixed conditions, the cloud droplet effective radius (CDR) decreased with increasing AOD at moderate aerosol loading (AOD<0.4), and then became saturated at an AOD of around 0.5, followed by an increase in CDR with increasing AOD, known as boomerang shape. Under separated conditions, no apparent changes in CDR with AOD were observed. We categorized the AC dataset into summer- and winter-season subsets to determine how the boomerang shape varied with season. The

  10. Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption

    NASA Astrophysics Data System (ADS)

    Graciela Ulke, Ana; Torres Brizuela, Marcela M.; Raga, Graciela B.; Baumgardner, Darrel

    2016-09-01

    The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex in Chile impacted air traffic around the Southern Hemisphere for several months after the initial ash emissions. The ash deposited in vast areas of the Patagonian Steppe was subjected to the strong wind conditions prevalent during the austral winter and spring experiencing resuspension over various regions of Argentina. In this study we analyze the meteorological conditions that led to the episode of volcanic ash resuspension which impacted the city of Buenos Aires and resulted in the closure of the two main airports in Buenos Aires area (Ezeiza and Aeroparque) on 16 October 2011. A relevant result is that resuspended material (volcanic ash plus dust) imprints a distinguishable feature within the atmospheric thermodynamic vertical profiles. The thermodynamic soundings show the signature of "pulses of drying" in layers associated with the presence of hygroscopic ash in the atmosphere that has already been reported in similar episodes after volcanic eruptions in other parts of the world. This particular footprint can be used to detect the probable existence of volcanic ash layers. This study also illustrates the utility of ceilometers to detect not only cloud base at airports but also volcanic ash plumes at the boundary layer and up to 7 km altitude. Aerosol properties measured in the city during the resuspension episode indicate the presence of enhanced concentrations of aerosol particles in the boundary layer along with spectral signatures in the measurements at the Buenos Aires AERONET site typical of ash plus dust advected towards the city. The mandatory aviation reports from the National Weather Service about airborne and deposited volcanic ash at the airport near the measurement site (Aeroparque) correlate in time with the enhanced concentrations. The presence of the resuspended material was detected by the CALIOP lidar overpassing the region. Since the dynamics of ash resuspension and

  11. Evaluation of vegetation fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2013-08-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterize the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently concern by wildfire with low dense shrubs. Using Lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterized by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycenter technique. The smoke plume displacement was determined using a digital video camera coupled with the Lidar. The simulation was performed using a meso-scale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire) taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycenter was systematically below the barycenter derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosols particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  12. Evaluation of wildland fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2014-03-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterise the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently subject to wildfire with low dense shrubs. Using lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterised by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycentre technique. The smoke plume displacement was determined using a digital video camera coupled with the lidar. The simulation was performed using a mesoscale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire), taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycentre was systematically below the barycentre derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosol particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  13. Lifetime and failure strain prediction for material subjected to non-stationary tensile loading conditions: applications to Zircaloy - 4. [Monkman-Grant relationship

    SciTech Connect

    Bocek, M.

    1982-01-01

    The life fraction rule (LFR) is used to calculate the lifetime of materials subjected to stress and temperature ramp loading. The solutions for the individual nonstationary temperature and stress loading conditions can be applied to predict also the lifetime of structures loaded by superimposed ramps solely on the basis of normal 'iso'-stress rupture data. The concept is applied to tensional stress and temperature cycling as well. As compared with the peculiarities of the problem, the agreement between experiments and calculations is encouraging. 16 refs.

  14. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China

    NASA Astrophysics Data System (ADS)

    Li, Shenshen; Yu, Chao; Chen, Liangfu; Tao, Jinhua; Letu, Husi; Ge, Wei; Si, Yidan; Liu, Yang

    2016-09-01

    China's large aerosol emissions have major impacts on global climate change as well as regional air pollution and its associated disease burdens. A detailed understanding of the spatiotemporal patterns of aerosol components is necessary for the calculation of aerosol radiative forcing and the development of effective emission control policy. Model-simulated and satellite-retrieved aerosol components can support climate change research, PM2.5 source appointment and epidemiological studies. This study evaluated the total and componential aerosol optical depth (AOD) from the GEOS-Chem model (GC) and the Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART), and the Multiangle Imaging Spectroradiometer (MISR) from 2006 to 2009 in China. Linear regression analysis between the GC and AErosol RObotic NETwork (AERONET) in China yielded similar correlation coefficients (0.6 daily, 0.71 monthly) but lower slopes (0.41 daily, 0.58 monthly) compared with those in the U.S. This difference was attributed to GC's underestimation of water-soluble AOD (WAOD) west of the Heihe-Tengchong Line, the dust AOD (DAOD) in the fall and winter, and the soot AOD (SAOD) throughout the year and throughout the country. GOCART exhibits the strongest dust estimation capability among all datasets. However, the GOCART soot distribution in the Northeast and Southeast has significant errors, and its WAOD in the polluted North China Plain (NCP) and the South is underestimated. MISR significantly overestimates the water-soluble aerosol levels in the West, and does not capture the high dust loadings in all seasons and regions, and the SAOD in the NCP. These discrepancies can mainly be attributed to the uncertainties in the emission inventories of both models, the poor performance of GC under China's high aerosol loading conditions, the omission of certain aerosol tracers in GOCART, and the tendency of MISR to misidentify dust and non-dust mixtures.

  15. Influence of aerosol vertical distribution on radiative budget and climate

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  16. Aerosol-induced mechanisms for cumulus congestus growth

    NASA Astrophysics Data System (ADS)

    Sheffield, Amanda M.; Saleeby, Stephen M.; Heever, Susan C.

    2015-09-01

    Tropical convection has been observed to contain three cloud modes, the middle of which is cumulus congestus clouds. Congestus clouds act to moisten the tropical atmosphere, may be mixed-phase, and on occasion surpass the freezing level inversion from where they may develop into deeper convection. This study investigates the impacts of enhanced aerosol concentrations on the growth of congestus clouds produced in idealized cloud-resolving model simulations run under a state of radiative convective equilibrium (RCE). High-resolution, long-duration simulations were completed using the Regional Atmospheric Modeling System (RAMS). Aerosol concentrations between 2 and 4 km above ground level were varied from clean to polluted conditions in order to represent the advection of Saharan dust over the Atlantic Ocean. The congestus populations within each aerosol simulation are statistically analyzed using 10 days of model output after the simulation reaches RCE. Results indicate that congestus in more polluted conditions produce greater amounts of cloud water and ice mass, enhanced updraft strengths, and an increase in the number of congestus cloud tops that extend above the freezing level. Enhanced vapor depositional growth on the populations of more numerous, smaller cloud droplets in the polluted conditions, and the subsequent increase in latent heat release in the warm phase regions of the cloud, is found to be important factors in convective invigoration of these cloud systems. Aerosol feedbacks associated with cold pools and condensate loading also influence the updraft strength and act in opposition to the warm phase invigoration processes.

  17. The influence of loading conditions on fracture initiation, propagation, and interaction in rocks with veins: Results from a comparative Discrete Element Method study

    NASA Astrophysics Data System (ADS)

    Virgo, Simon; Abe, Steffen; Urai, Janos L.

    2016-03-01

    We present the results of a comparative study of loading conditions on the interactions between extension fractures and veins. We model the fracture behavior of brittle discrete element materials each containing a tabular vein body of variable orientation and strength in two different loading conditions. The first is uniaxial tension, applied with servo-controlled sidewalls. The second is a boudinage boundary condition in which a tensile triaxial stress state is induced in the brittle model volume by quasi-viscous extensional deformation in the adjacent layers. Most of the fracture- vein interactions observed in uniaxial tension also exists in boudinage boundary conditions. However, the importance of each interaction mechanism for a given configuration of relative strength and misorientation of the vein may differ according to the loading mechanism. Nucleation and internal deflection is under both boundary conditions the dominating fracture-vein interaction style in weak veins. In uniaxial tension models, strong veins tend to alter the fracture path by external deflection, while under boudinage loading these veins are more likely overcome by the fracture step over mechanism. Dynamic bifurcation of fractures was observed in uniaxial tension models but never for boudinage boundary conditions. This is because the acceleration of fracture tips in these conditions is suppressed by interaction with distributed fractures as well as viscous damping by the neighboring layers.

  18. Investigating Chemical and Thermodynamic Conditions that Determine the Aerosol Inorganic Nitrate Size Distribution: Insights from Speciated PM2.5 and PM10 Hourly Datasets from an Urban Site

    NASA Astrophysics Data System (ADS)

    Griffith, S. M.; Huang, X. H. H.; Louie, P. K. K.; Yu, J. Z.

    2015-12-01

    Nitric acid (HNO3), the gas-phase precursor to aerosol nitrate is known to rapidly transfer to aerosols where NH4+ is in excess to SO42- present in the aerosol, but the HNO3 is also subject to the slower uptake onto sea salt and dust laden particles. Understanding the competition between these routes is necessary to predict the NO3- distribution and impact on aerosols. In this study, we investigated the conditions leading to predominant fine or coarse mode aerosol nitrate using an hourly MARGA 2S dataset from an urban site in Hong Kong. The hourly dataset of inorganic ions (SO42-, NH4+, NO3-, Na+, Cl-, Ca2+, K+, Mg2+) in 2 size ranges (fine, < 2.5 μm; fine+coarse, < 10 μm) and water-soluble gases (HNO3, HCl, and NH3) spanning more than 1 year provides a rich trove for analyzing aerosol nitrate chemistry and the underlying mechanisms that ultimately determine the fraction of NO3- in the fine mode. The urban site in this study is initially characterized for seasonal environmental conditions and the aerosol chemical composition. The relationship between excess NH4+ and NO3- in the fine mode is detailed and contrasted with the influence on fine mode NO3- from uptake on sea salt and dust, which is typically relegated as a 'coarse-mode' mechanism. The distribution of NO3- in the fine and coarse modes is compared with the distribution of the other inorganic ions, where sea-salt ion (Na+, Mg2+) distributions yield the highest explained variability for the nitrate distributions. As a complement to that finding, the cation equivalency (excluding NH4+) in the coarse mode proves to be a crucial factor in leveraging the distribution away from fine mode nitrate. The uptake potential of the water-soluble gases is used to drive a mass transfer model and compare with thermodynamic equilibrium results. In the modeling, the partitioning cycles of fine and coarse mode aerosol nitrate highlight the dynamic relationship between NO3- and Cl- in both the fine and coarse modes, where the

  19. Aerosol Properties Changes of Northeast Asia due to a Severe Dust Storm in April 2014

    NASA Astrophysics Data System (ADS)

    Fang, Li; Wang, Shupeng; Yu, Tao; Gu, Xingfa; Zhang, Xingying; Wang, Weihe; Ren, Suling

    2016-04-01

    This study focuses on analyzing the aerosol properties changes due to the dust storm named as "China's Great Wall of Dust" oriented from Taklimakan desert in April, 2014. Dust identification IDDI (Infrared Difference Dust Index) images from FY-2E and true color composite images from FY-3C MERSI (Medium Resolution Spectral Imager) show the breakout and transport of the dust storm.From 4-day forward air mass trajectories, the dusty air masses were mostly transported within the lower boundary layer(<3km) over the Northwest China on April 23rd and April 24th, however they were progressively increasing in altitude to above 5km above the surface when they reached the central part of north China region (32°N-42°N; 105°E-123°E). 3-hourly data records at surface stations suggest that anticyclonic circulation occupying southern Xinjiang basin and cyclonic circulation maintaining in Mongolia formed the typical Synoptic condition which leaded to the strong dust storm. Aerosol Index (AI) results of TOU (Total Ozone Unit) aboard FY-3B are first developed and used in studying the affected areas due to the dust storm. The retrieved aerosol indexes show sensitivity to the dust particles. The dust affected areas agree with the synoptic meteorological condition analysis, which prove the synoptic meteorological condition is the main reason for the break out and transport of the dust storm. Anomalies of the average MODIS (Moderate Resolution Imaging Spectroradiometer) AOD (Aerosol Optical Depth) distributions over Northeast Asia during the dust storm to the average of that in April between 2010-2014 show high aerosol loading due to the dust storm. Compared with the 5-year average AOD in April, aerosol loading during this dust storm was much higher, with AOD values at 550nm up to 2.9 observed over the northwest China.The dust storm also brought different change in the aerosol microphysical properties between Beijing and Dalanzadgad. Aerosol Robotic Network (AERONET) retrievals

  20. Impacts of mountains on black carbon aerosol under different synoptic meteorology conditions in the Guanzhong region, China