Science.gov

Sample records for aerosol mass concentrations

  1. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  2. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  3. Development of a continuous aerosol mass concentration measurement device.

    PubMed

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.

  4. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station.

  5. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station. PMID:21141836

  6. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  7. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  8. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  9. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  10. Mass concentration and mineralogical characteristics of aerosol particles collected at Dunhuang during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Shen, Z. X.; Cao, J. J.; Li, X. X.; Okuda, T.; Wang, Y. Q.; Zhang, X. Y.

    2006-03-01

    Measurements were performed in spring 2001 and 2002 to determine the characteristics of soil dust in the Chinese desert region of Dunhuang, one of the ground sites of the Asia-Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The mean mass concentrations of total suspended particle matter during the spring of 2001 and 2002 were 317 mu g m(-3) and 307 mu g m(-3) respectively. Eleven dust storm events were observed with a mean aerosol concentration of 1095 mu g m(-3), while the non-dusty days with calm or weak wind speed had a background aerosol loading of 196 mu g m(-3) on average in the springtime. The main minerals detected in the aerosol samples by X-ray diffraction were illite, kaolinite, chlorite, quartz, feldspar, calcite and dolomite. Gypsum, halite and amphibole were also detected in a few samples. The mineralogical data also show that Asian dust is characterized by a kaolinite to chlorite (K/C) ratio lower than 1 whereas Saharan dust exhibits a K/C ratio larger than 2. Air mass back- trajectory analysis show that three families of pathways are associated with the aerosol particle transport to Dunhuang, but these have similar K/C ratios, which further demonstrates that the mineralogical characteristics of Asian dust are different from African dust.

  11. In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing

    NASA Astrophysics Data System (ADS)

    Chaudhry, Zahra; Martins, J. Vanderlei; Li, Zhanqing; Tsay, Si-Chee; Chen, Hongbin; Wang, Pucai; Wen, Tianxue; Li, Can; Dickerson, Russell R.

    2007-12-01

    As a part of the EAST-AIRE study, Nuclepore filters were collected in two size ranges (coarse, 2.5 μm < d < 10 μm, and fine, d < 2.5 μm) from January to May 2005 in Xianghe, about 70 km southeast of Beijing, and analyzed for aerosol mass concentration, spectral absorption efficiency and absorption coefficient. Twelve-hour aerosol mass concentration measurements showed an average concentration of 120 μg/m3 in the coarse mode and an average concentration of 25 μg/m3 in the fine mode. To determine how representative ground-based measurements are of the total column, the mass concentration data was compared with AERONET AOT at 500 nm and AERONET size distribution data. The vertical distribution of the aerosols were studied with a micropulse lidar and in the cases where the vertical column was found to be fairly homogenous, the comparisons of the filter results with AERONET agreed favorably, while in the cases of inhomogeneity, the comparisons have larger disagreement. For fine mode aerosols, the average spectral absorption efficiency equates well to a λ-1 model, while the coarse mode shows a much flatter spectral dependence, consistent with large particle models. The coarse mode absorption efficiency was compatible with that of the fine mode in the NIR region, indicating the much stronger absorption of the coarse mode due to its composition and sizable mass. Single scattering albedo results are presented from a combination between absorption coefficients derived from the filter measurements, from a PSAP and from a three-wavelength Nephelometer.

  12. A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations

    PubMed Central

    Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An

    2010-01-01

    We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317

  13. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  14. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m3) Estimated Mass Concentration Measurement (µg/m3) Ideal Sampler Fractional...

  15. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m3) Estimated Mass Concentration Measurement (µg/m3) Ideal Sampler Fractional...

  16. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m 3) Estimated Mass Concentration Measurement (µg/m 3) Ideal Sampler Fractional...

  17. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Weidinger, Tamás; Maenhaut, Willy

    Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m -3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.

  18. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  19. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  20. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  1. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

  2. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  3. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

  4. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  5. Changes in ground-level PM mass concentration and column aerosol optical depth over East Asia during 2004-2014

    NASA Astrophysics Data System (ADS)

    Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.

    2015-12-01

    Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr

  6. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  7. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  8. A method for segregating the optical absorption properties and the mass concentration of winter time urban aerosol

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Utry, N.; Pintér, M.; Major, B.; Bozóki, Z.; Szabó, G.

    2015-12-01

    A novel in-situ, real time method for the determination of inherent absorption properties of light absorbing carbonaceous particulate matter and its possible application for source apportionment are introduced here. The method is deduced from a two-week campaign under wintry urban conditions during which strong correlation was found between aerosol number size distribution and wavelength dependent optical absorption coefficient (AOC(λ)), measured by a Single Mobility Particle Sizer (SMPS) and a multi-wavelength photoacoustic absorption spectrometer, respectively, while wood burning and traffic (i.e. fossil fuel burning) activity were identified to be the dominant sources of carbonaceous particulate. Indeed, during the whole campaign, regardless of the actual emission strength of the aerosol sources, the measured number size distributions were always dominated by two unimodal modes with Count Mean Diameter (CMD) of 20 and 100 nm, which could be correlated to traffic and wood burning activities, respectively. AAEff, AAEwb (i.e. the Aerosol Angström Exponent of traffic and wood burning aerosol, respectively), σff(266 nm), σff(1064 nm), σwb(266 nm) and σff(1064 nm) (i.e. the segregated mass specific optical absorption coefficients at two of the measurement wavelengths) were found to be 1.17 ± 0.18, 2.6 ± 0.14, 7.3 ± 0.3 m2g-1, 1.7 ± 0.1 m2g-1 3.4 ± 0.3 m2g-1 and 0.31 ± 0.08 m2g-1, respectively. Furthermore the introduced methodology can also disentangle and quantify the temporal variation of both the segregated optical absorptions and the segregated mass concentrations of traffic and wood burning aerosol. Accordingly, the contribution of wood burning to optical absorption of PM was found to be negligible at 1064 nm but increased gradually towards the shorter wavelengths and became commensurable with the optical absorption of traffic at 266 nm during the whole measurement period. Furthermore, the contribution of wood burning mass to CM (mass of carbonaceous

  9. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    NASA Astrophysics Data System (ADS)

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp < 0.49 μm, 0.33 (0.26-0.34) μg m-3; 0.49-0.95 μm, 0.20 (0.19-0.24) μg m-3; 0.95-1.5 μm, 0.16 (0.13-0.21) μg m-3; 1.5-3.0 μm 0.075 (0.05-0.11) μg m-3; 3.0-7.2 μm 0.12 (0.02-0.19) μg m-3; 7.2-10 μm 0.06 (0.01-0.03) μg m-3. The average mass concentration of the total PM10 at Faraglione Camp for the entire sampling period was 0.92 (0.67-1.1) μg m-3. Although a great variability, the aerosol mass concentration showed a tri-modal distribution, with an accumulation mode (in the range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while

  10. Size segregated mass concentration and size distribution of near surface aerosols over a tropical Indian semi-arid station, Anantapur: Impact of long range transport.

    PubMed

    Raghavendra Kumar, K; Narasimhulu, K; Balakrishnaiah, G; Suresh Kumar Reddy, B; Rama Gopal, K; Reddy, R R; Moorthy, K Krishna; Suresh Babu, S

    2009-10-15

    Regular measurements of size segregated as well as total mass concentration and size distribution of near surface composite aerosols, made using a ten-channel Quartz Crystal Microbalance (QCM) cascade impactor during the period of September 2007-May 2008 are used to study the aerosol characteristics in association with the synoptic meteorology. The total mass concentration varied from 59.70+/-1.48 to 41.40+/-1.72 microg m(-3), out of which accumulation mode dominated by approximately 50%. On a synoptic scale, aerosol mass concentration in the accumulation (submicron) mode gradually increased from an average low value of approximately 26.92+/-1.53 microg m(-3) during the post monsoon season (September-November) to approximately 34.95+/-1.32 microg m(-3) during winter (December-February) and reaching a peak value of approximately 43.56+/-1.42 microg m(-3) during the summer season (March-May). On the contrary, mass concentration of aerosols in the coarse (supermicron) mode increased from approximately 9.23+/-1.25 microg m(-3)during post monsoon season to reach a comparatively high value of approximately 25.89+/-1.95 microg m(-3) during dry winter months and a low value of approximately 8.07+/-0.76 microg m(-3) during the summer season. Effective radius, a parameter important in determining optical (scattering) properties of aerosol size distribution, varied between 0.104+/-0.08 microm and 0.167+/-0.06 microm with a mean value of 0.143+/-0.01 microm. The fine mode is highly reduced during the post monsoon period and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. It can be seen that among the two parameters measured, correlation of total mass concentration with air temperature is positive (R(2)=0.82) compared with relative humidity (RH) (R(2)=0.75). PMID:19640569

  11. In situ ship cruise measurements of mass concentration and size distribution of aerosols over Bay of Bengal and their radiative impacts

    NASA Astrophysics Data System (ADS)

    Ganguly, Dilip; Jayaraman, A.; Gadhavi, H.

    2005-03-01

    Simultaneous measurements of surface level aerosol mass concentrations, their size distribution, and aerosol optical depth (AOD) were made during a ship cruise study conducted over the Bay of Bengal (BoB) between 19 and 28 February 2003, when the prevailing surface level wind flow is predominantly from the continent toward the ocean, using a ten-stage QCM cascade impactor and Microtops Sun photometer. On all cruise days, air parcels at different altitude levels were coming either from west or from northwest directions, crossing a significant portion of the Indian subcontinent before finally reaching over BoB. Average value of surface level aerosol mass concentration is found to be around 50, 37, and 13 μg/m3 for coarse mode (>1 μm), accumulation mode (between 1 μm and 0.1 μm), and nucleation mode (<0.1 μm) particles, respectively. Size distribution of aerosols measured during the cruise showed the presence of four distinct modes, all of which could be fitted using lognormal distribution. Mode radii for the distributions lie in the range of 0.025-0.036 μm for mode 1, between 0.15 and 0.165 for mode 2, between 0.39 and 0.55 for mode 3, and between 2.2 and 3.5 for mode 4. Over the study region, daily mean AOD values at 380 nm were in the range of 0.34 to 0.75 while those at 1020 nm varied from 0.09 to 0.25. The mean value of Angstrom wavelength exponent α is found to be 1.19 ± 0.12. Regression analysis for the scatterplots between AOD values and surface mass concentrations showed good correlation between them over the entire cruise region. Aerosol optical depths, as well as extinction coefficients calculated from surface level aerosol number concentrations, show higher values over northern and coastal areas of BoB. An estimate of aerosol scale height has been made from the ratio of columnar AOD values and surface extinction coefficients. Columnar aerosol size distributions were derived using King's inversion technique, and the results are found to be less

  12. Long-Term Observations on Aerosol Elemental Carbon and Mass Concentrations in Winter-Time in New Delhi: Implications for Local Source Changes

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Singh, K.; Singh, N.; Gupta, P. K.

    2009-12-01

    Fossil-fuel and bio-fuel burning are the two major sources identified for high carbonaceous aerosol loadings in several mega cities in India. In the last decade, according to a report from the Central Pollution Control Board (CPCB, 1999), the vehicular emission (mostly diesel-powered engines) was contributed to ~67% of the total air pollution load in New Delhi. Therefore, a policy decision was taken by the government, and most of the diesel-powered engines were converted to compressed natural gas (CNG) -powered engines by 2003. To better understand the effect of these changes on air quality, we collected high volume aerosol samples (total suspended particles, TSP) mostly for a day basis at our institute building in New Delhi almost everyday during winter season (November to January) from 2002 to 2008. We found very high mean aerosol loading, i.e., 488±47 μg m-3 in 2002 winter, which dropped significantly to 280±73 μg m-3 in 2003 winter. Thereafter, a steadily increased trend of aerosol mass loadings was observed, i.e., 339±112, 339±120, 412±107 and 444±55 μg m-3 in 2004, 2005, 2006 and 2007 winters, respectively. Similar trend was also observed for elemental carbon (EC) concentration in TSP, which was peaked in 2002 (47±11 μg m-3) and minimized in 2003 (32±6 μg m-3), and then gradually increased to 41±8 μg m-3 in 2007 winter. These decline trends of aerosol mass and EC concentrations in 2003 can be explained well, because of the conversion of diesel engine to CNG engines of public transport facilities. However, again increase in aerosol mass and EC concentrations possibly because of a high increase in road traffic in recent years. According to the economic survey of New Delhi 2008-09, the number of vehicles (which includes all types of engines, i.e., petrol, diesel and CNG) has grown from ~3.3 millions in 1997-98 to ~5.6 millions in 2007-08. The influence of engine types and vehicle population on aerosol loading can also be explained well by SO2 and

  13. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution F Table F-4 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated...

  14. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution F Table F-6 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated...

  15. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized âTypicalâ Coarse Aerosol Size Distribution F Table F-5 to Subpart F of Part... of Class II Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-5 Table F-5 to Subpart F of...

  16. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction.

  17. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  18. Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment

    NASA Astrophysics Data System (ADS)

    Bennouna, Y. S.; Cachorro, V. E.; Mateos, D.; Burgos, M. A.; Toledano, C.; Torres, B.; de Frutos, A. M.

    2016-09-01

    The relationship between columnar and surface aerosol properties is not a straightforward problem. The Aerosol Optical Depth (AOD), Ångström exponent (AE), and ground-level Particulate Matter (PMX, x = 10 or 2.5 μm) data have been studied from a climatological point of view. Despite the different meanings of AOD and PMx both are key and complementary quantities that quantify aerosol load in the atmosphere and many studies intend to find specific relationships between them. Related parameters such as AE and PM ratio (PR = PM2.5/PM10), giving information about the predominant particle size, are included in this study on the relationships between columnar and surface aerosol parameters. This study is based on long measurement records (2003-2014) obtained at two nearby background sites from the AERONET and EMEP networks in the north-central area of Spain. The climatological annual cycle of PMx shows two maxima along the year (one in late-winter/early-spring and another in summer), but this cycle is not followed by the AOD which shows only a summer maximum and a nearly bell shape. However, the annual means of both data sets show strong correlation (R = 0.89) and similar decreasing trends of 40% (PM10) and 38% (AOD) for the 12-year record. PM10 and AOD daily data are moderately correlated (R = 0.58), whereas correlation increases for monthly (R = 0.74) and yearly (R = 0.89) means. Scatter plots of AE vs. AOD and PR vs. PM10 have been used to characterize aerosols over the region. The PR vs. AE scatterplot of daily data shows no correlation due to the prevalence of intermediate-sized particles. As day-to-day correlation is low (especially for high turbidity events), a binned analysis was also carried out to establish consistent relationships between columnar and surface quantities, which is considered to be an appropriate approach for environmental and climate studies. In this way the link between surface concentrations and columnar remote sensing data is shown to

  19. Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009.

    PubMed

    Kim, Hak-Sung; Chung, Yong-Seung; Lee, Sun-Gu

    2013-01-01

    Satellite-retrieved data on aerosol optical depth (AOD) and Ångström exponent (AE) using a moderate resolution imaging spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March (0.44 ± 0.25) and low in September (0.24 ± 0.21) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. However, whereas PM10 with diameters ≤10 μm was the highest in February at Anmyon, Cheongwon, and Ulleung, located leeward about halfway through the Korean Peninsula, AOD rose to its highest in May. The growth of hygroscopic aerosols attendant on increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically appears at high levels (1.30 ± 0.37) in August due to anthropogenic aerosols originating from the industrial areas in eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of PM10 at Anmyon, Cheongwon, and Ulleung were measured at 0.4~0.6. Four cases (6 days) of mineral dustfall from sandstorms and six cases (12 days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. PM10 mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing PM10 mass concentrations, showed higher AOD values in the Yellow Sea region.

  20. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-08-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  1. Extending the Capabilities of Single Particle Mass Spectrometry: I. Measurements of Aerosol Number Concentration, Size Distribution, and Asphericity

    SciTech Connect

    Vaden, Timothy D.; Imre, D.; Beranek, Josef; Zelenyuk, Alla

    2011-01-04

    Single particle mass spectrometers have traditionally been deployed to measure the size and composition of individual particles at relatively slow sampling rates that are determined by the rate at which the ionization lasers can fire and/or mass spectra can be recorded. To take advantage of the fact that under most conditions SPLAT can detect and size particles at much higher rates we developed a dual data acquisition mode, in which particle number concentrations, size distributions, and asphericity parameters are measured at a particle concentration determined rate, all the while the instrument generates and records mass-spectra at an operator set rate. We show that with this approach particle number concentration and asphericity parameters are measured with 1 sec resolution and particle vacuum aerodynamic size distributions are measured with 10 sec to 60 sec resolution. SPLAT measured particle number concentrations are in perfect agreement with the PCASP. Particle asphericity parameters are based on measured particle beam divergence. We illustrate the effect that high particle concentrations can have on the measured size distributions and develop a method to remove these effects and correct the size distributions.

  2. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2013-02-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a different oxidant

  3. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)

    NASA Astrophysics Data System (ADS)

    Birmili, Wolfram; Weinhold, Kay; Rasch, Fabian; Sonntag, André; Sun, Jia; Merkel, Maik; Wiedensohler, Alfred; Bastian, Susanne; Schladitz, Alexander; Löschau, Gunter; Cyrys, Josef; Pitz, Mike; Gu, Jianwei; Kusch, Thomas; Flentje, Harald; Quass, Ulrich; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ries, Ludwig; Gerwig, Holger; Wirtz, Klaus; Fiebig, Markus

    2016-08-01

    The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).

  4. Non-Refractory Submicron Aerosol Mass Loadings during NEAQS

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Matthew, B. M.; Canagaratna, M. R.; Worsnop, D. R.; Quinn, P. K.; Degouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; McKeen, S. A.

    2003-12-01

    During the New England Air Quality Study (NEAQS) in July-August 2002, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN and collected 2-minute averaged data. The AMS, which measures non-refractory components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm, produced particle mass spectra as well as aerosol organic, sulfate, ammonium, and nitrate mass distributions. A wide variety of air masses were sampled, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of ammonium and nitrate and the mass loadings typically peaked around 400-600 nm in vacuum aerodynamic diameter. Although the AMS sulfate and ammonium concentrations were highly correlated with the sulfate and ammonium concentrations from the Particle into Liquid (PILS) instrument also deployed on the ship, the AMS and PILS nitrate concentrations were not correlated and at times anti-correlated. In contrast, the AMS nitrate and organic concentrations as well as the AMS nitrate and gas phase alkyl nitrate concentrations were highly correlated. These results suggest that organic nitrate was present in the submicron aerosol phase. The AMS organic concentrations were generally higher than the AMS sulfate concentrations, consistent with other shipboard measurements. Whenever the sulfate concentration increased, the organic concentration also increased, indicating that sulfate and organic aerosol growth are influenced by the same processes or that sulfate may play a role in organic aerosol growth. The exception to this pattern occurred during a sea fog event where the sulfate concentration increased and the organic concentration decreased, probably due to rapid aqueous phase sulfur oxidation and relatively less oxidation of organic compounds. Furthermore, the organic concentration often increased without concurrent increases in

  5. Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern Pyrenees, 1570 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Ripoll, A.; Pey, J.; Minguillón, M. C.; Pérez, N.; Pandolfi, M.; Querol, X.; Alastuey, A.

    2014-04-01

    Time variation of mass particulate matter (PM1 and PM1&minus10), black carbon (BC) and number of particles (N3: number of particles with an aerodynamic diameter higher than 3 nm, and N10: higher than 10 nm) concentrations at the high-altitude site of Montsec (MSC) in the southern Pyrenees was interpreted for the period 2010-2012. At MSC, PM10 (12 μg m-3) and N7 (2140 # cm-3) three-year arithmetic average concentrations were higher than those measured at other high-altitude sites in central Europe during the same period (PM10: 3-9 μg m-3 and N: 634-2070 # cm-3). By contrast, BC concentrations at MSC (0.2 μg m-3) were equal to or even lower than those measured at these European sites (0.2-0.4 μg m-3). These differences were attributed to the higher relevance of Saharan dust transport and to the higher importance of the biogenic precursor emissions and new particle formation (NPF) processes, and to the lower influence of anthropogenic emissions at MSC. The different time variation of PM and BC concentrations compared with that of N suggests that these aerosol parameters were governed by diverse factors at MSC. Both PM and BC concentrations showed marked differences for different meteorological scenarios, with enhanced concentrations under North African air outbreaks (PM1&minus10: 13 μg m-3, PM1: 8 μg m-3 and BC: 0.3 μg m-3) and low concentrations when Atlantic advections occurred (PM1-10: 5 μg m-3, PM1: 4 μg m-3 and BC: 0.1 μg m-3). PM and BC concentrations increased in summer, with a secondary maximum in early spring, and were at their lowest in winter, due to the contrasting origin of the air masses in the warmer seasons (spring and summer) and in the colder seasons (autumn and winter). The maximum in the warmer seasons was attributed to long-range transport processes that mask the breezes and regional transport breaking the daily cycles of these pollutants. By contrast, PM and BC concentrations showed clear diurnal cycles, with maxima at midday in the

  6. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  7. Spatio-temporal variations of optical properties of aerosols in East Asia measured by MODIS and relation to the ground-based mass concentrations observed in central Korea during 2001˜2010

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Sung; Chung, Yong-Seung; Kim, Joon-Tae

    2014-02-01

    Long-term variations and trends of atmospheric aerosols in the East Asian region were analyzed by using aerosol optical depth (AOD or τ), and ångström exponent (AE or α) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2010. The increased emission of anthropogenic fine aerosols in east China resulted in the high AOD in this region during summer. The steady increasing emission of anthropogenic fine aerosols caused an increasing trend of AOD in east China, and the large-scale transport of sandstorms and smoke plume caused by forest fires affected intense inter-annual variations of AOD in the East Asian region. While in the central part of South Korea, located in the lee side of the East Asian continent, AE tended to rise to a level higher than in east China, the ground-based mass concentrations continued to decline. A noticeable decrease of PM10 mass concentration in spring and winter in central Korea is most likely attributable to decreases in sandstorms in the source region of East Asia. However, the ratio of PM2.5 mass concentration to PM10 increases overall with a high level in summer. Aerosol types were classified into dust, smoke plume, and sulphate by using satellite data over Cheongwon in central Korea. The columnar AOD, with different aerosol types, was compared with the ground-based mass concentrations at Cheongwon, and the relatively high level of the correlations presented between PM2.5 and AOD produced in sulphate. Growth and increases of fine hygroscopic aerosols generated as gas-to-particle conversion particularly in summer contribute to increases of columnar AOD in the East Asian region.

  8. Intercomparison between a single particle soot photometer and evolved gas analysis in an industrial area in Japan: Implications for the consistency of soot aerosol mass concentration measurements

    NASA Astrophysics Data System (ADS)

    Miyakawa, T.; Kanaya, Y.; Komazaki, Y.; Taketani, F.; Pan, X.; Irwin, M.; Symonds, J.

    2016-02-01

    Mass concentrations of soot (typically comprising black and elemental carbon; BC and EC, respectively) aerosols, were measured at Yokosuka city, an industrial region in Japan in the early summer of 2014. The results of laser-induced incandescence (LII) and evolved gas analysis (EGA) techniques were compared using a single particle soot photometer (SP2) and semi-continuous elemental/organic carbon analyzer (EC/OC analyzer), respectively. We revisited the procedure of SP2 calibration with a focus on investigating the relationship between LII intensity (SLII) and refractory BC (rBC) mass per particle (mPP) for some BC-proxies in the laboratory, as well as for ambient rBC particles in order to discuss the uncertainty of the SP2. It was found that the mPP-SLII for the fullerene soot and carbon black particles agreed well within 3% and 10%, respectively, with that for ambient rBC particles. This is the first time to suggest the use of carbon black as a reference material. We also found that the mPP-SLII for the aqueous deflocculated Acheson graphite particles with the correction factor given by Baumgardner et al. (2012) was still biased by around +20% to that for ambient rBC particles. EC quantified by the semi-continuous EC/OC analyzer using a thermal-protocol similar to that of Interagency Monitoring of Protected Visual Environments (IMPROVE-like), systematically showed higher concentrations than rBC measured by the SP2. The uncertainties related to SP2 cannot fully account for this difference. This result was likely caused by the contribution of charred organic materials to EC, which can be affected significantly by thermal-protocols for the EGA. The consistency and differences between rBC and EC are discussed with regard to comparing their respective mass concentrations.

  9. Contribution of methane to aerosol carbon mass

    NASA Astrophysics Data System (ADS)

    Bianchi, F.; Barmet, P.; Stirnweis, L.; El Haddad, I.; Platt, S. M.; Saurer, M.; Lötscher, C.; Siegwolf, R.; Bigi, A.; Hoyle, C. R.; DeCarlo, P. F.; Slowik, J. G.; Prévôt, A. S. H.; Baltensperger, U.; Dommen, J.

    2016-09-01

    Small volatile organic compounds (VOC) such as methane (CH4) have long been considered non-relevant to aerosol formation due to the high volatility of their oxidation products. However, even low aerosol yields from CH4, the most abundant VOC in the atmosphere, would contribute significantly to the total particulate carbon budget. In this study, organic aerosol (OA) mass yields from CH4 oxidation were evaluated at the Paul Scherrer Institute (PSI) smog chamber in the presence of inorganic and organic seed aerosols. Using labeled 13C methane, we could detect its oxidation products in the aerosol phase, with yields up to 0.09

  10. Spatial and Temporal Variability of Outdoor Coarse Particulate Matter Mass Concentrations Measured with a New Coarse Particulate Sampler during the Detroit Exposure and Aerosol Research Study

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10-2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spa...

  11. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  12. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  13. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  14. Aerosol Analysis via Electrostatic Precipitation-Electrospray Ionization Mass Spectrometry.

    PubMed

    He, Siqin; Li, Lin; Duan, Hongxu; Naqwi, Amir; Hogan, Christopher J

    2015-07-01

    Electrospray ionization (ESI) is the preferred mode of ion generation for mass analysis of many organic species, as alternative ionization techniques can lead to appreciable analyte fragmentation. For this reason, ESI is an ideal method for the analysis of species within aerosol particles. However, because of their low concentrations (∼10 μg/m(3)) in most environments, ESI has been applied sparingly in aerosol particle analysis; aerosol mass spectrometers typically employ analyte volatilization followed by electron ionization or chemical ionization, which can lead to a considerable degree of analyte fragmentation. Here, we describe an approach to apply ESI to submicrometer and nanometer scale aerosol particles, which utilizes unipolar ionization to charge particles, electrostatic precipitation to collect particles on the tip of a Tungsten rod, and subsequently, by flowing liquid over the rod, ESI and mass analysis of the species composing collected particles. This technique, which we term electrostatic precipitation-ESI-MS (EP-ESI-MS), is shown to enable analysis of nanogram quantities of collected particles (from aerosol phase concentrations as low as 10(2) ng m(-3)) composed of cesium iodide, levoglucosan, and levoglucosan within a carbon nanoparticle matrix. With EP-ESI-MS, the integrated mass spectrometric signals are found to be a monotonic function of the mass concentration of analyte in the aerosol phase. We additionally show that EP-ESI-MS has a dynamic range of close to 5 orders of magnitude in mass, making it suitable for molecular analysis of aerosol particles in laboratory settings with upstream particle size classification, as well as analysis of PM 2.5 particles in ambient air. PMID:26024017

  15. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  16. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    NASA Astrophysics Data System (ADS)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  17. Ambient aerosol analysis using aerosol-time-of-flight mass spectrometry

    SciTech Connect

    Prather, K.A.; Noble, C.A.; Liu, D.Y.; Silva, P.J.; Fergenson, D.F.

    1996-10-01

    We have recently developed a technique, Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS), which is capable of real-time determination of the aerodynamic size and chemical composition of individual aerosol particles. In order to obtain such information, the techniques of aerodynamic particle sizing and time-of-flight mass spectrometry are combined in a single instrument. ATOFMS is being used for the direct analysis of ambient aerosols with the goal of establishing correlations between particle size and chemical composition. Currently, measurements are being made to establish potential links between the presence of particular types of particles with such factors as the time of day, weather conditions, and concentration levels of gaseous smog components such as NO{sub x} and ozone. This data will be used to help establish a better understanding of tropospheric gas-aerosol processes. This talk will discuss the operating principles of ATOFMS as well as present the results of ambient analysis studies performed in our laboratory.

  18. Intercomparison of aerosol instruments: number concentration

    SciTech Connect

    Knutson, E O; Sinclair, D; Tu, K W; Hinchliffe, L; Franklin, H

    1982-05-01

    An intercomparison of aerosol instruments conducted February 23-27, 1981, at the Environmental Measurements Laboratory (EML) focused on five instruments: the Pollak and TSI condensation nucleus counters; the Active Scattering Aerosol Spectrometer (ASAS-X); and two aerosol electrometers. Test aerosols of sodium chloride and ammonium fluorescein generated by nebulization/electrostatic classification were used to obtain 195 lines of comparison data. Concentrations measured by the ASAS-X and the TSI aerosol electrometer averaged respectively 1.388 and 1.581 times that measured by the Pollak. These ratios were very stable during the week and there was little effect of particle size or material. Most other comparisons were equally stable. However, a review of past work at EML and elsewhere led to the disturbing conclusion that these ratios may change from year to year, or from season to season. A filter sample was taken from microscopy, concurrent with readings from the ASAS-X and the TSI condensation nucleus counters. In this sample, the two instruments differed by 20%. Within its 20% uncertainty, the filter result matched both the TSI and ASAS-X readings.

  19. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  20. The Hohenpeissenberg aerosol characterization experiment (HAZE2002): Aerosol composition derived from mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hock, N.; Berresheim, H.; Borrmann, S.; Poeschl, U.; Roempp, A.; Schneider, J.

    2003-04-01

    The HAZE Experiment was conducted between 17.05.2002 and 31.05.2002, at the meteorological observatory of the Deutsche Wetterdienst (DWD) at Hohenpeissenberg (47^o48'N,11^o02'E, 985m). The objective was to make essential progress in understanding of the physical and chemical properties of the atmospheric aerosol, in particular relating to the Gas-To-Particle-Conversion and the interaction with meteorological processes. The measurements included online mass spectrometric analysis using the Aerosol Mass Spectrometer (AMS), filter samples with GC analyses of organic compounds, particle size distribution (Electrical Low Pressure Impactor (ELPI), SMPS, OPC), as well as the total particle concentration (CPC). Additionally, several gas-phase substances were measured (e.g. Benzene, Acetone). The measurements obtained with the AMS show a strong variability of the aerosol composition. The non-refractory aerosol composition was dominated by nitrate, sulphate, and organics, whereas ammonium was surprisingly low. High number concentration of up to 14000 particles/cm^3 were observed. These particles mostly had diameters between 200 nm and 400 nm and were mainly composed of ammonium sulphate and ammonium nitrate. Various meteorological conditions allowed to study their influence on the aerosol. For example, on rainy days the concentrations of ammonium sulphate particles decreased, whereas the concentrations of ammonium nitrate particles increased.

  1. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  2. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  3. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  4. Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic-Mediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components

    NASA Astrophysics Data System (ADS)

    Pérez, Noemí; Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Bhatia, Ravinder; Spiro, Baruch; Hanvey, Melanie

    2010-07-01

    We report on ambient atmospheric aerosols present at sea during the Atlantic-Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM 10, PM 2.5, and PM 1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM 10 levels <10 μg m -3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM 10 daily mean levels averaged 40-60 μg m -3 (30-40 μg m -3 PM 2.5; c. 20 μg m -3 PM 1), peaking briefly to >120 μg m -3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM 1/PM 10 ratios ranged from very low during desert dust intrusions (0.3-0.4) to very high during anthropogenic pollution plume events (0.8-1).

  5. Characterization and reconstruction of historical London, England, acidic aerosol concentrations

    SciTech Connect

    Ito, K.; Thurston, G.D.

    1989-02-01

    Several past studies of the historical London air pollution record have reported an association between daily mortality and British Smoke levels. However, this pollution index does not give direct information on particulate mass or its chemical composition. A more specific particulate matter index, aerosol acidity, was measured at a site in central London, and daily data are available for the period 1963-1972. British smoke and SO/sub 2/ were also measured at the same site. Also, meteorological parameters were routinely measured at a nearby British Meteorological Office. Thus, daily fluctuation of the acidic aerosols was characterized in terms of other environmental parameters. Each of the other parameters analyzed seems necessary, but not sufficient to explain a high level of acidic aerosol. Overall, about half of the variance of log-transformed daily fluctuations of acidic aerosols can be explained by a combination of parameters including SO/sub 2/ and British smoke concentrations, temperature, ventilation by wind, and humidity. The rest of the variance cannot be explained by the parameters included in this analysis. Potential factors responsible for this unique variance would be variations in the availability of basic gases to cause neutralization and variation in the availability of catalytic metal salts. Because the acidic aerosol has a unique component of variation, it may be possible to distinguish health effects due to this specific pollutant from other available pollution indices or environmental factors.

  6. Characterization and reconstruction of historical London, England, acidic aerosol concentrations.

    PubMed

    Ito, K; Thurston, G D

    1989-02-01

    Several past studies of the historical London air pollution record have reported an association between daily mortality and British Smoke levels. However, this pollution index does not give direct information on particulate mass or its chemical composition. A more specific particulate matter index, aerosol acidity, was measured at a site in central London, and daily data are available for the period 1963-1972. British Smoke and SO2 were also measured at the same site. Also, meteorological parameters were routinely measured at a nearby British Meteorological Office. Thus, daily fluctuation of the acidic aerosols was characterized in terms of other environmental parameters. Each of the other parameters analyzed seems necessary, but not sufficient to explain a high level of acidic aerosol. Overall, about half of the variance of log-transformed daily fluctuations of acidic aerosols can be explained by a combination of parameters including SO2 and British Smoke concentrations, temperature, ventilation by wind, and humidity. The rest of the variance cannot be explained by the parameters included in this analysis. Potential factors responsible for this unique variance would be variations in the availability of basic gases to cause neutralization and variation in the availability of catalytic metal salts. Because the acidic aerosol has a unique component of variation, it may be possible to distinguish health effects due to this specific pollutant from other available pollution indices or environmental factors.

  7. Studies of Ambient and Chamber Aerosol Composition using the Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Craven, Jill Suzanne

    This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions. The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particlephase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0--4 h old. CO 2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5--2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution. Ground-based aerosol composition is reported for Pasadena, CA during the sumix mer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol

  8. Aerosol and cloud droplet number concentrations observed in marine stratocumulus

    SciTech Connect

    Vong, R.J.; Covert, D.S.

    1995-12-01

    The relationship between measurements of cloud droplet number concentration and cloud condensation nuclei (CCN) concentration, as inferred from aerosol size spectra, was investigated at a {open_quote}clean air{close_quote}, marine site (Cheeka Peak) located near the coast of the Olympic Peninsula in Washington State. Preliminary results demonstrated that cloud droplet number increased and droplet diameter decreased as aerosol number concentration (CCN) increased. These results support predictions of a climate cooling due to any future increases in marine aerosol concentrations.

  9. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  10. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; et al

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  11. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  12. Anthropogenic sulfate and organic aerosols, CCN, and cloud project concentration at a marine site

    SciTech Connect

    Novakao, T.; Rivera-Carpio, C.; Penner, J.E.; Rogers, C.F.

    1993-10-01

    The need to establish the relationships between the number concentration of cloud droplets, cloud condensation nuclei (CCN), and the mass concentrations of major aerosol species has been heightened by the results of recent modeling studies suggesting that anthropogenic sulfate and biomass smoke aerosols may cause a globally averaged climate forcing comparable in magnitude but opposite in sign to the forcing due to ``greenhouse`` gases. In this paper we present the results of measurements of nonseasalt (nss) sulfate and organic carbon mass concentrations and mass size distributions, CCN, and cloud droplet number concentrations obtained in 1991 and 1992 on El Yunque peak, Puerto Rico . This peak (18{degree}19N, 65{degree}45W; elevation 1000 m) is located the eastern end of the island, directly exposed to the ocean winds and frequently covered with clouds. Our results show that although CCN number concentrations (measured at 0.5% supersaturation) and nss sulfate mass concentrations are significantly correlated at this site, estimates based on measured mass size distributions of organic and sulfate aerosols indicate that the organic aerosols may account for the majority of CCN number concentrations. Droplet concentrations in the cumulus clouds do not show a discernible trend with nss sulfate mass concentrations. In stratocumulus clouds a small increase in droplet concentrations with nss sulfate mass concentrations was observed.

  13. Organic Aerosols in Rural and Remote Atmospheric Environments: Insights from Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Ulbrich, I.; Dunlea, E.; Decarlo, P.; Huffman, A.; Allan, J.; Coe, H.; Alfarra, R.; Canagaratna, M.; Onasch, T.; Jayne, J.; Worsnop, D.; Takami, A.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Weimer, S.; Demerjian, K.; Drewnick, F.; Schneider, J.; Middlebrook, A.; Bahreini, R.; Cotrell, L.; Griffin, R.; Leaitch, R.; Li, S.; Hayden, K.; Rautiainen, J.

    2006-12-01

    Organic matter usually accounts for a large fraction of the fine particle mass in rural and remote atmospheres. However, little is known about the sources and properties of this material. Here we report findings on the characteristics and the major types of organic aerosols (OA) in urban downwind, high elevation, forested, and marine atmospheres based on analyses of more than 20 highly time resolved AMS datasets sampled from various locations in the mid-latitude Northern Hemisphere. Organic aerosol components are extracted from these datasets using a custom multiple component mass spectral analysis technique and the Positive Matrix Factorization (PMF) method. These components are evaluated according to their extracted mass spectra and correlations to aerosol species, such as sulfate, nitrate, and elemental carbon, and gas-phase tracer compounds, such as CO and NOx. We have identified a hydrocarbon-like organic aerosol (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations. We have also identified several oxygenated OA (OOA) components that show different fragmentation patterns and oxygen to carbon ratios in their mass spectra. Two OOA components a highly oxygenated that has mass spectrum resembling that of fulvic acid (a model compound representative for highly processed/oxidized organics in the environment) and a less oxygenated OOA component, whose spectrum is dominated with ions that are mainly associated with carbonyls and alcohols, are very frequently observed at various rural/remote sites. The oxygenated OOA component is more prevalent at downwind sites influenced by urban transport and the less oxygenated shows correlation to biogenic chamber OA at some locations. Compared to the total OOA concentration, HOA is generally very small and accounts for < 10% of the total OA mass at rural/remote sites. The comparisons between the concentrations of HOA and primary OA (POA) that would be predicted according to inert

  14. ACTRIS ACSM intercomparison - Part I: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with Time-of-Flight ACSM (ToF-ACSM), High Resolution ToF Aerosol Mass Spectrometer (HR-ToF-AMS) and other co-located instruments

    NASA Astrophysics Data System (ADS)

    Crenn, V.; Sciare, J.; Croteau, P. L.; Verlhac, S.; Fröhlich, R.; Belis, C. A.; Aas, W.; Äijälä, M.; Alastuey, A.; Artiñano, B.; Baisnée, D.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Lunder, C.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petit, J.-E.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Estève, R.; Slowik, J. G.; Setyan, A.; Wiedensohler, A.; Baltensperger, U.; Prévôt, A. S. H.; Jayne, J. T.; Favez, O.

    2015-07-01

    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for three weeks during the late fall-early winter period (November-December 2013). The first week was dedicated to tuning and calibration of each instrument whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual ACSM across all chemical families except for chloride for which three ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025) and were found to be of 9, 15, 19, 28 and 36 % for NR-PM1, nitrate, organic matter, sulfate and ammonium respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of ACSMs, detailed intercomparison results are presented as well as a discussion of some recommendations

  15. Ambient aerosol analysis using aerosol-time-of-flight mass spectrometry

    SciTech Connect

    Prather, K.A.; Noble, C.; Salt, K.; Nordmeyer, T.; Fergenson, D.; Morrical, B.

    1995-12-31

    Particulate pollution is an area of growing concern in light of recent studies which suggest a link between high concentrations of ambient PM{sub 10} (particles with diameters equal to or less than 10 {mu}m) and adverse health effects ranging from respiratory ailments to premature death. However, analytical chemistry techniques aimed at sampling and analysis of atmospheric aerosols are extremely limited in comparison to the number of methods that exist for studying gas phase smog components. As a result, current government regulations for levels of ambient particulates are necessarily general, lacking any chemical specificity. The authors have recently developed a technique, Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS), which is capable of real-time determination of the size and chemical composition of individual aerosol particles. In order to obtain such information, the techniques of aerodynamic particle sizing and time-of-flight spectrometry are combined in a single instrument. In one of the aerosol studies performed in this laboratory, this instrument is being used for the direct analysis of ambient aerosols with the goal of establishing correlations between particle size and chemical composition. To date, the authors have observed very distinct size/composition correlations for organic and inorganic particles.

  16. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  17. Mass size distributions of elemental aerosols in industrial area

    PubMed Central

    Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

    2014-01-01

    Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba) to 89.62 ng/m3 (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources. PMID:26644919

  18. Lead concentrations and isotopes in aerosols from Xiamen, China.

    PubMed

    Zhu, Laimin; Tang, Jianwu; Lee, Ben; Zhang, Yu; Zhang, Feifei

    2010-11-01

    To investigate the magnitude and origin of lead (Pb) pollution in the atmosphere of Xiamen, China, 40 aerosol samples were collected from the coast of Xiamen from January to December 2003. All these samples were measured for Pb isotopic compositions ((208)Pb/(206)Pb=2.10897 ± 0.00297, (207)Pb/(206)Pb=0.85767 ± 0.00159, n=40) using a Multi-collector-Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). Thirty-five out of forty samples were also measured for Pb concentrations (79.1 ± 38.3 ng/m(3), n=35) by Atomic Absorption Spectroscopy (AAS). The results indicate that the Pb concentrations display significant seasonal variations while Pb isotopic ratios remain relatively constant. The Pb concentrations were high in January and February, abruptly decreased in March, remained relatively constant (but low) from April to August, and then gradually increased from September to December. This corresponds to the rainless climate in winter and rain scavenging in summer. The higher Pb concentration of Xiamen aerosols in winter and spring may be also caused by long-range transferred anthropogenic Pb during the northeastern monsoon seasons. Although the use of leaded gasoline in Xiamen was banned in 2000, our new data indicate that the Pb annual concentrations of aerosols in Xiamen increased about 12% when compared to the data measured between 1991 and 1993. Thus, Pb pollution in the atmosphere of Xiamen has not receded even after the phase-out of leaded gasoline. Our results further confirm the previous studies' conclusion that the primary source of atmospheric Pb in China, especially in South China, is the vast combustion of lead-containing coal, not leaded gasoline.

  19. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  20. Aerosol Size Distribution, Composition, and Hygroscopicity Measurements During CSTRIPE Using an Aerosol Mass Spectrometer and a Dual Differential Mobility Analyzer

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Varutbangkul, V.; Conant, W. C.; Flagan, R. C.; Seinfeld, J. H.; Buzorius, G.; Jonsson, H. H.

    2003-12-01

    During July 2003, the CIRPAS Twin Otter aircraft was deployed in the CSTRIPE (Coastal STRatocumulus Imposed Perturbation Experiment) field experiment in order to quantify the effects of aerosols on the microphysics and dynamics of marine stratocumulus clouds. In order to characterize the effects of different aerosol types on stratocumulus clouds, various air masses were sampled, including local fire plumes, pollution over the San Joaquin valley, unperturbed marine stratocumulus clouds, and stratocumulus clouds perturbed by seeding flares. Some research flights were also dedicated to characterize the seeding flares in the clear sky. Measurements of aerosol mass distribution and composition, using an Aerodyne Aerosol Mass Spectrometer (AMS), and size distribution and hygroscopic behavior, using a Dual Differential Mobility Analyzer (Dual DMA) with one column at dry conditions and another at a relative humidity of approximately 70 percent, will be presented here. During a number of in-cloud sampling periods, the Counter-flow Virtual Impactor (CVI) was used to select and dry cloud droplets, which were then analyzed by the AMS and the Dual DMA. The AMS composition measurements showed that sulfate and organics comprised most of the mass of the non-refractory components of the aerosol. The DMA showed a mixture of unimodal and bimodal size distributions in most types of air masses. The air mass over the San Joaquin valley, however, showed strong evidence of freshly nucleated particles, with aerosol number concentrations often above 80,000 cm-3.

  1. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  2. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  3. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  4. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  5. Aerosol Composition in the Los Angeles Basin Studied by High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M.; Hu, W.; Toohey, D. W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Allan, J. D.; Taylor, J.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Massoli, P.; Zhang, X.; Weber, R.; Zhao, Y.; Cliff, S. S.; Wexler, A. S.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Hering, S. V.; Goldstein, A. H.; Jimenez, J. L.

    2011-12-01

    Atmospheric aerosols impact climate and health, but their sources and composition are poorly understood. To address this knowledge gap, a high-resolution aerosol mass spectrometer (AMS) and complementary instrumentation were deployed during the 2010 CalNex campaign to characterize aerosol composition in the Los Angeles (LA) area. Total mass concentrations as well as the species concentrations measured by the AMS compare well with most other instruments. Nitrate dominates in the mornings, but its concentration is reduced in the afternoon when organic aerosols (OA) increase and dominate. The diurnal variations in concentrations are strongly influenced by emission transport from the source-rich western basin. The average OA to enhanced CO ratio increases with photochemical age from 25 to 80 μg m-3 ppm-1, which indicates significant secondary OA (SOA) production and that a large majority of OA is secondary in aged air. The ratio values are similar to those from Mexico City as well as New England and the Mid-Atlantic States. Positive matrix factorization (PMF) is used to assess the concentrations of different OA components. The major OA classes are oxygenated OA (OOA, a surrogate for total SOA), and hydrocarbon-like OA (HOA, a surrogate for primary combustion OA). Several subclasses of OA are identified as well including diesel-influenced HOA (DI-HOA) and non-diesel HOA. DI-HOA exhibits low concentrations on Sundays consistent with the well-known weekday/weekend effect in LA. PMF analysis finds that OOA is 67% of the total OA concentration. A strong correlation between OOA and Ox (O3 + NO2) concentrations is observed with a slope of 0.15 that suggests the production of fresh SOA in Pasadena. Plotting the OA elemental ratios in a Van Krevelen diagram (H:C vs. O:C) yields a slope of -0.6, which is less steep than that observed in Riverside during the SOAR-2005 campaign. The difference in slopes may be attributed to the highly oxidized HOA present in Pasadena that is

  6. Elemental Composition of Primary Aerosols Emitted from Burning of 21 Biomass Fuels Measured by Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Mack, L.; Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Jimenez, J. L.; Worsnop, D. R.

    2010-12-01

    Biomass burning emissions are an important contributor to regional aerosol loading and have a large impact of on air quality, visibility, and radiative forcing. However, the detailed chemical composition of the aerosols emitted during biomass burning is largely unknown. In order to gain a better understanding of the chemical and physical properties of these emissions, 92 burns were undertaken in the combustion chamber of the USDA/FS Fire Sciences Laboratory in Missoula, Montana, in well-defined laboratory conditions. A set of 21 different fuels was tested that represents biomass burned annually in the western and southeastern U.S. The chemical composition of the resulting biomass smoke aerosols was analyzed with a high-resolution aerosol mass spectrometer (Aerodyne HR-ToF-AMS). Simultaneous measurements of CO2 and CO concentrations allowed flaming and smoldering fire regimes to be distinguished. The elemental composition of the organic portion of the aerosols was extracted from the AMS measurements. Here we present the variation of O/C, H/C and organic mass to organic carbon ratios (OM/OC) versus fire regime and fuel type. We also discuss the influence on the organic aerosol chemical composition of various factors such as fuel moisture content and total aerosol loading, as well as the approach used to account for water vapor ions derived from water originally present in sampled particles versus water vapor ions produced by electron impact fragmentation of organic molecules.

  7. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    PubMed

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-01

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  8. Unraveling the Complexity of Atmospheric Aerosol: Insights from Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Lynn R.; Zhao, Yunzhu; Samburova, Vera; Gannet Hallar, A.; Lowenthal, Douglas

    2016-04-01

    Atmospheric aerosol organic matter (AOM) is a complex mixture of thousands of organic compounds, which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of AOM is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas, aqueous and particle phase reactions contribute to the aerosol organic mass. Thus, ambient aerosols carry a complex array of AOM components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize ambient aerosol AOM collected at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Thousands of molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. Using multivariate statistical analysis, correlations between the site meteorological conditions and specific molecular compositions were identified. For example, days with strong UV radiation and high temperature were found to contain large numbers of biogenic SOA molecular formulas. Similarly, days with high relative humidity and high sulfate concentrations were found to contain many sulfur-containing compounds, suggesting their aqueous phase formation.

  9. Aerosol speciation and mass prediction from toluene oxidation under high NO x conditions

    NASA Astrophysics Data System (ADS)

    Kelly, Janya L.; Michelangeli, Diane V.; Makar, Paul A.; Hastie, Donald R.; Mozurkewich, Michael; Auld, Janeen

    2010-01-01

    A kinetically based gas-particle partitioning box model is used to highlight the importance of parameter representation in the prediction of secondary organic aerosol (SOA) formation following the photo-oxidation of toluene. The model is initialized using experimental data from York University's indoor smog chamber and provides a prediction of the total aerosol yield and speciation. A series of model sensitivity experiments were performed to study the aerosol speciation and mass prediction under high NO x conditions (VOC/NO x = 0.2). Sensitivity experiments indicate vapour pressure estimation to be a large area of weakness in predicting aerosol mass, creating an average total error range of 70 μg m -3 (range of 5-145 μg m -3), using two different estimation methods. Aerosol speciation proved relatively insensitive to changes in vapour pressure. One species, 3-methyl-6-nitro-catechol, dominated the aerosol phase regardless of the vapour pressure parameterization used and comprised 73-88% of the aerosol by mass. The dominance is associated with the large concentration of 3-methyl-6-nitro-catechol in the gas-phase. The high NO x initial conditions of this study suggests that the predominance of 3-methyl-6-nitro-catechol likely results from the cresol-forming branch in the Master Chemical Mechanism taking a significant role in secondary organic aerosol formation under high NO x conditions. Further research into the yields and speciation leading to this reaction product is recommended.

  10. Aerosol and CCN Concentrations under Extremely High DMS Levels over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Deng, C.; Brooks, S. D.; Thornton, D. C.; Bell, T. G.; Saltzman, E. S.; De Bruyn, W. J.

    2013-12-01

    Despite numerous studies since the CLAW hypothesis was first suggested in 1987, the extent to which marine phytoplankton derived dimethyl sulfide (CH3SCH3, DMS) contributes to marine atmospheric aerosol populations and the ability of those aerosols to act as cloud condensation nuclei (CCN) remains unclear, especially over oceanic areas obviously influenced by continental sources. Here, we present data from a cruise aboard the R/V Knorr over the North Atlantic during June-July 2011which passed through areas of both high and low phytoplankton biomasses, as well as intermediate primary production bloom regions where extremely high DMS concentrations (over 1800 pptv) were observed. Continuous ambient measurements of aerosol concentration, cloud condensation nuclei (CCN) concentration, aerosol particle size distributions, and surface seawater and atmospheric dimethyl sulfide (DMS) concentrations were performed simultaneously during the three-week-cruise. Throughout the cruise, CCN concentrations were measured at a series of five supersaturation levels and used to derive the critical supersaturation required for aerosols to activate as CCN. Air masses have been classified into three different categories based on the 48-hr back trajectories, i.e., air mass influenced by continents, coasts and the open ocean. Aerosol concentrations have noticeably different patterns depending on the air mass paths. Continually high CCN and aerosol concentrations had been found to coincide with high DMS concentration over the open ocean, which may be explained by the nucleation and condensational growth in marine boundary layer (MBL) resulting from the oxidation products of DMS or primary aerosols from the sea surface. Calculation of DMS oxidation rates based on the variation of DMS in the lower atmosphere and sea-to-air flux measurement during the whole cruise verified that the influence of continental sources on marine atmosphere is significant during the majority of sample times

  11. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  12. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in

  13. Intercomparison of number concentration measurements by various aerosol particle counters

    NASA Astrophysics Data System (ADS)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; Mirme, A.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Tamm, E.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    Total aerosol particle number concentrations, as measured by means of 16 different measurement systems, have been quantitatively compared during an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (ICCP-IUGG). The range of measuring instruments includes Pollak counters (PCO) in use already for several decades, presently available commercial particle counters, as well as laboratory prototypes. The operation of the instruments considered was based on different measurement principles: (1) adiabatic expansion condensation particle counter, (2) flow diffusion condensation particle counter, (3) turbulent mixing condensation particle counter, (4) laser optical particle counter, and (5) electrostatic particle measurement system. Well-defined test aerosols with various chemical compositions were considered: DEHS, sodium chloride, silver, hydrocarbons, and tungsten oxide. The test aerosols were nearly monodispersed with mean particle diameters between 4 and 520 nm, the particle number concentrations were varied over a range from about 4×10 1 to 7×10 6 cm -3. A few measurements were performed with two-component aerosol mixtures. For simultaneous concentration measurements, the various instruments considered were operated under steady state conditions in a linear flow system. A series of at least 10 single concentration measurements was performed by each individual instrument at each set of test aerosol parameters. The average of the concentration data measured by the various instruments was defined as a common reference. The number concentrations obtained from the various instruments typically agreed within a factor of about two over the entire concentration range considered. The agreement of the measured concentrations is notable considering the various different measurement principles applied in this study, and particularly in view of the

  14. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  15. MCS precipitation and downburst intensity response to increased aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Clavner, M.; Cotton, W. R.; van den Heever, S. C.

    2015-12-01

    Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.

  16. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  17. Secondary Aerosol Formation in the planetary boundary layer observed by aerosol mass spectrometry on a Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Rubach, Florian; Trimborn, Achim; Mentel, Thomas; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL). In combination with the high scientific payload of more than 1 ton, the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due its lifetime of up to several days secondaray aerosol at a certain location can result from local production or from transport processes. For aerosol measurements on a Zeppelin, a High-Resolution Time-of-Flight Aerosol Mass spectrometer (DeCarlo et al, 2006) was adapted to the requirements posed by an airborne platform. A weight reduction of over 20 % compared to the commercial instrument was achieved, while space occupation and footprint were each reduced by over 25 %. Within the PEGASOS project, the instrument was part of 10 measurement flight days over the course of seven weeks. Three flights were starting from Rotterdam, NL, seven flights were starting from Ozzano in the Po Valley, IT. Flight patterns included vertical profiles to study the dynamics of the PBL and cross sections through regions of interest to shed light on local production and transport processes. Analysis of data from transects between the Apennin and San Pietro Capofiume in terms of "residence time of air masses in the Po valley" indicates that aerosol nitrate has only local sources while aerosol sulfate is dominated by transport. The organic aerosol component has significant contributions of both processes. The local prodcution yields are commensurable with imultaneously observed precursor concentrations and oxidant levels. The PEGASOS project is funded by the European Commission under the Framework Programme 7 (FP7-ENV-2010-265148). DeCarlo, P.F. et al (2006), Anal. Chem., 78, 8281-8289.

  18. Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb

    NASA Astrophysics Data System (ADS)

    Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar

    2014-05-01

    Secondary organic aerosols (SOA) from the oxidation of biogenic volatile organic compounds (BVOC) are a large fraction of the tropospheric aerosol especially over tropical continental regions. The dominant SOA forming compounds are monoterpenes of which pinene is the most abundant. The reactions of monoterpenes with OH radicals, NO3 radicals, and ozone yield secondary organic aerosol mass in highly variable yields. Despite the various studies on SOA formation the influence of temperature and precursor concentrations on SOA yields are still major uncertainties in tropospheric aerosol models. In previous studies we observed a negative temperature dependence of SOA yields for SOA from ozonolysis α-pinene and limonene (Saathoff et al., 2009). However, this study as well as most of the literature data for measured SOA yields is limited to terpene concentrations of several ppb and higher (e.g. Bernard et al., 2012), hence about an order of magnitude higher than terpene concentrations even near their sources. Monoterpene concentrations in and above tropical or boral forests reach values up to a few tenth of a ppb during daytime decreasing rapidly with altitude in the boundary layer (Kesselmeier et al. 2000; Boy et al., 2004). Therefore we investigated the yield of SOA material from the ozonolysis of α- and β-pinene under simulated tropospheric conditions in the large aerosol chamber AIDA on time scales of several hours and for terpene concentrations between 0.1 and 1 ppb. The temperatures investigated were 243, 274, and 296 K with relative humidities ranging from 25% to 41%. The organic aerosol was generated by controlled oxidation with an excess of ozone (220-930 ppb) and the aerosol yield is calculated from size distributions measured with differential mobility analysers (SMPS, TSI, 3071 & 3080N) in the size range between 2 and 820 nm. On the basis of the measured initial particle size distribution, particle number concentration (CPC, TSI, 3775, 3776, 3022), and

  19. Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2012-02-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  20. Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol.

    PubMed

    Kostenidou, Evangelia; Lee, Byong-Hyoek; Engelhart, Gabriella J; Pierce, Jeffrey R; Pandis, Spyros N

    2009-07-01

    Secondary organic aerosol (SOA) consists of compounds with a wide range of volatilities and its ambient concentration is sensitive to this volatility distribution. Recent field studies have shown that the typical mass spectrum of ambient oxygenated organic aerosol (OOA) as measured by the Aerodyne Aerosol Mass Spectrometer (AMS) is quite different from the SOA mass spectra reported in smog chamber experiments. Part of this discrepancy is due to the dependence of SOA composition on the organic aerosol concentration. High precursor concentrations lead to higher concentrations of the more volatile species in the produced SOA while at lower concentrations the less volatile compounds dominate the SOA composition. alpha-Pinene, beta-pinene, d-limonene, and beta-caryophyllene ozonolysis experiments were performed at moderate concentration levels. Using a thermodenuder the more volatile SOA species were removed achieving even lower SOA concentration. The less volatile fraction was then chemically characterized by an AMS. The signal fraction of m/z44, and thus the concentration of C02+, is significantly higher for the less volatile SOA. High NO(x) conditions result in less oxidized SOA than low NO(x) conditions, while increasing relative humidity levels results in more oxidized products for limonene but has little effect on alpha-and beta-pinene SOA. Combining a smog chamber with a thermodenuder model employing the volatility basis-set framework, the AMS SOA mass spectrum for each experiment and for each precursor is deconvoluted into low, medium, and high volatility component mass spectra. The spectrum of the surrogate component with the lower volatility is quite similar to that of ambient OOA.

  1. Aerosol propellant interference with clinical mass spectrometers.

    PubMed

    Kharasch, E D; Sivarajan, M

    1991-04-01

    Metered dose inhalers containing halogenated propellants may interfere with mass spectrometer quantitation of halogenated inhalation anesthetics. We identify the propellant(s) in a commercially available metered dose inhaler that caused erroneous mass spectrometer readings. In addition, we identify the causes of different types of interference in different mass spectrometers. PMID:2072131

  2. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  3. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    PubMed Central

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-01-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks. PMID:27733773

  4. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    NASA Technical Reports Server (NTRS)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  5. Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air.

    PubMed

    Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D

    2009-09-01

    Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems.

  6. Comparison of black carbon (BC) aerosols in two urban areas - concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Hitzenberger, R.; Tohno, S.

    In this study, the BC aerosol measured at two very different urban sites is compared in terms of concentration, seasonal variation, and size distribution. During a 14 month study, one impactor sample was performed each month on a day with typical meteorological conditions. One (Vienna) or three (Uji) filter samples were obtained during the sampling time of the impactors. BC concentration in both the filter and impactor samples was analyzed with an optical technique (integrating sphere technique), where a calibration curve obtained from commercial carbon black is used to convert the optical signal to BC mass. Gravimetric mass concentration was measured at both sites. The gravimetric mass size distribution was measured only in Vienna. At both sites, the yearly average of the BC concentration on the sampling days was around 5 μg m -3. In Vienna, some seasonal trend with high concentrations during the cold season was observed, while in Uji, no pronounced seasonal trend was found. The BC size distribution in Uji was distinctly bimodal in the submicron size range. Log-normal distributions were fitted through the impactor data. The average BC mass median diameters (MMD) of the two submicron modes were 0.15 and 0.39 μm. Each mode contained about the same amount of BC mass. In Vienna only one submicron BC mode (average MMD 0.3 μm) was found because of the low size resolution of the impactor. An analysis of humidity effects on the MMDs of BC (both sites) and gravimetric mass (Vienna only) indicates that the Vienna aerosol is partly mixed internally with respect to BC, while the Uji aerosol seems to be externally mixed.

  7. The Development of Electrostatic Precipitation-Electrospray Ionization Mass Spectrometry (EP-ESI-MS) for Atmospheric Aerosol Analysis

    NASA Astrophysics Data System (ADS)

    He, S.; Hogan, C. J., Jr.; Naqwi, A.; Gross, D. S.; Li, L.; Duan, H.; Jiang, L.; Flowers, J.; Grubb, E.; Au, L.

    2015-12-01

    Chemical composition analysis of atmospheric aerosols is of considerable interest and has been facilitated by mass spectrometry. Electrospray ionization (ESI) is a suitable mode of ion generation of many organic species comprising aerosol particles, as it leads to minimal analyte fragmentation. However, particles exist in the atmosphere at mass concentrations of the order 10 μg/m3 or less in many environments and are highly heterogeneous; low concentrations and chemical complexity have limited ESI application in aerosol analysis. In this presentation, the development of an approach to apply ESI to molecules within submicrometer and nanometer scale aerosol particles is discussed. The technique, which we term electrostatic precipitation-ESI-MS (EP-ESI-MS), utilizes unipolar ionization to charge particles, electrostatic precipitation to collect particles on the tip of a tungsten rod, and subsequently, by flowing liquid over the rod, ESI and mass analysis of dissolved species originating from the collected particles. EP-ESI-MS is shown to enable analysis of nanogram quantities of collected inorganic and organic components. Furthermore, it is coupled with a tandem mass spectrometry and challenged with oxidation products of α-pinene to investigate its capability of enabling structure analysis of complex organic compounds in aerosol particles. With EP-ESI-MS, the identification of chemical components in aerosol particles is realized and the integrated mass spectrometric signals are found to be a monotonic function of the analyte mass concentration in the aerosol phase. Additionally, it is shown to have a dynamic range of 5 orders of magnitude in mass, making it suitable for molecular analysis of aerosol particles in laboratory settings, as well as analysis of atmospheric aerosols in ambient air.

  8. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry.

    PubMed

    Morrical, Bradley D; Balaxi, Maria; Fergenson, David

    2015-07-15

    The use of single particle aerosol mass spectrometry (SPAMS) was evaluated for the analysis of inhaled pharmaceuticals to determine the mass distribution of the individual active pharmaceutical ingredients (API) in both single ingredient and combination drug products. SPAMS is an analytical technique where the individual aerodynamic diameters and chemical compositions of many aerosol particles are determined in real-time. The analysis was performed using a Livermore Instruments SPAMS 3.0, which allowed the efficient analysis of aerosol particles with broad size distributions and can acquire data even under a very large particle load. Data similar to what would normally require roughly three days of experimentation and analysis was collected in a five minute period and analyzed automatically. The results were computed to be comparable to those returned by a typical Next Generation Impactor (NGI) particle size distribution experiment.

  9. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  10. Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Graham, Bim; Guyon, Pascal; Taylor, Philip E.; Artaxo, Paulo; Maenhaut, Willy; Glovsky, M. Michael; Flagan, Richard C.; Andreae, Meinrat O.

    2003-12-01

    As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign in July 2001, separate day and nighttime aerosol samples were collected at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural "background" aerosol. We used a high-volume sampler to separate the aerosol into fine (aerodynamic diameter, AD < 2.5 μm) and coarse (AD > 2.5 μm) size fractions and quantified a range of organic compounds in methanolic extracts of the samples by a gas chromatographic-mass spectrometric technique. The carbon fraction of the compounds could account for an average of 7% of the organic carbon (OC) in both the fine and coarse aerosol fractions. We observed the highest concentrations of sugars, sugar alcohols, and fatty acids in the coarse aerosol samples, which suggests that these compounds are associated with primary biological aerosol particles (PBAP) observed in the forest atmosphere. Of these, trehalose, mannitol, arabitol, and the fatty acids were found to be more prevalent at night, coinciding with a nocturnal increase in PBAP in the 2-10 μm size range (predominantly yeasts and other small fungal spores). In contrast, glucose, fructose, and sucrose showed persistently higher daytime concentrations, coinciding with a daytime increase in large fungal spores, fern spores, pollen grains, and, to a lesser extent, plant fragments (generally >20 μm in diameter), probably driven by lowered relative humidity and enhanced wind speeds/convective activity during the day. For the fine aerosol samples a series of dicarboxylic and hydroxyacids were detected with persistently higher daytime concentrations, suggesting that photochemical production of a secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Anhydrosugars (levoglucosan, mannosan, galactosan), which are

  11. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  12. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  13. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  14. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  15. Precipitation effects on aerosol concentration in the background EMEP station of Zarra (Valencia), Spain

    NASA Astrophysics Data System (ADS)

    Calvo, Ana Isabel; San Martín, Isabel; Castro, Amaya; Alonso-Blanco, Elisabeth; Alves, Célia; Duarte, Márcio; Fernández-González, Sergio; Fraile, Roberto

    2014-05-01

    Aerosols and precipitation are closely related, presenting a bidirectional influence and constituting an important source of uncertainties on climate change studies. However, they are usually studied independently and in general are only linked to one another for the development or validation of cloud models. The primary and secondary pollutants may be removed by wet and dry deposition. Wet deposition, including in-cloud and below-cloud scavenging processes, can efficiently remove atmospheric aerosols and it is considered a critical process for determining aerosol concentrations in the atmosphere. In this study, aerosols and precipitation data from a background Spanish EMEP (Cooperative Programme for the Monitoring and Evaluation of Long Range Transmission of Air Pollutants in Europe) station located in Zarra, Valencia (Spain) were analyzed (1° 06' W and 39° 05' N, 885 m asl). The effect of precipitation on aerosol concentration was studied and the correlation between the intensity of precipitation and scavenging effect was investigated. In order to evaluate the effects of precipitation on different aerosol size ranges three different aerosol fractions were studied: PM10, PM10-2.5 and PM2.5. In order to eliminate the influence of the air mass changes, only the days in which the air mass of the precipitation day and the previous day had the same origin were considered. Thus, from a total of 3586 rainy days registered from March 2001 to December 2010, 34 precipitation days satisfied this condition and were analyzed. During the period of study, daily precipitation ranged between 0.2 and 28.8 mm, with a mean value of 4 mm. Regarding the origin of the air masses, those from west were dominant at the three height levels investigated (500, 1500 and 3000 m). In order to obtain additional information, aerosol and precipitation chemical composition were also studied in relation to the days of precipitation and the previous days. Furthermore, in order to identify the type

  16. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part II: On-line mass spectrometry techniques.

    PubMed

    Pratt, Kerri A; Prather, Kimberly A

    2012-01-01

    Many of the significant advances in our understanding of atmospheric particles can be attributed to the application of mass spectrometry. Mass spectrometry provides high sensitivity with fast response time to probe chemically complex particles. This review focuses on recent developments and applications in the field of mass spectrometry of atmospheric aerosols. In Part II of this two-part review, we concentrate on real-time mass spectrometry techniques, which provide high time resolution for insight into brief events and diurnal changes while eliminating the potential artifacts acquired during long-term filter sampling. In particular, real-time mass spectrometry has been shown recently to provide the ability to probe the chemical composition of ambient individual particles <30 nm in diameter to further our understanding of how particles are formed through nucleation in the atmosphere. Further, transportable real-time mass spectrometry techniques are now used frequently on ground-, ship-, and aircraft-based studies around the globe to further our understanding of the spatial distribution of atmospheric aerosols. In addition, coupling aerosol mass spectrometry techniques with other measurements in series has allowed the in situ determination of chemically resolved particle effective density, refractive index, volatility, and cloud activation properties.

  17. Can anthropogenic aerosol concentrations effect the snowfall rate?

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-04-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE.ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. Borys et al. (2000) proposed that anthropogenically-induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud due to its higher cloud droplet number concentration. Instead the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shut-down of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a 10-fold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates. We will also perform climate model simulations to estimate the importance of this effect globally.

  18. The impact of residential combustion emission on Arctic aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Eckhardt, Sabine; Stohl, Andreas; Olivie, Dirk J. L.; Grini, Alf

    2016-04-01

    Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. It has been challenging to reproduced this cylce and concentration levels with atmospheric transport and climate models. However, simulations have been improving recently and it has been shown, that a better scavenging parametrization as well as more realistic emissions are important to obtain better results. In this study we focus on the emission from residential heating, which depend on air temperature, as heating demand is higher on cold days. Varying this emission shows a clear effect on modeled Arctic concentrations. Arctic-mean and annual-mean concentrations of black carbon from Arctic domestic combustion emissions due to heating requirements, are nearly 70% higher when accounting for diurnal emission variability relative to constant emissions (Stohl et al., 2013). Emissions are high when ambient temperatures are low and cold air is transported to the Arctic. In order to capture this systematic effect, we created an interactive emission module for NorESM, a climate model, using the heating degree-day concept. Domestic combustion emissions of BC and other species are scaled interactively with the modeled ambient air temperatures, while securing that levels of annual total emissions from emission scenarios are reproduced. We compare the modeled aerosol concentration in the Arctic to observations and show the level of improvements achieved by using varying emission.

  19. Concentrations, size distributions and temporal variations of fluorescent biological aerosol particles in southern tropical India

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy; Krishna R, Ravi; CV, Biju; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2015-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. The Indian tropical region, where large fraction of the world's total population is residing, experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the properties and characteristics of biological aerosols are also expected to be very diverse over the Indian subcontinent depending upon the seasons. Here we characterize the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) at a high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) in South India during the South-West monsoon, which constitute around 80 percent of the annual rainfall in Munnar. Continuous three months measurements (from 01 June 2014 to 21 Aug 2104) FBAPs were carried out at Munnar using Ultra Violet Aerodynamic Particle Sizer (UVAPS) during IMS. The mean number and mass concentration of coarse FBAP averaged over the entire campaign was 1.7 x 10-2 cm-3 and 0.24 µg m-3 respectively, which corresponds to 2 percent and 6 percent of total aerosol particle number and mass concentration. In agreement to other previous measurements the number size distribution of FBAP also peaks at 3.2 micron indicating the strong presence of fungal spores. This was also supported by the Scanning Electron Microscopic analysis of bioaerosols on filter paper. They also displayed a strong diurnal cycle with maximum concentration occurring at early morning hours. During periods of heavy and continuous rain where the wind is consistently blowing from South-West direction it was

  20. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  1. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  2. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    NASA Technical Reports Server (NTRS)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  3. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data.

  4. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July-7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00-11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00-15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00-13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of

  5. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Schueller, Elisabeth; Weinke, Gert; Berger, Anna; Hitzenberger, Regina; Marr, Iain L.; Puxbaum, Hans

    Fungal spores are ubiquitous components of atmospheric aerosols and are therefore also contributors to the organic carbon (OC) component and to the mass of PM 10 (PM—particulate matter) aerosols. In this study we use spore counts and an experimentally derived factor of 13 pg C and of 33 pg fresh weight per spore for assessing quantitatively the contribution to OC and PM 10. The concentrations of airborne fungal spores were determined at a suburban (Schafberg) and a traffic-dominated urban site (Rinnböckstrasse) in Vienna, Austria, during spring and summer. Fungal spores OC ranged from 22 to 677 ng m -3 with a summer mean value of around 350 ng m -3 at the suburban site and 300 ng m -3 at the urban traffic site. At the suburban site fungal spores contributed on average 6% in spring and 14% in summer to aerosol OC mass concentration. At the traffic-dominated site fungal spores accounted for 2% of OC in spring and for 8% in summer. The fungal contribution to PM 10 was also notable and amounted to 3% and 7% at the suburban and to 1% and 4% at the urban site in spring and summer, respectively. Impactor measurements of OC at the suburban site showed that in summer fungal spores were predominant contributors to the coarse aerosol OC, and accounted on average for 60% of the OC in the PM 2-10 fraction. Fungal spores thus can be regarded as main components to PM 10, total OC and, most importantly, coarse OC even in urban areas.

  6. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    PubMed

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. PMID:24975025

  7. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    PubMed

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles.

  8. Time-resolved measurements of aerosol elemental concentrations in indoor working environments

    NASA Astrophysics Data System (ADS)

    Žitnik, M.; Kastelic, A.; Rupnik, Z.; Pelicon, P.; Vaupetič, P.; Bučar, K.; Novak, S.; Samardžija, Z.; Matsuyama, S.; Catella, G.; Ishii, K.

    2010-12-01

    We have measured the elemental concentrations in aerosols with a 2-h time resolution in two different types of working environment: a chemistry laboratory dealing with the processing of advanced nanoparticulate materials and a medium-sized machine workshop. Non-stop 10-day and 12-day samplings were performed at each location in order to determine the concentration trends during the non-working/working and weekday/weekend periods. Supplementary measurements of PM10 aerosols with a 2-day sample collection time were performed with a standard Gent PM10 sampler to compare the elemental concentrations with the time-averaged concentrations detected by the 2D step-sampler. The concentrations were determined a posteriori by analyzing the x-ray spectra of aerosol samples emitted after 3-MeV proton bombardment. The PM10 samples collected in the chemistry laboratory were additionally inspected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to determine the chemical compositions of the individual particles. In the workshop, a total PM10 mass sampling was performed simultaneously with a minute resolution to compare the signal with typical outdoor PM10 concentration levels. A factor analysis of the time-resolved dataset points to six and eight factors in the chemistry laboratory and the machine workshop, respectively. These factors describe most of the data variance, and their composition in terms of different elements can be related to specific indoor activities and conditions. We were able to demonstrate that the elemental concentration sampling with hourly resolution is an excellent tool for studying the indoor air pollution. While sampling the total PM10 mass concentration with a minute resolution may lack the potential to identify the emission sources in a "noisy" environment, the time averaging on a day time scale is too coarse to cope with the working dynamics, even if elemental sensitivity is an option.

  9. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  10. Determination of minimum mass and spatial location of initiator for detonation of propylene oxide aerosols

    NASA Astrophysics Data System (ADS)

    Apparao, A.; Saji, J.; Balaji, M.; Devangan, A. K.; Rao, C. R.

    2016-06-01

    The mishandling of liquid fuels during production, processing or transportation can lead to the formation of combustible two-phase mixtures. These mixtures, with the availability of a suitable energy source, may be ignited generating a deflagration, or even a detonation wave. For military applications, unconfined fuel aerosols are created and detonated with the help of a strong shock generated by a powerful energy source. The minimum energy requirement is expressed in terms of the shock strength, or mass of the high-explosive-based initiator. In this study, the detonability of unconfined aerosols of 4.3 kg propylene oxide was studied by positioning different quantities of cylindrical-shaped initiators of RDX/wax (95/5) at a fixed spatial location in the aerosol cloud, and the minimum mass of the initiator required for detonation initiation was determined. The effect of spatial location and the requirement of initiator mass, especially at farther locations where the fuel concentration is likely to be lower and closer to the lower explosive limit, was also investigated. The experimental findings help identify the detonable zone in unconfined propylene oxide aerosol clouds for different combinations of spatial location and mass of initiator.

  11. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry.

    PubMed

    Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki; Jaatinen, Antti; Portin, Harri; Miettinen, Pasi; Komppula, Mika; Leskinen, Ari; Virtanen, Annele; Smith, James N; Sueper, Donna; Worsnop, Douglas R; Lehtinen, Kari E J; Laaksonen, Ari

    2013-03-19

    This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.

  12. Comparison of Aerosol Mass Spectrometer and Aerosol Chemical Speciation Monitor Measurements of Secondary Organic Aerosol Formation in Smog Chamber Studies

    NASA Astrophysics Data System (ADS)

    Croteau, P. L.; Hunter, J. F.; Daumit, K. E.; Carrasquillo, A. J.; Cross, E. S.; Canagaratna, M.; Jayne, J.; Worsnop, D. R.; Kroll, J. H.

    2012-12-01

    Thermal vaporization-electron impact ionization (TV-EI) mass spectrometry is a powerful tool for understanding the chemistry of secondary organic aerosol (SOA) formation and atmospheric aging. The Aerodyne Aerosol Mass Spectrometer (AMS) and recently developed Aerosol Chemical Speciation Monitor (ACSM) are two instruments that utilize the same TV-EI technique. The ACSM trades the particle sizing capability, sensitivity, speed, and resolution of the AMS for simplicity, affordability, and ease of operation - enabling stand-alone continuous sampling for extended periods of time. Here we present results of an intercomparison between a high-resolution AMS and an ACSM. Three well-studied SOA formation chamber experiments were conducted: isoprene photooxidation under high NOx conditions, m-xylene photooxidation under high NOx conditions, and α-pinene ozonolysis under low NOx conditions. Comparisons between time-series and mass spectra from these experiments, along with positive matrix factorization analysis results demonstrate that the ACSM, while it does not provide the same level of detail as an AMS, is a suitable tool for exploring the chemistry of SOA formation in chamber studies.

  13. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-09-01

    Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the

  14. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment

    SciTech Connect

    Aiken, Allison; Salcedo, D.; Cubison, Michael J.; Huffman, J.; DeCarlo, Peter; Ulbrich, Ingrid M.; Docherty, Kenneth S.; Sueper, D. T.; Kimmel, Joel; Worsnop, Douglas R.; Trimborn, Achim; Northway, Megan; Stone, Elizabeth A.; Schauer, James J.; Volkamer, Rainer M.; Fortner, Edward; de Foy, B.; Wang, Jian; Laskin, Alexander; Shutthanandan, V.; Zheng, Junsheng; Zhang, Renyi; Gaffney, Jeffrey S.; Marley, Nancy A.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luisa T.; Sosa, G.; Jimenez, Jose L.

    2009-09-11

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identifies three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning.

  15. Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds.

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-12-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, New York, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types-background continental, polluted continental, and maritime-that were advected to the sampling site. The results are the following (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds to thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (ii) A significant fraction of anthropogenic sulfur aerosols appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (iii) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (iv) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  16. Estimation of surface-level PM concentration based on aerosol type classification and near-surface AOD over Korea

    NASA Astrophysics Data System (ADS)

    Kim, Kwanchul; Noh, Youngmin; Lee, Kwon H.

    2016-04-01

    Surface-level PM distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of aerosol type classification and near-surface AOD over Jeju, Korea. For this purpose, data from various instruments such as satellites, sunphotometer, and Micro-pulse Lidar (MPL) was used during March 2008 and October 2009. Initial analyses of comparison with sunphotometer AOD and PM concentration showed some relatively poor relationship over Jeju, Korea. Since the AERONET L2 data has significant number of observations with high AOT values paired to low surface-level PM values, which were believed to be the effect of long-rage transport aerosols like as Asian dust and biomass burning. Stronger correlations (exceeding R = 0.8) were obtained by screening long-rage transport aerosols and calculating near-surface AOT considering aerosol profiles data from MPL and HYSPLIT air mass trajectory. The relationship found between corrected satellite observed AOD and surface-level PM concentration over Jeju is very similar. An approach to reduce the discrepancy between satellite observed AOD and PM concentration is demonstrated by tuning thresholds used to detect aerosol type from sunphotometer inversion data. Finally, the satellite observed AOD-surface PM concentration correlation is significantly improved. Our study clearly demonstrates that satellite observed AOD is a good surrogate for monitoring PM air quality over Korea.

  17. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B.; Fry, J. L.

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.

  18. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  19. On the Interpretation of Oxygenated Organic Aerosols (and their Subtypes) Arising from Factor Analysis of Aerosol Mass Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Zhang, Q.; Canagaratna, M. R.; Ulbrich, I. M.; Ng, N. L.; Aiken, A. C.; Decarlo, P. F.; Kroll, J.; Mohr, C.; Allan, J. D.; Worsnop, D. R.

    2008-12-01

    Zhang et al. (ES&T 2005; ACP 2005) first performed factor analysis (FA) of Aerodyne Aerosol Mass Spectrometer (AMS) complete organic aerosol (OA) mass spectra. This study showed that an oxygenated organic aerosol (OOA) factor accounted for 2/3 of the OA mass at an urban site in Pittsburgh and strongly linked OOA to secondary organic aerosols (SOA). Many subsequent studies and the application of more powerful solution algorithms such as Positive Matrix Factorization (PMF) to the same FA problem have demonstrated the importance of OOA at most locations (e.g. Volkamer et al., GRL, 2006; Zhang et al., GRL, 2007; Lanz et al., ACP, 2007 and ES&T, 2008; Ulbrich et al., ACPD, 2008). Multiple studies have also identified several subtypes of OOA (e.g. OOA-1 and OOA-2). This type of analysis offers new insights because it provides some chemical resolution on the total OA mass with high time and size resolution, and bypasses the limitations of techniques that only analyze tracers and which may favor more reduced species. However the chemical resolution is limited and careful interpretation of the FA output is required, including the use of database spectra, time series of external tracers, tracer ratios, back-trajectory analyses, size- distribution analyses, etc. This presentation will address the interpretation of total OOA and its subfactors across a large range of locations in urban, suburban, rural, remote, and forested areas, and will compare with the results of other source apportionment techniques. Based on data from multiple datasets we conclude that (1) anthropogenic SOA in and downwind of urban areas is an important source of OOA; (2) motor vehicles, meat cooking, and trash burning are unlikely to be sources of primary OOA; (3) SOA from biogenic and biomass burning precursors are also clear sources of OOA; (4) primary biomass burning OA (P-BBOA) typically shows significant differences with ambient OOA factors; (5) heterogeneous oxidation of urban POA may give rise to

  20. Effect of aerosol concentration and absorbing aerosol on the radiation fog life cycle

    NASA Astrophysics Data System (ADS)

    Maalick, Z.; Kühn, T.; Korhonen, H.; Kokkola, H.; Laaksonen, A.; Romakkaniemi, S.

    2016-05-01

    Analogous to cloud formation, the formation and life cycle of fogs is largely influenced by aerosol particles. The objective of this work is to analyze how changes in aerosol properties affect the fog life cycle, with special emphasis on how droplet concentrations change with cloud condensation nuclei (CCN) concentrations and on the effect that absorbing black carbon (BC) particles have on fog dissipation. For our simulation case study, we chose a typical fall time radiation fog at mid-latitudes (45° north) in fairly highly polluted conditions. Our results show that CCN concentrations have a strong influence on the fog lifetime. This is because the immediate effect of CCN on cloud droplet number concentrations (CDNC) is enhanced through two positive feedback loops: (1) Higher CDNC leads to more radiative cooling at the fog top, which leads to even stronger activation and (2) if CDNC is higher, the average droplet size is smaller, which slows down droplet removal through sedimentation. The effect that radiation fogs have on solar surface irradiation is large - the daily mean can change by 50% if CCN concentrations are doubled or halved (considering a reference CCN mixing ratio of 800 #/mg). With the same changes in CCN, the total fog lifetime increases 160 min or decreases 65 min, respectively. Although BC has a noticeable effect on fog height and dissipation time, its relative effect compared to CCN is small, even if BC concentrations are high. The fog formation is very sensitive to initial meteorological conditions which may be altered considerably if fog was present the previous day. This effect was neglected here, and future simulations, which span several days, may thus be a valuable extension of this study.

  1. A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-11-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-Pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-Pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW > 400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-Pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0 % yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the volatile organic compound precursor, is essential in predicting nighttime aerosol production.

  2. A comparison of secondary organic aerosol (SOA) yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-05-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW >400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0% yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the VOC precursor, is essential in predicting nighttime aerosol production.

  3. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources

    NASA Astrophysics Data System (ADS)

    Cong, Z.; Kang, S.; Kawamura, K.; Liu, B.; Wan, X.; Wang, Z.; Gao, S.; Fu, P.

    2015-02-01

    To quantitatively evaluate the effect of carbonaceous aerosols on the south edge of the Tibetan Plateau, aerosol samples were collected weekly from August 2009 to July 2010 at Qomolangma (Mt. Everest) Station for Atmospheric and Environmental Observation and Research (QOMS, 28.36° N, 86.95° E, 4276 m a.s.l.). The average concentrations of organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon were 1.43, 0.25 and 0.77 μg m-3, respectively. The concentration levels of OC and EC at QOMS are comparable to those at high-elevation sites on the southern slopes of the Himalayas (Langtang and Nepal Climate Observatory at Pyramid, or NCO-P), but 3 to 6 times lower than those at Manora Peak, India, and Godavari, Nepal. Sulfate was the most abundant anion species followed by nitrate, accounting for 25 and 12% of total ionic mass, respectively. Ca2+ was the most abundant cation species (annual average of 0.88 μg m-3). The dust loading, represented by Ca2+ concentration, was relatively constant throughout the year. OC, EC and other ionic species (NH4+, K+, NO3- and SO42-) exhibited a pronounced peak in the pre-monsoon period and a minimum in the monsoon season, being similar to the seasonal trends of aerosol composition reported previously from the southern slope of the Himalayas, such as Langtang and NCO-P. The strong correlation of OC and EC in QOMS aerosols with K+ and levoglucosan indicates that they mainly originated from biomass burning. The fire spots observed by MODIS and backward air-mass trajectories further demonstrate that in pre-monsoon season, agricultural and forest fires in northern India and Nepal were most likely sources of carbonaceous aerosol at QOMS. Moreover, the CALIOP observations confirmed that air-pollution plumes crossed the Himalayas during this period. The highly coherent variation of daily aerosol optical depth (500 nm) between QOMS and NCO-P indicates that both slopes of the Himalayas share a common atmospheric environment

  4. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  5. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  6. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  7. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  8. Fungal Spore Concentrations and Ergosterol Content in Aerosol Samples in the Caribbean During African Dust Events

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Bolaños-Rosero, B.; Mayol-Bracero, O. L.

    2015-12-01

    Fungal spores are a major component of primary biogenic aerosol particles that are emitted to the atmosphere, are ubiquitous, and play an important role in the chemistry and physics of the atmosphere, climate, and public health. Every year, during summer months, African dust (AD) particles are transported to the Caribbean region causing an increase in the concentrations of particulate matter in the atmosphere. AD is one of the most important natural sources of mineral particulate matter at the global scale, and many investigations suggest that it has the ability to transport dust-associated biological particles through long distances. The relationship between AD incursions and the concentration of fungal spores in the Caribbean region is poorly understood. In order to investigate the effects of AD incursions on fungal spore's emissions, fungal spore concentrations were monitored using a Burkard spore trap at the tropical montane cloud forest of Pico del Este at El Yunque National Forest, Puerto Rico. The presence of AD was supported with satellite images of aerosol optical thickness, and with the results from the air masses backward trajectories calculated with the NOAA HYSPLIT model. Basidiospores and Ascospores comprised the major components of the total spore's concentrations, up to a maximum of 98%, during both AD incursions and background days. A considerably decrease in the concentration of fungal spores during AD events was observed. Ergosterol, biomarker for measuring fungal biomass, concentrations were determined in aerosols that were sampled at a marine site, Cabezas de San Juan Nature Reserve, in Fajardo Puerto Rico, and at an urban site, Facundo Bueso building at the University of Puerto Rico. Additional efforts to understand the relationship between the arrival of AD to the Caribbean and a decrease in spore's concentrations are needed in order to investigate changes in local spore's vs the contribution of long-range spores transported within the AD.

  9. Surface ozone concentration and its behaviour with aerosols in the northwestern Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, Priyanka; Kuniyal, Jagdish Chandra; Chand, Kesar; Guleria, Raj Paul; Dhyani, Pitamber Prasad; Chauhan, Chetan

    2013-06-01

    Surface ozone (O3), black carbon (BC) concentration and their relationship were established with PM10 and PM2.5 mass concentration at Mohal (31.9°N, 77.12°E, 1154 m amsl), a semi-urban site, in the Kullu valley of the northwestern part of the Indian Himalaya during January to December, 2010. O3 showed highest diurnal variation (84 ppb) during daytime and lowest (10 ppb) during late evening as well as early morning hours. The maximum concentration of O3 during summer was influenced by meteorological parameters, high insolation and backward airmass trajectories with transported pollutants. Rate of increase of O3 was observed as high as 2.92 ppb h-1 in October, followed by 2.73 ppb h-1 in March and 2.71 ppb h-1 in May. However, it was low 1.89 ppb h-1 in February. Monthly average concentration of O3 showed distinct seasonal variations with maximum in summer (55.9 ± 9.3 ppb in May) and minimum in winter (30.0 ± 6.2 ppb in January). Most of the O3 episodes were observed in summer during fair weather conditions like high solar flux (480-500 W m-2), relatively high temperature (22-24 °C) and negligible rainfall. By applying backward trajectory Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the origin of the airmasses contributing to the background O3 concentration was investigated. O3 showed negative correlation with BC (r = -0.42). BC contributed 10-20% and 14-42% to the total aerosol mass concentration of PM10 and PM2.5 respectively which showed positive correlation (r = 0.65) with PM10 as well as PM2.5 aerosol mass concentration.

  10. Mass Spectrometry of Atmospheric Aerosol: 1 nanometer to 1 micron

    NASA Astrophysics Data System (ADS)

    Worsnop, D. R.; Ehn, M.; Junninen, H.; Kulmala, M. T.

    2010-12-01

    The role of aerosol particles remains the largest uncertainty in quantitatively assessing past, current and future climate change. The principal reason for that uncertainty arises from the need to characterize and model composition and size dependent aerosol processes, ranging from nanometer to micron scales. Aerosol mass spectrometry results have shown that about half the sub-micron aerosol composition is composed of highly oxygenated organics that are not well understood in terms of photochemical reaction mechanisms (Jimenez et al, 2009). This work has included application of high resolution time-of-flight mass spectrometry (ToFMS) in order to determine elemental and functional group composition of complex organic components. Recently, we have applied similar ToFMS to determine the composition of ambient ions, molecules and clusters, potentially involved in formation and growth of nano-particles (Junninen et al, 2010). Observed organic anions (molecular weight range 200-500 Th) have similar chemical composition as the least volatile secondary organics observed in fine particles; while organic cations are dominated by amines and pyridines. During nucleation events, anions are dominated by sulphuric acid cluster ions (Ehn et al, 2010). In both nanometer and micrometer size ranges, the goal to elucidate the roles of inorganic and organic species, particularly how particle evolution and physical properties depend on mixed compositions. Recent results will be discussed, including ambient and experimental chamber observations. Ehn et al, Atmos. Chem. Phys. Discuss., 10, 14897-14946, 2010 Jimenez et al, Science, 326, 1525-1529, 2009 Junninen et al, Atmos. Meas. Tech., 3, 1039-1053, 2010

  11. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  12. Spatial and temporal distributions of aerosol concentrations and depositions in Asia during the year 2010.

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Joo, Seung Jin

    2016-01-15

    Aerosol Modeling System (AMS) that is consisted of the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-scale Air Quality (CMAQ) modeling system has been employed to document the spatial distributions of the monthly and the annual averaged concentration of both the Asian dust (AD) aerosol and the anthropogenic aerosol (AA), and their total depositions in the Asian region for the year 2010. It is found that the annual mean surface aerosol (PM10) concentrations in the Asian region affect in a wide region as a complex mixture of AA and AD aerosols; they are predominated by the AD aerosol in the AD source region of northern China and Mongolia with a maximum concentration exceeding 300 μg m(-3); AAs are predominated in the high pollutant emission regions of southern and eastern China and northern India with a maximum concentration exceeding 110 μg m(-3); while the mixture of AA and AD aerosols is dominated in the downwind regions extending from the Yellow Sea to the Northwest Pacific Ocean. It is also found that the annual total deposition of aerosols in the model domain is found to be 485 Tg (372 Tg by AD aerosol and 113 Tg by AA), of which 66% (319 Tg) is contributed by the dry deposition (305 Tg by AD aerosol and 14 Tg by AA) and 34% (166 Tg) by the wet deposition (66 Tg by AD aerosol and 100 Tg by AA), suggesting about 77% of the annual total deposition being contributed by the AD aerosol mainly through the dry deposition process and 24% of it by AA through the wet deposition process. The monthly mean aerosol concentration and the monthly total deposition show a significant seasonal variation with high in winter and spring, and low in summer.

  13. Measurement of elemental concentration of aerosols using spark emission spectroscopy†

    PubMed Central

    Diwakar, Prasoon K.

    2015-01-01

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation. PMID:26491209

  14. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  15. Evaluation of a Low-Cost Aerosol Sensor to Assess Dust Concentrations in a Swine Building.

    PubMed

    Jones, Samuel; Anthony, T Renée; Sousan, Sinan; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2016-06-01

    Exposure to dust is a known occupational hazard in the swine industry, although efforts to measure exposures are labor intensive and costly. In this study, we evaluated a Dylos DC1100 as a low-cost (~$200) alternative to assess respirable dust concentrations in a swine building in winter. Dust concentrations were measured with collocated monitors (Dylos DC1100; an aerosol photometer, the pDR-1200; and a respirable sampler analyzed gravimetrically) placed in two locations within a swine farrowing building in winter for 18-24-h periods. The particle number concentrations measured with the DC1100 were converted to mass concentration using two methods: Physical Property Method and Regression Method. Raw number concentrations from the DC1100 were highly correlated to mass concentrations measured with the pDR-1200 with a coefficient of determination (R (2)) of 0.85, indicating that the two monitors respond similarly to respirable dust in this environment. Both methods of converting DC1100 number concentrations to mass concentrations yielded strong linear relationships relative to that measured with the pDR-1200 (Physical Property Method: slope = 1.03, R (2) = 0.72; Regression Method: slope = 0.72, R (2) = 0.73) and relative to that measured gravimetrically (Physical Property Method: slope = 1.08, R (2) = 0.64; Regression Method: slope = 0.75, R (2) = 0.62). The DC1100 can be used as a reasonable indicator of respirable mass concentrations within a CAFO and may have broader applicability to other agricultural and industrial settings. PMID:26944922

  16. Evaluation of a Low-Cost Aerosol Sensor to Assess Dust Concentrations in a Swine Building.

    PubMed

    Jones, Samuel; Anthony, T Renée; Sousan, Sinan; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2016-06-01

    Exposure to dust is a known occupational hazard in the swine industry, although efforts to measure exposures are labor intensive and costly. In this study, we evaluated a Dylos DC1100 as a low-cost (~$200) alternative to assess respirable dust concentrations in a swine building in winter. Dust concentrations were measured with collocated monitors (Dylos DC1100; an aerosol photometer, the pDR-1200; and a respirable sampler analyzed gravimetrically) placed in two locations within a swine farrowing building in winter for 18-24-h periods. The particle number concentrations measured with the DC1100 were converted to mass concentration using two methods: Physical Property Method and Regression Method. Raw number concentrations from the DC1100 were highly correlated to mass concentrations measured with the pDR-1200 with a coefficient of determination (R (2)) of 0.85, indicating that the two monitors respond similarly to respirable dust in this environment. Both methods of converting DC1100 number concentrations to mass concentrations yielded strong linear relationships relative to that measured with the pDR-1200 (Physical Property Method: slope = 1.03, R (2) = 0.72; Regression Method: slope = 0.72, R (2) = 0.73) and relative to that measured gravimetrically (Physical Property Method: slope = 1.08, R (2) = 0.64; Regression Method: slope = 0.75, R (2) = 0.62). The DC1100 can be used as a reasonable indicator of respirable mass concentrations within a CAFO and may have broader applicability to other agricultural and industrial settings.

  17. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    SciTech Connect

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  18. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    SciTech Connect

    Ludvigson, Laura D.

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  19. Identification of characteristic mass spectrometric markers for primary biological aerosol particles and comparison with field data from submicron pristine aerosol particles

    NASA Astrophysics Data System (ADS)

    Freutel, F.; Schneider, J.; Zorn, S. R.; Drewnick, F.; Borrmann, S.; Hoffmann, T.; Martin, S. T.

    2009-04-01

    The contribution of primary biological aerosol (PBA) to the total aerosol particle concentration is estimated to range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that PBA is a major source of particles in the supermicron range, and is also an important fraction of the submicron aerosol. PBA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. For this reason we have performed mass spectrometric laboratory measurements (Aerodyne C-ToF and W-ToF AMS, single particle laser ablation instrument SPLAT) on pure submicron aerosol particles containing typical PBA compounds in order to identify typical mass spectral patterns of these compounds and to explain the observed fragmentation patterns on the basis of molecular structures. These laboratory data were compared to submicron particle mass spectra obtained during AMAZE-08 (Amazonian Aerosol CharacteriZation Experiment, Brazil, February/March 2008). The results indicate that characteristic m/z ratios for carbohydrates (e.g., glucose, saccharose, levoglucosan, mannitol) can be identified, for example m/z = 60(C2H4O2+) or m/z = 61(C2H5O2+). Certain characteristic peaks for amino acids were also identified in the laboratory experiments. In the field data from AMAZE-08, these characteristic peaks for carbohydrates and amino acids were found, and their contribution to the total organic mass was estimated to about 5%. Fragment ions from peptides and small proteins were also identified in laboratory experiments. Larger proteins, however, seem to become oxidized to CO2+ to a large extend in the vaporizing process of the AMS. Thus, detection of proteins in atmospheric aerosol particles with the AMS appears to be difficult.

  20. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    PubMed

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  1. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  2. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  3. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry.

    PubMed

    Parkhomchuk, E V; Gulevich, D G; Taratayko, A I; Baklanov, A M; Selivanova, A V; Trubitsyna, T A; Voronova, I V; Kalinkin, P N; Okunev, A G; Rastigeev, S A; Reznikov, V A; Semeykina, V S; Sashkina, K A; Parkhomchuk, V V

    2016-09-01

    Accelerator mass spectrometry (AMS) was shown to be applicable for studying the penetration of organic aerosols, inhaled by laboratory mice at ultra-low concentration ca. 10(3) cm(-3). We synthesized polystyrene (PS) beads, composed of radiocarbon-labeled styrene, for testing them as model organic aerosols. As a source of radiocarbon we used methyl alcohol with radioactivity. Radiolabeled polystyrene beads were obtained by emulsifier-free emulsion polymerization of synthesized (14)C-styrene initiated by K2S2O8 in aqueous media. Aerosol particles were produced by pneumatic spraying of diluted (14)C-PS latex. Mice inhaled (14)C-PS aerosol consisting of the mix of 10(3) 225-nm particles per 1 cm(3) and 5·10(3) 25-nm particles per 1 cm(3) for 30 min every day during five days. Several millions of 225-nm particles deposited in the lungs and slowly excreted from them during two weeks of postexposure. Penetration of particles matter was also observed for liver, kidneys and brain, but not for a heart. PMID:27281540

  4. Ambient Observations of Organic Nitrogen Compounds in Submicrometer Aerosols in New York Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Ge, X.; Xu, J.; Sun, Y.; Zhang, Q.

    2015-12-01

    Organic nitrogen (ON) compounds, which include amines, nitriles, organic nitrates, amides, and N-containing aromatic heterocycles, are an important class of compounds ubiquitously detected in atmospheric particles and fog and cloud droplets. Previous studies indicate that these compounds can make up a significant fraction (20-80%) of the total nitrogen (N) content in atmospheric condensed phases and play important roles in new particle formation and growth and affecting the optical and hygroscopicity of aerosols. In this study, we report the observation of ON compounds in submicrometer particles (PM1) at two locations in New York based on measurements using Aerodyne high-resolution time-of-flight mass spectrometer (HR-ToF-AMS). One study was conducted as part of the US Department of Energy funded Aerosol Lifecyle - Intensive Operation Period (ALC-IOP) campaign at Brookhaven National Lab (BNL, 40.871˚N, 72.89˚W) in summer, 2011 and the other was conducted at the Queen's College (QC) in New York City (NYC) in summer, 2009. We observed a notable amount of N-containing organic fragment ions, CxHyNp+ and CxHyOzNp+, in the AMS spectra of organic aerosols at both locations and found that they were mainly associated with amino functional groups. Compared with results from lab experiments, the C3H8N+ at m/z = 58 was primarily attributed to trimethylamine. In addition, a significant amount of organonitrates was observed at BNL. Positive matrix factorization (PMF) analysis of the high resolution mass spectra (HRMS) of organic aerosols identified a unique nitrogen-enriched OA (NOA) factor with elevated nitrogen-to-carbon (N/C) at both BNL and QC. Analysis of the size distributions, volatility profiles, and correlations with external tracer indicates that acid-base reactions of amino compounds with sulfate and acidic gas were mainly responsible for the formation of amine salts. Photochemical production was also observed to play a role in the formation of NOA. Bivariate polar

  5. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  6. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    NASA Technical Reports Server (NTRS)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  7. Concentration effects and ion properties controlling the fractionation of halides during aerosol formation.

    PubMed

    Guzman, Marcelo I; Athalye, Richa R; Rodriguez, Jose M

    2012-06-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO(2), NaNO(3), NaClO(4), and NaIO(4). The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f(X(-))) and their correlation with ion properties. Although no correlation exists between f(X(-)) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(X(-)), dehydration free-energy ΔG(dehyd), and polarizability α, follows the order: R(X(-))(-2) > R(X(-))(-1) > R(X(-)) > ΔG(dehyd) > α. The same pure physical process is observed in H(2)O and D(2)O. The factor f(X(-)) does not change with pH (6.8-8.6), counterion (Li(+), Na(+), K(+), and Cs(+)) substitution effects, or solvent polarity changes in methanol- and ethanol-water mixtures (0 ≤ x(H(2)O) ≤ 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I(-) on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I(-) < Br(-) < Cl(-) over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  8. Mass Analysis of Charged Aerosol Particles During the MASS/ECOMA Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S.; Horanyi, M.; Sternovsky, Z.

    2008-12-01

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument was launched on two sounding rockets in August 2007 from Andoya, Norway to find the masses of charged aerosol particles in the polar mesosphere in NLC/PMSE conditions (3 August) and PMSE conditions alone (6 August). We compare and contrast the four data sets from the uplegs and downlegs. The MASS instrument collected ions, cluster ions, and charged nanometer-sized particles on four pairs of electrically-biased graphite plates that collect positive and negative particles separately. Electron collection was prevented by the negative potential on the rocket body. For the 3 August upleg, the data show charged particle collection on all channels with number densities of order several thousand per cubic centimeter in the four size ranges < 0.5 nm, 0.5-1 nm, 1-2 nm, and > 3 nm. The occurrence of positively charged aerosol particles in the smallest sizes suggests positive ions as the nucleation sites because the smallest particles have negligible probability of charging by photoionization. The signals were smaller on the 3 August downleg as a consequence of the spatial variability of the cloud. For the 6 August upleg into PMSE alone, only smaller particles (< 2 nm) were detected and these were both positive and negative with number densities of several thousand per cubic centimeter. On the downleg, 1-2 nm negatively charged particles were detected, but there were no positive particles in this mass range.

  9. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  10. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  11. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Godoi, Ricardo H. M.; Connors, Sarah; Levine, James G.; Archibald, Alex T.; Godoi, Ana F. L.; Paralovo, Sarah L.; Barbosa, Cybelli G. G.; Souza, Rodrigo A. F.; Manzi, Antonio O.; Seco, Roger; Sjostedt, Steve; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Smith, James; Martin, Scot T.; Kalberer, Markus

    2016-09-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

  12. Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation

    NASA Astrophysics Data System (ADS)

    Chirico, Roberto; Prevot, Andre S. H.; DeCarlo, Peter F.; Heringa, Maarten F.; Richter, Rene; Weingartner, Ernest; Baltensperger, Urs

    2011-04-01

    In this study we present measurements of gas and aerosol phase composition for a mixed vehicle fleet in the Gubrist tunnel (Switzerland) in June 2008. PM 1 composition measurements were made with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) and a Multi Angle Absorption Photometer (MAAP). Gas-phase measurements of CO, CO 2, NO x and total hydrocarbons (THC) were performed with standard instrumentation. Weekdays had a characteristic diurnal pattern with 2 peaks in concentrations for all traffic related species corresponding to high vehicle density (˜300 ± 30 vehicles per 5 min) in the morning rush hour between 06:00 and 09:00 and in the afternoon rush hours from approximately 15:30 to 18:30. The emission factors (EF) of OA were heavily influenced by the OA mass loading. To exclude this partitioning effect, only organic aerosol mass concentrations from 60 μg m -3 to 90 μg m -3 were considered and for these conditions the EF(OA) value for HDV was 33.7 ± 2.3 mg km -1 for a temperature inside the tunnel of 20-25 °C. This value is not directly applicable to ambient conditions because it is derived from OA mass concentrations that are roughly a factor of 10 higher than typical ambient concentrations. An even higher EF(OA) HDV value of 47.4 ± 1.6 mg km -1 was obtained when the linear fit was applied to all data points including OA concentrations up to 120 μg m -3. Similar to the increasing EF, the OA/BC ratio in the tunnel was also affected by the organic loading and it increased by a factor of ˜3 over the OA range 10-120 μg m -3. This means that also the OA emission factors at ambient concentrations of around 5-10 μg m -3 would be 2-3 times lower than the emission factor given above. For OA concentrations lower than 40 μg m -3 the OA/BC mass ratio was below 1, while at an OA concentration of 100-120 μg m -3 the OA/BC ratio was ˜1.5. The AMS mass spectra (MS) acquired in the tunnel were highly correlated with the primary organic aerosol

  13. Concentrations and sources of organic carbon aerosols in the free troposphere over North America

    NASA Astrophysics Data System (ADS)

    Heald, Colette L.; Jacob, Daniel J.; Turquety, SolèNe; Hudman, Rynda C.; Weber, Rodney J.; Sullivan, Amy P.; Peltier, Richard E.; Atlas, Eliot L.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John S.; Neuman, J. Andrew; Flocke, Frank M.; Seinfeld, John H.

    2006-12-01

    Aircraft measurements of water-soluble organic carbon (WSOC) aerosol over NE North America during summer 2004 (ITCT-2K4) are simulated with a global chemical transport model (GEOS-Chem) to test our understanding of the sources of organic carbon (OC) aerosol in the free troposphere (FT). Elevated concentrations were observed in plumes from boreal fires in Alaska and Canada. WSOC aerosol concentrations outside of these plumes average 0.9 ± 0.9 μg C m-3 in the FT (2-6 km). The corresponding model value is 0.7 ± 0.6 μg C m-3, including 42% from biomass burning, 36% from biogenic secondary organic aerosol (SOA), and 22% from anthropogenic emissions. Previous OC aerosol observations over the NW Pacific in spring 2001 (ACE-Asia) averaged 3.3 ± 2.8 μg C m-3 in the FT, compared to a model value of 0.3 ± 0.3 μg C m-3. WSOC aerosol concentrations in the boundary layer (BL) during ITCT-2K4 are consistent with OC aerosol observed at the IMPROVE surface network. The model is low in the boundary layer by 30%, which we attribute to secondary formation at a rate comparable to primary anthropogenic emission. Observed WSOC aerosol concentrations decrease by a factor of 2 from the BL to the FT, as compared to a factor of 10 decrease for sulfate, indicating that most of the WSOC aerosol in the FT originates in situ. Despite reproducing mean observed WSOC concentrations in the FT to within 25%, the model cannot account for the variance in the observations (R = 0.21). Covariance analysis of FT WSOC aerosol with other measured chemical variables suggests an aqueous-phase mechanism for SOA generation involving biogenic precursors.

  14. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  15. Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station

    NASA Astrophysics Data System (ADS)

    Bindu, G.; Nair, Prabha R.; Aryasree, S.; Hegde, Prashant; Jacob, Salu

    2016-02-01

    Aerosol sampling was carried out at four locations in and around Cochin (9°58‧ N, 76°17‧ E), an urban area, located on the southwest coast of India. The gravimetric estimates of aerosol mass loading showed wide range from 78 μg m-3 to >450 μg m-3, occasionally reaching values >500 μg m-3, associated with regional source characteristics. Most of the values were above the air quality standard. Both boundary layer and synoptic scale airflow pattern play role in the temporal features in aerosol mass loading and chemical composition. Chemical analysis of the aerosol samples were done for anionic species viz; F-, Cl-, Br-, NO2-,   NO3-,   PO43-,   SO42- and metallic/cationic species viz; Na, Ca, K, Mg, NH4+, Fe, Al, Cu, Mg, Pb, etc using Ion Chromatography, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES). At all the locations, extremely high mass concentration of SO42- was observed with the mean value of 13±6.4 μg m-3 indicating the strong anthropogenic influence. Statistical analysis of the chemical composition data was carried out and the principal factors presented. Seasonal variation of these chemical species along with their percentage contributions and regional variations were also examined. Increase in level of Na in aerosol samples indicated the influence of monsoonal activity. Most of the species showed mass concentrations well above those measured over another coastal site Thiruvananthapuram (8°29‧ N, 76°57‧ E) situated ~220 km south of Cochin revealing the highly localized aerosol features.

  16. Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry (AMS)

    SciTech Connect

    Johnson, Kirsten S; Laskin, Alexander; Jimenez, Jose L; Shutthanandan, V; Molina, Luisa T; Salcedo, D; Dzepina, K; Molina, Mario J

    2008-09-01

    A multifaceted approach to atmospheric aerosol analysis is often desirable in field studies where an understanding of technical comparability among different measurement techniques is essential. Herein we report quantitative intercomparisons of Particle-Induced X-ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA), performed off-line under vacuum, with analysis by Aerosol Mass Spectrometry (AMS) carried out in real-time during the MCMA-2003 Field Campaign in the Mexico City Metropolitan Area. Good agreement was observed for mass concentrations of PIXE-measured sulfur (assuming it was dominated by SO42-) and AMS-measured sulfate during the most of the campaign. PESA-measured hydrogen mass was separated into sulfate H and organic H mass fractions assuming the only major contributions were (NH4)2SO4 and organic compounds. Comparison of the organic H mass with AMS organic aerosol measurements indicates that about 75% of the mass of these species evaporated under vacuum. However ~25% of the organics does remain under vacuum, which is only possible with low vapor pressure compounds, and which supports the presence of high molecular weight and/or highly oxidized organics consistent with atmospheric aging. Approximately 10% of the chloride detected by AMS was measured by PIXE, possibly in the form of metal-chloride complexes, while the majority of Cl was likely present as more volatile species including NH4Cl. This is the first comparison of PIXE/PESA and AMS, and to our knowledge also the first report of PESA hydrogen measurements for urban organic aerosols.

  17. Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Renjian; Huan, Ning; Zhou, Xiuji; Zhang, Yangmei; Zhou, Huaigang; Zhang, Leiming

    2012-12-01

    In the summer and winter of 2004 and 2005, size-segregated atmospheric aerosols were sampled with modified Andersen KA200 Multi-stage impactor at two regional background stations in the eastern China, the Shangdianzi station (SDZ) in the suburb of Beijing and the Lin'An station (LA) in the Yangtze river delta region, both are WMO Global Atmospheric Watch station, which represent the regional background of air pollutions of the two rapid developing economical zone of China, the Yangtze River Delta region (YRD) and Beijing-Tianjin region. The aerosol mass size distributions, ionic compositions, organic and elemental carbon (OC and EC), and elemental components were analyzed. The mass concentrations for TSP (total suspend particle), PM11 (aerodynamic diameter less than 11 μm), and PM2.1 (aerodynamic diameter less than 2.1 μm) at both sites showed obviously different between the winter and summer, with higher mass concentrations measured in the winter time. All seasonal mean mass concentrations of PM2.1 accounted for over 50% of PM11 at both sites. The aerosol mass closure study indicated that the total mass concentration reconstructed from the aerosol chemical composition agreed well with the measured gravimetric mass at the two stations. The fine aerosol particles at the two stations were composed mainly of sulfate and organic matter. In the summer, more than half of the PM2.1 mass was sulfate, suggesting a dominant contribution of secondary aerosol to the fine particles in these two regions. In the winter, the contribution of nitrate to the fine particles increased significantly due to the lower volatile losses under the cold weather. The proportions of soil type components in the PM2.1 showed similar magnitude in the winter and summer at Lin'An station but significant seasonal differences with higher fractions in the winter at Shangdianzi station. On average EC accounted for about 2%-6% of the fine particle mass (PM2.1) at both sites with proportionally lower EC

  18. Simultaneous In-Situ Measurement of Local Particle Size, Particle Concentration, and Velocity of Aerosols.

    PubMed

    Weber; Schweiger

    1999-02-01

    Photon correlation spectroscopy has been applied to the characterization of (quasi-)monodisperse aerosols. The experiments were carried out with an experimental standard pin hole setup on laminar flowing aerosols of the submicrometer particle size range. It is shown that beside local mean particle size and local aerosol velocity simultaneously the local particle number concentration may be obtained from a single measured autocorrelation function. The proposed procedure does not require calibration. It is pointed out that measurement conditions can be adapted to the properties of the aerosol to be characterized, thus allowing characterization of aerosols over a wide parameter range, e.g., it is not restricted to the case of low particle concentration. The experimental results are compared to data from literature, data from reference measurements and data from a theoretical model, respectively. The method can also be usefull for characterization of other fluid-particle systems as hydrosols. Copyright 1999 Academic Press.

  19. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  20. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  1. Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols

    NASA Astrophysics Data System (ADS)

    Hitzenberger, R.; Berner, A.; Giebl, H.; Kromp, R.; Larson, S. M.; Rouc, A.; Koch, A.; Marischka, S.; Puxbaum, H.

    During four intensive measurement campaigns (two on Mt. Sonnblick, European background aerosol, and two in Vienna, urban aerosol), cloud condensation nuclei (CCN) were measured at supersaturations of 0.5%. Impactor measurements of the mass size distribution in the size range 0.1-10 μm were performed and later analyzed for Cl -, NO -3, SO 2-4, Na +, NH +4, K +, Ca 2+ and Mg 2+ by ion chromatography, for total carbon (TC) using a combustion method, and for black carbon (BC) by an optical method (integrating sphere). Organic carbon (OC) was defined as the difference between TC (minus carbonate carbon) and BC. At all sites, the mass fraction of BC in the submicron aerosol was comparable (4-5%). CCN concentrations on Mt. Sonnblick were found to be 10-30% of those measured in Vienna, although high Mt. Sonnblick concentrations were comparable to low Vienna concentrations (around 800 cm -3). The contribution of organic material was estimated from the mass concentrations of the chemical species sampled on the impactor stage with the lowest cut point (0.1-0.215 μm aerodynamic equivalent diameter). On Mt. Sonnblick, TC material contributed 11% to the total mass in fall 1995, and 67% in summer 1996, while the OC fraction was 6 and 61%. The combined electrolytes and mineral material contributed 18 and 16% in fall and summer. During the Vienna spring campaign, the contributions of OC and electrolytes to the total mass concentration in this size range were 48 and 36%, respectively.

  2. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  3. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Ge, Xinlei; Chen, Yanfang; Shen, Yafei; Zhang, Qi; Sun, Yele; Xu, Jianzhong; Ge, Shun; Yu, Huan; Chen, Mindong

    2016-07-01

    In this work, the Aerodyne soot particle - aerosol mass spectrometer (SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD) of China, for online characterization of the submicron aerosols (PM1). The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC) simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics). The average PM1 concentration was found to be 28.2 µg m-3, with organics (45 %) as the most abundant component, following by sulfate (19.3 %), nitrate (13.6 %), ammonium (11.1 %), rBC (9.7 %), and chloride (1.3 %). These PM1 species together can reconstruct ˜ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (< 100 nm vacuum aerodynamic diameter) were dominated by organics and rBC, while large particles had significant contributions from secondary inorganic species. Source apportionment of organic aerosols (OA) yielded four OA subcomponents, including hydrocarbon-like OA (HOA), cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5 %), but primary organic aerosol (POA, equal to the sum of HOA and COA) can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand, in contrast to other species

  4. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    SciTech Connect

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  5. Lead aerosol baseline: concentration at White Mountain and Laguna Mountain, California.

    PubMed

    Chow, T J; Earl, J L; Snyder, C B

    1972-10-27

    The lead aerosol concentration at White Mountain, California, may be regarded as the present baseline concentration for atmospheric lead for the continental United States. The seasonal trend of lead aerosols at White Mountain and Laguna Mountain shows a summer maximum and a winter minimum. This is because both mountain sampling sites are well above the thermal (radiation) inversion, which normally occurs in the winter, trapping pollutants below the inversion boundary.

  6. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  7. Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass

    PubMed Central

    Froyd, K. D.; Murphy, S. M.; Murphy, D. M.; de Gouw, J. A.; Eddingsaas, N. C.; Wennberg, P. O.

    2010-01-01

    Recent laboratory studies have demonstrated that isoprene oxidation products can partition to atmospheric aerosols by reacting with condensed phase sulfuric acid, forming low-volatility organosulfate compounds. We have identified organosulfate compounds in free tropospheric aerosols by single particle mass spectrometry during several airborne field campaigns. One of these organosulfates is identified as the sulfate ester of IEPOX, a second generation oxidation product of isoprene. The patterns of IEPOX sulfate ester in ambient data generally followed the aerosol acidity and NOx dependence established by laboratory studies. Detection of the IEPOX sulfate ester was most sensitive using reduced ionization laser power, when it was observed in up to 80% of particles in the tropical free troposphere. Based on laboratory mass calibrations, IEPOX added > 0.4% to tropospheric aerosol mass in the remote tropics and up to 20% in regions downwind of isoprene sources. In the southeastern United States, when acidic aerosol was exposed to fresh isoprene emissions, accumulation of IEPOX increased aerosol mass by up to 3%. The IEPOX sulfate ester is therefore one of the most abundant single organic compounds measured in atmospheric aerosol. Our data show that acidity-dependent IEPOX uptake is a mechanism by which anthropogenic SO2 and marine dimethyl sulfide emissions generate secondary biogenic aerosol mass throughout the troposphere. PMID:21098310

  8. Middle East measurements of concentration and size distribution of aerosol particles for coastal zones

    NASA Astrophysics Data System (ADS)

    Bendersky, Sergey; Kopeika, Norman S.; Blaunstein, Natan S.

    2005-10-01

    Recently, an extension of the Navy Aerosol Model (NAM) was proposed based on analysis of an extensive series of measurements at the Irish Atlantic Coast and at the French Mediterranean Coast. We confirm the relevance of that work for the distant eastern Meditteranean and extend several coefficients of that coastal model, proposed by Piazzola et al. for the Meditteranean Coast (a form of the Navy Aerosol Model), to midland Middle East coastal environments. This analysis is based on data collected at three different Middle East coastal areas: the Negev Desert (Eilat) Red Sea Coast, the Sea of Galilee (Tiberias) Coast, and the Mediterranean (Haifa) Coast. Aerosol size distributions are compared with those obtained through measurements carried out over the Atlantic, Pacific, and Indian Ocean Coasts, and Mediterranean, and Baltic Seas Coasts. An analysis of these different results allows better understanding of the similarities and differences between different coastal lake, sea, and open ocean zones. It is shown that in the coastal regions in Israel, compared to open ocean and other sea zones, larger differences in aerosol particle concentration are observed. The aerosol particle concentrations and their dependences on wind speed for these coastal zones are analyzed and discussed. We propose to classify the aerosol distribution models to either: 1. a coastal model with marine aerosol domination; 2. a coastal model with continental aerosol domination (referred to as midland coast in this work); or 3. a coastal model with balanced marine and continental conditions.

  9. Atmospheric aerosols: increased concentrations during the last decade.

    PubMed

    Peterson, J T; Bryson, R A

    1968-10-01

    Atmospheric turbidity values calculated each month from solar radiation observations at MaunaLoa Observatory, Hawaii, show an increase of aerosols from 1958 through the present. These data indicate that either the effects of the Mount Agung eruption are still being observed or a longer-term trend of increasing turbidity is in evidence. PMID:4877369

  10. Characterization of ice-nucleating bacteria using on-line electron impact ionization aerosol mass spectrometry.

    PubMed

    Wolf, R; Slowik, J G; Schaupp, C; Amato, P; Saathoff, H; Möhler, O; Prévôt, A S H; Baltensperger, U

    2015-04-01

    The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions. PMID:26149110

  11. Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Dall'Osto, M.; Olatunbosun, O. A.; Harrison, Roy M.

    2016-03-01

    Brake dust particles were characterised using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) operated using two inlet configurations, namely the aerodynamic lens (AFL) inlet and countersunk nozzle inlet. Laboratory studies show that dust particles are characterised by mass spectra containing ions deriving from Fe and Ba and although highly correlated to each other, the Fe and Ba signals were mostly detected using the nozzle inlet with relatively high laser desorption energies. When using the AFL, only [56Fe] and [-88FeO2] ions were observed in brake dust spectra generated using lower laser desorption pulse energies, and only above 0.75 mJ was the [138Ba] ion detected. When used with the preferred nozzle inlet configuration, the [-88FeO2] peak was considered to be the more reliable tracer peak, because it is not present in other types of dust (mineral, tyre, Saharan etc). As shown by the comparison with ambient data from a number of locations, the aerodynamic lens is not as efficient in detecting brake wear particles, with less than 1% of sampled particles attributed to brake wear. Five field campaigns within Birmingham (background, roadside (3) and road tunnel) used the nozzle inlet and showed that dust particles (crustal and road) accounted for between 3.1 and 65.9% of the particles detected, with the remaining particles being made up from varying percentages of other constituents.

  12. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  13. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm‑1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  14. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm-1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  15. Aerosol matrix-assisted laser desorption ionization for liquid chromatography/time-of-flight mass spectrometry

    SciTech Connect

    Murray, K.K.; Lewis, T.M.; Beeson, M.D.; Russell, D.H. )

    1994-05-15

    We report the application of aerosol matrix-assisted laser desorption ionization (MALDI) to liquid chromatography/mass spectrometry (LC/MS). The aerosol MALDI experiment uses aerosol liquid introduction in conjunction with pulsed UV laser ionization to form ions from large biomolecules in solution. Mass analysis is achieved in a time-of-flight mass spectrometer. In the LC/MALDI-MS experiment, the matrix solution is combined with the column effluent in a mixing tee, LC/MALDI-MS is demonstrated for the separation of bradykinin, gramicidin S, and myoglobin. 32 refs., 8 figs., 1 tab.

  16. Potential source identification for aerosol concentrations over a site in Northwestern India

    NASA Astrophysics Data System (ADS)

    Payra, Swagata; Kumar, Pramod; Verma, Sunita; Prakash, Divya; Soni, Manish

    2016-03-01

    The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 μm) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 μm). Particles smaller than 0.8 μm (at aerodynamic size) constitute ~ 99% of all particles in winter and ~ 90% of particles in summer season. However, particles greater than 2 μm contribute ~ 3% and ~ 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from Thar Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 μm is the key contributor in winter for higher ANC.

  17. [Characteristics of Number Concentration Size Distributions of Aerosols Under Processes in Beijing].

    PubMed

    Su, Jie; Zhao, Pu-sheng; Chen, Yi-na

    2016-04-15

    The aerosol number concentration size distributions were measured by a Wide-Range Particle Spectrometer (WPS-1000XP) at an urban site of Beijing from 2012 to 2014; and the characteristics of the size distributions in different seasons and weather conditions were discussed. The results showed that the daily average number concentration of Aitken mode aerosols was highest in the spring and lowest in the autumn; the daily average number concentration of accumulation mode aerosols was bigher in the spring and winter, while lowest in summer; and the average concentration of coarse mode was highest during the winter. The Aitken mode particles had the most significant diurnal variations resulted from the traffic sources and the summer photochemical reactions. In the spring, autumn and winter, the number concentrations of accumulation mode of the nighttime was higher than that of the daytime. The coarse mode particles did not have obvious diurnal variation. During the heavy pollution process, the accumulation mode aerosols played a decisive role in PM₂.₅ concentrations and was usually removed by the north wind. The precipitation could effectively eliminate the coarse mode particles, but it bad no obvious effect on the accumulation mode particles under small speed wind and zero speed wind. During the dust process, the concentrations of coarse mode particles increased significantly, while the accumulation mode aerosol concentration was obviously decreased. PMID:27548939

  18. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  19. Aerosol matrix-assisted laser desorption ionization. Effects of analyte concentration and matrix-to-analyte ratio

    SciTech Connect

    Beeson, M.D.; Murray, K.K.; Russell, D.H.

    1995-07-01

    We have recently developed an aerosol-liquid introduction interface for matrix-assisted laser desorption ionization (MALDI) mass spectrometry. In this study, we examine the effect of matrix-to-analyte ratio and analyte concentration on analyte ion yield. These studies were performed using bradykinin, gramicidin S, bovine insulin, and myoglobin as analytes and {alpha}-cyano-4-hydroxycinnamic acid and 4-nitroaniline as matrices. The optimum matrix-to-analyte molar ratio for aerosol MALDI was determined to be 10-100:1, which is lower than that typically used for conventional surface MALDI (100-10 000:1). The ion yield was found to be a nonlinear function of analyte concentration. Possible explanations for these observations are discussed. 43 refs., 3 figs., 1 tab.

  20. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 μg m -2) or no traffic conditions (3.73 × 10 5 μg m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

  1. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2012-08-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial

  2. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment

    SciTech Connect

    Aiken, A.C.; Wang, J.; Salcedo, D.; Cubison, M. J.; Huffman, J. A.; DeCarlo, P. F.; Ulbrich, I. M.; Docherty, K. S.; Sueper, D.; Kimmel, J. R.; Worsnop, D. R.; Trimborn, A.; Northway, M.; Stone, E. A.; Schauer, J. J.; Volkamer, R. M.; Fortner, E.; de Foy, B.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Gaffney, J.; Marley, N. A.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Jimenez, J. L.

    2009-09-01

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previous observations. OA apportionment results from PMF-AMS are compared to the PM{sub 2.5} chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similar magnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM{sub 2.5} emissions by a factor of {approx}4, and it is {approx}16 times lower than afternoon concentrations when secondary species are included. Additionally, the forest fire contribution is at least an order-of-magnitude larger than in the inventory.

  3. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer

    Loh, N. Duane

    2012-06-20

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  4. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  5. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-04-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  6. Response of direct thoron progeny sensors (DTPS) to various aerosol concentrations and ventilation rates

    NASA Astrophysics Data System (ADS)

    Mishra, Rosaline; Prajith, R.; Sapra, B. K.; Mayya, Y. S.

    2010-03-01

    Direct thoron/radon progeny sensors (DTPS/DRPS) are absorber mounted LR115 type track detectors for measuring the time-averaged progeny concentrations. Through a large number of experiments, the sensitivity factor of these sensors in natural indoor environment was found to be nearly constant at a value of 0.94 Tr cm -2 d -1/EETC (Bq m -3) for DTPS and 0.09 Tr cm -2 d -1/EERC (Bq m -3) for DRPS. The constancy of the sensitivity factor in the natural environments is attributed primarily to the presence of large aerosol concentrations and relatively low ventilation rates in time-averaged measurements. However, detailed model calculations suggest that in extreme scenario i.e. at high ventilation rate and low aerosol concentrations, the sensitivity factor can be quite different. Such situations are likely to occur in occupational plant areas. Therefore systematic chamber experiments were carried out to using DTPS, to estimate the variability of the sensitivity factor in these extreme conditions. In the first set, the sensitivity factor of DTPS was measured in 6 different aerosol concentrations at zero ventilation rates. The sensitivity factor showed a steep decrease as the aerosol concentration increased to about 8554 particle cm -3, after which it remained almost constant with increase in aerosol concentration. The second set of experiments was conducted at ˜5000 particles cm -3 at three different ventilation rates. The sensitivity factor was found to increase with increase in ventilation rate. The results are further discussed.

  7. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  8. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking. PMID:26730457

  9. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  10. Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with a scanning mobility particle sizer (SMPS) and a multi-angle absorption photometer (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of submicron particulate matter (PM1) in Lanzhou, northwest China, during 11 July-7 August 2012. The average (PM1 mass concentration including non-refractory (PM1 (NR-(PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105 μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. Organic aerosol (OA) on average consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution organic mass spectra identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns, both with peak at ~ 07:00-11:00 (BJT: UTC +8), corresponding to the morning rush hours, while cooking-emission related OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ~ 07:00 and 15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak between ~ 08:00-13:00. The later morning and early afternoon maximum in the diurnal profiles of secondary aerosol species was likely caused by downward mixing of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during nighttime. The mass spectrum of SV-OOA was

  11. Dependence of Heterogeneous OH Kinetics with Biomass Burning Aerosol Proxies on Oxidant Concentration and Relative Humidity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Knopf, D. A.

    2013-12-01

    Chemical transformations of aerosol particles by heterogeneous reactions with trace gases such as OH radicals can influence particle physicochemical properties and lifetime, affect cloud formation, light scattering, and human health. Furthermore, OH oxidation can result in degradation of particle mass by volatilization reactions, altering the budget of volatile organic compounds (VOCs). However, the reactive uptake coefficient (γ) and particle oxidation degree can vary depending on several factors including oxidant concentration and relative humidity (RH). While RH can influence the extent of dissociation/ionization, it can also affect particle phase and thus oxidant diffusivity. Only one study so far has investigated the effect of RH on the rate of OH uptake to organic surfaces; however, the underlying processes affecting OH reactivity with organic aerosol under humidified conditions still remains elusive. Here, we determine the effect of RH on OH reactivity with laboratory-generated biomass burning aerosol (BBA) surrogate particles: levoglucosan and 4-methyl-5-nitrocatechol. The effect of OH concentration on γ for three common BBA molecular markers (levoglucosan, abietic acid, and nitroguaiacol) under dry conditions was investigated from [OH]≈107-1011 molecule cm-3, covering both [OH] in biomass burning plumes and [OH] commonly used in particle aging studies. Furthermore, key VOC reaction products and their production pathways resulting from BBA volatilization by OH were identified. OH radicals are produced using a microwave induced plasma (MIP) of H2 in He or Ar followed by reaction with O2, or by photolysis of O3 in the presence of H2O. A cylindrical rotating wall flow-tube reactor and fast-flow aerosol flow reactor are used for conducting kinetic studies. OH is detected using a Chemical Ionization Mass Spectrometer (CIMS) and a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) is employed for VOC analysis. γ decreases from 0.2-0.5 at

  12. Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Zhou, Shengzhen; Wang, Xinfeng; Xu, Zheng; Yuan, Chao; Yu, Yangchun; Zhang, Qingzhu; Wang, Wenxing

    2011-05-01

    To evaluate the wintertime regional brown haze in northern China, trace gases and aerosols were measured at an urban site between 9 and 20 November 2009. Ion chromatography and transmission electron microscopy (TEM) were used to investigate soluble ions in PM2.5 and the mixing state of individual particles. The contrasts between clear and hazy days were examined in detail. Concentrations of the primary gases including NO (55.62 ppbv), NO2 (54.86 ppbv), SO2 (83.03 ppbv), and CO (2.07 ppmv) on hazy days were 2 to 6 times higher than those on clear days. In contrast, concentrations of O3 remained low (5.71 ppbv) on hazy days. Mass concentrations of PM2.5 (135.90 μg m-3) and BC (7.85 μg m-3) were 3 times higher on hazy days than on clear days. Based on the estimations from TEM analysis, fractions of both ammoniated sulfate (AS)-soot (20%) and AS-soot/organic matter/fly ash (20%) were larger on hazy days than on clear days (13% and 12%), implying that coagulation is an important mixing process in the polluted air. The SO2 emissions from coal combustion for power plants, industrial activities, and household heating led to high concentrations. Also, high concentrations of secondary sulfates significantly formed in the haze. Therefore, high concentrations of acidic gases contributed to the increased mass and number of secondary aerosols. Our study indicates that metal-catalyzed oxidation in the aqueous phase is a major pathway of sulfate formation. The mixtures of aerosol particles, together with MODIS images, suggest that the hazes covered not only the industrial cities, but extended into the neighboring rural regions.

  13. [Concentration and Particle Size Distribution of Microbiological Aerosol During Haze Days in Beijing].

    PubMed

    Hu, Ling-fei; Zhang, Ke; Wang, Hong-bao; Li, Na; Wang, Jie; Yang, Wen-hui; Yin, Zhe; Jiao, Zhou-guang; Wen, Zhan-bo; Li, Jin-song

    2015-09-01

    In this study, we evaluated the bacterial, fungal aerosol concentration, and particle size distribution using microbiological aerosol sampler, and analyzed the particles count concentration of PM1.0, PM2.5, PM5.0 and PM10.0 using aerodynamic particle sizer during clear and haze days in Beijing during Jan 8th, 2013 to Feb 4th, 2013. The concentration of bacterial, fungal aerosol, air particulate matter and aerosol distribution were compared between haze days and clear days. Our results indicated that the proportion of fungal particles smaller than 5 micron, which could deposit in lungs or deeper regions, was much higher than bacterial particles. The biological concentration of bacteria and fungi were higher in clear days than in haze days, and there was no statistic difference of the microbiological aerosol distribution. The concentration of air particulate matter were higher in haze days than in clear days, PM10 was the main particulate matters both in clear days and haze days.

  14. Emission Controls Versus Meteorological Conditions in Determining Aerosol Concentrations in Beijing during the 2008 Olympic Games

    SciTech Connect

    Gao, Yi; Liu, Xiaohong; Zhao, Chun; Zhang, Meigen

    2011-12-12

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on August 8th-24th, 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that emission control strategy should focus on the regional scale instead of the local scale to improve the air quality over Beijing.

  15. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires

    NASA Astrophysics Data System (ADS)

    Okoshi, Rintaro; Rasheed, Abdur; Chen Reddy, Greeshma; McCrowey, Clinton J.; Curtis, Daniel B.

    2014-06-01

    Biomass burning emits large amounts of aerosol particles globally, influencing human health and climate, but the number and size of the particles is highly variable depending on fuel type, burning and meteorological conditions, and secondary reactions in the atmosphere. Ambient measurements of aerosol during wildfire events can therefore improve our understanding of particulate matter produced from biomass burning. In this study, time-resolved sub-micrometer ambient aerosol size and mass distributions of freshly emitted aerosol were measured for three biomass burning wildfire events near Northridge, California, located in the highly populated San Fernando Valley area of Los Angeles. One fire (Marek) was observed during the dry Santa Ana conditions that are typically present during large Southern California wildfires, but two smaller fires (Getty and Camarillo) were observed during the more predominant non-Santa Ana weather conditions. Although the fires were generally small and extinguished quickly, they produced particle number concentrations as high as 50,000 cm-3 and mass concentrations as large as 150 μg cm-3, well above background measurements and among the highest values observed for fires in Southern California. Therefore, small wildfires can have a large impact on air quality if they occur near urban areas. Particle number distributions were lognormal, with peak diameters in the accumulation mode at approximately 100 nm. However, significant Aitken mode and nucleation mode particles were observed in bimodal distributions for one fire. Significant variations in the median diameter were observed over time, as particles generally became smaller as the fires were contained. The results indicate that it is likely that performing mass measurements alone could systematically miss detection of the smaller particles and size measurements may be better suited for studies of ambient biomass burning events. Parameters of representative unimodal and bimodal lognormal

  16. Combining AOT, Angstrom Exponent and PM concentration data, with PSCF model, to distinguish fine and coarse aerosol intrusions in Southern France

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2016-05-01

    In this paper, a cluster analysis of backward air mass trajectories, arriving in Avignon (Southern France), was combined with a Potential Source Contribution Function (PSCF) model on a 0.5° × 0.5° resolution grid, in order to indicate possible aerosol intrusions. A strict triple criterion was constructed from Aerosol Optical Thickness (AOT), Angstrom Exponent (AE), and PM (PM10 and PM2.5) concentration measurements, aiming to distinguish more effectively Episodes of Fine, Coarse and Overall Aerosols (FAE, CAE and OAE respectively). Large fractions of FAE (60.0%) and CAE (40.6%) were strongly attributed to the prevalence of Eastern and South-Southwest (S-SW) airflows respectively, whereas these distinct trajectory clusters also gathered large fractions of OAE (90.2% cumulatively). According to PSCF results, FAE events were strongly associated with the influence of air masses traveling over North Italy and Southern Germany, hence the impact of urban and industrial combustion was emerged. Main sources of coarse aerosols were principally isolated over the Mediterranean, thus the import of sea spray and dust from the Sahara desert is presumed. Satellite AOT observations were used for a more detailed identification of an intense 5-day intrusion of coarse aerosols. Short range slow moving air mass trajectories, were proven to be a clear marker of atmospheric stagnation, based on a wind speed analysis, triggering the accumulation of locally emitted anthropogenic aerosols (mainly PM2.5) and lack of city ventilation.

  17. AGRICULTURAL AMMONIA EMISSIONS AND AMMONIUM CONCENTRATIONS ASSOCIATED WITH AEROSOLS AND PRECIPITATION IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Temporal and spatial variations in ammonia (NH3) emissions and ammonium (NH4+) concentrations associated with aerosols and volume-weighted NH4+ concentration in precipitation are investigated over the period 1990-1998 in the southeast United States (Alabama, Florida, Georgia, Ken...

  18. Trace elements and metal pollution in aerosols at an alpine site, New Zealand: Sources, concentrations and implications

    NASA Astrophysics Data System (ADS)

    Marx, Samuel K.; Lavin, Karen S.; Hageman, Kimberly J.; Kamber, Balz S.; O'Loingsigh, Tadhg; McTainsh, Grant H.

    2014-01-01

    Atmospheric aerosol samples were collected at a remote site in New Zealand's Southern Alps. Collected samples were found to be a mixture of New Zealand and Australian sourced sediment, using their trace element signatures. Aerosol concentrations and the relative contribution of different sources was found to be a function of specific air-mass trajectories influencing the study site, dust entrainment rates in source areas and rainfall. Results show that Australian dust is a major source of particulate matter in New Zealand, particularly in remote alpine locations; however, locally derived dust is also important. Metal pollutants, including Pb, Cu and Sn, were enriched in the samples by approximately 15 times and up to >100 times expected natural concentrations, confirming that metal pollution is a ubiquitous component of the atmosphere, even in relatively remote locations. Moreover, pollutants were highly enriched in otherwise clean air, i.e. during and following rainfall. Additionally, high concentrations of elements naturally enriched in sea water, e.g. Sr, Ba and Rb, were deposited alongside mineral dust, reflecting the oceanic origin of air influencing the site and the role of sea spray in contributing aerosol to the atmosphere. These elements experienced the greatest enrichment during rainfall, implying sea spray and pollution become relatively important during otherwise clean air conditions.

  19. Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer

    EPA Science Inventory

    Aerodyne Aerosol Mass Spectrometers (AMS) are routinely operated with a constant vaporizer temperature (Tvap) of 600oC in order to facilitate quantitative detection of non-refractory submicron (NR-PM1) species. By analogy with other thermal desorption instrument...

  20. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  1. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  2. Mass Measurements of Saharan Dust Aerosols in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Armstrong, R. A.; Jimenez, B.; Detres, Y.

    2003-12-01

    During the summer months, Saharan dust aerosols reach maximum values throughout the Caribbean Region. The respirable fraction of this dust, measured as PM 2.5, has the potential to induce regional health impacts, such as asthma and allergic reactions in sensitive individuals. Surface measurements of dust aerosols were obtained at Fajardo, on the northeastern corner of Puerto Rico, since November 2000. The PM 2.5 and PM 10 size fractions from the filter samples were related to satellite and sunphotometer measurements of aerosol optical depth before, during, and after Saharan dust events. In 2002, PM 2.5 ranged from 2.5 to 18.4 ug/m-3 while PM 10 ranged from 11 to 60 ug/m-3. The PM 2.5 fraction was approximately 25% of the PM 10. Saharan dust aerosols are also responsible for substantial heavy metal deposition in the tropical western Atlantic. In 2001, Iron increase from less than 4 mg/g during the first four months of the year, to a maximum of 24 mg/g in June, with relatively high values from May through September. An AVHRR 4-year climatology of aerosol optical depth for northeastern Puerto Rico shows a well-defined maximum peak during the last week of June and first week of July.

  3. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  4. [A simple testing installation for the production of aerosols with constant bacteria-contaminated concentrations].

    PubMed

    Herbst, M; Lehmhus, H; Oldenburg, B; Orlowski, C; Ohgke, H

    1983-04-01

    A simple experimental set for the production and investigation of bacterially contaminated solid-state aerosols with constant concentration is described. The experimental set consists mainly of a fluidized bed-particle generator within a modified chamber for formaldehyde desinfection. The special conditions for the production of a defined concentration of particles and microorganisms are to be found out empirically. In a first application aerosol-sizing of an Andersen sampler is investigated. The findings of Andersen (1) are confirmed with respect to our experimental conditions.

  5. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  6. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  7. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  8. Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Nah, Theodora; McVay, Renee C.; Zhang, Xuan; Boyd, Christopher M.; Seinfeld, John H.; Ng, Nga L.

    2016-07-01

    Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of vapor wall deposition on SOA mass yields in chamber experiments can be constrained experimentally by increasing the seed aerosol surface area to promote the preferential condensation of SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis. The observations are analyzed using a coupled vapor-particle dynamics model to interpret the roles of gas-particle partitioning (quasi-equilibrium vs. kinetically limited SOA growth) and α-pinene oxidation rate in influencing vapor wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface area within the range of seed surface area concentrations used in this study. This behavior arises when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations for the same initial α-pinene concentration. When the α-pinene oxidation rate increases relative to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent to which vapor wall deposition affects SOA mass yields depends on the particular volatility organic compound system and can be mitigated through the use of excess oxidant concentrations.

  9. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Noh, Young M.; Mueller, Detlef; Shin, Sungkyun

    2016-06-01

    In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section and the number density of quartz molecules, the mass concentration of quartz in the atmosphere can be estimated from the quartz backscatter coefficient. The weight percentage from 40 to 70 % for quartz in the Asian dust was estimated from references. The vertical resolved mass concentration of dust was estimated by quartz mass concentration and weight percentage. We also present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust mass concentration was used as an input parameter for the OPAC calculations. These approaches in the study will be useful for characterizing the quartz dominated in the atmospheric aerosols and estimating vertical resolved mass concentration of dust. It will be especially applicable for optically distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian dust plume. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

  10. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    SciTech Connect

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  11. Single Particle Fluorescence & Mass Spectrometry for the Detection of Biological Aerosols

    SciTech Connect

    Coffee, K; Riot, V; Woods, B; Steele, P; Gard, E E

    2005-04-25

    Biological Aerosol Mass Spectrometry (BAMS) is an emerging technique for the detection of biological aerosols, which is being developed at Lawrence Livermore National Laboratory. The current system uses several orthogonal analytical methods to improve system selectivity, sensitivity and speed in order to maximize its utility as a biological aerosol detection system with extremely low probability of false alarm and high probability of detection. Our approach is to pre-select particles of interest by size and fluorescence prior to mass spectral analysis. The ability to distinguish biological aerosols from background and to discriminate bacterial spores, vegetative cells, viruses and toxins from one another will be shown. Data from particle standards of known chemical composition will be discussed. Analysis of ambient particles will also be presented.

  12. Aerosol Organic Matter-Trace Metal Relationships Revealed by Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wozniak, A. S.; Sleighter, R. L.; Morton, P. L.; Landing, W. M.; Shelley, R. U.; Hatcher, P. G.

    2011-12-01

    Atmospheric delivery of aerosols is important for the biogeochemical cycling of organic matter (OM) and trace elements in marine environments. Aerosols over marine environments can be derived from marine sources or transported from continental regions of variable vegetative cover and anthropogenic influence. These different sources are key determinants of aerosol OM composition, as well as trace metal amounts and characteristics. Dust-influenced aerosols typically contain higher amounts of Fe than anthropogenic-influenced aerosols but have lesser % of soluble Fe (%FeS), believed to be the bioavailable form of Fe for marine phytoplankton. Four samples from the 2008 GEOTRACES intercalibration experiments (Miami, FL, USA) were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and related to both air mass back trajectories and %FeS. Three samples showed aerosol sources from the east consistent with Saharan dust inputs, while the fourth sample was derived in part from air masses to the north, influenced by the North American continent. This North American-influenced sample was collected following the 3 day period with the highest %FeS (1.3-1.7%) of the 11 day intercalibration experiment (mean = 0.4-1.1%). FT-ICR mass spectra showed 795 peaks common to the dust-influenced samples but absent from the North American-influenced sample. These peaks were assigned molecular formulas characterized by CHO and CHON compounds with lower H/C and O/C ratios than the 1257 formulas common to all 4 samples, suggesting that the dust-influenced aerosols carry OM that is less oxygenated and more condensed in structure along with Fe of lesser solubility. Air mass trajectory analyses revealed samples collected during a 2010 cruise in the North Atlantic Ocean to be characterized by European-influenced (anthropogenic), African-influenced (dust), and primarily marine air masses, making them ideal for further exploration of the

  13. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter < 2.5 μm was collected in Mainz, Germany and Beijing, China, respectively. Two pretreatment procedures were applied to extract the organic compounds from the filter samples: One method uses a mixture of acetonitrile and water, the other uses pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  14. What are the driving forces behind the predicted elevated Ammonium-Nitrate Aerosol Concentrations in 2030?

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Koch, D.; Metzger, S.; Unger, N.

    2006-12-01

    The formation of Ammonium - Nitrate Aerosols depends on a number of precursor species, most importantly gaseous ammonia and nitric acid, and on the thermodynamic state of the atmospheric system as it competes for ammonia with Ammonium-Sulfate formation. However, because Ammonium-Nitrate formation is very sensitive to future emission and climate change this paper investigates which of these future changes are responsible for the predicted elevated nitrate concentrations in about 25 years from now. We use the GISS climate model, fully coupled to aerosol and gas phase chemistry modules and the SRES A1B emissions for 2030. Our results show that Ammonium-Nitrate Aerosols would increase globally by 40% compared to 1990 conditions. Nitrate Aerosols increase everywhere but most strongly over China. Looking into the separate processes, physical climate change (e.g. increased Temperature and Humidity) have only a small impact, changes in NOx and SO2 emissions still have week impacts, whereas increased NH3 emissions are the driving force behind future nitrate concentrations. However, the model results are extremely sensitive to heterogeneous processes on mineral dust surfaces. For example Ammonium-Nitrate formation depends strongly on the mixing state of sulfate aerosols, wether the sulfate is externally mixed or attached to mineral dust.

  15. Preferential concentration of certain elements in smaller aerosols emitted from aircraft engines

    NASA Technical Reports Server (NTRS)

    Jolly, R. K.; Gupta, S. K.; Randers-Pehrson, G.; Buckle, D. C.; Thornton, W. B.; Aceto, H., Jr.; Singh, J. J.; Woods, D. C.

    1975-01-01

    Aerosols from aircraft engines were collected with an eight-stage cascade sampler for a period of 24 h. The aerosol samples from each stage were analyzed for their elemental composition using the proton-induced X-ray emission (PIXE) technique. Seventeen elements (Si, P, S, Cl, K, Ca, Ti, V, Fe, Ni, Cu, Zn, Br, Sr, Nb, Sn, and Pb) were positively identified and quantitated at each stage. Six elements (S, Ca, Fe, Zn, Sn, and Pb) showed a fractional concentration increase with decreasing aerosol size. Similar, but less well-defined, trends were also observed for V and Ni. Silicon and chlorine, on the other hand, showed an opposite trend. Neutron-activation analysis of bulk aerosol samples collected every 2 h over the same period showed a correlation between concentration of Si, Ca, V, Ti, Zn, Br, and Sn and the density of air traffic at the airport. Analysis of the aviation-fuel samples by PIXE indicates that major fractions of Pb, Sn, Br, Zn, Ni, Fe, V, Ca, and S observed in these aerosol studies come from the aircraft engine exhaust.

  16. Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies

    NASA Astrophysics Data System (ADS)

    Titos, G.; Foyo-Moreno, I.; Lyamani, H.; Querol, X.; Alastuey, A.; Alados-Arboledas, L.

    2012-02-01

    We investigated aerosol optical properties, mass concentration and chemical composition over a 1 year period (from March 2006 to February 2007) at an urban site in Southern Spain (Granada, 37.18°N, 3.58°W, 680 m above sea level). Light-scattering and absorption measurements were performed using an integrating nephelometer and a MultiAngle Absorption Photometer (MAAP), respectively, with no aerosol size cut-off and without any conditioning of the sampled air. PM10 and PM1 (ambient air levels of atmospheric particulate matter finer than 10 and 1 microns) were collected with two high volume samplers, and the chemical composition was investigated for all samples. Relative humidity (RH) within the nephelometer was below 50% and the weighting of the filters was also at RH of 50%. PM10 and PM1 mass concentrations showed a mean value of 44 ± 19 μg/m3 and 15 ± 7 μg/m3, respectively. The mineral matter was the major constituent of the PM10-1 fraction (contributing more than 58%) whereas organic matter and elemental carbon (OM+EC) contributed the most to the PM1 fraction (around 43%). The absorption coefficient at 550 nm showed a mean value of 24 ± 9 Mm-1 and the scattering coefficient at 550 nm presented a mean value of 61 ± 25 Mm-1, typical of urban areas. Both the scattering and the absorption coefficients exhibited the highest values during winter and the lowest during summer, due to the increase in the anthropogenic contribution and the lower development of the convective mixing layer during winter. A very low mean value of the single scattering albedo of 0.71 ± 0.07 at 550 nm was calculated, suggesting that urban aerosols in this site contain a large fraction of absorbing material. Mass scattering and absorption efficiencies of PM10 particles exhibited larger values during winter and lower during summer, showing a similar trend to PM1 and opposite to PM10-1. This seasonality is therefore influenced by the variations on PM composition. In addition, the mass

  17. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  18. AEROSOL CONCENTRATIONS DURING THE 1999 FRESNO EXPOSURE STUDIES AS FUNCTIONS OF SIZE, SEASON, AND METEOROLOGY

    EPA Science Inventory

    The 1999 Fresno exposure studies took place in February (winter season) and April/May (spring season) for two periods of four weeks. During that time, nearly-continuous measurements of outdoor aerosol concentrations were made with a scanning mobility spectrometer (TSI SNIPS) an...

  19. Concentrations of iodine isotopes ((129)I and (127)I) and their isotopic ratios in aerosol samples from Northern Germany.

    PubMed

    Daraoui, A; Riebe, B; Walther, C; Wershofen, H; Schlosser, C; Vockenhuber, C; Synal, H-A

    2016-04-01

    New data about (129)I, (127)I concentrations and their isotopic ratios in aerosol samples from the trace survey station of the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Northern Germany, are presented and discussed in this paper. The investigated samples were collected on a weekly basis during the years 2011 to 2013. Iodine was extracted from aerosol filters using a strong basic solution and was separated from the matrix elements with chloroform and was analysed by accelerator mass spectrometry (AMS) for (129)I and by inductively coupled plasma mass spectrometry (ICP-MS) for (127)I. The concentrations of (127)I and (129)I in aerosol filters ranged from 0.31 to 3.71 ng m(-3) and from 0.06 to 0.75 fg m(-3), respectively. The results of (129)I/(127)I isotopic ratios were in the order 10(-8) to 10(-7). The (129)I originated directly from gaseous emissions and indirectly from liquid emissions (via sea spray) from the reprocessing plants in Sellafield and La Hague. In comparison with the results of (131)I after the Fukushima accident, no contribution of (129)I from this accident was detectable in Central Europe due to the high background originating from the (129)I releases of the European reprocessing plants. (129)I atmospheric activity concentrations were compared with those of an anthropogenic radionuclide ((85)Kr). We did not find any correlation between (129)I and (85)Kr, both having nuclear reprocessing plant as the main source. PMID:26867099

  20. Characterization of near-highway submicron aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2011-11-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g., HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. The particulate organics varied dramatically during periods with highest traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations - with minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA being the major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ~120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  1. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1986-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  2. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  3. An analysis of the meteorological parameters affecting ambient concentrations of acid aerosols in Uniontown, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Zelenka, Michael P.

    Ambient concentrations of aerosol strong acidity (H +) that were collected in Uniontown, Pennsylvania, during the summer of 1990 were evaluated to determine the relationships between meteorology and the magnitude of the H + concentrations. An extensive database containing 17 meteorological parameters was compiled for the Uniontown - Pittsburgh region. The database included both surface and upper air meteorological parameters. Concentrations of ambient acid sulfate aerosols collected in Uniontown, Pennsylvania, in the summer of 1990 were greatly affected by both local and regional meteorological conditions. Seven distinct meteorological synoptic types or regimes were identified for the summer months. A clear association was shown between episodic events of elevated ambient H + concentrations and one of the regimes, referred to here as synoptic type 5, which occurred when an anticyclone set up to the east of the mid-Atlantic states. Much of the variability (approximately 45%) in H + concentrations for the overall model was explained by the surface air temperature. Approximately 10% of the H' variability was explained by westerly winds as expressed by the U components of the morning 850 mb wind and the mean daily surface wind at Uniontown. Results showed that for days under the influence of synoptic type 5, which was associated with the highest levels of ambient H', the surface temperature explained approximately one-third of the variability in H' concentrations. The height of the mixing layer also affected the variability in H + concentrations, accounting for nearly a quarter of the variance. These results show that an analysis of the surface wind speed and direction alone will not adequately explain the variability in the concentrations of ambient acid aerosols. Analyses of the meteorological parameters affecting ambient concentrations of acid aerosols should include the mixing height, as well as the temperature, wind speed, and wind direction; both at the surface

  4. Long-term aerosol measurements in Gran Canaria, Canary Islands: Particle concentration, sources and elemental composition

    NASA Astrophysics Data System (ADS)

    Gelado-Caballero, MaríA. D.; López-GarcíA, Patricia; Prieto, Sandra; Patey, Matthew D.; Collado, Cayetano; HéRnáNdez-Brito, José J.

    2012-02-01

    There are very few sets of long-term measurements of aerosol concentrations over the North Atlantic Ocean, yet such data is invaluable in quantifying atmospheric dust inputs to this ocean region. We present an 8-year record of total suspended particles (TSP) collected at three stations on Gran Canaria Island, Spain (Taliarte at sea level, Tafira 269 m above sea level (a.s.l.) and Pico de la Gorra 1930 m a.s.l.). Using wet and dry deposition measurements, the mean dust flux was calculated at 42.3 mg m-2 d-1. Air mass back trajectories (HYSPLIT, NOAA) suggested that the Sahara desert is the major source of African dust (dominant during 32-50% of days), while the Sahel desert was the major source only 2-10% of the time (maximum in summer). Elemental composition ratios of African samples indicate that, despite the homogeneity of the dust in collected samples, some signatures of the bedrocks can still be detected. Differences were found for the Sahel, Central Sahara and North of Sahara regions in Ti/Al, Mg/Al and Ca/Al ratios, respectively. Elements often associated with pollution (Pb, Cd, Ni, Zn) appeared to share a common origin, while Cu may have a predominantly local source, as suggested by a decrease in the enrichment factor (EF) of Cu during dust events. The inter-annual variability of dust concentrations is investigated in this work. During winter, African dust concentration measurements at the Pico de la Gorra station were found to correlate with the North Atlantic Oscillation (NAO) index.

  5. Size-resolved aerosol chemistry on Whistler Mountain, Canada with a High-Resolution Aerosol Mass Spectrometer during INTEX-B

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Zhang, Q.; MacDonald, A. M.; Hayden, K.; Li, S. M.; Liggio, J.; Liu, P. S. K.; Anlauf, K. G.; Leaitch, W. R.; Cubison, M.; Worsnop, D.; van Donkelaar, A.; Martin, R. V.

    2008-12-01

    An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the peak of Whistler Mountain (elevation 2182 m-MSL), British Columbia, from 19 April to 16 May 2006, as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign. The mass concentrations and size distributions of non-refractory submicron particle (NR-PM1) species (i.e., sulfate, nitrate, ammonium, chloride, and organics) were measured in situ every 5 min. The HR-ToF-AMS results agreed well with collocated measurements. The average concentration of non-refractory submicron particulate matter (NR-PM1; 1.9 μg m-3) is similar to those observed at other remote, high elevation sites in North America. Episodes of enhanced aerosol loadings were observed, due to influences of regional and trans-Pacific transport of air pollution. Organics and sulfate were the dominant species, on average accounting for 55% and 30%, respectively, of the NR-PM1 mass. The average size distributions of sulfate and ammonium both showed a~large accumulation mode peaking around 500-600 nm in Dva while those of organic aerosol (OA) and nitrate peaked at ~300 nm. The size differences suggest that sulfate and OA were mostly present in external mixtures from different source origins. We also quantitatively determined the elemental composition of OA using the high resolution mass spectra. Overall, OA at Whistler Peak was highly oxygenated, with an average organic-mass-to-organic-carbon ratio (OM/OC) of 2.28±0.23 and an atomic ratio of oxygen-to-carbon (O/C) of 0.83±0.17. The nominal formula for OA was C1H1.66N0.03O0.83 for the entire study. Two significant trans-Pacific dust events originated from Asia were observed at Whistler Peak during this study. While both events were characterized with significant enhancements of coarse mode particles and mineral contents, the composition and characteristics of NR-PM1 were significantly different between them. One trans-Pacific event

  6. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  7. CCN Study at Urban Supersite (T0) During MILAGRO: the Essential Information for Prediction of Aerosol CCN Concentrations

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cubison, M.; Aiken, A. C.; Jimenez, J. L.; Collins, D. R.

    2009-12-01

    The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols often consist of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban supersite in Mexico City during MILAGRO are analyzed and the degree of closure is evaluated. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The uncertainties associated with these simplifications are compared for different supersaturations and the variation of the uncertainties is examined as a function of aerosol age. The results show that the simplification of internally mixed

  8. Chemical characterization of emissions from vegetable oil processing and their contribution to aerosol mass using the organic molecular markers approach.

    PubMed

    Kavouras, I G; Stratigakis, N; Stephanou, E G

    2001-04-01

    The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethylphenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern. The significant contribution of vehicular emissions was identified by CPI values (approximately 1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.

  9. Concentration characteristics of bromine and iodine in aerosols in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Gao, Yunchuan; Sun, Mingxing; Wu, Xiaowei; Liu, Yongdi; Guo, Yaqi; Wu, Ji

    2010-11-01

    Aerosol samples (TSP and PM 10) during each season were collected at a national monitoring point in Shanghai in 2008. Halogens (Br, I) were determined in samples along with sodium (Na) by ICP-MS and ICP-OES after microwave digestion. In this report we focused on the concentration characteristics of halogen elements Br and I and their seasonal distributions. The mean annual concentrations of total Br and I were 24 ng m -3 and 12 ng m -3 for TSP, 21 ng m -3 and 9 ng m -3 for PM 10, respectively. Concentrations of Br and I in TSP and PM 10 were lowest in summer but an increase occurred in autumn and winter. Water-soluble Br and I accounted for about 32% of the total Br and I in aerosols, and about 68% of Br and I was non soluble which may be non-soluble organic species. These non-soluble organic species are present in aerosols in the possible binding forms as mineral dust, natural organic matter, and adsorption to black carbon or mineral material such as iron oxides. Soluble Br and I in PM 10 extracted by a dilute acid solution (HNO 3 + H 2SO 4) increased by 22% and 18%, respectively, compared with water-soluble Br and I. A positive correlation with Na and sea water enrichment factors for Br and I indicated that bromine and iodine in aerosols originated mostly from marine sources in Shanghai.

  10. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.

    PubMed

    Youssefi, Somayeh; Waring, Michael S

    2014-07-15

    Secondary organic aerosol (SOA) results from the oxidation of reactive organic gases (ROGs) and is an indoor particle source. The aerosol mass fraction (AMF), a.k.a. SOA yield, quantifies the SOA forming potential of ROGs and is the ratio of generated SOA to oxidized ROG. The AMF depends on the organic aerosol concentration, as well as the prevalence of later generation reactions. AMFs have been measured in unventilated chambers or steady-state flow through chambers. However, indoor settings have outdoor air exchange, and indoor SOA formation often occurs when ROGs are transiently emitted, for instance from emissions of cleaning products. Herein, we quantify "transient AMFs" from ozonolysis of pulse-emitted limonene in a ventilated chamber, for 18 experiments at low (0.28 h(-1)), moderate (0.53 h(-1)), and high (0.96 h(-1)) air exchange rates (AER) with varying initial ozone-limonene ratios. Transient AMFs increased with the amount of ROG reacted; AMFs also increased with decreasing AERs and increasing initial ozone-limonene ratios, which together likely promoted more ozone reactions with the remaining exocyclic bond of oxidized limonene products in the SOA phase. Knowing the AER and initial ozone-limonene ratio is crucial to predict indoor transient SOA behavior accurately.

  11. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET) Measurements

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent N.; Clothiaux, Eugene E.

    2006-01-01

    The carbon emissions inventories used to initialize transport models and general circulation models are highly parameterized, and created on the basis of multiple sparse datasets (such as fuel use inventories and emission factors). The resulting inventories are uncertain by at least a factor of 2, and this uncertainty is carried forward to the model output. [Bond et al., 1998, Bond et al., 2004, Cooke et al., 1999, Streets et al., 2001] Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output on a continuous basis.

  12. A High Performance Liquid Chromatography Method for Determination of Levoglucosan Concentrations in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Dixon, R. W.; Baltzell, G.

    2002-12-01

    Levoglucosan (1,6-anhydro-β-D-glucopyranose) recently has been measured in atmospheric aerosols where it is a major organic compound originating from biomass combustion. Past analysis methods have used gas chromatography with and without derivitization. We have developed a method for analyzing levoglucosan in atmospheric aerosols using high peformance liquid chromatography (HPLC) with a new detection method called aerosol charge detection. In aerosol charge detection, the column effluent is converted to an aerosol that is charged by passage near a corona discharge region and detected by charge collection. A column specific for carbohydrate compounds, which separates compounds by ligand-exchange and by partitioning based on polarity, was used for the separation using a 100% water eluent at 60°C. Under these conditions, aerosol filter samples extracted in methanol and water gave peaks with the same retention time as a levoglucosan standard. The detection limit was estimated to be about 0.1 μg mL-1 for extracts or 5 to 10 ng m-3 for air sample volumes employed. Samples collected at locations in central New Mexico and central California were found to contain concentrations of levoglucosan from the detection limit to 270 ng m-3, with higher concentrations observed under colder conditions when more fireplaces would tend to be in use. Mannosan (1,6-anhydro-β-D-mannopyranose), another monosaccharide anhydride, also was observed in one sample. The presence of other organic compounds, which have not yet been identified, was inferred by other observed peaks and by an increased baseline in sample chromatograms.

  13. Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Veres, Patrick R.; Williams, Jonathan; Borrmann, Stephan

    2013-10-01

    Aerosol particles from several anthropogenic sources associated with football stadia including cooking, cigarette smoking, burning of color smoke bombs and hand flares were analyzed by high-resolution aerosol mass spectrometry. The physical and chemical characteristics of these different aerosols, in particular the organic fraction, were explored in laboratory studies to obtain robust references. These data were compared with field campaign results from a Bundesliga (German football league) match in the Coface Arena (Mainz, Germany) on 20th April 2012. The field measurement revealed a strongly elevated mass concentration of organic aerosols (OA) compared to background levels showing a temporal structure clearly related to the match. PMF analysis established that during the football match event cigarette smoke was the predominant component of submicron organic aerosol (67% of total OA). Cooking emissions from food outlets within the stadium correlated well with the sales figures of the catering stations and were also found to be of relevance (24% of total OA) especially in the period before kickoff. Pyrotechnics were not observed during this football match and no signatures of these sources were found in the mass spectra from the stadium measurements. All species that were elevated during the football match returned to their initial background levels within one hour after the match had finished. This demonstrates a good ventilation capacity of the open-topped Coface Arena.

  14. Characterization of Organic Nitrogen in the Atmosphere Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, X.; Sun, Y.; Chen, M.; Zhang, Q.

    2015-12-01

    Despite extensive efforts on characterizing organic nitrogen (ON) compounds in atmospheric aerosols and aqueous droplets, knowledge of ON chemistry is still limited, mainly due to its chemical complexity and lack of highly time-resolved measurements. This work is aimed at optimizing the method of using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) to characterize ON compounds in atmospheric aerosols. Seventy-five pure nitrogen-containing organic compounds covering a variety of functional groups were analyzed with the HR-AMS. Our results show that ON compounds commonly produce NHx+, NOx+, which are usually attributed to inorganic N species such as ammonium and nitrate, and CH2N+ at m/z = 28, which is rarely quantified in ambient aerosol due to large interference from N2+ in the air signal. As a result, using the nitrogen-to-carbon (N/C) calibration factor proposed by Aiken et al. (2008) on average leads to ~ 20% underestimation of N/C in ambient organic aerosol. A new calibration factor of 0.79 is proposed for determining the average N/C in organics. The relative ionization efficiencies (RIEs) of different ON species, on average, are found to be consistent with the default RIE value (1.4) for the total organics. The AMS mass spectral features of various types of ON species (amines, amides, amino acids, etc.) are examined and used for characterizing ON composition in ambient aerosols. Our results indicate that submicron organic aerosol measured during wintertime in Fresno, CA contains significant amounts of amino-compounds whereas more diversified ON species, including N-containing aromatic heterocycle (e.g., imidazoles), are observed in fog waters collected simultaneously. Our findings have important implications for understanding atmospheric ON behaviors via the widespread HR-AMS measurements of ambient aerosols and droplets.

  15. Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China

    NASA Astrophysics Data System (ADS)

    Feng, Tian; Li, Guohui; Cao, Junji; Bei, Naifang; Shen, Zhenxing; Zhou, Weijian; Liu, Suixin; Zhang, Ting; Wang, Yichen; Huang, Ru-jin; Tie, Xuexi; Molina, Luisa T.

    2016-08-01

    The organic aerosol (OA) concentration is simulated in the Guanzhong Basin, China from 23 to 25 April 2013 utilizing the WRF-CHEM model. Two approaches are used to predict OA concentrations: (1) a traditional secondary organic aerosol (SOA) module; (2) a non-traditional SOA module including the volatility basis-set modeling method in which primary organic aerosol (POA) is assumed to be semivolatile and photochemically reactive. Generally, the spatial patterns and temporal variations of the calculated hourly near-surface ozone and fine particle matters agree well with the observations in Xi'an and surrounding areas. The model also yields reasonable distributions of daily PM2.5 and elemental carbon (EC) compared to the filter measurements at 29 sites in the basin. Filter-measured organic carbon (OC) and EC are used to evaluate OA, POA, and SOA using the OC / EC ratio approach. Compared with the traditional SOA module, the non-traditional module significantly improves SOA simulations and explains about 88 % of the observed SOA concentration. Oxidation and partitioning of POA treated as semivolatile constitute the most important pathway for the SOA formation, contributing more than 75 % of the SOA concentrations in the basin. Residential emissions are the dominant anthropogenic OA source, constituting about 50 % of OA concentrations in urban and rural areas and 30 % in the background area. The OA contribution from transportation emissions decreases from 25 % in urban areas to 20 % in the background area, and the industry emission OA contribution is less than 6 %.

  16. New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Ji, D. S.; Liu, Z. R.; Hu, B.; Wang, L. L.; Huang, X. J.; Wang, Y. S.

    2015-07-01

    In recent years, an increasing amount of attention has been paid to heavy haze pollution in Beijing, China. In addition to Beijing's population of approximately 20 million and its 5 million vehicles, nearby cities and provinces are host to hundreds of heavily polluting industries. In this study, a comparison between observations in January 2013 and January 2014 showed that non-refractory PM1 (NR-PM1) pollution was weaker in January 2014, which was primarily caused by variations in meteorological conditions. For the first time, positive matrix factorization (PMF) was applied to the merged high-resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer measurements in Beijing, and the sources and evolution of NR-PM1 in January 2014 were investigated. The two factors, NO3-OA1 and NO3-OA2, were primarily composed of ammonium nitrate, and each showed a different degree of oxidation and diurnal variation. The organic fraction of SO4-OA showed the highest degree of oxidation of all PMF factors. The hydrocarbon-like organic aerosol (OA) and cooking OA factors contained negligible amounts of inorganic species. The coal combustion OA factor contained a high contribution from chloride in its mass spectrum. The NR-PM1 composition showed significant variations in January 2014, in which the contribution of nitrate clearly increased during heavy pollution events. The most effective way to control fine particle pollution in Beijing is through joint prevention and control measures at the regional level, rather than a focus on an individual city, especially for severe haze events.

  17. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  18. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  19. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in themore » chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of

  20. Evaluation of the impact of long-range transport and aerosol concentration temporal variations at the eastern coast of the Baltic Sea.

    PubMed

    Ovadnevaite, J; Kvietkus, K; Sakalys, J

    2007-09-01

    Ambient particles vary greatly in their ability to affect visibility, climate and human health. The fine fraction of aerosol is responsible for greater and wider effects on human health; thus, investigation of this fraction is very important. Continuous measurements of PM2.5 (particulate matter below 2.5 microm in size) concentrations at the Preila monitoring station started in 2003. During a period of 2 years, the episodes of high daily and semi-hourly concentrations of PM2.5 were measured. These episodes did not depend on the season or time of day. The substantial role of long-range transport of pollutants to these increases in concentration was shown using chemical and statistical analysis. It was found that most of the severe episodes occurred when air masses came from a specific site besides it was established that air masses of different origin were characterized by different mixing layer depth. Lower mixing depth was observed in air masses characterized by higher observed concentrations at the measuring site and vice versa. PM2.5 concentrations showed diurnal and seasonal variations whose pattern reflected the regional origin of the aerosol. The regional pollution level was evaluated by the statistical analysis of PM2.5 concentrations. The background annual average of PM2.5 mass concentration for the eastern coast of the Baltic Sea was 15.1 +/- 0.8 microg m(-3).

  1. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-09-01

    The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are

  2. Mass balance of organic carbon fractions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Alves, CéLia; Carvalho, Abel; Pio, Casimiro

    2002-11-01

    Total suspended particulate matter was collected in two Portuguese urban areas (Lisbon and Aveiro) and in a Finnish forested site. Samples were sequentially extracted with dichloromethane and water. The solvent extract was separated by flash chromatography into aliphatics, aromatics, carbonyls, alcohols, and an acidic fraction, and analyzed by gas chromatography-mass spectrometry. An organic/black carbon analyzer was used to evaluate the carbonaceous matter in filters, the water-soluble fraction, solvent extractable material, and the content of different organic classes. Results showed that the common simple extraction with dichloromethane is able to dissolve less than 50% of the particulate organic material. The successive extraction with water removes an important quantity of the leftover organic polar compounds. The sum of both extractions recovers between 70% and 90% of the organic carbon present. The amount of oxygenated compounds is frequently more than 70% of the extracted material, with a large predominance of organic acids and alcohols, especially for particles with diameters less than 0.49 μm. The organic compounds identified in the extractable atmospheric particulate matter are represented by primary compounds with both anthropogenic and biogenic origin, which mainly derive from vegetation waxes and from petrogenic sources. Secondary products resulting from the oxidation of volatile organic compounds were also detected. The water-soluble fraction contains essentially oxocarboxylic and dicarboxylic acids, and cellulosic constituents. In accordance with the anthropogenic characteristics of the sampling sites, nonpolar fractions constitute up to 24% of the extracted organic carbon in Lisbon and present high levels of petroleum markers, while in the forested station these compounds represent 8%. The oxygenated organic compounds account for 76-92% of the extracted carbon in samples from Aveiro and Finland. Owing to favorable photochemical conditions during

  3. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  4. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  5. HUMIDITY EFFECTS ON THE MASS SPECTRA OF SINGLE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line laser desorption ionization mass spectrometry has developed into a widely used method for chemical characterization of individual aerosol particles. In the present study, the spectra of laboratory-generated particles were obtained as a function of relative humidity to elu...

  6. Hillslope soil erosion estimated from aerosol concentrations, North Halawa Valley, Oahu, Hawaii

    USGS Publications Warehouse

    Hill, B.R.; Fuller, C.C.; DeCarlo, E.H.

    1997-01-01

    Concentrations of aerosolic quartz and 137Cs were used to estimate rates of hillslope soil erosion during 1990-91 in the North Halawa Valley on the island of Oahu, Hawaii. Fluvial transport of quartz was estimated to be 6.1 Mg in 1990 and 14.9 Mg in 1991. Fluvial transport of 137Cs from North Halawa Valley was estimated to be 1.29 ?? 109 pCi in 1991. Results were used with quartz contents, 137Cs activities, and bulk densities of hillslope soils to compute rates of basinwide hillslope soil erosion ranging from 0.1 to 0.3 mm yr-1. These rates are within the range of previous estimates of denudation computed for drainage basins on Oahu. The aerosol-concentration approach, therefore, is a useful method for assessing basinwide soil erosion.

  7. [Characteristics of carbonaceous aerosol concentration in snow and ice of glaciers in Tianshan Mountains].

    PubMed

    Wang, Sheng-Jie; Zhang, Ming-Jun; Wang, Fei-Teng; Li, Zhong-Qin

    2012-03-01

    The snow and ice samples, collected at Glacier No. 1 at the headwaters of Urumqi River (UG1) and Glacier No. 51 at Haxilegen of Kuytun River (HG51) in 2002 and 2004, were analyzed for organic carbon (OC) and element carbon (EC) by thermal/ optical reflectance (TOR). The spatio-temporal characteristics and environmental significance of OC and EC concentration were discussed in details. The concentration order of total carbon (TC) was: snowpack of west branch on UG1 (1 943 ng x g(-1)) > snowpack of east branch on UG1 (989 ng x g(-1)) > snowpack of HG51 (150 ng x g(-1)) > glacier ice of east branch on UG1 (77 ng x g(-1)), and the concentration order of OC and EC lay similar as TC. The concentration of OC and EC in snowpack of Tianshan Mountains were 557 ng x g(-1) and 188 ng x g(-1), respectively. Concentration peak of carbonaceous aerosol usually appeared near the dust layer at the bottom section of snowpack, but the some sudden events could increase the concentration in the surface snow. Because of the seasonality of carbon emission (e. g. heating and agricultural activities) and transportation (e. g. atmospheric circulation), the concentration of carbonaceous aerosol increased from July to November with fluctuations. Difference on the order of magnitude might exist between the concentration in snow (firn) and glacier ice, which was influenced by the glacier surroundings, sampling situation and other factors. EC on the surface snow affected the albedo significantly, and an average albedo reduction of 0.22 in the wavelength of 300-700 nm was simulated by SNICAR (snow, ice, and aerosol radiative) model.

  8. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  9. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    SciTech Connect

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  10. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  11. Concentrations and composition of aerosols and particulate matter in surface waters along the transatlantic section

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Novigatsky, A. N.; Redzhepova, Z. U.; Dara, O. M.

    2016-07-01

    Along the transatlantic section from Ushuaia to Gdańsk (March 26-May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237-111 739 particles/L for the fraction of 0.3-1 μm and to 0.02-34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river-sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.

  12. Aerosol Charge Model Consistent with Flight Data from the ECOMA/MASS Rocket Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S. H.; Rapp, M.; Gumbel, J.; Horanyi, M.; Sternovsky, Z.; Friedrich, M.; Baumgarten, G.; Latteck, R.

    2009-12-01

    In August of 2007 two sounding rockets were launched from the Andoya Rocket Range, Norway carrying the MASS instrument (Mesospheric Aerosol Sampling Spectrometer). The instrument detects charged aerosols in four different mass ranges on four pairs of biased collector plates, one set for positive particles and one set for negative particles. The first sounding rocket was launched into PMSE and NLC on 3 August. The solar zenith angle was 93 degrees and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were also detected at the same altitude by rocket-borne photometer measurements. The data from the MASS instrument shows a negatively charged population with radii >3 nm in the 83-89 km altitude range, which is collocated with PMSE detected by the ALWIN radar. Smaller particles, 1-2 nm in radius with both positive and negative polarity were detected between 86-88 km. Positively charged particles <1 nm in radius were detected at the same altitude. A charging model is developed to investigate the coexistence of positively and negatively charged aerosols in the NLC environment. Natanson’s rate equations are used for the attachment of free electrons and ions and the model includes charging by photo-electron emission and photo-detachment. Although the MASS flight occurred during night time conditions, the solar flux was still significant to affect the charge state of the aerosols. The calculations are done assuming three types of particles with different photo-electron charging properties: 1) Icy NLC particles, 2) Hematite particles of meteoric origin as condensation nuclei, and 3) Hematite particles coated with ice. The charge model results are consistent with the MASS rocket data, displaying both positively and negatively charged aerosols for small radii and only negatively charged particles for large radii.

  13. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  14. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  15. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-07-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions (N = 293), with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. OA mass spectra measured for HD truck exhaust plumes show cycloalkanes are predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in OA and BC emitted by gasoline and diesel engines. This finding indicates a large fraction of OA in gasoline exhaust is lubricant-derived as well. The similarity in OA and BC mass spectra for gasoline and diesel engine exhaust is likely to confound ambient source apportionment efforts to determine contributions to air pollution from these two important sources.

  16. The impact of biomass burning on the environmental aerosol concentration in Gaborone, Botswana

    NASA Astrophysics Data System (ADS)

    Jayaratne, E. R.; Verma, T. S.

    Biomass burning, in the form of savanna fires and firewood for cooking and warmth, is widespread during the dry winter months in Southern Africa. This study was carried out to investigate its impact on the environment in Gaborone, Botswana, which is a small-sized city with very little pollution from industrial sources. Measurements of aerosol size and number concentrations were carried out at the University of Botswana campus in Gaborone from September 1999 to July 2000 using two automatic laser scattering particle counters. Particles were monitored in eight size ranges from 0.1 to 5.0 μm. The mean daily particle concentrations were found to vary from about 200 cm -3 on clear visibility days during the summer to a high of over 9000 cm -3 on cold winter evenings, when there was a significant smoke haze over the city. Particle concentrations were noticeably higher during the winter than in the summer. During a typical winter day, the total particle concentration peaked between 18 and 23 h, often showing an increase of over four-fold from mid-morning minimum values. The aerosol number size distributions under various conditions were investigated and the corresponding surface area and volume distributions were derived. In general, both the surface and volume distributions were bimodal with peaks close to 0.2 μm and at 5.0 μm or greater. A hand-held counter with a minimum detectable particle size of 0.3 μm was used to monitor the size and number concentrations of aerosols across the city. The results indicate a consistent pattern of maximum concentration in the highly populated areas close to the city centre, falling significantly in the sparsely populated outlying areas by up to an order of magnitude during peak biomass burning, suggesting that much of the smoke particles in the city are removed by wind.

  17. Molecular composition of atmospheric aerosols from Halley Bay, Antarctica, using ultra-high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Brough, Neil; Rincon, Angela; Jones, Anna; Kalberer, Markus

    2016-04-01

    Antarctica is one of the few pristine places to study natural processes of atmospheric aerosols and anthropogenic impacts on the clean remote atmosphere. Although stratospheric aerosol in Antarctica has now been explored in some detail because of the ozone depletion phenomenon, tropospheric aerosol particles in Antarctica remain very little studied. The main goal of this work is to identify in detail the organic chemical composition of aerosol from Halley Bay station, which is located on the Brunt Ice Shelf floating on the Weddell Sea in Antarctica. In this study we characterise the molecular composition of aerosols from three seasons (summer, autumn and winter in 2012) using ultra-high resolution mass spectrometry (UHRMS). The technique provides high accuracy and high mass resolving power that allows determining unambiguous number of organic compounds present in complex organic mixtures (Noziere et al., 2015). The molecular composition interpretation was facilitated using visualisation methods (e.g. double bond equivalent, Van Krevelen diagrams, Kendrick mass analysis, and carbon oxidation state), which allowed to identify patterns, such as differences between sampling times and atmospheric processes. The majority of the identified compounds were attributed to nitrogen and sulphur containing species which exhibited very strong seasonal trends. Relatively large fraction (up to 30% of the total number of molecules) of these species contained very low hydrogen to carbon ratios (below 1) indicating that the site is impacted by anthropogenic emissions. Influences of the meteorological parameters and air mass trajectories on the molecular composition are discussed. Nozière et al., The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115, 3920-3983, 2015.

  18. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  19. Outdoor and indoor aerosol size, number, mass and compositional dynamics at an urban background site during warm season

    NASA Astrophysics Data System (ADS)

    Talbot, N.; Kubelova, L.; Makes, O.; Cusack, M.; Ondracek, J.; Vodička, P.; Schwarz, J.; Zdimal, V.

    2016-04-01

    This paper describes the use of a unique valve switching system that allowed for high temporal resolution indoor and outdoor data to be collected concurrently from online C-ToF-AMS, SMPS and OC/EC, and offline BLPI measurements. The results reveal near real-time dynamic aerosol behaviour along a migration path from an outdoor to indoor environment. An outdoor reduction in NR-PM1 mass concentration occurred daily from AM (06:00-12:00) to PM (12:00-18:00). SO4 (26%-37%) [AM/PM] increased proportionally during afternoons at the expense of NO3 (18%-7%). The influences of mixing height, temperature and solar radiation were considered against the mean mass concentration loss for each species. Losses were then calculated according to species via a basic input/output model. NO3 lost the most mass during afternoon periods, which we attribute to the accelerated dissociation of NH4NO3 through increasing temperature and decreasing relative humidity. Indoor/outdoor (I/O) ratios varied from 0.46 for <40 nm to 0.65 for >100 nm. These ratios were calculated using average SMPS PNC measurements over the full campaign and corroborated using a novel technique of calculating I/O penetration ratios through the indoor migration of particles during a new particle formation event. This ratio was then used to observe changes in indoor composition relative to those outdoors. Indoor sampling was carried out in an undisturbed room with no known sources. Indoor concentrations were found to be proportional to those outdoors, with organic matter [2.7 μg/m3] and SO4 [1.7 μg/m3] being the most prominent species. These results are indicative of fairly rapid aerosol penetration, a source-free indoor environment and small afternoon I/O temperature gradients. Fine fraction NO3 was observed indoors in both real-time AMS PM1 and off-line BLPI measurements. Greater mass concentration losses were observed from filter measurements, highlighting an important time dependency factor when investigating semi

  20. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS - diurnal variations and PMF receptor modelling

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-04-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both

  1. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  2. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  3. SAGE and SAM II measurements of global stratospheric aerosol optical depth and mass loading

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Mccormick, M. P.

    1984-01-01

    Several volcanic eruptions between November 1979 and April 1981 have injected material into the stratosphere. The SAGE and SAM II satellite systems have measured, with global coverage, the 1-micron extinction produced by this material, and examples of the data product are shown in the form of global maps of stratospheric optical depth and altitude-latitude plots of zonal mean extinction. These data, and that for the volcanically quiet period in early 1979, have been used to determine the changes in the total stratospheric mass loading. Estimates have also been made of the contribution to the total aerosol mass from each eruption. It has been found that between 1979 and mid-1981, the total stratospheric aerosol mass increased from a background level of approximately 570,000 metric tons to a peak of approximately 1,300,000 metric tons.

  4. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    SciTech Connect

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  5. MODELING THE EFFECT OF CHLORINE EMISSIONS ON ATMOSPHERIC OZONE AND SECONDARY ORGANIC AEROSOL CONCENTRATIONS ACROSS THE UNITED STATES

    EPA Science Inventory

    This paper presents the modeled effects of natural and anthropogenic chlorine emissions on the atmospheric concentrations of ozone and secondary organic aerosol across the United States. The model calculations include anthropogenic molecular chlorine emissions, anthropogenic hypo...

  6. Characterization of events by aerosol mass size distributions.

    PubMed

    Nicolás, José; Yubero, Eduardo; Galindo, Nuria; Giménez, Joaquín; Castañer, Ramón; Carratalá, Adoración; Crespo, Javier; Pastor, Carlos

    2009-02-01

    Continuous measurements of particle mass size distributions were carried out in summer 2004 at an urban location in the western Mediterranean using an optical particle counter. In this work we propose a simple methodology to identify PM episodes and determine their influence on mass size distributions. During the study period three types of event produced a significant increase in TSP daily levels: Saharan dust intrusions, firework displays and strong winds, modifying size distributions in different ways. As well, a traffic-related mass size spectrum was obtained showing road dust particles injected into the atmosphere by vehicle-induced resuspension having mainly aerodynamic diameters between 5 and 15 microm. This was confirmed by principal component and conditional probability function analyses.

  7. Preliminary results of determination of chemical element concentrations in the aerosol of Venus clouds

    NASA Technical Reports Server (NTRS)

    Andreychikov, B. M.; Mukhin, L. M.; Korchuganov, B. N.; Akhmetshin, I. K.; Tokarev, Y. N.; Medvedev, A. V.; Goldfeld, M. N.; Faynboym, V. M.; Kalyuzhnyy, A. V.; Petryanov, I. V.

    1986-01-01

    An X-ray radiometeric experiment is described along with the results of measurements of the elemental composition of aerosols in Venusian clouds. A preliminary analysis of the data showed that sulfur is present in the range of heights 63 to 47 km with mean content of 5.8 mg/cu m and that chlorine is present in the height range 61 t0 52 km with a mean content of 4.1 mg/cu m. The results of measurements in the range 52 to 47 km may come to an agreement if phosphorus is present in the aerosol with a mean concentration of 7.7 mg/cu m.

  8. Is It Possible to Distinguish Between Dust and Salt Aerosol Over Waters with Unknown Chlorophyll Concentrations Using Spectral Remote Sensing?

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Kaufman, Y. J.

    1999-01-01

    Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.

  9. Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City

    NASA Astrophysics Data System (ADS)

    Ulbrich, I. M.; Canagaratna, M. R.; Cubison, M. J.; Zhang, Q.; Ng, N. L.; Aiken, A. C.; Jimenez, J. L.

    2011-07-01

    A size-resolved submicron organic aerosol composition dataset from a high-resolution time-of-flight mass spectrometer (HR-ToF-AMS) collected in Mexico City during the MILAGRO campaign in March 2006 is analyzed using 3-dimensional (3-D) factorization models. A method for estimating the precision of the size-resolved composition data for use with the factorization models is presented here for the first time. Two 3-D models are applied to the dataset. One model is a 3-vector decomposition (PARAFAC model), which assumes that each chemical component has a constant size distribution over all time steps. The second model is a vector-matrix decomposition (Tucker 1 model) that allows a chemical component to have a size distribution that varies in time. To our knowledge, this is the first report of an application of 3-D factorization models to data from fast aerosol instrumentation; it is also the first application of this vector-matrix model to any ambient aerosol dataset. A larger number of degrees of freedom in the vector-matrix model enable fitting real variations in factor size distributions, but also make the model susceptible to fitting noise in the dataset, giving some unphysical results. For this dataset and model, more physical results were obtained by partially constraining the factor mass spectra using a priori information and a new regularization method. We find four factors with each model: hydrocarbon-like organic aerosol (HOA), biomass-burning organic aerosol (BBOA), oxidized organic aerosol (OOA), and a locally occurring organic aerosol (LOA). These four factors have previously been reported from 2-dimensional factor analysis of the high-resolution mass spectral dataset from this study. The size distributions of these four factors are consistent with previous reports for these particle types. Both 3-D models produce useful results, but the vector-matrix model captures real variability in the size distributions that cannot be captured by the 3-vector model. A

  10. Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City

    NASA Astrophysics Data System (ADS)

    Ulbrich, I. M.; Canagaratna, M. R.; Cubison, M. J.; Zhang, Q.; Ng, N. L.; Aiken, A. C.; Jimenez, J. L.

    2012-01-01

    A size-resolved submicron organic aerosol composition dataset from a high-resolution time-of-flight mass spectrometer (HR-ToF-AMS) collected in Mexico City during the MILAGRO campaign in March 2006 is analyzed using 3-dimensional (3-D) factorization models. A method for estimating the precision of the size-resolved composition data for use with the factorization models is presented here for the first time. Two 3-D models are applied to the dataset. One model is a 3-vector decomposition (PARAFAC model), which assumes that each chemical component has a constant size distribution over all time steps. The second model is a vector-matrix decomposition (Tucker 1 model) that allows a chemical component to have a size distribution that varies in time. To our knowledge, this is the first report of an application of 3-D factorization models to data from fast aerosol instrumentation, and the first application of this vector-matrix model to any ambient aerosol dataset. A larger number of degrees of freedom in the vector-matrix model enable fitting real variations in factor size distributions, but also make the model susceptible to fitting noise in the dataset, giving some unphysical results. For this dataset and model, more physically meaningful results were obtained by partially constraining the factor mass spectra using a priori information and a new regularization method. We find four factors with each model: hydrocarbon-like organic aerosol (HOA), biomass-burning organic aerosol (BBOA), oxidized organic aerosol (OOA), and a locally occurring organic aerosol (LOA). These four factors have previously been reported from 2-dimensional factor analysis of the high-resolution mass spectral dataset from this study. The size distributions of these four factors are consistent with previous reports for these particle types. Both 3-D models produce useful results, but the vector-matrix model captures real variability in the size distributions that cannot be captured by the 3-vector

  11. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-04-01

    The Aerodyne Aerosol Mass Spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes this instrument provides robust quantitative information on various ambient aerosol components. However, when measuring close to certain anthropogenic sources or in marine environments, several of these assumptions may not be met and measurement results might easily be misinterpreted. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components, i.e. components that vaporize but do not flash vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g. chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g. NH4NO3 or (NH4)2SO4) vaporize quickly, their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in the measurements. Chemical reactions with water vapor and oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g. NH4NO3, (NH4)2SO4, organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g. WO2C2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are presented and are discussed together with field results showing that measurements of typical continental or urban aerosols are not significantly affected while laboratory

  12. Relating Aerosol Profile and Column Measurements to Surface Concentrations: What Have We Learned from Discover-AQ?

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.

    2014-12-01

    One research goal of the Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission was to determine sufficient column profile measurements to relate column integrated quantities such as Aerosol Optical Depth to surface concentrations. I will review the relationship between AOD and PM2.5 at the surface. DISCOVER-AQ in Baltimore, the San Joaquin Valley, Houston and Denver revealed quite different conditions for determining this relationship. In each case, the surface reflectivity made determination of aerosol optical depth challenging, but upward looking columns of aerosol optical depth from sunphotometers provided confirmation of the AOD results from space. In Baltimore, AOD fields reflected PM2.5 concentrations well. In California, however, the low boundary layer heights and dominance of nitrate and organic aerosols made the AOD fields less predictive of PM2.5. In California and Colorado, hydration of the aerosol varied dramatically with aerosol type (especially smoke and dust) and revealed that without an understanding of the degree of aerosol hydration with aerosol composition, the relationship between AOD and PM2.5 will continue to be a challenge. Model predictions in the Baltimore-Washington study are relatively disappointing in helping define the needed physics between the optical and microphysical properties. An overview of the measurements from DISCOVER-AQ which will help define the needed information in a more general case in the future will be given.

  13. Using MAIAC Aerosol Products to Estimate PM10 Concentrations in the Southeastern U.S

    NASA Astrophysics Data System (ADS)

    Jinnagara Puttaswamy, S.; Hu, X.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2012-12-01

    Acute and chronic exposure to particulate matter has been linked to various adverse health effects. High PM levels including inhalable particles (PM10) and fine particles (PM2.5) are commonly found in large urban centers in the developing world. Unlike PM2.5 whose routine ground monitoring is very sparse, PM10 is regularly measured in many large cities in developing countries. In this analysis, we evaluate the potential for satellite aerosol remote sensing product to estimate PM10 levels. We chose AOD values in 2003 retrieved by the Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm based on MODIS measurements, which has a high spatial resolution of 1 km. Our study area is a 600 km x 600 km region centered in Atlanta, GA. Linear mixed effect (LME) models were developed with MAIAC AOD as the primary predictor variable, meteorology, PM10 emission locations and land use variables as secondary predictor variables. Daily PM10 concentrations measured at ~70 EPA air quality monitoring stations were used as the dependent variable. Model day of year was used as the grouping factor for the random effect of MAIAC AOD. We aggregated AOD and other covariates on 1 km, 3km, 5km and 10km resolution grids and similar LME models were developed for each spatial resolution to compare their abilities to capture the spatial patterns of PM10 mass concentrations at various scales. Our models show that MAIAC AOD, temperature, wind speed and PM 10 emissions source locations are statistically significant predictors of PM 10 at all the spatial scales. Model fitting R2 ranges from 0.35 in winter to 0.56 in the summer. Model performances show a slight decline as the grid resolution decreases. Although the performances of PM10 exposure models are not as good as those of PM2.5 models reported in the literature, these models can still provide spatially resolved PM10 levels at urban scale, which would enable preliminary PM10-related public health research in developing countries.

  14. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  15. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  16. A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J. L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K. E.; Aas, W.; Putaud, J. P.

    2016-11-01

    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.

  17. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  18. Preliminary Observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Sullivan, A. P.; Carrico, C. M.; Jimenez, J. L.; Cubison, M.; Saarikoski, S.; Worsnop, D. R.; Onasch, T. B.; Fortner, E.; Malm, W. C.; Lincoln, E.; Wold, C. E.; Hao, W.

    2010-12-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion of wild land fuels, an experiment was conducted in 2009 at the U.S. Forest Service/United States Department of Agriculture (USFS/USDA) Fire Science Laboratory (FSL) located in Missoula, Montana, to measure volatility of open biomass burning emissions for a variety of fuel types. Both isothermal and temperature-dependent volatilization were studied, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with thermal denuder. Small quantities (200-800g) of various fuel types, primarily from the U.S., were burned in a large combustion chamber and diluted in two stages in continuous-flow residence chambers. The partitioning of particulate organic mass concentrations by the HR-ToF-AMS was evaluated for each fuel type using nominal dilution ratios characterized both by measuring flow rates in continuous-flow residence chambers and from the concentrations of several conserved tracers. The volatility of biomass burning smoke was found to vary across fuel types. Up to ~60% volatile loss of organic matter was observed as a result of dilution for some smoke samples (e.g., Lodgepole pine and Ponderosa pine). We will investigate relationships between volatility and several parameters such as the absolute mass concentration and chemical composition. We will also examine the behavior of biomass burning tracers, such as AMS m/z 60, under dilution conditions. Previous studies (e.g. Lee et al., AS&T 2010 and Aiken et al., ACP 2009) have observed a strong relationship between OA and AMS m/z 60 in fresh biomass burning smoke. We will examine whether this relationship is altered

  19. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and

  20. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate

  1. Toward new techniques to measure heterogeneous oxidation of aerosol: Electrodynamic Balance-Mass Spectrometry (EDB-MS) and Aerosol X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, M. I.; Heine, N.; Xu, B.; Davies, J. F.; Kirk, B. B.; Kostko, O.; Alayoglu, S.; Wilson, K. R.; Ahmed, M.

    2015-12-01

    The chemical composition and physical properties of aerosol can be changed via heterogeneous oxidation with the OH radical. However, the physical state of the aerosol influences the kinetics of this reaction; liquid particles with a high diffusion coefficient are expected to be well mixed and homogenously oxidized, while oxidation of solid, diffusion-limited aerosol is expected to occur primarily on the surface, creating steep chemical gradients within the particle. We are working to develop several new techniques to study the heterogeneous oxidation of different types of aerosol. We are developing a "modular" electrodynamic balance (EDB) that will enable us to study heterogeneous oxidation at aqueous interfaces using a mass-spectrometer (and potentially other detection techniques). Using a direct analysis in real time (DART) interface, preliminary droplet train measurements have demonstrated single-droplet mass spectrometry to be possible. With long reaction times in our EDB, we will be able to study heterogeneous oxidation of a wide variety of organic species in aqueous droplets. Additionally, we are working to use aerosol photoemission and velocity map imaging (VMI) to study the surface of aerosol particles as they undergo heterogeneous oxidation. With VMI, we're able to collect electrons with a 4π collection efficiency over conventional electron energy analyzers. Preliminary results looking at the ozonolysis of squalene using ultraviolet photoelectron spectroscopy (UPS) show that heterogeneous oxidation kinetic data can be extracted from photoelectron spectra. By moving to X-ray photoemission spectroscopy (XPS), we will determine elemental and chemical composition of the aerosol surface. Thus, aerosol XPS will provide information on the steep chemical gradients that form as diffusion-limited aerosol undergo heterogeneous oxidation.

  2. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  3. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek, A. J., III; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-01

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp>100 nm) gives a linear relation up to a number concentration of ~150 cm-3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol with Dp>100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background

  4. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-03-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  5. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  6. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. PMID:26421659

  7. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration.

  8. Vibration analysis of rotor blades with an attached concentrated mass

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Barna, P. S.

    1977-01-01

    The effect of an attached concentrated mass on the dynamics of helicopter rotor blades is determined. The point transmission matrix method was used to define, through three completely automated computer programs, the natural vibrational characteristics (natural frequencies and mode shapes) of rotor blades. The problems of coupled flapwise bending, chordwise bending, and torsional vibration of a twisted nonuniform blade and its special subcase pure torsional vibration are discussed. The orthogonality relations that exist between the natural modes of rotor blades with an attached concentrated mass are derived. The effect of pitch, rotation, and point mass parameters on the collective, cyclic, scissor, and pure torsional modes of a seesaw rotor blade is determined.

  9. High Resolution Mass Spectrometry of Seasonal Aerosol Samples From an Urban Location in the Italian Po Valley

    NASA Astrophysics Data System (ADS)

    Mahon, Brendan; Giorio, Chiara; Gallimore, Peter J.; Zielinski, Arthur T.; Tapparo, Andrea; Kalberer, Markus

    2016-04-01

    The Po Valley in Northern Italy represents one of the most polluted environments in Europe, with PM2.5 and ozone concentrations regularly exceeding 100μg/m3 and 50ppb respectively. Particularly during winter, prolonged inversion conditions together with biomass burning and anthropogenic emissions regularly lead to severe air pollution events. Over the course of several months in 2013-14, we carried out a sampling program at a city-centre site in Padova, Italy, collecting 24-hour high-volume aerosol filter samples, 18 in winter (mid December - mid March) and 20 in summer (late May - late July). Utilising high-resolution Orbitrap mass spectrometry techniques, we have characterised these sample sets to examine the long-term variation in aerosol composition over the sampling campaign and to determine the effect of anthropogenic gaseous pollutants such as NOx and SO2 on the composition of organic particle components. The results showed that between ca. 450-700 ions were measured in each sample in both the summer and winter sample sets, however the majority (90%) of ions in the winter samples were below 300m/z and below 380m/z in the summer samples. A much higher percentage of CHO-only ions were found in winter (ca. 27%) compared to the summer samples (ca. 6%), indicating a higher degree of photochemical reactions taking place involving pollutants such as NOx and SO2 in summer. Our results represent the first long term data set of high-resolution measurements of aerosol composition and demonstrate that this technique is an important tool in evaluating the composition of aerosol particles in complex polluted urban areas.

  10. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  11. Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Nelson, Dena R.; Roelle, Paul A.; Walker, John T.; Battye, William

    2003-02-01

    Temporal and spatial variations in ammonia (NH3) emissions and ammonium (NH4+) concentrations associated with aerosols and volume-weighted NH4+ concentration in precipitation are investigated over the period 1990-1998 in the southeast United States (Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, and Tennessee). These variations were analyzed using an NH3 emissions inventory developed for the southeast United States and ambient NH4+ data from the various Clean Air Status and Trends Network (CASTNet) and the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Results show that natural log-transformed annual NH4+ concentration associated with aerosols increases with natural log-transformed annual NH3 emission density within the same county (R2 = 0.86, p < 0.0001, N = 12). Natural log-transformed annual volume-weighted average NH4+ concentration in precipitation shows only a very weak positive correlation with natural log-transformed annual NH3 emission densities within the corresponding county (R2 = 0.12, p = 0.04, N = 29). Analysis of NH4+ concentration associated with aerosols at CASTNet sites revealed that temperature, precipitation amount, and relative humidity are the most statistically significant (p < 0.05) parameters in predicting the weekly concentrations of NH4+ during the period 1990-1998. Wind speed and wind direction were also statistically significant (p < 0.05) at several CASTNet sites, but the results were less consistent. Investigation into wet NH4+ concentration in precipitation consistently yielded temperature as a statistically significant (p < 0.05) parameter at individual sites. Trends over the period 1990-1998 revealed a slight decrease in NH4+ concentration at CASTNet site SPD, Claiborne County, Tennessee (2.14-1.88 μg m-3), while positive trends in NH4+ concentration in precipitation were evident at NADP sites NC35, Sampson County, North Carolina (0.2-0.48 mg L-1) and KY35, Rowan

  12. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  13. Intercomparison of elemental concentrations in total and size-fractionated aerosol samples collected during the mace head experiment, April 1991

    NASA Astrophysics Data System (ADS)

    François, Filip; Maenhaut, Willy; Colin, Jean-Louis; Losno, Remi; Schulz, Michael; Stahlschmidt, Thomas; Spokes, Lucinda; Jickells, Timothy

    During an intercomparison field experiment, organized at the Atlantic coast station of Mace Head, Ireland, in April 1991, aerosol samples were collected by four research groups. A variety of samplers was used, combining both high- and low-volume devices, with different types of collection substrates: Hi-Vol Whatman 41 filter holders, single Nuclepore filters and stacked filter units, as well as PIXE cascade impactors. The samples were analyzed by each participating group, using in-house analytical techniques and procedures. The intercomparison of the daily concentrations for 15 elements, measured by two or more participants, revealed a good agreement for the low-volume samplers for the majority of the elements, but also indicated some specific analytical problems, owing to the very low concentrations of the non-sea-salt elements at the sampling site. With the Hi-Vol Whatman 41 filter sampler, on the other hand, much higher results were obtained in particular for the sea-salt and crustal elements. The discrepancy was dependent upon the wind speed and was attributed to a higher collection efficiency of the Hi-Vol sampler for the very coarse particles, as compared to the low-volume devices under high wind speed conditions. The elemental mass size distribution, as derived from parallel cascade impactor samplings by two groups, showed discrepancies in the submicrometer aerosol fraction, which were tentatively attributed to differences in stage cut-off diameters and/or to bounce-off or splintering effects on the quartz impactor slides used by one of the groups. However, the atmospheric concentrations (sums over all stages) were rather similar in the parallel impactor samples and were only slightly lower than those derived from stacked filter unit samples taken in parallel.

  14. Variability of aerosol particle number concentrations observed over the western Pacific in the spring of 2009

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Moteki, N.; Oshima, N.; Koike, M.; Kita, K.; Shimizu, A.; Sugimoto, N.; Kondo, Y.

    2014-12-01

    Airborne measurements of aerosols were conducted over the western Pacific in the spring of 2009 during the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign. The A-FORCE flights intensively covered an important vertical-latitudinal range in the outflow region of East Asia (0-9 km altitude; 27°N-38°N). This paper presents the variability of aerosol particle number concentrations obtained by condensation particle counters and a Single-Particle Soot Photometer (SP2), with the focus on those in the free troposphere. The number concentration data include total condensation nuclei with particle diameters (dp) larger than 10 nm (total CN10), PM0.17-CN10 (dp ~10-130 nm), and SP2 black carbon (NBC; dp ~75-850 nm). Large increases in total CN10 that were not associated with NBC were observed in the free troposphere, suggesting influences from new particle formation (NPF). Statistical characteristics of total CN10, PM0.17-CN10, and NBC in the lower troposphere (LT; 0-3 km), middle troposphere (MT; 3-6 km), and upper troposphere (UT; 6-9 km) are investigated. The correlation between total CN10 and NBC, along with the ratio of PM0.17 to total CN10 and carbon monoxide mixing ratio (CO), is used to interpret the observed variability. The median concentrations of total CN10 and PM0.17-CN10 in the UT were higher than those in the MT by a factor of ~1.4 and ~1.6, respectively. We attribute the enhancements of CN10 in the UT to NPF. Possible mechanisms affecting NPF in the free troposphere are discussed.

  15. Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cottrell, Laura D.; Griffin, Robert J.; Jimenez, Jose L.; Zhang, Qi; Ulbrich, Ingrid; Ziemba, Luke D.; Beckman, Pieter J.; Sive, Barkley C.; Talbot, Robert W.

    2008-04-01

    The composition and size of aerosols were measured using an Aerodyne quadrupole aerosol mass spectrometer at Thompson Farm in Durham, NH, during the International Consortium for Atmospheric Research on Transport and Transformation campaign during summer 2004. Submicron, non-refractory aerosol was dominated by organic matter and sulfate (averages of 5.7 μg m-3 and 3.6 μg m-3, respectively), with smaller contributions from nitrate and ammonium (averages of 0.3 μg m-3 and 1.02 μg m-3, respectively). Organic aerosol (OA) mass correlates well with anthropogenic tracers such as carbon monoxide (CO, R2 = 0.58) and black carbon (R2 = 0.59), but multiple analyses indicate possible contributions from primary, secondary, anthropogenic, and biogenic OA. Multivariate statistical analysis of the OA mass spectra indicates the presence of two types of oxygenated OA (OOA) and a hydrocarbon-like OA (HOA) component that also contains contributions from biomass burning OA (BBOA). On average, the HOA/BBOA component accounts for 21% of the total OA mass while the two OOA components account for 24% and 55%, respectively, of the OA burden. Observed nitrate correlates well with OA (R2 = 0.67), suggesting interference, the presence of organic nitrates, processing/uptake of nitric acid by OA, or other temporally coincident processes because of the ammonia-poor environment with respect to sulfate. The relative increase of OA with respect to background compared to that of CO (average of 72.7 μg m-3 ppmv-1) indicates values that are higher than those based on previous measurements in New England.

  16. Influence of methane concentration on the optical indices of Titan’s aerosols analogues

    NASA Astrophysics Data System (ADS)

    Mahjoub, A.; Carrasco, N.; Dahoo, P.-R.; Gautier, T.; Szopa, C.; Cernogora, G.

    2012-11-01

    This work deals with the optical constant characterization of Titan aerosol analogues or “tholins” produced with the PAMPRE experimental setup and deposited as thin films onto a silicon substrate. Tholins were produced in different N2-CH4 gaseous mixtures to study the effect of the initial methane concentration on their optical constants. The real (n) and imaginary (k) parts of the complex refractive index were determined using the spectroscopic ellipsometry technique in the 370-1000 nm wavelength range. We found that optical constants depend strongly on the methane concentrations of the gas phase in which tholins are produced: imaginary optical index (k) decreases with initial CH4 concentration from 2.3 × 10-2 down to 2.7 × 10-3 at 1000 nm wavelength, while the real optical index (n) increases from 1.48 up to 1.58 at 1000 nm wavelength. The larger absorption in the visible range of tholins produced at lower methane percentage is explained by an increase of the secondary and primary amines signature in the mid-IR absorption. Comparison with results of other tholins and data from Titan observations are presented. We found an agreement between our values obtained with 10% methane concentration, and Imanaka et al. (Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T., Zare, R.N. [2004]. Icarus, 168, 344-366) values, in spite of the difference in the analytical method. This confirms a reliability of the optical properties of tholins prepared with various setups but with similar plasma conditions. Our comparison with Titan’s observations also raises a possible inconsistency between the mid-IR aerosol signature by VIMS and CIRS Cassini instruments and the visible Huygens-DISR derived data. The mid-IR VIMS and CIRS signatures are in agreement with an aerosol dominated by an aliphatic carbon content, whereas the important visible absorption derived from the DISR measurement seems to be incompatible with such

  17. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    NASA Astrophysics Data System (ADS)

    Zhang, Kewei; Chai, Yuesheng; Fu, Jiahui

    2015-12-01

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position xc satisfied 0 < xc < ˜ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ˜0.3l ≤ xc ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  18. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    SciTech Connect

    Zhang, Kewei Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  19. Measurements of mesospheric aerosol particles during the ECOMA/MASS campaign 2007.

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina; Rapp, Markus; Strelnikov, Boris; Latteck, Ralph; Baumgarten, Gerd; Brattli, Alvin; Friedrich, Martin; Gumbel, Jorg; Robertson, Scott

    In August 2007 the joint European-American ECOMA/MASS (Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere/Dust MASS Analyzer) sounding rocket and ground-based campaign took place at the Andøya Rocket Range (ARR) (69° N). This campaign was devoted to the investigation of mesospheric aerosol particles. During this campaign, three instrumented sounding rockets were launched under the PMSE and NLC conditions. All rockets were carrying instruments to characterize mesospheric aerosol particles and their environment. The ECOMA rocket was launched during the first salvo shortly (30 min) after the MASS payload. At that time, the EISCAT (69° N, 19° E) VHF and ALWIN radars observed a double layered PMSE. Also an NLC layer was detected by lidar and photometers onboard each rocket. The main instrument of the ECOMA payload is the "ECOMA particle detector". This instrument comprises a classical Faraday cup with a xenon-flash lamp for the active photoionization/photodetachment of mesospheric smoke particles (MSPs) and the subsequent detection of corresponding photoelectrons. Comparing direct Faraday cup measurements and photocurrents we are able to derive particle properties like number densities and particle radii. We present the results of these measurements that show the presence of aerosol particles inside the NLC and PMSE layer, but not below or above these layers. These results are consistent with model predictions, which account for global transport of meteoric smoke. This implies that ice nucleation in the polar summer needs to be reconsidered.

  20. Thermal desorption single particle mass spectrometry of ambient aerosol in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Wang, Xinning; Li, Jingyan; Xu, Tingting; Chen, Hong; Yang, Xin; Chen, Jianmin

    2015-12-01

    Submicron aerosol volatility, chemical composition, and mixing state were simultaneously measured using a thermodenuder (TD) in-line with a single particle aerosol mass spectrometry (SPAMS) during Nov.12 to Dec. 11 of 2014 in Shanghai. By heating up to 250 °C, the signals of refractory species such as elemental carbon, metallic compounds, and mineral dust in aerosols were enhanced in the mass spectra. At 250 °C, the main particle types present in the size range of 0.2-1.0 μm were biomass burning (37% by number) and elemental carbon (20%). From 1.0 to 2.0 μm, biomass burning (30%), dust (19%) and metal-rich (18%) were the primary particle types. CN- signal remained in the mass spectra of the heated biomass burning particles suggests the existence of some extremely low-volatility nitrogen-containing organics. Laboratory experiments were conducted by burning rice straws, the main source material of biomass burning particles in Southern China, to confirm the less volatile composition contributed by biomass burning. Strong CN- with relative area >0.21 was observed in most of the laboratory-made biomass burning particles when heated above 200 °C and was selected as a new marker to identify the biomass burning particles in the field. The TD-SPAMS measured the size-resolved chemical composition of the individual particle residues at different temperatures and offered more information on the aging processes of primary particles and their sources.

  1. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  2. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two

  3. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek, A. J., III; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-01

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of ~150 cm-3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with Dp > 110 nm were not activated, the difference between the two approaches possibly representing

  4. Sudden changes in aerosol and gas concentrations in the central Arctic marine boundary layer: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Bigg, E. Keith; Leck, Caroline; Nilsson, E. Douglas

    2001-12-01

    Measurements of aerosol number size distributions and concentrations of the precursor gases dimethyl sulfide, sulfur dioxide and ammonia were made within the pack ice region of the central Arctic Ocean during July and August 1996 from the icebreaker Oden. Changes in concentration, sometimes exceeding the entire seasonal variation, often occurred within an hour and attempts to find the reasons for them are described. Vertical profiles of aerosol concentration in Aitken and accumulation mode particles obtained on helicopter flights revealed intense concentration gradients in the lowest 1000 m. Those below 100 m were common. Concentrations of accumulation mode particles were usually greater near the surface than at 100 m. Four representative case studies for which vertical aerosol profiles were obtained are presented. Observations of rapid large changes in near-surface concentration of aerosols in different size ranges are compared with the vertical profiles, meteorological information, and acoustic or optical remote sensing to infer processes causing the changes. Comparison of simultaneous variations in aerosols and precursor gas concentrations are used to define the vertical profiles of the gases. It was found that dimethyl sulfide and ammonia concentrations usually must have been strongly depleted near the surface relative to concentrations at about 100 m. Sulfur dioxide profiles appeared to be more complex. Turbulence or vertical air motions initiated by atmospheric wave motions trapped within the stable boundary layer appeared to be directly responsible for many of the sudden concentration changes, through interaction with concentration gradients close to the surface. The presence of low-level jets also had direct or indirect influences on mixing in the lowest few hundred meters. The extent to which aerosols measured near the surface can determine the microphysics of central Arctic marine boundary layer clouds is examined.

  5. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-04-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making it the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from

  6. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore » the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA

  7. An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry

    PubMed Central

    Breiev, Kostiantyn; Burseg, Kerstin M. M.; O'Connell, Grant; Hartungen, Eugen; Biel, Stefan S.; Cahours, Xavier; Colard, Stéphane; Märk, Tilmann D.

    2016-01-01

    Rationale Due to the recent rapid increase in electronic cigarette (e‐cigarette) use worldwide, there is a strong scientific but also practical interest in analyzing e‐cigarette aerosols. Most studies to date have used standardized but time‐consuming offline technologies. Here a proof‐of‐concept for a fast online quantification setup based on proton transfer reaction mass spectrometry (PTR‐MS) is presented. Methods The combination of a novel sampling interface with a time‐of‐flight PTR‐MS instrument specially designed for three scenarios is introduced: (i) mainstream aerosol analysis (aerosol that the user inhales prior to exhalation), and analysis of exhaled breath following (ii) mouth‐hold (no inhalation) and (iii) inhalation of e‐cigarette aerosols. A double‐stage dilution setup allows the various concentration ranges in these scenarios to be accessed. Results First, the instrument is calibrated for the three principal constituents of the e‐cigarettes' liquids, namely propylene glycol, vegetable glycerol and nicotine. With the double‐stage dilution the instrument's dynamic range was easily adapted to cover the concentration ranges obtained in the three scenarios: 20–1100 ppmv for the mainstream aerosol characterisation; 4–300 ppmv for the mouth‐hold; and 2 ppbv to 20 ppmv for the inhalation experiment. Conclusions It is demonstrated that the novel setup enables fast, high time resolution e‐cigarette studies with online quantification. This enables the analysis and understanding of any puff‐by‐puff variations in e‐cigarette aerosols. Large‐scale studies involving a high number of volunteers will benefit from considerably higher sample throughput and shorter data processing times. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26864521

  8. Investigation of the time evolved spatial distribution of urban PM2.5 concentrations and aerosol composition during episodic high PM events in Yuma, AZ

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.; Pardyjak, Eric R.; Tyler, Bonnie J.; Peterson, Richard E.

    An interdisciplinary field study designed to investigate the spatial and temporal variability of atmospheric aerosols during high particulate matter ( PM) events along the US-Mexico border near Yuma, AZ was run during the week of March 18, 2007. The experiments were designed to quantify chemical composition and physical phenomena governing the transport of aerosols generated from episodic high PM events. The field study included two micrometeorological monitoring sites; one rural and one urban, equipped with sonic anemometers, continuous particulate concentration monitors and ambient aerosol collection equipment. In addition to the two main monitoring sites, five additional locations were equipped with optical particle counters to allow for the investigation of the spatial and temporal distribution of PM2.5 in the urban environment. In this paper, the meteorological and turbulence parameters governing the distribution and concentration of PM2.5 in the urban environment for two high-wind erosion events and one burning event are compared. The interaction between local atmospheric conditions and the particulate distribution is investigated. Results indicate that a single point measurement in the urban area of Yuma may not be sufficient for determining the ambient PM concentrations that the local population experiences; all three high PM events indicated PM2.5 varied considerably with maximum urban concentrations 5-10 times greater than the measured minima. A comparison of inorganic and carbonaceous content of the aerosols for the three high PM events is presented. The comparison shows an increase in silicon during crustal dust events and an increase in elemental and organic carbon during the burn event. Additional surface chemistry analysis, using time-of-flight secondary ion mass spectrometry (ToF-SIMS), for aerosols collected at the urban and rural sites during the burn event are discussed. The surface chemistry analysis provides positive ion mass spectra of organic

  9. Influence of methane concentration on the optical indices of Titan's aerosols analogues

    NASA Astrophysics Data System (ADS)

    Mahjoub, A.; Dahoo, P. R.; Gautier, T.; Carrasco, N.; Szopa, C.; Cernogora, G.

    2012-04-01

    Titan’s haze is one of the main drivers of the radiative transfer in the atmosphere of Titan and strongly influences its thermal structure (Rannou et al.2010). In Titan’s atmosphere, CH4 concentration may have varied through time during the evolution of this planet (Atreya et al. 2006). So it is of utmost importance to determine the optical constants of tholins synthesized from N2-CH4 mixtures with different CH4 concentration to understand the evolution of Titan atmosphere through time. This work deals with the optical constant characterization of Titan aerosol analogues produced with a radio frequency experimental setup and deposited as thin films onto a silicon substrate (Mahjoub et al. 2012). Tholins were produced in different N2-CH4 gaseous mixtures to study the effect of the initial methane concentration on their optical constants. The real and imaginary parts of the complex refractive index were determined using the spectroscopic ellipsometry in the 0.37-1 µm range. We find that optical indices depend strongly on the methane concentrations of the gas phase: imaginary index (k) decreases by an order of magnitude with initial CH4 concentration at 1 µm wavelength, while the real index (n) increases from 1.48 up to 1.56 at 1 µm wavelength. The larger absorption in the visible range of tholins produced at lower methane percentage is explained by an increase of amines signatures in tholins, measured by absorption spectroscopy in the mid-IR range. According to the methane concentration in Titan’s atmosphere, the evolution of the visible optical signature of Titan’s aerosols may have influenced very differently Titan’s climate through time. References: Atreya et al., Titan’s methane cycle, PSS, vol 54, 1177-1187 Mahjoub et al., Influence of methane concentration on the optical indices of Titan’s aerosols analogues submitted to ICARUS Rannou et al. Titan haze distribution and optical properties retrieved from recent observations, Icarus, 208, 850-867.

  10. Aging of secondary organic aerosol from small aromatic VOCs. Changes in chemical composition, mass yield, volatility and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2014-12-12

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form and transform SOA from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx. The effects of chemical aging on organic aerosol (OA) composition, mass yield, volatility and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state OSC) and mass yield. The OA oxidation state generally increased during photo-oxidation, and the final OA OSmore » C ranged from -0.29 to 0.45 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  11. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  12. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74-78, 17-21, and 4-6 % of the total emissions of OC, respectively, and 49-55, 30-34, and 14-18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites

  13. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-02-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions, with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in BC and OA emitted by gasoline and diesel engines. Cycloalkanes predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. The presence of trace elements in vehicle exhaust raises the concern that ash deposits may accumulate over time in diesel particle filter systems, and may eventually lead to performance problems that require servicing.

  14. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  15. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    To better understand the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations in China, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal and spatial distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher OC/EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, smaller SOC/OC is found for cold seasons, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation in winter. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of

  16. Aerosol Mass Spectrometry via Laser-Induced Incandescence Particle Vaporization Final Report

    SciTech Connect

    Timothy B. Onasch

    2011-10-20

    We have successfully developed and commercialized a soot particle aerosol mass spectrometer (SP-AMS) instrument to measure mass, size, and chemical information of soot particles in ambient environments. The SP-AMS instrument has been calibrated and extensively tested in the laboratory and during initial field studies. The first instrument paper describing the SP-AMS has been submitted for publication in a peer reviewed journal and there are several related papers covering initial field studies and laboratory studies that are in preparation. We have currently sold 5 SP-AMS instruments (either as complete systems or as SP modules to existing AMS instrument operators).

  17. Seasonal differences of urban organic aerosol composition - an ultra-high resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Calvo, A. I.; Dietzel, M.; Kalberer, M.

    2012-04-01

    The understanding of the chemical composition of atmospheric aerosols, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood mainly due to their highly complex chemical composition with several thousand compounds. In the present study the water-soluble organic fraction of ambient particles collected at an urban site in Cambridge, UK, during different seasons were analysed with ultra-high resolution mass spectrometry. For several thousand peaks in the mass specta (between 3000-6000) an elemental composition could be assigned and summer samples generally contained more components than winter samples. Up to 80% of the peaks in the mass spectra contain nitrogen and/or sulphur functional groups and only about 20% of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidized nitrogen and sulphur groups increases compared to winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidized nitrogen compounds a large number of highly unsaturated reduced nitrogen-containing compounds were detected, corresponding likely to cyclic amines. A significant number of oxidized PAHs have been detected in summer samples, which were not present in winter, indicating again photo-chemical aging processes. Both, amines and long-chain aliphatic acids (also frequently observed in these urban samples) are likely signatures of biomass burning and primary biological sources. Potential biomass burning markers are discussed. Particle-phase oligomerisation reactions have only been observed to a very limited degree. Compounds larger than m/z 350 almost exclusively contained N and/or S functional groups indicating that the high molecular weight compounds in these organic aerosol extracts might be mainly due to particle-phase heterogeneous reactions of organic compounds with inorganic

  18. Chemical Nature Of Titan’s Organic Aerosols Constrained from Spectroscopic and Mass Spectrometric Observations

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Cruikshank, D. P.

    2012-10-01

    The Cassini-Huygens observations greately extend our knowledge about Titan’s organic aerosols. The Cassini INMS and CAPS observations clearly demonstrate the formation of large organic molecules in the ionosphere [1, 2]. The VIMS and CIRS instruments have revealed spectral features of the haze covering the mid-IR and far-IR wavelengths [3, 4, 5, 6]. This study attempts to speculate the possible chemical nature of Titan’s aerosols by comparing the currently available observations with our laboratory study. We have conducted a series of cold plasma experiment to investigate the mass spectrometric and spectroscopic properties of laboratory aerosol analogs [7, 8]. Titan tholins and C2H2 plasma polymer are generated with cold plasma irradiations of N2/CH4 and C2H2, respectively. Laser desorption mass spectrum of the C2H2 plasma polymer shows a reasonable match with the CAPS positive ion mass spectrum. Furthermore, spectroscopic features of the the C2H2 plasma polymer in mid-IR and far-IR wavelegths qualitatively show reasonable match with the VIMS and CIRS observations. These results support that the C2H2 plasma polymer is a good candidate material for Titan’s aerosol particles at the altitudes sampled by the observations. We acknowledge funding supports from the NASA Cassini Data Analysis Program, NNX10AF08G, and from the NASA Exobiology Program, NNX09AM95G, and the Cassini Project. [1] Waite et al. (2007) Science 316, 870-875. [2] Crary et al. (2009) Planet. Space Sci. 57, 1847-1856. [3] Bellucci et al. (2009) Icarus 201, 198-216. [4] Anderson and Samuelson (2011) Icarus 212, 762-778. [5] Vinatier et al. (2010) Icarus 210, 852-866. [6] Vinatier et al. (2012) Icarus 219, 5-12. [7] Imanaka et al. (2004) Icarus 168, 344-366. [8] Imanaka et al. (2012) Icarus 218, 247-261.

  19. Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.

    PubMed

    Mihara, Toshiyuki; Mochida, Michihiro

    2011-11-01

    To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM.

  20. Measuring Bipolar Charge and Mass Distributions of Powder Aerosols by a Novel Tool (BOLAR).

    PubMed

    Wong, Jennifer; Lin, Yu-Wei; Kwok, Philip Chi Lip; Niemelä, Ville; Crapper, John; Chan, Hak-Kim

    2015-09-01

    The Bipolar Charge Analyzer (BOLAR) was evaluated for measuring bipolar electrostatic charge and mass distributions of powder aerosols generated from a dry powder inhaler. Mannitol powder (5, 10, and 20 mg) was dispersed using an Osmohaler inhaler into the BOLAR at air flow rates of 30 or 60 L/min. As the aerosol sample was drawn through the BOLAR, the air flow was divided into six equal fractions. Five of them entered individual detection tubes with a defined cutoff diameter in the range of 0.95 to 16.36 μm (depending on the flow rate) and the remaining (i.e., the sixth) fraction passed through a reference chamber. The aerosols that entered the detection tubes were separated according to the particle charge polarity (positive, negative, or neutral) and charge was measured by separate electrometers. The deposited powder of a single actuation from the inhaler was chemically assayed using high performance liquid chromatography. Additionally, the aerosol measurements were conducted on a modified Classic Electrical Low Pressure Impactor (ELPI) for comparison of the net specific charge per size fraction. Spray-dried mannitol carried significantly different positively and negatively charged particles in each of the five defined particle size fractions. The charge-to-mass ratio (q/m) of positively charged particles ranged from +1.11 to +32.57 pC/μg and negatively charged particles ranged from -1.39 to -9.25 pC/μg, resulting in a net q/m of -3.08 to +13.34 pC/μg. The net q/m values obtained on the modified ELPI ranged from -5.18 to +4.81 pC/μg, which were comparable to the BOLAR measurements. This is the first full report to utilize the BOLAR to measure bipolar charge and mass distributions of a powder aerosol. Positively and negatively charged particles were observed within each size fraction, and their corresponding q/m profiles were successfully characterized. Despite some potential drawbacks, the BOLAR has provided a new platform for investigating bipolar charge

  1. Evaluation of the tropospheric aerosol number concentrations simulated by two versions of the global model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Kazil, J.; Feichter, J.

    2009-04-01

    Since its first version developed by Stier et al. (2005), the global aerosol-climate model ECHAM5-HAM has gone through further development and updates. The changes in the model include (1) a new time integration scheme for the condensation of the sulfuric acid gas on existing particles, (2) a new aerosol nucleation scheme that takes into account the charged nucleation caused by cosmic rays, and (3) a parameterization scheme explicitly describing the conversion of aerosol particles to cloud nuclei. In this work, simulations performed with the old and new model versions are evaluated against some measurements reported in recent years. The focus is on the aerosol size distribution in the troposphere. Results show that modifications in the parameterizations have led to significant changes in the simulated aerosol concentrations. Vertical profiles of the total particle number concentration (diameter > 3nm) compiled by Clarke et al. (2002) suggest that, over the Pacific in the upper free troposphere, the tropics are associated with much higher concentrations than the mid-latitude regions. This feature is more reasonably reproduced by the new model version, mainly due to the improved results of the nucleation mode aerosols. In the lower levels (2-5 km above the Earth's surface), the number concentrations of the Aitken mode particles are overestimated compared to both the Pacific data given in Clarke et al. (2002) and the vertical profiles over Europe reported by Petzold et al. (2007). The physical and chemical processes that have led to these changes are identified by sensitivity tests. References: Clarke and Kapustin: A Pacific aerosol survey - part 1: a decade of data on production, transport, evolution and mixing in the troposphere, J. Atmos. Sci., 59, 363-382, 2002. Petzold et al.: Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004, Atmos. Chem. Phys., 7, 5105-5127, 2007

  2. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  3. Fluorescent Biological Aerosol Particle Concentrations and Size Distributions Measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-12-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (< 1 µm), but not for coarse particles (1 - 20 µm). Averaged over the four-month measurement period (August - December 2006), the mean number concentration of coarse FBAPs was ~3x10-2 cm-3, corresponding to ~4% of total coarse particle number [1]. The mean mass concentration of FBAPs was ~1 µg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 µm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 µm, geometric standard deviation 1.3, number concentration 1.6 x 10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 µm, ~5 µm, and ~13 µm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of

  4. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-08-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1 μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of PBAPs in

  5. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2010-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany we used an Ultraviolet Aerodynamic Particle Sizer (UV-APS) to measure Fluorescent Biological Aerosol Particles (FBAPs), which provide an estimate of viable bioaerosol particles and can be regarded as an approximate lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle (24-h) with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical

  6. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  7. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Smith, Jeffrey S.; Laskin, Alexander; Laskin, Julia

    2009-02-13

    Chemical characterizations of atmospheric aerosols is a serious analytical challenge because of the complexity of particulate matter analyte composed of a large number of compounds with a wide range of molecular structures, physico-chemical properties, and reactivity. In this study chemical composition of biomass burning organic aerosol (BBOA) samples is characterized by high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurement combined with Kendrick analysis allowed us to assign elemental composition for hundreds of compounds in the range of m/z values of 50-1000. ESI/MS spectra of different BBOA samples contain a variety of distinct, sample specific, characteristic peaks that can be used as unique markers for different types of biofuels. Our results indicate that a significant number of high-MW organic compounds in BBOA samples are highly oxidized polar species that can be efficiently detected using ESI/MS but are difficult to observe using the conventional GCMS analysis of aerosol samples. The average O:C ratios obtained for each of the BBOA samples studied in this work are in a strikingly good agreement with the previously reported values obtained using STXM/NEXAFS. The degree of unsaturation of detected organic compounds shows a clear decrease with increase in the molecular weight of the anyalyte molecules. The decrease is particularly pronounced for the samples containing a large number of CH2-based homologous series.

  8. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  9. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    PubMed

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-08-10

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis.

  10. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    PubMed

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-01-01

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis. PMID:27507711

  11. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs. PMID:17630721

  12. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  13. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  14. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically-resolved aerosol fluxes

    NASA Astrophysics Data System (ADS)

    Farmer, D. K.; Kimmel, J. R.; Phillips, G.; Docherty, K. S.; Worsnop, D. R.; Sueper, D.; Nemitz, E.; Jimenez, J. L.

    2010-12-01

    Although laboratory studies show that biogenic volatile organic compounds (VOCs) yield substantial secondary organic aerosol (SOA), production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR) PM1 fluxes. Average deposition velocity for total NR-PM1 aerosol at noon was 2.05 ± 0.04 mm/s. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm/s and are dominated by deposition of ammonium sulphate.

  15. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes

    NASA Astrophysics Data System (ADS)

    Farmer, D. K.; Kimmel, J. R.; Phillips, G.; Docherty, K. S.; Worsnop, D. R.; Sueper, D.; Nemitz, E.; Jimenez, J. L.

    2011-06-01

    Although laboratory studies show that biogenic volatile organic compounds (VOCs) yield substantial secondary organic aerosol (SOA), production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR) PM1 fluxes. Average deposition velocities for total NR-PM1 aerosol at noon were 2.05 ± 0.04 mm s-1. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s-1 and are dominated by deposition of ammonium sulphate.

  16. Source apportionment of elevated BaP concentrations in PM10 aerosols in an alpine valley in Austria

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Puxbaum, Hans; Jankowski, Nicole; Sampaio Cordeiro Wagner, Lylian

    2010-05-01

    INTRODUCTION: In a village situated at 1215 m a.s.l. in a natural preserve in an Austrian alpine valley elevated BaP concentrations have been measured in the last years. A highly frequented highway leading from Italy to Germany passes near the village. Monthly means of particulate BaP concentrations show a clear seasonal trend with values below 1 ng/m³ during the warmer months and with concentrations up to 9 ng/m³ in the cold season. Annual averages in the years 2000 - 2005 ranged between 1.4 and 2.8 ng/m³ - much higher than the EU target value of 1 ng/m³. We used a macrotracer model developed at the Vienna University of Technology to determine the contributions of the sources for BaP emissions, which were mainly space heating with wood and traffic from the highway. EXPERIMENTAL: The macrotracer concept is a nine component model to derive source contribution and explains 80-100% of PM10 aerosols in Austria. The amount of traffic exhaust is derived by using EC as tracer, whereas EC produced by wood burning is subtracted, the amount of wood smoke is derived by the anhydro-sugar levoglucosan and the ratio between the anhydro-sugars levoglucosan and mannosan. For the source apportionment of BaP the applied factors reflect on the one hand the composition of the automotive fleet in Austria and on the other hand the composition of the fire wood in the region. Filter samples collected with a high volume sampler in winter were analyzed for PM10 aerosol mass, total, organic, elemental and carbonate carbon, HULIS, anhydro-sugars, polyols and ions (major ions and organic acids) and PAHs. In the same way emission samples taken at a motor test stand and at a test stand for wood combustion were analyzed (Schmidl et al. 2008). The saccharides were determined using high pH anion exchange and pulsed amperometry (HPAE-PAD). Details of the analytical method are given in Iinuma et al., 2009. Elemental and organic carbon were determined with a thermal-optical instrument (Sunset lab

  17. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Onasch, T. B.; Canagaratna, M.; Jayne, J. T.; Kimmel, J.; Yu, X.-Y.; Alexander, M. L.; Worsnop, D. R.; Davidovits, P.

    2008-12-01

    We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA) as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12-30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27-30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information. The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH4)2SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion-generated HOA particles from local sources (e.g. traffic), with number concentrations peaking

  18. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-07-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particulate matter (NR-PM1) in the southeastern USA. Measurements were performed in both rural and urban sites in the greater Atlanta area, Georgia (GA), and Centreville, Alabama (AL), for approximately 1 year as part of Southeastern Center for Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR-PM1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important, but not dominant, contributions to total OA in urban sites (i.e., 21-38 % of total OA depending on site and season). Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA factor (isoprene-OA) is only deconvolved in warmer months and contributes 18-36 % of total OA. The presence of isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79 %) of OA in all sites. MO-OOA correlates well with ozone in summer but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based

  19. Parametric uncertainties in global model simulations of black carbon column mass concentration

    NASA Astrophysics Data System (ADS)

    Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham

    2016-04-01

    Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of

  20. Demonstration of a VUV lamp photoionization source for improvedorganic speciation in an aerosol mass spectrometer

    SciTech Connect

    Northway, M.J.; Jayne, J.T.; Toohey, D.W.; Canagaratna, M.R.; Trimborn, A.; Akiyama, K-I.; Shimono, A.; Jimenez, J.L.; DeCarlo, P.F.; Wilson, K.R.; Worsnop, D.R.

    2007-10-03

    In recent years, the Aerodyne AerosolMass Spectrometer(AMS) has become a widely used tool for determining aerosol sizedistributions and chemical composition for non-refractory inorganic andorganic aerosol. The current version of the AMS uses a combination offlash thermal vaporization and 70 eV electron impact (EI) ionization.However, EI causes extensive fragmentation and mass spectra of organicaerosols are difficult to deconvolute because they are composites of theoverlapping fragmentation patterns of all species present. Previous AMSstudies have been limited to classifying organics in broad categoriessuch as oxidized and hydrocarbon-like." In this manuscript we present newefforts to gain more information about organic aerosol composition byemploying the softer technique of vacuum ultraviolet (VUV) ionization ina Time-of-Flight AMS (ToF-AMS). In our novel design a VUV lamp is placedin direct proximity of the ionization region of the AMS, with only awindow separating the lamp and the ionizer. This design allows foralternation of photoionization and electron impact ionization within thesame instrument on the timescale of minutes. Thus, the EI-basedquantification capability of the AMS is retained while improved spectralinterpretation is made possible by combined analysis of the complementaryVUV and EI ionization spectra. Photoionization and electron impactionization spectra are compared for a number of compounds including oleicacid, long chain hydrocarbons, and cigarette smoke. In general, the VUVspectra contain much less fragmentation than the EI spectra and for manycompounds the parent ion is the dominant ion in the VUV spectrum. As anexample of the usefulness of the integration of PI within the fullcapability of the ToF-AMS, size distributions and size-segregated massspectra are examined for the cigarette smoke analysis. As a finalevaluation of the new VUV module, spectra for oleic acid are compared tosimilar experiments conducted using the tunable VUV radiation

  1. Temporal and spatial variations of the Vienna aerosol.

    PubMed

    Horvath, H; Habenreich, T A; Kreiner, I; Norek, C

    1989-07-01

    For several intensive sampling periods the mass concentration, light extinction, light scattering and light absorption coefficients, and the mass size distribution of the aerosol have been determined at up to eleven location in the non-industrial town of Vienna. Obviously, large variations of the measured values have been found. The following factors influenced the aerosol markedly: wind speed, wind direction, increased aerosol production such as by space heating or traffic and resuspension. Most of the variations in aerosol were found to be caused by these factors. A comparison of the mass concentration and light absorption of the aerosol upwind and downwind of Vienna permitted the estimation of locally produced aerosols: about 50% of the mass of the aerosol and 75% of the light-absorbing aerosol appears to be produced locally.

  2. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  3. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1-2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  4. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1-2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes, especially those with relatively low carbon numbers (C4-15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  5. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-03

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1–2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products ofmore » both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  6. Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols.

    PubMed

    Gallon, Céline; Ranville, Mara A; Conaway, Christopher H; Landing, William M; Buck, Clifton S; Morton, Peter L; Flegal, A Russell

    2011-12-01

    Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.

  7. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.

    PubMed

    Eggersdorfer, M L; Gröhn, A J; Sorensen, C M; McMurry, P H; Pratsinis, S E

    2012-12-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area, and density. Here, zirconia (ZrO(2)) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO(2) and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number, and surface area mean diameter of primary particles, d(va)). The d(va) determined by DMA-APM measurements and this power law is in good agreement with the d(va) obtained by ex situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g., precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835

  8. Mass-Mobility Characterization of Flame-made ZrO2 Aerosols: Primary Particle Diameter & Extent of Aggregation

    PubMed Central

    Eggersdorfer, M.L.; Gröhn, A.J.; Sorensen, C.M.; McMurry, P.H.; Pratsinis, S.E.

    2013-01-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area and density. Here, zirconia (ZrO2) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in-situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO2 and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number and surface area mean diameter of primary particles, dva). The dva determined by DMA-APM measurements and this power law is in good agreement with the dva obtained by ex-situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g. precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835

  9. Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations.

    PubMed

    Moriizumi, Jun; Yamada, Shinya; Xu, Yang; Matsuki, Satoru; Hirao, Shigekazu; Yamazawa, Hiromi

    2014-07-01

    The activity size distributions of indoor and outdoor radioactive aerosol associated with short-lived radon decay products were observed at Nagoya, Japan, for some periods from 2010 to 2012, following the indoor observation by Mostafa et al. [Mostafa, A. M. A., Tamaki, K., Moriizumi, J., Yamazawa, H. and Iida, T. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products. Radiat. Prot. Dosim. 146: (1-3), 19-22 (2011)]. The tendency of smaller indoor activity median aerodynamic diameter (AMAD) after rainfalls showed in the previous study was not consistently obtained, while the consistent tendency of less indoor radioactive particles with diameters in the accumulation mode was observed again after rainfalls. The indoor aerosols showed activity size distributions similar to the outdoor ones. Non-radioactive aerosol particle concentrations measured with a laser particle counter suggested a somewhat liner relationship with AMAD.

  10. Ambient aerosol chlorine concentrations and artefacts during the MEGAPOLI Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay; Crippa, Monica; Poulain, Laurent; Sciare, Jean; Flechsig, Uwe; Prévôt, André; Baltensperger, Urs

    2015-04-01

    Trace elements, especially those that are toxic, can affect the environment in significant ways. Studying them is advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially useful in urban environments with numerous time-variant emission sources distributed across a relatively narrow space. Two field campaigns took place in the framework of the MEGAPOLI project in Paris, France: one in the summer of 2009 (1-31 July), the other in the winter of 2010 (11 Jan - 10 Feb). Rotating drum impactors (RDI) were operated at an urban and a suburban site in each campaign. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facility of the Paul Scherrer Institute (SLS), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for different weather situations and urban environments. Quality assurance was performed partly by intercomparison with independent measurements. An exceptional behavior was observed for chlorine (Cl), where periods with zero RDI concentration alternated with periods of normal load. Zero concentrations were not observed in particle-into-liquid (PILS) measurements. This identifies the observed behavior as a RDI sampling artefact. Nevertheless, the non-zero periods of Cl concentrations are still a gain in information compared to conventional sampling techniques, mainly due to the high time resolution.

  11. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  12. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA.

  13. An Investigation of Size-Dependent Concentration of Trace Elements in Aerosols Emitted from the Oil-Fired Heating Plants

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sentell, R. J.; Khandelwal, G. S.

    1976-01-01

    Aerosols emitted from two oil-fired heating plants were aerodynamically separated into eight size groups and were analyzed using the photon-induced X-ray emission (PIXE) technique. It was found that Zn, Mo, Ag, and Pb, and (to a lesser extent) Cd, have a tendency to concentrate preferentially on the smaller aerosols. All of these elements, in certain chemical forms, are known to be toxic. Zinc and molybdenum, although present in low concentrations in the parent fuels, show the strongest tendencies to be concentrated in finer aerosols. Selenium, previously reported to show a very strong tendency to concentration in finer fly ash from coal-fired power plants shows little preference for surface residence. Vanadium, which occurs in significant concentration in the oil fuels for both plants, also shows little preference for surface concentration. Even though the absolute concentrations of the toxic elements involved are well below the safety levels established by the National Institute for Occupational Safety and Health (NIOSH), it would be advisable to raise the heights of the heating-plant exhaust chimneys well above the neighborhood buildings to insure more efficient aerosol dispersal.

  14. Measurements of CCN-concentrations in the European alpine aerosol using a newly developed static thermal diffusion counter

    NASA Astrophysics Data System (ADS)

    Hitzenberger, R.; Giebl, H.; Berner, A.; Kromp, R.; Reischl, G.; Kasper-Giebl, A.; Puxbaum, H.

    2000-08-01

    The CCN counter developed at the University of Vienna operates on the principle of a static thermal diffusion chamber. Since 1997, it was used to obtain CCN concentrations in the European alpine background aerosol during intensive measurement campaigns. The 1997 campaign was performed on Mt. Sonnblick (3104 m a.s.l.), while in 1999 and 2000, intensive campaigns were performed on Mt. Rax (1644 m a.s.l.). CCN concentrations at 0.5% supersaturation were found to be comparable ar both sites and also comparable to earlier measurements performed with a commercial CCN counter (DH Associates) on Mt. Sonnblick. Simultaneous measurements of CCN concentration, aerosol number size distribution (measured with a differential mobility particle spectrometer) and cloud liquid water content provided insights into the aerosol/cloud dynamics on Mt. Rax

  15. Analysis of tear glucose concentration with electrospray ionization mass spectrometry.

    PubMed

    Taormina, Christopher R; Baca, Justin T; Asher, Sanford A; Grabowski, Joseph J; Finegold, David N

    2007-02-01

    We have developed a mass spectrometry-based method that allows one to accurately determine the glucose concentration of tear fluid. We used a 1 microL micro-capillary to collect tear fluid from the tear meniscus with minimal irritation of the eye. We analyzed the 1 muL volume of collected tear fluid with liquid-chromatography electrospray ionization mass spectrometry with the use of D-glucose-6,6-d2 as an internal standard. Repeated measurements and a recovery experiment on pooled, onion-induced tears showed that the analysis of the glucose in tears was precise (4% relative standard deviation) and provided 100% recovery. We found the tear glucose concentration of one fasting nondiabetic subject to be 13 to 51 microM while the onion-induced tear glucose concentration of a different nondiabetic subject to be 211 to 256 microM. PMID:17084090

  16. Analysis of Tear Glucose Concentration with Electrospray Ionization Mass Spectrometry

    PubMed Central

    Taormina, Christopher R.; Baca, Justin T.; Finegold, David N.; Asher, Sanford A.; Grabowski, Joseph J.

    2007-01-01

    We have developed a mass spectrometry-based method which allows one to accurately determine the glucose concentration of tear fluid. We used a 1 μL micro-capillary to collect tear fluid from the tear meniscus with minimal irritation of the eye. We analyzed the 1 μL volume of collected tear fluid with liquid-chromatography electrospray ionization mass spectrometry with the use of D-glucose-6,6-d2 as an internal standard. Repeated measurements and a recovery experiment on pooled, onion-induced tears showed that the analysis of the glucose in tears was precise (4% relative standard deviation) and provided 100% recovery. We found the tear glucose concentration of one fasting non-diabetic subject to be 13 to 51 μM while the onion-induced tear glucose concentration of a different non-diabetic subject to be 211 to 256 μM. PMID:17084090

  17. On the correlation of atmospheric aerosol components of mass size distributions in the larger region of a central European city

    NASA Astrophysics Data System (ADS)

    Berner, A.; Galambos, Z.; Ctyroky, P.; Frühauf, P.; Hitzenberger, R.; Gomišček, B.; Hauck, H.; Preining, O.; Puxbaum, H.

    Mass size distributions of atmospheric aerosols have been sampled in the region of Vienna, a typical city in central Europe, at an urban and a rural site. The aerosol was collected simultaneously by cascade impactors. Two experiments which had a duration of 4 weeks each, were performed in August 1999 and in January/February 2000. Daily sampling periods were from 8:00 to 20:00, and from 20:00 to 8:00. An evaluation of the mass size distributions is represented in this paper. Emphasis is on the relationships of different aerosol components in a local and a regional context. The main results are as follows. The main components of the atmospheric aerosol are a fine aerosol, the accumulation aerosol, and a coarse aerosol. Specific coarse modes with modal diameters of 4.7 μm average and geometric standard deviations of about 3 occur at the urban and at the rural site, some times surprisingly strong. The fine and the coarse modes are very likely related to motor-car traffic. Usually the PM 2.5 and PM 10 aerosols are regionally strongly correlated. Occasionally, this correlation is effectively disturbed by local and/or regional emissions. Time series of correlation coefficients reveal an episodic character of the atmospheric aerosol. Periods of strong inter-site correlations of PM 2.5 and PM 10 indicate the dominance and the co-variation of the accumulation aerosols or the dominance and the co-variation of the coarse modes.

  18. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 2. Aerosol effects on warm convective clouds

    NASA Astrophysics Data System (ADS)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian

    2016-06-01

    In Part I of this work a 3-D cloud tracking algorithm and phase space of center of gravity altitude versus cloud liquid water mass (CvM space) were introduced and described in detail. We showed how new physical insight can be gained by following cloud trajectories in the CvM space. Here this approach is used to investigate aerosol effects on cloud fields of warm cumuli. We show a clear effect of the aerosol loading on the shape and size of CvM clusters. We also find fundamental differences in the CvM space between simulations using bin versus bulk microphysical schemes, with the bin scheme precipitation expressing much higher sensitivity to changes in aerosol concentrations. Using the bin microphysical scheme, we find that the increase in cloud center of gravity altitude with increase in aerosol concentrations occurs for a wide range of cloud sizes. This is attributed to reduced sedimentation, increased buoyancy and vertical velocities, and increased environmental instability, all of which are tightly coupled to inhibition of precipitation processes and subsequent feedbacks of clouds on their environment. Many of the physical processes shown here are consistent with processes typically associated with cloud invigoration.

  19. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    PubMed

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.

  20. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  1. Extractive Electrospray Ionization Mass Spectrometry of Heterogeneous Particles: Implications for Applications to Complex Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Longin, T.; Waring-Kidd, C.; Wingen, L. M.; Lyster, K.; Anderson, C.; Kumbhani, S.; Finlayson-Pitts, B. J.

    2015-12-01

    Extractive electrospray ionization mass spectrometry (EESI-MS) is a direct, real time technique for obtaining mass spectra of gases, liquid droplets, solid particles, and aerosols with little sample processing. EESI-MS involves the interaction of charged electrospray droplets with a separate spray containing the analyte of interest, but the exact mechanism by which the solvent droplets extract analyte from the sample is unclear. Possible mechanisms include complete coalescence of the sample particle with the solvent droplet in which all of the analyte is incorporated into the solvent or a more temporary interaction such that only some of the analyte is transferred to the solvent. Previous studies of the mechanism of EESI-MS on homogeneous particles indicate that both mechanisms are possible. We studied the behavior of EESI-MS toward heterogeneous particles created by coating NaCl particles with various thicknesses of organic diacids. Our results indicate that the signal strength depends on the solubility of the organic acid in the electrospray solvent, in agreement with previous studies, and also that the outer 10-15 nm of the particles are most susceptible to extraction into the electrospray droplets. Our results combined with those of previous studies suggest that the mass spectra obtained with EESI will not necessarily reflect the overall particle composition, especially for particles that are spatially inhomogeneous, and hence caution in interpretation of the data is advised for application to complex atmospheric aerosol.

  2. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  3. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry

    SciTech Connect

    Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-01-05

    Understanding of molecular composition and fundamental chemical transformations of organic aerosols (OA) during their formation and aging is both a major challenge and the area of greatest uncertainty in atmospheric research. Particularly little is known about fundamental relationship between the chemical composition and physicochemical properties of OA, their atmospheric history, evolution, and impact on the environment. Ambient soft-ionization methods combined with high-resolution mass spectrometry (HR-MS) analysis provide detailed information on the molecular content of OA that is pivotal for improved understanding of their complex composition, multi-phase aging chemistry, direct (light absorption and scattering) and indirect (aerosol-cloud interactions) effects on atmospheric radiation and climate, and health effects. The HR-MS methods can detect thousands of individual OA constituents at once, provide their elemental formulae from accurate mass measurements, and provide structural information based on tandem mass spectrometry. Integration with additional analytical tools, such as chromatography and UV/Vis absorption spectroscopy, makes it possible to further separate OA compounds by their polarity and ability to absorb solar radiation. The goal of this perspective is to describe modern HR-MS methods, review recent applications to field and laboratory studies of OA, and explain how the information obtained from HR-MS methods can be translated into improved understanding of OA chemistry.

  4. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  5. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    composition, concentration, size distribution and (inferred) shape and mixing state in various environments and their regional and seasonal variations within the context of regional and global modeling; and 4) to quantitatively evaluate important processes in various atmospheric environments and during different seasons, focusing on acid-catalyzed SOA formation, new particle growth, and photochemical processes of atmospheric organic aerosols (i.e., SOA production and POA oxidation). We will also examine the correlations and compile the ratios between important pairs of aerosol and gas phase species using region-specific and season-specific correlations and as a function of photochemical age and compare them with the ratios produced by various models. To enable our collaborations with the modelers, we will supply (via a public web interface) AMS data and our analysis results for use in model testing and validation and facilitate the use of the AMS information to constrain calculations of radiative forcing. Model output and AMS measurements and derived parameters will be compared with a focus on regional variability of model/measurement discrepancies and their causes. Finally we will share results, insights and data mining algorithms through peer-reviewed publications, presentations/tutorials at conferences/workshops, and web dissemination of analysis results and in-house developed software packages.

  6. Aerosols concentration in the Candiota area applying different gravimetric methods of sampling and numeric modelling.

    PubMed

    Braga, C F; Alves, R C M; Teixeira, E C; Pire, M

    2002-12-01

    The main purpose of the present work is to study the concentration of atmospheric particles in the Candiota region, in the state of Rio Grande do Sul, where the Presidente Médici coal power plant is located. Aerosol samples were collected at the studied locations between December 2000 and December 2001 during 24 h periods at 15 day intervals using HV PM10 and dichotomous samplers. Then, the values obtained with the ISCST (Industrial Source Complex Term) model, with the HV PM10 sampler at all studied stations, and with the dichotomous sampler at the 8 de Agosto station were compared with each other. The results show that the values for the model had been underestimated in relation to the HV PM10 data for the studied stations, but agreed with the values obtained with the dichotomous sampler.

  7. Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Gao, Yuan

    2008-06-01

    To characterize the mass size distributions of water-soluble inorganic and organic ions associated with urban particulate matter, a total of 15 sets of size-segregated aerosol samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) in the urban area of Newark in New Jersey from July to December 2006. The mass concentrations of PM1.8 accounted for ∼68% of the mass concentrations of PM10. The mass concentrations of the total water-soluble ions in PM1.8 accounted for 31-81% of the mass concentrations of PM1.8. Sulfate was the dominant ion in fine particles, accounting for 31% of the PM1.8 mass with its dominant mode at 0.32-0.56 μm throughout all the samples. Nitrate size distributions were bi-modal, peaking at 0.32-0.56 and 3.2-5.6 μm, and the shift of the nitrate dominant fraction between fine and coarse modes was affected by temperature. The ratios of nitrate to PM1.8 varied significantly, 0.5-27%. The C2-C4 dicarboxylic acids accounted for 1.9±0.9% of PM1.8 mass, with oxalate being the dominant ion. The size distributions of oxalate exhibited two to four modes with the dominant one at 0.32-0.56 μm. Chloride existed in both coarse and fine modes, suggesting the influence of sea-salt aerosol and anthropogenic emissions. A crucial formation mechanism for the mass size distributions of these ions observed at this location is likely to be a combination of the gas-to-particle conversion and in-cloud/fog processing.

  8. Global modeling of tropospheric iodine aerosol

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás. M.; Evans, Mat J.; Spracklen, Dominick V.; Carpenter, Lucy J.; Chance, Rosie; Baker, Alex R.; Schmidt, Johan A.; Breider, Thomas J.

    2016-09-01

    Natural aerosols play a central role in the Earth system. The conversion of dimethyl sulfide to sulfuric acid is the dominant source of oceanic secondary aerosol. Ocean emitted iodine can also produce aerosol. Using a GEOS-Chem model, we present a simulation of iodine aerosol. The simulation compares well with the limited observational data set. Iodine aerosol concentrations are highest in the tropical marine boundary layer (MBL) averaging 5.2 ng (I) m-3 with monthly maximum concentrations of 90 ng (I) m-3. These masses are small compared to sulfate (0.75% of MBL burden, up to 11% regionally) but are more significant compared to dimethyl sulfide sourced sulfate (3% of the MBL burden, up to 101% regionally). In the preindustrial, iodine aerosol makes up 0.88% of the MBL burden sulfate mass and regionally up to 21%. Iodine aerosol may be an important regional mechanism for ocean-atmosphere interaction.

  9. Extensive aerosol optical properties and aerosol mass related measurements during TRAMP/TexAQS 2006 - Implications for PM compliance and planning

    NASA Astrophysics Data System (ADS)

    Wright, Monica E.; Atkinson, Dean B.; Ziemba, Luke; Griffin, Robert; Hiranuma, Naruki; Brooks, Sarah; Lefer, Barry; Flynn, James; Perna, Ryan; Rappenglück, Bernhard; Luke, Winston; Kelley, Paul

    2010-10-01

    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM 2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM 2.5 air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center.

  10. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  11. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliquevis, T.; Kuwata, M.; Karl, T. G.; Guenther, A.; Allan, J. D.; Coe, H.; Andreae, M. O.; Pöschl, U.; Jimenez, J. L.; Artaxo, P.; Martin, S. T.

    2015-04-01

    Real-time mass spectra of the non-refractory species in submicron aerosol particles were recorded in a tropical rainforest in the central Amazon Basin during the wet season from February to March 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic material accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. There was insufficient ammonium to neutralize sulfate. In this acidic, isoprene-rich, HO2-dominant environment, positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the 99% of the variance in the signal intensities of the organic constituents. The first factor was identified as associated with regional and local pollution and labeled "HOA" for its hydrocarbon-like characteristics. A second factor was associated with long-range transport and labeled "OOA-1" for its oxygenated characteristics. A third factor, labeled "OOA-2," was implicated as associated with the reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets. A fourth factor, labeled "OOA-3," was consistent with an association with the fresh production of secondary organic material (SOM) by the mechanism of gas-phase oxidation of biogenic volatile organic precursors followed by gas-to-particle conversion of the oxidation products. The suffixes 1, 2, and 3 on the OOA labels signify ordinal ranking with respect to the extent of oxidation represented by the factor. The process of aqueous-phase oxidation of water-soluble products of gas-phase photochemistry might also have been associated to some extent with the OOA-2 factor. The campaign-average factor loadings had a ratio of 1.4:1 for OOA-2 : OOA-3, suggesting the comparable importance of particle-phase compared to gas-phase pathways for the production of SOM during the study period.

  12. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    NASA Astrophysics Data System (ADS)

    Palancar, G. G.; Lefer, B. L.; Hall, S. R.; Shaw, W. J.; Corr, C. A.; Herndon, S. C.; Slusser, J. R.; Madronich, S.

    2013-01-01

    Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between actinic fluxes (AF) in the wavelength range 330-420 nm measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

  13. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    NASA Astrophysics Data System (ADS)

    Palancar, G. G.; Lefer, B. L.; Hall, S. R.; Shaw, W. J.; Corr, C. A.; Herndon, S. C.; Slusser, J. R.; Madronich, S.

    2012-08-01

    Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between UV actinic fluxes (AF) measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 67% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

  14. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  15. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  16. Highly time-resolved trace element concentrations in aerosols during the Megapoli Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay G.; Crippa, Monica; Poulain, Laurent; Appel, Karen; Flechsig, Uwe; Prevot, Andre S. H.; Baltensperger, Urs

    2014-05-01

    Trace elements contribute typically only a few percent to the total mass of air pollutants, however, they can affect the environment in significant ways, especially those that are toxic. Furthermore, they are advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially advantageous in an urban environment with numerous time-variant emission sources distributed across a relatively narrow space, as is typically the setting of a megacity. Two 1-month long field campaigns took place in the framework of the Megapoli project in Paris, France, in the summer of 2009 and in the winter of 2010. Rotating drum impactors (RDI) were operated at two sites in each campaign, one urban, the other one suburban. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1 and PM1-0.1) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facilities of Paul Scherrer Institute (SLS) and Deutsches Elektronen-Synchrotron (HASYLAB), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, Zr, Cd, Sn, Sb, Ba, Pb) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for the different weather situations and urban environments. They allow for the distinction of regional vs. local sources and transport, and provide a basis for source apportionment calculations. Local and regional contributions of traffic, including re-suspension, break wear and exhaust, wood burning, marine and other sources will be discussed. Indications of long-range transport from Polish coal emissions in the city center of Paris were also found.

  17. The effect of surfactant and solid phase concentration on drug aggregates in model aerosol propellent suspensions.

    PubMed

    Bower, C; Washington, C; Purewal, T S

    1996-04-01

    The effect of increasing solid phase concentration on the morphology and flocculation rate of model aerosol suspensions has been investigated. Suspensions of micronized salbutamol sulphate and lactose in trichlorotrifluoroethane (P113) were studied under conditions of increasing shear stress. By use of image analysis techniques, measurement of aggregate size, fractal dimension and rate of aggregation was performed. The effect of the surfactant sorbitan monooleate on morphology and flocculation rate was also studied. Increased solid phase concentration caused an increase in the rate of aggregation and average aggregate size at a given value of shear stress. Surfactant addition retarded the aggregation rate, and caused a shift from a diffusion-limited cluster aggregation to a reaction-limited cluster aggregation mechanism. The aggregate profiles showed a corresponding change from rugged and crenellated without surfactant, to increasingly smooth and Euclidian with increasing surfactant concentration. The morphological changes were characterized by a decrease in the average boundary fractal dimension which also correlated well with the corresponding reduction in aggregation rate.

  18. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  19. Black Carbon, Metal Concentrations and Lead Isotopes Ratios in Aerosols as Tracers of Human and Natural Activities in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Guinot, B. P.

    2015-12-01

    Atmospheric brown clouds (ABC) observed as widespread layers of brownish haze are regional scale plumes of air pollutants with a hot spot of emission located in East Asia. ABC are mainly composed of aerosol particles such as Black Carbon (BC) emitted to the atmosphere during biomass burning and fossil fuels combustion. The atmospheric lifetime of BC ranges from a few days in wet season up to one month in dry season. The use of stable lead isotopes and 21 elements as tracers of air pollution was applied to identify and characterized the main sources of anthropogenic activities in Asian region. Aerosol samples from Haiphong (North Vietnam) were collected by a high volume sampler for a period of one year from October 2012 to October 2013. Vietnam's 207Pb/206Pb ratios were almost identical to those found for China. Ratios of 207Pb/206Pb ranged from 0.837 to 0.871 which agrees with values previously reported for the last 10 years in China (0.841 - 0.879). No significant variation in isotope ratio was observed during the sampling period, which suggests that there was no large seasonal variation in the isotope ratios of airborne lead. Trajectory analysis showed that almost two third of the air masses originated from East Northeast which implies that China was a major source of lead in atmosphere. Enrichment factor calculations indicated a large influence of coal activity (EF(Al) As = 1982 ± 796, EF(Al) Cd = 972 ± 659, EF(Al) Sb = 1358 ± 930) but the difference between combustion and mining exploitation could not be evidenced. Significant correlations were found between two others groups of elements: As, Cu, Ni, Zn, and Al, Fe K, Co. Wind dilution was effective on metals concentration variation. During the cold and dry season (winter) ambient concentrations were high and variable, during the warm and wet season (summer) concentrations were stable and low. Taken together, these factors also identified industrial and lithogenic activities in the region.

  20. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.

  1. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low. PMID:15950041

  2. Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCNhack concentration prediction

    NASA Astrophysics Data System (ADS)

    Almeida, G. P.; Brito, J.; Morales, C. A.; Andrade, M. F.; Artaxo, P.

    2014-07-01

    Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.23, 0.45, 0.68, 0.90 and 1.13% water supersaturation and were subsequently compared with the Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained by deploying, for the first time in the SPMA, an aerosol chemical ionization monitor (ACSM). CCN closure analyses were performed considering internal mixtures. Average aerosol composition during the studied period yielded (arithmetic mean~± standard deviation) 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m-3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm-3, with a dominant nucleation mode. CCN concentrations were on average 1090 ± 328 and 3570 ± 1695 cm-3 at SS = 0.23% and SS = 1.13%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, observed CCN concentrations were substantially overpredicted when compared with the Köhler theory (44.1 ± 47.9% at 0.23% supersaturation and 91.4 ± 40.3% at 1.13% supersaturation). Overall, the impact of composition on the calculated CCN concentration (NCCN) decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations, defined as the supersaturation at which the cloud droplet activation will take place. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical

  3. PM₂.₅., EC and OC in atmospheric outflow from the Indo-Gangetic Plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor.

    PubMed

    Srinivas, Bikkina; Sarin, M M

    2014-07-15

    Temporal variability (November'09-March'10) in the mass concentrations of PM2.5, mineral dust, organic carbon and elemental carbon (OC and EC), water-soluble organic carbon (WSOC) and inorganic species (WSIS) has been studied in the atmospheric outflow to the Bay of Bengal from a sampling site [Kharagpur: 22.02°N, 87.11°E] in the Indo-Gangetic Plain (IGP). Based on diagnostic ratios of carbonaceous species [OC/EC ≈ 7.0 ± 2.2, WSOC/OC ≈ 0.52 ± 0.16, and K(+)/EC≈0.48±0.17], we document dominant impact from biomass burning emissions (wood-fuel and post-harvest agricultural-waste burning) in the IGP-outflow. Relatively high concentration of sulphate (SO4(2-) ≈ 6.9-25.3 μg m(-3); SO4(2-)/ΣWSIS=45-77%) and characteristic ratios of nss-SO4(2-)/EC (3.9 ± 2.1) and nss-SO4(2-)/OC (0.61 ± 0.46) provide information on absorption/scattering properties of aerosols. Based on quantitative assessment of individual components of PM2.5, we document aerosol organic carbon-to-organic mass (OC to OM) conversion factor centring at 1.5 ± 0.2 (range: 1.3-2.7) in the atmospheric outflow from IGP. The aerosol composition over the Bay of Bengal shows striking similarity with the diagnostic ratios documented for the IGP-outflow. Relatively high conversion factor for assessing the mass of organic aerosols over the Bay of Bengal (1.1-3.7) provides evidence for their oxidation during long-range atmospheric transport.

  4. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  5. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.