Science.gov

Sample records for aerosol mass pam

  1. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  2. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm-3 s, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.

  3. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  4. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  5. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009

    NASA Astrophysics Data System (ADS)

    Stone, R. S.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R. C.; Dutton, E. G.; Liu, P. S. K.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M.

    2010-07-01

    The Arctic climate is modulated, in part, by atmospheric aerosols that affect the distribution of radiant energy passing through the atmosphere. Aerosols affect the surface-atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. Better quantification of the radiative forcing by different types of aerosol is needed to improve predictions of future climate. During April 2009, the airborne campaign Pan-Arctic Measurements and Arctic Regional Climate Model Inter-comparison Project (PAM-ARCMIP) was conducted. The mission was organized by Alfred Wegener Institute for Polar and Marine Research of Germany and utilized their research aircraft, Polar-5. The goal was to obtain a snapshot of surface and atmospheric conditions over the central Arctic prior to the onset of the melt season. Characterizing aerosols was one objective of the campaign. Standard Sun photometric procedures were adopted to quantify aerosol optical depth AOD, providing a three-dimensional view of the aerosol, which was primarily haze from anthropogenic sources. Independent, in situ measurements of particle size distribution and light extinction, derived from airborne lidar, are used to corroborate inferences made using the AOD results. During April 2009, from the European to the Alaskan Arctic, from sub-Arctic latitudes to near the pole, the atmosphere was variably hazy with total column AOD at 500 nm ranging from ˜0.12 to >0.35, values that are anomalously high compared with previous years. The haze, transported primarily from Eurasian industrial regions, was concentrated within and just above the surface-based temperature inversion layer. Extinction, as measured using an onboard lidar system, was also greatest at low levels, where particles tended to be slightly larger than at upper levels. Black carbon (BC) (soot) was observed at all levels sampled, but at moderate to low concentrations compared with

  6. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    PubMed

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-01

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  7. Contribution of methane to aerosol carbon mass

    NASA Astrophysics Data System (ADS)

    Bianchi, F.; Barmet, P.; Stirnweis, L.; El Haddad, I.; Platt, S. M.; Saurer, M.; Lötscher, C.; Siegwolf, R.; Bigi, A.; Hoyle, C. R.; DeCarlo, P. F.; Slowik, J. G.; Prévôt, A. S. H.; Baltensperger, U.; Dommen, J.

    2016-09-01

    Small volatile organic compounds (VOC) such as methane (CH4) have long been considered non-relevant to aerosol formation due to the high volatility of their oxidation products. However, even low aerosol yields from CH4, the most abundant VOC in the atmosphere, would contribute significantly to the total particulate carbon budget. In this study, organic aerosol (OA) mass yields from CH4 oxidation were evaluated at the Paul Scherrer Institute (PSI) smog chamber in the presence of inorganic and organic seed aerosols. Using labeled 13C methane, we could detect its oxidation products in the aerosol phase, with yields up to 0.09

  8. PAM stack test utility

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  9. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  10. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  11. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  12. Non-Refractory Submicron Aerosol Mass Loadings during NEAQS

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Matthew, B. M.; Canagaratna, M. R.; Worsnop, D. R.; Quinn, P. K.; Degouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; McKeen, S. A.

    2003-12-01

    During the New England Air Quality Study (NEAQS) in July-August 2002, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN and collected 2-minute averaged data. The AMS, which measures non-refractory components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm, produced particle mass spectra as well as aerosol organic, sulfate, ammonium, and nitrate mass distributions. A wide variety of air masses were sampled, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of ammonium and nitrate and the mass loadings typically peaked around 400-600 nm in vacuum aerodynamic diameter. Although the AMS sulfate and ammonium concentrations were highly correlated with the sulfate and ammonium concentrations from the Particle into Liquid (PILS) instrument also deployed on the ship, the AMS and PILS nitrate concentrations were not correlated and at times anti-correlated. In contrast, the AMS nitrate and organic concentrations as well as the AMS nitrate and gas phase alkyl nitrate concentrations were highly correlated. These results suggest that organic nitrate was present in the submicron aerosol phase. The AMS organic concentrations were generally higher than the AMS sulfate concentrations, consistent with other shipboard measurements. Whenever the sulfate concentration increased, the organic concentration also increased, indicating that sulfate and organic aerosol growth are influenced by the same processes or that sulfate may play a role in organic aerosol growth. The exception to this pattern occurred during a sea fog event where the sulfate concentration increased and the organic concentration decreased, probably due to rapid aqueous phase sulfur oxidation and relatively less oxidation of organic compounds. Furthermore, the organic concentration often increased without concurrent increases in

  13. Aerosol Analysis via Electrostatic Precipitation-Electrospray Ionization Mass Spectrometry.

    PubMed

    He, Siqin; Li, Lin; Duan, Hongxu; Naqwi, Amir; Hogan, Christopher J

    2015-07-01

    Electrospray ionization (ESI) is the preferred mode of ion generation for mass analysis of many organic species, as alternative ionization techniques can lead to appreciable analyte fragmentation. For this reason, ESI is an ideal method for the analysis of species within aerosol particles. However, because of their low concentrations (∼10 μg/m(3)) in most environments, ESI has been applied sparingly in aerosol particle analysis; aerosol mass spectrometers typically employ analyte volatilization followed by electron ionization or chemical ionization, which can lead to a considerable degree of analyte fragmentation. Here, we describe an approach to apply ESI to submicrometer and nanometer scale aerosol particles, which utilizes unipolar ionization to charge particles, electrostatic precipitation to collect particles on the tip of a Tungsten rod, and subsequently, by flowing liquid over the rod, ESI and mass analysis of the species composing collected particles. This technique, which we term electrostatic precipitation-ESI-MS (EP-ESI-MS), is shown to enable analysis of nanogram quantities of collected particles (from aerosol phase concentrations as low as 10(2) ng m(-3)) composed of cesium iodide, levoglucosan, and levoglucosan within a carbon nanoparticle matrix. With EP-ESI-MS, the integrated mass spectrometric signals are found to be a monotonic function of the mass concentration of analyte in the aerosol phase. We additionally show that EP-ESI-MS has a dynamic range of close to 5 orders of magnitude in mass, making it suitable for molecular analysis of aerosol particles in laboratory settings with upstream particle size classification, as well as analysis of PM 2.5 particles in ambient air. PMID:26024017

  14. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  15. Ambient aerosol analysis using aerosol-time-of-flight mass spectrometry

    SciTech Connect

    Prather, K.A.; Noble, C.A.; Liu, D.Y.; Silva, P.J.; Fergenson, D.F.

    1996-10-01

    We have recently developed a technique, Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS), which is capable of real-time determination of the aerodynamic size and chemical composition of individual aerosol particles. In order to obtain such information, the techniques of aerodynamic particle sizing and time-of-flight mass spectrometry are combined in a single instrument. ATOFMS is being used for the direct analysis of ambient aerosols with the goal of establishing correlations between particle size and chemical composition. Currently, measurements are being made to establish potential links between the presence of particular types of particles with such factors as the time of day, weather conditions, and concentration levels of gaseous smog components such as NO{sub x} and ozone. This data will be used to help establish a better understanding of tropospheric gas-aerosol processes. This talk will discuss the operating principles of ATOFMS as well as present the results of ambient analysis studies performed in our laboratory.

  16. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  17. Studies of Ambient and Chamber Aerosol Composition using the Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Craven, Jill Suzanne

    This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions. The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particlephase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0--4 h old. CO 2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5--2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution. Ground-based aerosol composition is reported for Pasadena, CA during the sumix mer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol

  18. Development of a continuous aerosol mass concentration measurement device.

    PubMed

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.

  19. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  20. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  1. Aerosol propellant interference with clinical mass spectrometers.

    PubMed

    Kharasch, E D; Sivarajan, M

    1991-04-01

    Metered dose inhalers containing halogenated propellants may interfere with mass spectrometer quantitation of halogenated inhalation anesthetics. We identify the propellant(s) in a commercially available metered dose inhaler that caused erroneous mass spectrometer readings. In addition, we identify the causes of different types of interference in different mass spectrometers. PMID:2072131

  2. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  3. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    PubMed Central

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-01-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks. PMID:27733773

  4. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry.

    PubMed

    Morrical, Bradley D; Balaxi, Maria; Fergenson, David

    2015-07-15

    The use of single particle aerosol mass spectrometry (SPAMS) was evaluated for the analysis of inhaled pharmaceuticals to determine the mass distribution of the individual active pharmaceutical ingredients (API) in both single ingredient and combination drug products. SPAMS is an analytical technique where the individual aerodynamic diameters and chemical compositions of many aerosol particles are determined in real-time. The analysis was performed using a Livermore Instruments SPAMS 3.0, which allowed the efficient analysis of aerosol particles with broad size distributions and can acquire data even under a very large particle load. Data similar to what would normally require roughly three days of experimentation and analysis was collected in a five minute period and analyzed automatically. The results were computed to be comparable to those returned by a typical Next Generation Impactor (NGI) particle size distribution experiment.

  5. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  6. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  7. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  8. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  9. The Hohenpeissenberg aerosol characterization experiment (HAZE2002): Aerosol composition derived from mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hock, N.; Berresheim, H.; Borrmann, S.; Poeschl, U.; Roempp, A.; Schneider, J.

    2003-04-01

    The HAZE Experiment was conducted between 17.05.2002 and 31.05.2002, at the meteorological observatory of the Deutsche Wetterdienst (DWD) at Hohenpeissenberg (47^o48'N,11^o02'E, 985m). The objective was to make essential progress in understanding of the physical and chemical properties of the atmospheric aerosol, in particular relating to the Gas-To-Particle-Conversion and the interaction with meteorological processes. The measurements included online mass spectrometric analysis using the Aerosol Mass Spectrometer (AMS), filter samples with GC analyses of organic compounds, particle size distribution (Electrical Low Pressure Impactor (ELPI), SMPS, OPC), as well as the total particle concentration (CPC). Additionally, several gas-phase substances were measured (e.g. Benzene, Acetone). The measurements obtained with the AMS show a strong variability of the aerosol composition. The non-refractory aerosol composition was dominated by nitrate, sulphate, and organics, whereas ammonium was surprisingly low. High number concentration of up to 14000 particles/cm^3 were observed. These particles mostly had diameters between 200 nm and 400 nm and were mainly composed of ammonium sulphate and ammonium nitrate. Various meteorological conditions allowed to study their influence on the aerosol. For example, on rainy days the concentrations of ammonium sulphate particles decreased, whereas the concentrations of ammonium nitrate particles increased.

  10. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  11. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  12. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data.

  13. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  14. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station.

  15. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station. PMID:21141836

  16. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  17. Organic Aerosols in Rural and Remote Atmospheric Environments: Insights from Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Ulbrich, I.; Dunlea, E.; Decarlo, P.; Huffman, A.; Allan, J.; Coe, H.; Alfarra, R.; Canagaratna, M.; Onasch, T.; Jayne, J.; Worsnop, D.; Takami, A.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Weimer, S.; Demerjian, K.; Drewnick, F.; Schneider, J.; Middlebrook, A.; Bahreini, R.; Cotrell, L.; Griffin, R.; Leaitch, R.; Li, S.; Hayden, K.; Rautiainen, J.

    2006-12-01

    Organic matter usually accounts for a large fraction of the fine particle mass in rural and remote atmospheres. However, little is known about the sources and properties of this material. Here we report findings on the characteristics and the major types of organic aerosols (OA) in urban downwind, high elevation, forested, and marine atmospheres based on analyses of more than 20 highly time resolved AMS datasets sampled from various locations in the mid-latitude Northern Hemisphere. Organic aerosol components are extracted from these datasets using a custom multiple component mass spectral analysis technique and the Positive Matrix Factorization (PMF) method. These components are evaluated according to their extracted mass spectra and correlations to aerosol species, such as sulfate, nitrate, and elemental carbon, and gas-phase tracer compounds, such as CO and NOx. We have identified a hydrocarbon-like organic aerosol (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations. We have also identified several oxygenated OA (OOA) components that show different fragmentation patterns and oxygen to carbon ratios in their mass spectra. Two OOA components a highly oxygenated that has mass spectrum resembling that of fulvic acid (a model compound representative for highly processed/oxidized organics in the environment) and a less oxygenated OOA component, whose spectrum is dominated with ions that are mainly associated with carbonyls and alcohols, are very frequently observed at various rural/remote sites. The oxygenated OOA component is more prevalent at downwind sites influenced by urban transport and the less oxygenated shows correlation to biogenic chamber OA at some locations. Compared to the total OOA concentration, HOA is generally very small and accounts for < 10% of the total OA mass at rural/remote sites. The comparisons between the concentrations of HOA and primary OA (POA) that would be predicted according to inert

  18. Ambient aerosol analysis using aerosol-time-of-flight mass spectrometry

    SciTech Connect

    Prather, K.A.; Noble, C.; Salt, K.; Nordmeyer, T.; Fergenson, D.; Morrical, B.

    1995-12-31

    Particulate pollution is an area of growing concern in light of recent studies which suggest a link between high concentrations of ambient PM{sub 10} (particles with diameters equal to or less than 10 {mu}m) and adverse health effects ranging from respiratory ailments to premature death. However, analytical chemistry techniques aimed at sampling and analysis of atmospheric aerosols are extremely limited in comparison to the number of methods that exist for studying gas phase smog components. As a result, current government regulations for levels of ambient particulates are necessarily general, lacking any chemical specificity. The authors have recently developed a technique, Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS), which is capable of real-time determination of the size and chemical composition of individual aerosol particles. In order to obtain such information, the techniques of aerodynamic particle sizing and time-of-flight spectrometry are combined in a single instrument. In one of the aerosol studies performed in this laboratory, this instrument is being used for the direct analysis of ambient aerosols with the goal of establishing correlations between particle size and chemical composition. To date, the authors have observed very distinct size/composition correlations for organic and inorganic particles.

  19. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  20. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry.

    PubMed

    Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki; Jaatinen, Antti; Portin, Harri; Miettinen, Pasi; Komppula, Mika; Leskinen, Ari; Virtanen, Annele; Smith, James N; Sueper, Donna; Worsnop, Douglas R; Lehtinen, Kari E J; Laaksonen, Ari

    2013-03-19

    This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.

  1. Mass size distributions of elemental aerosols in industrial area

    PubMed Central

    Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

    2014-01-01

    Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba) to 89.62 ng/m3 (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources. PMID:26644919

  2. Comparison of Aerosol Mass Spectrometer and Aerosol Chemical Speciation Monitor Measurements of Secondary Organic Aerosol Formation in Smog Chamber Studies

    NASA Astrophysics Data System (ADS)

    Croteau, P. L.; Hunter, J. F.; Daumit, K. E.; Carrasquillo, A. J.; Cross, E. S.; Canagaratna, M.; Jayne, J.; Worsnop, D. R.; Kroll, J. H.

    2012-12-01

    Thermal vaporization-electron impact ionization (TV-EI) mass spectrometry is a powerful tool for understanding the chemistry of secondary organic aerosol (SOA) formation and atmospheric aging. The Aerodyne Aerosol Mass Spectrometer (AMS) and recently developed Aerosol Chemical Speciation Monitor (ACSM) are two instruments that utilize the same TV-EI technique. The ACSM trades the particle sizing capability, sensitivity, speed, and resolution of the AMS for simplicity, affordability, and ease of operation - enabling stand-alone continuous sampling for extended periods of time. Here we present results of an intercomparison between a high-resolution AMS and an ACSM. Three well-studied SOA formation chamber experiments were conducted: isoprene photooxidation under high NOx conditions, m-xylene photooxidation under high NOx conditions, and α-pinene ozonolysis under low NOx conditions. Comparisons between time-series and mass spectra from these experiments, along with positive matrix factorization analysis results demonstrate that the ACSM, while it does not provide the same level of detail as an AMS, is a suitable tool for exploring the chemistry of SOA formation in chamber studies.

  3. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-09-01

    Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the

  4. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  5. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  6. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    NASA Astrophysics Data System (ADS)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  7. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  8. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  9. Mass Spectrometry of Atmospheric Aerosol: 1 nanometer to 1 micron

    NASA Astrophysics Data System (ADS)

    Worsnop, D. R.; Ehn, M.; Junninen, H.; Kulmala, M. T.

    2010-12-01

    The role of aerosol particles remains the largest uncertainty in quantitatively assessing past, current and future climate change. The principal reason for that uncertainty arises from the need to characterize and model composition and size dependent aerosol processes, ranging from nanometer to micron scales. Aerosol mass spectrometry results have shown that about half the sub-micron aerosol composition is composed of highly oxygenated organics that are not well understood in terms of photochemical reaction mechanisms (Jimenez et al, 2009). This work has included application of high resolution time-of-flight mass spectrometry (ToFMS) in order to determine elemental and functional group composition of complex organic components. Recently, we have applied similar ToFMS to determine the composition of ambient ions, molecules and clusters, potentially involved in formation and growth of nano-particles (Junninen et al, 2010). Observed organic anions (molecular weight range 200-500 Th) have similar chemical composition as the least volatile secondary organics observed in fine particles; while organic cations are dominated by amines and pyridines. During nucleation events, anions are dominated by sulphuric acid cluster ions (Ehn et al, 2010). In both nanometer and micrometer size ranges, the goal to elucidate the roles of inorganic and organic species, particularly how particle evolution and physical properties depend on mixed compositions. Recent results will be discussed, including ambient and experimental chamber observations. Ehn et al, Atmos. Chem. Phys. Discuss., 10, 14897-14946, 2010 Jimenez et al, Science, 326, 1525-1529, 2009 Junninen et al, Atmos. Meas. Tech., 3, 1039-1053, 2010

  10. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  11. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  12. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  13. Aerosol Size Distribution, Composition, and Hygroscopicity Measurements During CSTRIPE Using an Aerosol Mass Spectrometer and a Dual Differential Mobility Analyzer

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Varutbangkul, V.; Conant, W. C.; Flagan, R. C.; Seinfeld, J. H.; Buzorius, G.; Jonsson, H. H.

    2003-12-01

    During July 2003, the CIRPAS Twin Otter aircraft was deployed in the CSTRIPE (Coastal STRatocumulus Imposed Perturbation Experiment) field experiment in order to quantify the effects of aerosols on the microphysics and dynamics of marine stratocumulus clouds. In order to characterize the effects of different aerosol types on stratocumulus clouds, various air masses were sampled, including local fire plumes, pollution over the San Joaquin valley, unperturbed marine stratocumulus clouds, and stratocumulus clouds perturbed by seeding flares. Some research flights were also dedicated to characterize the seeding flares in the clear sky. Measurements of aerosol mass distribution and composition, using an Aerodyne Aerosol Mass Spectrometer (AMS), and size distribution and hygroscopic behavior, using a Dual Differential Mobility Analyzer (Dual DMA) with one column at dry conditions and another at a relative humidity of approximately 70 percent, will be presented here. During a number of in-cloud sampling periods, the Counter-flow Virtual Impactor (CVI) was used to select and dry cloud droplets, which were then analyzed by the AMS and the Dual DMA. The AMS composition measurements showed that sulfate and organics comprised most of the mass of the non-refractory components of the aerosol. The DMA showed a mixture of unimodal and bimodal size distributions in most types of air masses. The air mass over the San Joaquin valley, however, showed strong evidence of freshly nucleated particles, with aerosol number concentrations often above 80,000 cm-3.

  14. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  15. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    SciTech Connect

    Ludvigson, Laura D.

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  16. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  17. Aerosol Composition in the Los Angeles Basin Studied by High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M.; Hu, W.; Toohey, D. W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Allan, J. D.; Taylor, J.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Massoli, P.; Zhang, X.; Weber, R.; Zhao, Y.; Cliff, S. S.; Wexler, A. S.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Hering, S. V.; Goldstein, A. H.; Jimenez, J. L.

    2011-12-01

    Atmospheric aerosols impact climate and health, but their sources and composition are poorly understood. To address this knowledge gap, a high-resolution aerosol mass spectrometer (AMS) and complementary instrumentation were deployed during the 2010 CalNex campaign to characterize aerosol composition in the Los Angeles (LA) area. Total mass concentrations as well as the species concentrations measured by the AMS compare well with most other instruments. Nitrate dominates in the mornings, but its concentration is reduced in the afternoon when organic aerosols (OA) increase and dominate. The diurnal variations in concentrations are strongly influenced by emission transport from the source-rich western basin. The average OA to enhanced CO ratio increases with photochemical age from 25 to 80 μg m-3 ppm-1, which indicates significant secondary OA (SOA) production and that a large majority of OA is secondary in aged air. The ratio values are similar to those from Mexico City as well as New England and the Mid-Atlantic States. Positive matrix factorization (PMF) is used to assess the concentrations of different OA components. The major OA classes are oxygenated OA (OOA, a surrogate for total SOA), and hydrocarbon-like OA (HOA, a surrogate for primary combustion OA). Several subclasses of OA are identified as well including diesel-influenced HOA (DI-HOA) and non-diesel HOA. DI-HOA exhibits low concentrations on Sundays consistent with the well-known weekday/weekend effect in LA. PMF analysis finds that OOA is 67% of the total OA concentration. A strong correlation between OOA and Ox (O3 + NO2) concentrations is observed with a slope of 0.15 that suggests the production of fresh SOA in Pasadena. Plotting the OA elemental ratios in a Van Krevelen diagram (H:C vs. O:C) yields a slope of -0.6, which is less steep than that observed in Riverside during the SOAR-2005 campaign. The difference in slopes may be attributed to the highly oxidized HOA present in Pasadena that is

  18. Mass Analysis of Charged Aerosol Particles During the MASS/ECOMA Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S.; Horanyi, M.; Sternovsky, Z.

    2008-12-01

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument was launched on two sounding rockets in August 2007 from Andoya, Norway to find the masses of charged aerosol particles in the polar mesosphere in NLC/PMSE conditions (3 August) and PMSE conditions alone (6 August). We compare and contrast the four data sets from the uplegs and downlegs. The MASS instrument collected ions, cluster ions, and charged nanometer-sized particles on four pairs of electrically-biased graphite plates that collect positive and negative particles separately. Electron collection was prevented by the negative potential on the rocket body. For the 3 August upleg, the data show charged particle collection on all channels with number densities of order several thousand per cubic centimeter in the four size ranges < 0.5 nm, 0.5-1 nm, 1-2 nm, and > 3 nm. The occurrence of positively charged aerosol particles in the smallest sizes suggests positive ions as the nucleation sites because the smallest particles have negligible probability of charging by photoionization. The signals were smaller on the 3 August downleg as a consequence of the spatial variability of the cloud. For the 6 August upleg into PMSE alone, only smaller particles (< 2 nm) were detected and these were both positive and negative with number densities of several thousand per cubic centimeter. On the downleg, 1-2 nm negatively charged particles were detected, but there were no positive particles in this mass range.

  19. Elemental Composition of Primary Aerosols Emitted from Burning of 21 Biomass Fuels Measured by Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Mack, L.; Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Jimenez, J. L.; Worsnop, D. R.

    2010-12-01

    Biomass burning emissions are an important contributor to regional aerosol loading and have a large impact of on air quality, visibility, and radiative forcing. However, the detailed chemical composition of the aerosols emitted during biomass burning is largely unknown. In order to gain a better understanding of the chemical and physical properties of these emissions, 92 burns were undertaken in the combustion chamber of the USDA/FS Fire Sciences Laboratory in Missoula, Montana, in well-defined laboratory conditions. A set of 21 different fuels was tested that represents biomass burned annually in the western and southeastern U.S. The chemical composition of the resulting biomass smoke aerosols was analyzed with a high-resolution aerosol mass spectrometer (Aerodyne HR-ToF-AMS). Simultaneous measurements of CO2 and CO concentrations allowed flaming and smoldering fire regimes to be distinguished. The elemental composition of the organic portion of the aerosols was extracted from the AMS measurements. Here we present the variation of O/C, H/C and organic mass to organic carbon ratios (OM/OC) versus fire regime and fuel type. We also discuss the influence on the organic aerosol chemical composition of various factors such as fuel moisture content and total aerosol loading, as well as the approach used to account for water vapor ions derived from water originally present in sampled particles versus water vapor ions produced by electron impact fragmentation of organic molecules.

  20. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  1. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  2. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  3. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  4. Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass

    PubMed Central

    Froyd, K. D.; Murphy, S. M.; Murphy, D. M.; de Gouw, J. A.; Eddingsaas, N. C.; Wennberg, P. O.

    2010-01-01

    Recent laboratory studies have demonstrated that isoprene oxidation products can partition to atmospheric aerosols by reacting with condensed phase sulfuric acid, forming low-volatility organosulfate compounds. We have identified organosulfate compounds in free tropospheric aerosols by single particle mass spectrometry during several airborne field campaigns. One of these organosulfates is identified as the sulfate ester of IEPOX, a second generation oxidation product of isoprene. The patterns of IEPOX sulfate ester in ambient data generally followed the aerosol acidity and NOx dependence established by laboratory studies. Detection of the IEPOX sulfate ester was most sensitive using reduced ionization laser power, when it was observed in up to 80% of particles in the tropical free troposphere. Based on laboratory mass calibrations, IEPOX added > 0.4% to tropospheric aerosol mass in the remote tropics and up to 20% in regions downwind of isoprene sources. In the southeastern United States, when acidic aerosol was exposed to fresh isoprene emissions, accumulation of IEPOX increased aerosol mass by up to 3%. The IEPOX sulfate ester is therefore one of the most abundant single organic compounds measured in atmospheric aerosol. Our data show that acidity-dependent IEPOX uptake is a mechanism by which anthropogenic SO2 and marine dimethyl sulfide emissions generate secondary biogenic aerosol mass throughout the troposphere. PMID:21098310

  5. Characterization of ice-nucleating bacteria using on-line electron impact ionization aerosol mass spectrometry.

    PubMed

    Wolf, R; Slowik, J G; Schaupp, C; Amato, P; Saathoff, H; Möhler, O; Prévôt, A S H; Baltensperger, U

    2015-04-01

    The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions. PMID:26149110

  6. Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Dall'Osto, M.; Olatunbosun, O. A.; Harrison, Roy M.

    2016-03-01

    Brake dust particles were characterised using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) operated using two inlet configurations, namely the aerodynamic lens (AFL) inlet and countersunk nozzle inlet. Laboratory studies show that dust particles are characterised by mass spectra containing ions deriving from Fe and Ba and although highly correlated to each other, the Fe and Ba signals were mostly detected using the nozzle inlet with relatively high laser desorption energies. When using the AFL, only [56Fe] and [-88FeO2] ions were observed in brake dust spectra generated using lower laser desorption pulse energies, and only above 0.75 mJ was the [138Ba] ion detected. When used with the preferred nozzle inlet configuration, the [-88FeO2] peak was considered to be the more reliable tracer peak, because it is not present in other types of dust (mineral, tyre, Saharan etc). As shown by the comparison with ambient data from a number of locations, the aerodynamic lens is not as efficient in detecting brake wear particles, with less than 1% of sampled particles attributed to brake wear. Five field campaigns within Birmingham (background, roadside (3) and road tunnel) used the nozzle inlet and showed that dust particles (crustal and road) accounted for between 3.1 and 65.9% of the particles detected, with the remaining particles being made up from varying percentages of other constituents.

  7. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm‑1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  8. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm-1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  9. Aerosol matrix-assisted laser desorption ionization for liquid chromatography/time-of-flight mass spectrometry

    SciTech Connect

    Murray, K.K.; Lewis, T.M.; Beeson, M.D.; Russell, D.H. )

    1994-05-15

    We report the application of aerosol matrix-assisted laser desorption ionization (MALDI) to liquid chromatography/mass spectrometry (LC/MS). The aerosol MALDI experiment uses aerosol liquid introduction in conjunction with pulsed UV laser ionization to form ions from large biomolecules in solution. Mass analysis is achieved in a time-of-flight mass spectrometer. In the LC/MALDI-MS experiment, the matrix solution is combined with the column effluent in a mixing tee, LC/MALDI-MS is demonstrated for the separation of bradykinin, gramicidin S, and myoglobin. 32 refs., 8 figs., 1 tab.

  10. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  11. Secondary Aerosol Formation in the planetary boundary layer observed by aerosol mass spectrometry on a Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Rubach, Florian; Trimborn, Achim; Mentel, Thomas; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL). In combination with the high scientific payload of more than 1 ton, the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due its lifetime of up to several days secondaray aerosol at a certain location can result from local production or from transport processes. For aerosol measurements on a Zeppelin, a High-Resolution Time-of-Flight Aerosol Mass spectrometer (DeCarlo et al, 2006) was adapted to the requirements posed by an airborne platform. A weight reduction of over 20 % compared to the commercial instrument was achieved, while space occupation and footprint were each reduced by over 25 %. Within the PEGASOS project, the instrument was part of 10 measurement flight days over the course of seven weeks. Three flights were starting from Rotterdam, NL, seven flights were starting from Ozzano in the Po Valley, IT. Flight patterns included vertical profiles to study the dynamics of the PBL and cross sections through regions of interest to shed light on local production and transport processes. Analysis of data from transects between the Apennin and San Pietro Capofiume in terms of "residence time of air masses in the Po valley" indicates that aerosol nitrate has only local sources while aerosol sulfate is dominated by transport. The organic aerosol component has significant contributions of both processes. The local prodcution yields are commensurable with imultaneously observed precursor concentrations and oxidant levels. The PEGASOS project is funded by the European Commission under the Framework Programme 7 (FP7-ENV-2010-265148). DeCarlo, P.F. et al (2006), Anal. Chem., 78, 8281-8289.

  12. Unraveling the Complexity of Atmospheric Aerosol: Insights from Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Lynn R.; Zhao, Yunzhu; Samburova, Vera; Gannet Hallar, A.; Lowenthal, Douglas

    2016-04-01

    Atmospheric aerosol organic matter (AOM) is a complex mixture of thousands of organic compounds, which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of AOM is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas, aqueous and particle phase reactions contribute to the aerosol organic mass. Thus, ambient aerosols carry a complex array of AOM components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize ambient aerosol AOM collected at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Thousands of molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. Using multivariate statistical analysis, correlations between the site meteorological conditions and specific molecular compositions were identified. For example, days with strong UV radiation and high temperature were found to contain large numbers of biogenic SOA molecular formulas. Similarly, days with high relative humidity and high sulfate concentrations were found to contain many sulfur-containing compounds, suggesting their aqueous phase formation.

  13. Aerosol speciation and mass prediction from toluene oxidation under high NO x conditions

    NASA Astrophysics Data System (ADS)

    Kelly, Janya L.; Michelangeli, Diane V.; Makar, Paul A.; Hastie, Donald R.; Mozurkewich, Michael; Auld, Janeen

    2010-01-01

    A kinetically based gas-particle partitioning box model is used to highlight the importance of parameter representation in the prediction of secondary organic aerosol (SOA) formation following the photo-oxidation of toluene. The model is initialized using experimental data from York University's indoor smog chamber and provides a prediction of the total aerosol yield and speciation. A series of model sensitivity experiments were performed to study the aerosol speciation and mass prediction under high NO x conditions (VOC/NO x = 0.2). Sensitivity experiments indicate vapour pressure estimation to be a large area of weakness in predicting aerosol mass, creating an average total error range of 70 μg m -3 (range of 5-145 μg m -3), using two different estimation methods. Aerosol speciation proved relatively insensitive to changes in vapour pressure. One species, 3-methyl-6-nitro-catechol, dominated the aerosol phase regardless of the vapour pressure parameterization used and comprised 73-88% of the aerosol by mass. The dominance is associated with the large concentration of 3-methyl-6-nitro-catechol in the gas-phase. The high NO x initial conditions of this study suggests that the predominance of 3-methyl-6-nitro-catechol likely results from the cresol-forming branch in the Master Chemical Mechanism taking a significant role in secondary organic aerosol formation under high NO x conditions. Further research into the yields and speciation leading to this reaction product is recommended.

  14. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer

    Loh, N. Duane

    2012-06-20

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  15. Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer

    EPA Science Inventory

    Aerodyne Aerosol Mass Spectrometers (AMS) are routinely operated with a constant vaporizer temperature (Tvap) of 600oC in order to facilitate quantitative detection of non-refractory submicron (NR-PM1) species. By analogy with other thermal desorption instrument...

  16. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  17. Mass Measurements of Saharan Dust Aerosols in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Armstrong, R. A.; Jimenez, B.; Detres, Y.

    2003-12-01

    During the summer months, Saharan dust aerosols reach maximum values throughout the Caribbean Region. The respirable fraction of this dust, measured as PM 2.5, has the potential to induce regional health impacts, such as asthma and allergic reactions in sensitive individuals. Surface measurements of dust aerosols were obtained at Fajardo, on the northeastern corner of Puerto Rico, since November 2000. The PM 2.5 and PM 10 size fractions from the filter samples were related to satellite and sunphotometer measurements of aerosol optical depth before, during, and after Saharan dust events. In 2002, PM 2.5 ranged from 2.5 to 18.4 ug/m-3 while PM 10 ranged from 11 to 60 ug/m-3. The PM 2.5 fraction was approximately 25% of the PM 10. Saharan dust aerosols are also responsible for substantial heavy metal deposition in the tropical western Atlantic. In 2001, Iron increase from less than 4 mg/g during the first four months of the year, to a maximum of 24 mg/g in June, with relatively high values from May through September. An AVHRR 4-year climatology of aerosol optical depth for northeastern Puerto Rico shows a well-defined maximum peak during the last week of June and first week of July.

  18. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  19. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  20. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    SciTech Connect

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  1. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  2. Single Particle Fluorescence & Mass Spectrometry for the Detection of Biological Aerosols

    SciTech Connect

    Coffee, K; Riot, V; Woods, B; Steele, P; Gard, E E

    2005-04-25

    Biological Aerosol Mass Spectrometry (BAMS) is an emerging technique for the detection of biological aerosols, which is being developed at Lawrence Livermore National Laboratory. The current system uses several orthogonal analytical methods to improve system selectivity, sensitivity and speed in order to maximize its utility as a biological aerosol detection system with extremely low probability of false alarm and high probability of detection. Our approach is to pre-select particles of interest by size and fluorescence prior to mass spectral analysis. The ability to distinguish biological aerosols from background and to discriminate bacterial spores, vegetative cells, viruses and toxins from one another will be shown. Data from particle standards of known chemical composition will be discussed. Analysis of ambient particles will also be presented.

  3. GPM Rain Rates in Tropical Cyclone Pam

    NASA Video Gallery

    NASA-JAXA's GPM Satellite Close-up of Cyclone Pam's Rainfall NASA-JAXA's GPM core satellite captured rain rates in Tropical Cyclone Pam at 03:51 UTC (2:51 p.m. local time) on March 14, 2015. Heavie...

  4. Aerosol Organic Matter-Trace Metal Relationships Revealed by Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wozniak, A. S.; Sleighter, R. L.; Morton, P. L.; Landing, W. M.; Shelley, R. U.; Hatcher, P. G.

    2011-12-01

    Atmospheric delivery of aerosols is important for the biogeochemical cycling of organic matter (OM) and trace elements in marine environments. Aerosols over marine environments can be derived from marine sources or transported from continental regions of variable vegetative cover and anthropogenic influence. These different sources are key determinants of aerosol OM composition, as well as trace metal amounts and characteristics. Dust-influenced aerosols typically contain higher amounts of Fe than anthropogenic-influenced aerosols but have lesser % of soluble Fe (%FeS), believed to be the bioavailable form of Fe for marine phytoplankton. Four samples from the 2008 GEOTRACES intercalibration experiments (Miami, FL, USA) were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and related to both air mass back trajectories and %FeS. Three samples showed aerosol sources from the east consistent with Saharan dust inputs, while the fourth sample was derived in part from air masses to the north, influenced by the North American continent. This North American-influenced sample was collected following the 3 day period with the highest %FeS (1.3-1.7%) of the 11 day intercalibration experiment (mean = 0.4-1.1%). FT-ICR mass spectra showed 795 peaks common to the dust-influenced samples but absent from the North American-influenced sample. These peaks were assigned molecular formulas characterized by CHO and CHON compounds with lower H/C and O/C ratios than the 1257 formulas common to all 4 samples, suggesting that the dust-influenced aerosols carry OM that is less oxygenated and more condensed in structure along with Fe of lesser solubility. Air mass trajectory analyses revealed samples collected during a 2010 cruise in the North Atlantic Ocean to be characterized by European-influenced (anthropogenic), African-influenced (dust), and primarily marine air masses, making them ideal for further exploration of the

  5. Seasonal primary amebic meningoencephalitis (PAM) in the south: summertime is PAM time.

    PubMed

    Diaz, James

    2012-01-01

    Primary amebic meningoencephalitis (PAM), a typically fatal, free-living amebic infection of the central nervous system (CNS), is caused by the thermophilic, freshwater protozoan, Naegleria fowleri. More than 145 cases of PAM have been reported worldwide, with most reported cases in the United States (US). Since annual PAM case clusters in the US and worldwide have demonstrated recent increases over background cases, the objectives of this investigation included (1) an epidemiological and statistical analysis of a 2007 cluster of six PAM cases in the southern US, nested in a retrospective review of 121 confirmed US cases of PAM over the period, 1937 to 2007; and (2) a statistical analysis of all existing demographic, temporal, and behavioral risk factors for PAM. Significant risk factors for PAM in the United States included male sex and warm recreational freshwater exposures in seasonal patterns (July - August) in southern tier states, including Louisiana. Although there have been a few recent survivors of PAM treated with combinations of intensive critical care, antifungals, and synergistic antibiotics, case fatality rates for PAM remain very high. PAM is best prevented by combinations of public health educational and behavioral modification strategies. Further investigations will be required to determine the significance of freshwater wakeboarding as a significant risk factor for PAM and to determine any dose-response effects of global warming on rising freshwater temperatures and the growth of aquatic Naegleria fowleri.

  6. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter < 2.5 μm was collected in Mainz, Germany and Beijing, China, respectively. Two pretreatment procedures were applied to extract the organic compounds from the filter samples: One method uses a mixture of acetonitrile and water, the other uses pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  7. Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2012-02-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  8. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July-7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00-11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00-15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00-13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of

  9. On the Interpretation of Oxygenated Organic Aerosols (and their Subtypes) Arising from Factor Analysis of Aerosol Mass Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Zhang, Q.; Canagaratna, M. R.; Ulbrich, I. M.; Ng, N. L.; Aiken, A. C.; Decarlo, P. F.; Kroll, J.; Mohr, C.; Allan, J. D.; Worsnop, D. R.

    2008-12-01

    Zhang et al. (ES&T 2005; ACP 2005) first performed factor analysis (FA) of Aerodyne Aerosol Mass Spectrometer (AMS) complete organic aerosol (OA) mass spectra. This study showed that an oxygenated organic aerosol (OOA) factor accounted for 2/3 of the OA mass at an urban site in Pittsburgh and strongly linked OOA to secondary organic aerosols (SOA). Many subsequent studies and the application of more powerful solution algorithms such as Positive Matrix Factorization (PMF) to the same FA problem have demonstrated the importance of OOA at most locations (e.g. Volkamer et al., GRL, 2006; Zhang et al., GRL, 2007; Lanz et al., ACP, 2007 and ES&T, 2008; Ulbrich et al., ACPD, 2008). Multiple studies have also identified several subtypes of OOA (e.g. OOA-1 and OOA-2). This type of analysis offers new insights because it provides some chemical resolution on the total OA mass with high time and size resolution, and bypasses the limitations of techniques that only analyze tracers and which may favor more reduced species. However the chemical resolution is limited and careful interpretation of the FA output is required, including the use of database spectra, time series of external tracers, tracer ratios, back-trajectory analyses, size- distribution analyses, etc. This presentation will address the interpretation of total OOA and its subfactors across a large range of locations in urban, suburban, rural, remote, and forested areas, and will compare with the results of other source apportionment techniques. Based on data from multiple datasets we conclude that (1) anthropogenic SOA in and downwind of urban areas is an important source of OOA; (2) motor vehicles, meat cooking, and trash burning are unlikely to be sources of primary OOA; (3) SOA from biogenic and biomass burning precursors are also clear sources of OOA; (4) primary biomass burning OA (P-BBOA) typically shows significant differences with ambient OOA factors; (5) heterogeneous oxidation of urban POA may give rise to

  10. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Schueller, Elisabeth; Weinke, Gert; Berger, Anna; Hitzenberger, Regina; Marr, Iain L.; Puxbaum, Hans

    Fungal spores are ubiquitous components of atmospheric aerosols and are therefore also contributors to the organic carbon (OC) component and to the mass of PM 10 (PM—particulate matter) aerosols. In this study we use spore counts and an experimentally derived factor of 13 pg C and of 33 pg fresh weight per spore for assessing quantitatively the contribution to OC and PM 10. The concentrations of airborne fungal spores were determined at a suburban (Schafberg) and a traffic-dominated urban site (Rinnböckstrasse) in Vienna, Austria, during spring and summer. Fungal spores OC ranged from 22 to 677 ng m -3 with a summer mean value of around 350 ng m -3 at the suburban site and 300 ng m -3 at the urban traffic site. At the suburban site fungal spores contributed on average 6% in spring and 14% in summer to aerosol OC mass concentration. At the traffic-dominated site fungal spores accounted for 2% of OC in spring and for 8% in summer. The fungal contribution to PM 10 was also notable and amounted to 3% and 7% at the suburban and to 1% and 4% at the urban site in spring and summer, respectively. Impactor measurements of OC at the suburban site showed that in summer fungal spores were predominant contributors to the coarse aerosol OC, and accounted on average for 60% of the OC in the PM 2-10 fraction. Fungal spores thus can be regarded as main components to PM 10, total OC and, most importantly, coarse OC even in urban areas.

  11. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part II: On-line mass spectrometry techniques.

    PubMed

    Pratt, Kerri A; Prather, Kimberly A

    2012-01-01

    Many of the significant advances in our understanding of atmospheric particles can be attributed to the application of mass spectrometry. Mass spectrometry provides high sensitivity with fast response time to probe chemically complex particles. This review focuses on recent developments and applications in the field of mass spectrometry of atmospheric aerosols. In Part II of this two-part review, we concentrate on real-time mass spectrometry techniques, which provide high time resolution for insight into brief events and diurnal changes while eliminating the potential artifacts acquired during long-term filter sampling. In particular, real-time mass spectrometry has been shown recently to provide the ability to probe the chemical composition of ambient individual particles <30 nm in diameter to further our understanding of how particles are formed through nucleation in the atmosphere. Further, transportable real-time mass spectrometry techniques are now used frequently on ground-, ship-, and aircraft-based studies around the globe to further our understanding of the spatial distribution of atmospheric aerosols. In addition, coupling aerosol mass spectrometry techniques with other measurements in series has allowed the in situ determination of chemically resolved particle effective density, refractive index, volatility, and cloud activation properties.

  12. Characterization of Organic Nitrogen in the Atmosphere Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, X.; Sun, Y.; Chen, M.; Zhang, Q.

    2015-12-01

    Despite extensive efforts on characterizing organic nitrogen (ON) compounds in atmospheric aerosols and aqueous droplets, knowledge of ON chemistry is still limited, mainly due to its chemical complexity and lack of highly time-resolved measurements. This work is aimed at optimizing the method of using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) to characterize ON compounds in atmospheric aerosols. Seventy-five pure nitrogen-containing organic compounds covering a variety of functional groups were analyzed with the HR-AMS. Our results show that ON compounds commonly produce NHx+, NOx+, which are usually attributed to inorganic N species such as ammonium and nitrate, and CH2N+ at m/z = 28, which is rarely quantified in ambient aerosol due to large interference from N2+ in the air signal. As a result, using the nitrogen-to-carbon (N/C) calibration factor proposed by Aiken et al. (2008) on average leads to ~ 20% underestimation of N/C in ambient organic aerosol. A new calibration factor of 0.79 is proposed for determining the average N/C in organics. The relative ionization efficiencies (RIEs) of different ON species, on average, are found to be consistent with the default RIE value (1.4) for the total organics. The AMS mass spectral features of various types of ON species (amines, amides, amino acids, etc.) are examined and used for characterizing ON composition in ambient aerosols. Our results indicate that submicron organic aerosol measured during wintertime in Fresno, CA contains significant amounts of amino-compounds whereas more diversified ON species, including N-containing aromatic heterocycle (e.g., imidazoles), are observed in fog waters collected simultaneously. Our findings have important implications for understanding atmospheric ON behaviors via the widespread HR-AMS measurements of ambient aerosols and droplets.

  13. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  14. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  15. New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Ji, D. S.; Liu, Z. R.; Hu, B.; Wang, L. L.; Huang, X. J.; Wang, Y. S.

    2015-07-01

    In recent years, an increasing amount of attention has been paid to heavy haze pollution in Beijing, China. In addition to Beijing's population of approximately 20 million and its 5 million vehicles, nearby cities and provinces are host to hundreds of heavily polluting industries. In this study, a comparison between observations in January 2013 and January 2014 showed that non-refractory PM1 (NR-PM1) pollution was weaker in January 2014, which was primarily caused by variations in meteorological conditions. For the first time, positive matrix factorization (PMF) was applied to the merged high-resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer measurements in Beijing, and the sources and evolution of NR-PM1 in January 2014 were investigated. The two factors, NO3-OA1 and NO3-OA2, were primarily composed of ammonium nitrate, and each showed a different degree of oxidation and diurnal variation. The organic fraction of SO4-OA showed the highest degree of oxidation of all PMF factors. The hydrocarbon-like organic aerosol (OA) and cooking OA factors contained negligible amounts of inorganic species. The coal combustion OA factor contained a high contribution from chloride in its mass spectrum. The NR-PM1 composition showed significant variations in January 2014, in which the contribution of nitrate clearly increased during heavy pollution events. The most effective way to control fine particle pollution in Beijing is through joint prevention and control measures at the regional level, rather than a focus on an individual city, especially for severe haze events.

  16. PAMS photo image retrieval prototype alternatives analysis

    SciTech Connect

    Conner, M.L.

    1996-04-30

    Photography and Audiovisual Services uses a system called the Photography and Audiovisual Management System (PAMS) to perform order entry and billing services. The PAMS system utilizes Revelation Technologies database management software, AREV. Work is currently in progress to link the PAMS AREV system to a Microsoft SQL Server database engine to provide photograph indexing and query capabilities. The link between AREV and SQLServer will use a technique called ``bonding.`` This photograph imaging subsystem will interface to the PAMS system and handle the image capture and retrieval portions of the project. The intent of this alternatives analysis is to examine the software and hardware alternatives available to meet the requirements for this project, and identify a cost-effective solution.

  17. Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Graham, Bim; Guyon, Pascal; Taylor, Philip E.; Artaxo, Paulo; Maenhaut, Willy; Glovsky, M. Michael; Flagan, Richard C.; Andreae, Meinrat O.

    2003-12-01

    As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign in July 2001, separate day and nighttime aerosol samples were collected at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural "background" aerosol. We used a high-volume sampler to separate the aerosol into fine (aerodynamic diameter, AD < 2.5 μm) and coarse (AD > 2.5 μm) size fractions and quantified a range of organic compounds in methanolic extracts of the samples by a gas chromatographic-mass spectrometric technique. The carbon fraction of the compounds could account for an average of 7% of the organic carbon (OC) in both the fine and coarse aerosol fractions. We observed the highest concentrations of sugars, sugar alcohols, and fatty acids in the coarse aerosol samples, which suggests that these compounds are associated with primary biological aerosol particles (PBAP) observed in the forest atmosphere. Of these, trehalose, mannitol, arabitol, and the fatty acids were found to be more prevalent at night, coinciding with a nocturnal increase in PBAP in the 2-10 μm size range (predominantly yeasts and other small fungal spores). In contrast, glucose, fructose, and sucrose showed persistently higher daytime concentrations, coinciding with a daytime increase in large fungal spores, fern spores, pollen grains, and, to a lesser extent, plant fragments (generally >20 μm in diameter), probably driven by lowered relative humidity and enhanced wind speeds/convective activity during the day. For the fine aerosol samples a series of dicarboxylic and hydroxyacids were detected with persistently higher daytime concentrations, suggesting that photochemical production of a secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Anhydrosugars (levoglucosan, mannosan, galactosan), which are

  18. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-09-01

    The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are

  19. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in

  20. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  1. HUMIDITY EFFECTS ON THE MASS SPECTRA OF SINGLE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line laser desorption ionization mass spectrometry has developed into a widely used method for chemical characterization of individual aerosol particles. In the present study, the spectra of laboratory-generated particles were obtained as a function of relative humidity to elu...

  2. Determination of minimum mass and spatial location of initiator for detonation of propylene oxide aerosols

    NASA Astrophysics Data System (ADS)

    Apparao, A.; Saji, J.; Balaji, M.; Devangan, A. K.; Rao, C. R.

    2016-06-01

    The mishandling of liquid fuels during production, processing or transportation can lead to the formation of combustible two-phase mixtures. These mixtures, with the availability of a suitable energy source, may be ignited generating a deflagration, or even a detonation wave. For military applications, unconfined fuel aerosols are created and detonated with the help of a strong shock generated by a powerful energy source. The minimum energy requirement is expressed in terms of the shock strength, or mass of the high-explosive-based initiator. In this study, the detonability of unconfined aerosols of 4.3 kg propylene oxide was studied by positioning different quantities of cylindrical-shaped initiators of RDX/wax (95/5) at a fixed spatial location in the aerosol cloud, and the minimum mass of the initiator required for detonation initiation was determined. The effect of spatial location and the requirement of initiator mass, especially at farther locations where the fuel concentration is likely to be lower and closer to the lower explosive limit, was also investigated. The experimental findings help identify the detonable zone in unconfined propylene oxide aerosol clouds for different combinations of spatial location and mass of initiator.

  3. Mass concentration and mineralogical characteristics of aerosol particles collected at Dunhuang during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Shen, Z. X.; Cao, J. J.; Li, X. X.; Okuda, T.; Wang, Y. Q.; Zhang, X. Y.

    2006-03-01

    Measurements were performed in spring 2001 and 2002 to determine the characteristics of soil dust in the Chinese desert region of Dunhuang, one of the ground sites of the Asia-Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The mean mass concentrations of total suspended particle matter during the spring of 2001 and 2002 were 317 mu g m(-3) and 307 mu g m(-3) respectively. Eleven dust storm events were observed with a mean aerosol concentration of 1095 mu g m(-3), while the non-dusty days with calm or weak wind speed had a background aerosol loading of 196 mu g m(-3) on average in the springtime. The main minerals detected in the aerosol samples by X-ray diffraction were illite, kaolinite, chlorite, quartz, feldspar, calcite and dolomite. Gypsum, halite and amphibole were also detected in a few samples. The mineralogical data also show that Asian dust is characterized by a kaolinite to chlorite (K/C) ratio lower than 1 whereas Saharan dust exhibits a K/C ratio larger than 2. Air mass back- trajectory analysis show that three families of pathways are associated with the aerosol particle transport to Dunhuang, but these have similar K/C ratios, which further demonstrates that the mineralogical characteristics of Asian dust are different from African dust.

  4. Aerosol Charge Model Consistent with Flight Data from the ECOMA/MASS Rocket Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S. H.; Rapp, M.; Gumbel, J.; Horanyi, M.; Sternovsky, Z.; Friedrich, M.; Baumgarten, G.; Latteck, R.

    2009-12-01

    In August of 2007 two sounding rockets were launched from the Andoya Rocket Range, Norway carrying the MASS instrument (Mesospheric Aerosol Sampling Spectrometer). The instrument detects charged aerosols in four different mass ranges on four pairs of biased collector plates, one set for positive particles and one set for negative particles. The first sounding rocket was launched into PMSE and NLC on 3 August. The solar zenith angle was 93 degrees and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were also detected at the same altitude by rocket-borne photometer measurements. The data from the MASS instrument shows a negatively charged population with radii >3 nm in the 83-89 km altitude range, which is collocated with PMSE detected by the ALWIN radar. Smaller particles, 1-2 nm in radius with both positive and negative polarity were detected between 86-88 km. Positively charged particles <1 nm in radius were detected at the same altitude. A charging model is developed to investigate the coexistence of positively and negatively charged aerosols in the NLC environment. Natanson’s rate equations are used for the attachment of free electrons and ions and the model includes charging by photo-electron emission and photo-detachment. Although the MASS flight occurred during night time conditions, the solar flux was still significant to affect the charge state of the aerosols. The calculations are done assuming three types of particles with different photo-electron charging properties: 1) Icy NLC particles, 2) Hematite particles of meteoric origin as condensation nuclei, and 3) Hematite particles coated with ice. The charge model results are consistent with the MASS rocket data, displaying both positively and negatively charged aerosols for small radii and only negatively charged particles for large radii.

  5. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  6. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  7. Ambient Observations of Organic Nitrogen Compounds in Submicrometer Aerosols in New York Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Ge, X.; Xu, J.; Sun, Y.; Zhang, Q.

    2015-12-01

    Organic nitrogen (ON) compounds, which include amines, nitriles, organic nitrates, amides, and N-containing aromatic heterocycles, are an important class of compounds ubiquitously detected in atmospheric particles and fog and cloud droplets. Previous studies indicate that these compounds can make up a significant fraction (20-80%) of the total nitrogen (N) content in atmospheric condensed phases and play important roles in new particle formation and growth and affecting the optical and hygroscopicity of aerosols. In this study, we report the observation of ON compounds in submicrometer particles (PM1) at two locations in New York based on measurements using Aerodyne high-resolution time-of-flight mass spectrometer (HR-ToF-AMS). One study was conducted as part of the US Department of Energy funded Aerosol Lifecyle - Intensive Operation Period (ALC-IOP) campaign at Brookhaven National Lab (BNL, 40.871˚N, 72.89˚W) in summer, 2011 and the other was conducted at the Queen's College (QC) in New York City (NYC) in summer, 2009. We observed a notable amount of N-containing organic fragment ions, CxHyNp+ and CxHyOzNp+, in the AMS spectra of organic aerosols at both locations and found that they were mainly associated with amino functional groups. Compared with results from lab experiments, the C3H8N+ at m/z = 58 was primarily attributed to trimethylamine. In addition, a significant amount of organonitrates was observed at BNL. Positive matrix factorization (PMF) analysis of the high resolution mass spectra (HRMS) of organic aerosols identified a unique nitrogen-enriched OA (NOA) factor with elevated nitrogen-to-carbon (N/C) at both BNL and QC. Analysis of the size distributions, volatility profiles, and correlations with external tracer indicates that acid-base reactions of amino compounds with sulfate and acidic gas were mainly responsible for the formation of amine salts. Photochemical production was also observed to play a role in the formation of NOA. Bivariate polar

  8. Molecular composition of atmospheric aerosols from Halley Bay, Antarctica, using ultra-high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Brough, Neil; Rincon, Angela; Jones, Anna; Kalberer, Markus

    2016-04-01

    Antarctica is one of the few pristine places to study natural processes of atmospheric aerosols and anthropogenic impacts on the clean remote atmosphere. Although stratospheric aerosol in Antarctica has now been explored in some detail because of the ozone depletion phenomenon, tropospheric aerosol particles in Antarctica remain very little studied. The main goal of this work is to identify in detail the organic chemical composition of aerosol from Halley Bay station, which is located on the Brunt Ice Shelf floating on the Weddell Sea in Antarctica. In this study we characterise the molecular composition of aerosols from three seasons (summer, autumn and winter in 2012) using ultra-high resolution mass spectrometry (UHRMS). The technique provides high accuracy and high mass resolving power that allows determining unambiguous number of organic compounds present in complex organic mixtures (Noziere et al., 2015). The molecular composition interpretation was facilitated using visualisation methods (e.g. double bond equivalent, Van Krevelen diagrams, Kendrick mass analysis, and carbon oxidation state), which allowed to identify patterns, such as differences between sampling times and atmospheric processes. The majority of the identified compounds were attributed to nitrogen and sulphur containing species which exhibited very strong seasonal trends. Relatively large fraction (up to 30% of the total number of molecules) of these species contained very low hydrogen to carbon ratios (below 1) indicating that the site is impacted by anthropogenic emissions. Influences of the meteorological parameters and air mass trajectories on the molecular composition are discussed. Nozière et al., The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115, 3920-3983, 2015.

  9. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  10. SAGE and SAM II measurements of global stratospheric aerosol optical depth and mass loading

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Mccormick, M. P.

    1984-01-01

    Several volcanic eruptions between November 1979 and April 1981 have injected material into the stratosphere. The SAGE and SAM II satellite systems have measured, with global coverage, the 1-micron extinction produced by this material, and examples of the data product are shown in the form of global maps of stratospheric optical depth and altitude-latitude plots of zonal mean extinction. These data, and that for the volcanically quiet period in early 1979, have been used to determine the changes in the total stratospheric mass loading. Estimates have also been made of the contribution to the total aerosol mass from each eruption. It has been found that between 1979 and mid-1981, the total stratospheric aerosol mass increased from a background level of approximately 570,000 metric tons to a peak of approximately 1,300,000 metric tons.

  11. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the

  12. Characterization of events by aerosol mass size distributions.

    PubMed

    Nicolás, José; Yubero, Eduardo; Galindo, Nuria; Giménez, Joaquín; Castañer, Ramón; Carratalá, Adoración; Crespo, Javier; Pastor, Carlos

    2009-02-01

    Continuous measurements of particle mass size distributions were carried out in summer 2004 at an urban location in the western Mediterranean using an optical particle counter. In this work we propose a simple methodology to identify PM episodes and determine their influence on mass size distributions. During the study period three types of event produced a significant increase in TSP daily levels: Saharan dust intrusions, firework displays and strong winds, modifying size distributions in different ways. As well, a traffic-related mass size spectrum was obtained showing road dust particles injected into the atmosphere by vehicle-induced resuspension having mainly aerodynamic diameters between 5 and 15 microm. This was confirmed by principal component and conditional probability function analyses.

  13. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications.

    PubMed

    Yang, Guang; Wang, Caixia; Hong, Feng; Yang, Xuexia; Cao, Zhangjun

    2015-01-22

    In this work, a bacterial cellulose/polyacrylamide (BC/PAM) double network composite was prepared to act as the template for in situ synthesis of silver nanoparticles (AgNPs). Effects of reaction conditions of the BC/PAM composite were investigated on its microstructure, mechanical properties and thermal stabilities. Both the BC/PAM composite and pure BC were utilized to prepare the corresponding silver impregnated nanocomposites, i.e., BC/PAM-AgNPs and BC-AgNPs, by an environmental friendly method, UV irradiation. The influences of the templates were investigated on the AgNPs formation and the antibacterial activities of the nanocomposites by both the zone of inhibition and dynamic shake flask methods. It was shown that the BC/PAM composite displayed a denser microstructure and higher thermal stabilities than pure BC. The BC/PAM-AgNPs nanocomposite exhibited a bigger particle size and lower mass content of AgNPs than the BC-AgNPs one. For the antibacterial test, two nanocomposites exhibited a close antibacterial effect, with a high log reduction above 3 and killing ratio above 99.9%, respectively. PMID:25439942

  14. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications.

    PubMed

    Yang, Guang; Wang, Caixia; Hong, Feng; Yang, Xuexia; Cao, Zhangjun

    2015-01-22

    In this work, a bacterial cellulose/polyacrylamide (BC/PAM) double network composite was prepared to act as the template for in situ synthesis of silver nanoparticles (AgNPs). Effects of reaction conditions of the BC/PAM composite were investigated on its microstructure, mechanical properties and thermal stabilities. Both the BC/PAM composite and pure BC were utilized to prepare the corresponding silver impregnated nanocomposites, i.e., BC/PAM-AgNPs and BC-AgNPs, by an environmental friendly method, UV irradiation. The influences of the templates were investigated on the AgNPs formation and the antibacterial activities of the nanocomposites by both the zone of inhibition and dynamic shake flask methods. It was shown that the BC/PAM composite displayed a denser microstructure and higher thermal stabilities than pure BC. The BC/PAM-AgNPs nanocomposite exhibited a bigger particle size and lower mass content of AgNPs than the BC-AgNPs one. For the antibacterial test, two nanocomposites exhibited a close antibacterial effect, with a high log reduction above 3 and killing ratio above 99.9%, respectively.

  15. Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City

    NASA Astrophysics Data System (ADS)

    Ulbrich, I. M.; Canagaratna, M. R.; Cubison, M. J.; Zhang, Q.; Ng, N. L.; Aiken, A. C.; Jimenez, J. L.

    2011-07-01

    A size-resolved submicron organic aerosol composition dataset from a high-resolution time-of-flight mass spectrometer (HR-ToF-AMS) collected in Mexico City during the MILAGRO campaign in March 2006 is analyzed using 3-dimensional (3-D) factorization models. A method for estimating the precision of the size-resolved composition data for use with the factorization models is presented here for the first time. Two 3-D models are applied to the dataset. One model is a 3-vector decomposition (PARAFAC model), which assumes that each chemical component has a constant size distribution over all time steps. The second model is a vector-matrix decomposition (Tucker 1 model) that allows a chemical component to have a size distribution that varies in time. To our knowledge, this is the first report of an application of 3-D factorization models to data from fast aerosol instrumentation; it is also the first application of this vector-matrix model to any ambient aerosol dataset. A larger number of degrees of freedom in the vector-matrix model enable fitting real variations in factor size distributions, but also make the model susceptible to fitting noise in the dataset, giving some unphysical results. For this dataset and model, more physical results were obtained by partially constraining the factor mass spectra using a priori information and a new regularization method. We find four factors with each model: hydrocarbon-like organic aerosol (HOA), biomass-burning organic aerosol (BBOA), oxidized organic aerosol (OOA), and a locally occurring organic aerosol (LOA). These four factors have previously been reported from 2-dimensional factor analysis of the high-resolution mass spectral dataset from this study. The size distributions of these four factors are consistent with previous reports for these particle types. Both 3-D models produce useful results, but the vector-matrix model captures real variability in the size distributions that cannot be captured by the 3-vector model. A

  16. Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City

    NASA Astrophysics Data System (ADS)

    Ulbrich, I. M.; Canagaratna, M. R.; Cubison, M. J.; Zhang, Q.; Ng, N. L.; Aiken, A. C.; Jimenez, J. L.

    2012-01-01

    A size-resolved submicron organic aerosol composition dataset from a high-resolution time-of-flight mass spectrometer (HR-ToF-AMS) collected in Mexico City during the MILAGRO campaign in March 2006 is analyzed using 3-dimensional (3-D) factorization models. A method for estimating the precision of the size-resolved composition data for use with the factorization models is presented here for the first time. Two 3-D models are applied to the dataset. One model is a 3-vector decomposition (PARAFAC model), which assumes that each chemical component has a constant size distribution over all time steps. The second model is a vector-matrix decomposition (Tucker 1 model) that allows a chemical component to have a size distribution that varies in time. To our knowledge, this is the first report of an application of 3-D factorization models to data from fast aerosol instrumentation, and the first application of this vector-matrix model to any ambient aerosol dataset. A larger number of degrees of freedom in the vector-matrix model enable fitting real variations in factor size distributions, but also make the model susceptible to fitting noise in the dataset, giving some unphysical results. For this dataset and model, more physically meaningful results were obtained by partially constraining the factor mass spectra using a priori information and a new regularization method. We find four factors with each model: hydrocarbon-like organic aerosol (HOA), biomass-burning organic aerosol (BBOA), oxidized organic aerosol (OOA), and a locally occurring organic aerosol (LOA). These four factors have previously been reported from 2-dimensional factor analysis of the high-resolution mass spectral dataset from this study. The size distributions of these four factors are consistent with previous reports for these particle types. Both 3-D models produce useful results, but the vector-matrix model captures real variability in the size distributions that cannot be captured by the 3-vector

  17. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-04-01

    The Aerodyne Aerosol Mass Spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes this instrument provides robust quantitative information on various ambient aerosol components. However, when measuring close to certain anthropogenic sources or in marine environments, several of these assumptions may not be met and measurement results might easily be misinterpreted. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components, i.e. components that vaporize but do not flash vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g. chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g. NH4NO3 or (NH4)2SO4) vaporize quickly, their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in the measurements. Chemical reactions with water vapor and oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g. NH4NO3, (NH4)2SO4, organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g. WO2C2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are presented and are discussed together with field results showing that measurements of typical continental or urban aerosols are not significantly affected while laboratory

  18. Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds.

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-12-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, New York, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types-background continental, polluted continental, and maritime-that were advected to the sampling site. The results are the following (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds to thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (ii) A significant fraction of anthropogenic sulfur aerosols appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (iii) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (iv) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  19. Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol.

    PubMed

    Kostenidou, Evangelia; Lee, Byong-Hyoek; Engelhart, Gabriella J; Pierce, Jeffrey R; Pandis, Spyros N

    2009-07-01

    Secondary organic aerosol (SOA) consists of compounds with a wide range of volatilities and its ambient concentration is sensitive to this volatility distribution. Recent field studies have shown that the typical mass spectrum of ambient oxygenated organic aerosol (OOA) as measured by the Aerodyne Aerosol Mass Spectrometer (AMS) is quite different from the SOA mass spectra reported in smog chamber experiments. Part of this discrepancy is due to the dependence of SOA composition on the organic aerosol concentration. High precursor concentrations lead to higher concentrations of the more volatile species in the produced SOA while at lower concentrations the less volatile compounds dominate the SOA composition. alpha-Pinene, beta-pinene, d-limonene, and beta-caryophyllene ozonolysis experiments were performed at moderate concentration levels. Using a thermodenuder the more volatile SOA species were removed achieving even lower SOA concentration. The less volatile fraction was then chemically characterized by an AMS. The signal fraction of m/z44, and thus the concentration of C02+, is significantly higher for the less volatile SOA. High NO(x) conditions result in less oxidized SOA than low NO(x) conditions, while increasing relative humidity levels results in more oxidized products for limonene but has little effect on alpha-and beta-pinene SOA. Combining a smog chamber with a thermodenuder model employing the volatility basis-set framework, the AMS SOA mass spectrum for each experiment and for each precursor is deconvoluted into low, medium, and high volatility component mass spectra. The spectrum of the surrogate component with the lower volatility is quite similar to that of ambient OOA.

  20. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and

  1. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate

  2. Toward new techniques to measure heterogeneous oxidation of aerosol: Electrodynamic Balance-Mass Spectrometry (EDB-MS) and Aerosol X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, M. I.; Heine, N.; Xu, B.; Davies, J. F.; Kirk, B. B.; Kostko, O.; Alayoglu, S.; Wilson, K. R.; Ahmed, M.

    2015-12-01

    The chemical composition and physical properties of aerosol can be changed via heterogeneous oxidation with the OH radical. However, the physical state of the aerosol influences the kinetics of this reaction; liquid particles with a high diffusion coefficient are expected to be well mixed and homogenously oxidized, while oxidation of solid, diffusion-limited aerosol is expected to occur primarily on the surface, creating steep chemical gradients within the particle. We are working to develop several new techniques to study the heterogeneous oxidation of different types of aerosol. We are developing a "modular" electrodynamic balance (EDB) that will enable us to study heterogeneous oxidation at aqueous interfaces using a mass-spectrometer (and potentially other detection techniques). Using a direct analysis in real time (DART) interface, preliminary droplet train measurements have demonstrated single-droplet mass spectrometry to be possible. With long reaction times in our EDB, we will be able to study heterogeneous oxidation of a wide variety of organic species in aqueous droplets. Additionally, we are working to use aerosol photoemission and velocity map imaging (VMI) to study the surface of aerosol particles as they undergo heterogeneous oxidation. With VMI, we're able to collect electrons with a 4π collection efficiency over conventional electron energy analyzers. Preliminary results looking at the ozonolysis of squalene using ultraviolet photoelectron spectroscopy (UPS) show that heterogeneous oxidation kinetic data can be extracted from photoelectron spectra. By moving to X-ray photoemission spectroscopy (XPS), we will determine elemental and chemical composition of the aerosol surface. Thus, aerosol XPS will provide information on the steep chemical gradients that form as diffusion-limited aerosol undergo heterogeneous oxidation.

  3. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  4. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  5. The Development of Electrostatic Precipitation-Electrospray Ionization Mass Spectrometry (EP-ESI-MS) for Atmospheric Aerosol Analysis

    NASA Astrophysics Data System (ADS)

    He, S.; Hogan, C. J., Jr.; Naqwi, A.; Gross, D. S.; Li, L.; Duan, H.; Jiang, L.; Flowers, J.; Grubb, E.; Au, L.

    2015-12-01

    Chemical composition analysis of atmospheric aerosols is of considerable interest and has been facilitated by mass spectrometry. Electrospray ionization (ESI) is a suitable mode of ion generation of many organic species comprising aerosol particles, as it leads to minimal analyte fragmentation. However, particles exist in the atmosphere at mass concentrations of the order 10 μg/m3 or less in many environments and are highly heterogeneous; low concentrations and chemical complexity have limited ESI application in aerosol analysis. In this presentation, the development of an approach to apply ESI to molecules within submicrometer and nanometer scale aerosol particles is discussed. The technique, which we term electrostatic precipitation-ESI-MS (EP-ESI-MS), utilizes unipolar ionization to charge particles, electrostatic precipitation to collect particles on the tip of a tungsten rod, and subsequently, by flowing liquid over the rod, ESI and mass analysis of dissolved species originating from the collected particles. EP-ESI-MS is shown to enable analysis of nanogram quantities of collected inorganic and organic components. Furthermore, it is coupled with a tandem mass spectrometry and challenged with oxidation products of α-pinene to investigate its capability of enabling structure analysis of complex organic compounds in aerosol particles. With EP-ESI-MS, the identification of chemical components in aerosol particles is realized and the integrated mass spectrometric signals are found to be a monotonic function of the analyte mass concentration in the aerosol phase. Additionally, it is shown to have a dynamic range of 5 orders of magnitude in mass, making it suitable for molecular analysis of aerosol particles in laboratory settings, as well as analysis of atmospheric aerosols in ambient air.

  6. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment

    SciTech Connect

    Aiken, Allison; Salcedo, D.; Cubison, Michael J.; Huffman, J.; DeCarlo, Peter; Ulbrich, Ingrid M.; Docherty, Kenneth S.; Sueper, D. T.; Kimmel, Joel; Worsnop, Douglas R.; Trimborn, Achim; Northway, Megan; Stone, Elizabeth A.; Schauer, James J.; Volkamer, Rainer M.; Fortner, Edward; de Foy, B.; Wang, Jian; Laskin, Alexander; Shutthanandan, V.; Zheng, Junsheng; Zhang, Renyi; Gaffney, Jeffrey S.; Marley, Nancy A.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luisa T.; Sosa, G.; Jimenez, Jose L.

    2009-09-11

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identifies three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning.

  7. Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cottrell, Laura D.; Griffin, Robert J.; Jimenez, Jose L.; Zhang, Qi; Ulbrich, Ingrid; Ziemba, Luke D.; Beckman, Pieter J.; Sive, Barkley C.; Talbot, Robert W.

    2008-04-01

    The composition and size of aerosols were measured using an Aerodyne quadrupole aerosol mass spectrometer at Thompson Farm in Durham, NH, during the International Consortium for Atmospheric Research on Transport and Transformation campaign during summer 2004. Submicron, non-refractory aerosol was dominated by organic matter and sulfate (averages of 5.7 μg m-3 and 3.6 μg m-3, respectively), with smaller contributions from nitrate and ammonium (averages of 0.3 μg m-3 and 1.02 μg m-3, respectively). Organic aerosol (OA) mass correlates well with anthropogenic tracers such as carbon monoxide (CO, R2 = 0.58) and black carbon (R2 = 0.59), but multiple analyses indicate possible contributions from primary, secondary, anthropogenic, and biogenic OA. Multivariate statistical analysis of the OA mass spectra indicates the presence of two types of oxygenated OA (OOA) and a hydrocarbon-like OA (HOA) component that also contains contributions from biomass burning OA (BBOA). On average, the HOA/BBOA component accounts for 21% of the total OA mass while the two OOA components account for 24% and 55%, respectively, of the OA burden. Observed nitrate correlates well with OA (R2 = 0.67), suggesting interference, the presence of organic nitrates, processing/uptake of nitric acid by OA, or other temporally coincident processes because of the ammonia-poor environment with respect to sulfate. The relative increase of OA with respect to background compared to that of CO (average of 72.7 μg m-3 ppmv-1) indicates values that are higher than those based on previous measurements in New England.

  8. In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing

    NASA Astrophysics Data System (ADS)

    Chaudhry, Zahra; Martins, J. Vanderlei; Li, Zhanqing; Tsay, Si-Chee; Chen, Hongbin; Wang, Pucai; Wen, Tianxue; Li, Can; Dickerson, Russell R.

    2007-12-01

    As a part of the EAST-AIRE study, Nuclepore filters were collected in two size ranges (coarse, 2.5 μm < d < 10 μm, and fine, d < 2.5 μm) from January to May 2005 in Xianghe, about 70 km southeast of Beijing, and analyzed for aerosol mass concentration, spectral absorption efficiency and absorption coefficient. Twelve-hour aerosol mass concentration measurements showed an average concentration of 120 μg/m3 in the coarse mode and an average concentration of 25 μg/m3 in the fine mode. To determine how representative ground-based measurements are of the total column, the mass concentration data was compared with AERONET AOT at 500 nm and AERONET size distribution data. The vertical distribution of the aerosols were studied with a micropulse lidar and in the cases where the vertical column was found to be fairly homogenous, the comparisons of the filter results with AERONET agreed favorably, while in the cases of inhomogeneity, the comparisons have larger disagreement. For fine mode aerosols, the average spectral absorption efficiency equates well to a λ-1 model, while the coarse mode shows a much flatter spectral dependence, consistent with large particle models. The coarse mode absorption efficiency was compatible with that of the fine mode in the NIR region, indicating the much stronger absorption of the coarse mode due to its composition and sizable mass. Single scattering albedo results are presented from a combination between absorption coefficients derived from the filter measurements, from a PSAP and from a three-wavelength Nephelometer.

  9. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    PubMed

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  10. Gas- and aerosol-phase chemistry of nitrogen oxides (NOy) in a pine forest (BEACHON-RoMBAS 2011)

    NASA Astrophysics Data System (ADS)

    Fry, J.; Draper, D.; Zarzana, K. J.; Brown, S. S.; Dube, B.; Wagner, N.; Cohen, R. C.; Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Brune, W. H.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.

    2011-12-01

    Ambient measurements of NOy (NO2, peroxy- and alkyl-nitrates, and the gas/aerosol partitioning of the latter) and Potential Aerosol Mass measurements of NO3-initiated secondary organic aerosol formation in a 16 L flow-through reactor were made during the BEACHON-RoMBAS field campaign in U.S. Forest Service Manitou Forest Observatory, Colorado (July/August 2011). A cavity ringdown spectrometer (CRDS) is used to monitor NO3 and N2O5 , Thermal Desorption - Laser Induced Fluorescence (TD-LIF) is used to detect the NOy species as NO2; an Aerodyne Aerosol Mass Spectrometer (AMS) monitors chemical composition of aerosol; Proton Transfer Reaction Mass Spectrometry (PTR-TOF-MS) monitors the gas-phase organic compounds; and a thermal converter/chemiluminescent NO/NOx/NH3 analyzer monitors gas-phase inorganic nitrogen compounds. In the PAM measurements, a calibrated flow of NO3 is supplied to the reactor from a temperature-controlled N2O5 trap. With this suite of measurements we seek to elucidate the role of nitrate in biogenic SOA formation, as well as the fate of pollution emissions in a forest environment. We observe significant concentrations of ambient alkyl- and peroxynitrates, despite the remote forest location, and find evidence in PAM measurements that formation of these compounds is linked to organic aerosol production.

  11. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    SciTech Connect

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  12. Measurements of mesospheric aerosol particles during the ECOMA/MASS campaign 2007.

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina; Rapp, Markus; Strelnikov, Boris; Latteck, Ralph; Baumgarten, Gerd; Brattli, Alvin; Friedrich, Martin; Gumbel, Jorg; Robertson, Scott

    In August 2007 the joint European-American ECOMA/MASS (Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere/Dust MASS Analyzer) sounding rocket and ground-based campaign took place at the Andøya Rocket Range (ARR) (69° N). This campaign was devoted to the investigation of mesospheric aerosol particles. During this campaign, three instrumented sounding rockets were launched under the PMSE and NLC conditions. All rockets were carrying instruments to characterize mesospheric aerosol particles and their environment. The ECOMA rocket was launched during the first salvo shortly (30 min) after the MASS payload. At that time, the EISCAT (69° N, 19° E) VHF and ALWIN radars observed a double layered PMSE. Also an NLC layer was detected by lidar and photometers onboard each rocket. The main instrument of the ECOMA payload is the "ECOMA particle detector". This instrument comprises a classical Faraday cup with a xenon-flash lamp for the active photoionization/photodetachment of mesospheric smoke particles (MSPs) and the subsequent detection of corresponding photoelectrons. Comparing direct Faraday cup measurements and photocurrents we are able to derive particle properties like number densities and particle radii. We present the results of these measurements that show the presence of aerosol particles inside the NLC and PMSE layer, but not below or above these layers. These results are consistent with model predictions, which account for global transport of meteoric smoke. This implies that ice nucleation in the polar summer needs to be reconsidered.

  13. Thermal desorption single particle mass spectrometry of ambient aerosol in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Wang, Xinning; Li, Jingyan; Xu, Tingting; Chen, Hong; Yang, Xin; Chen, Jianmin

    2015-12-01

    Submicron aerosol volatility, chemical composition, and mixing state were simultaneously measured using a thermodenuder (TD) in-line with a single particle aerosol mass spectrometry (SPAMS) during Nov.12 to Dec. 11 of 2014 in Shanghai. By heating up to 250 °C, the signals of refractory species such as elemental carbon, metallic compounds, and mineral dust in aerosols were enhanced in the mass spectra. At 250 °C, the main particle types present in the size range of 0.2-1.0 μm were biomass burning (37% by number) and elemental carbon (20%). From 1.0 to 2.0 μm, biomass burning (30%), dust (19%) and metal-rich (18%) were the primary particle types. CN- signal remained in the mass spectra of the heated biomass burning particles suggests the existence of some extremely low-volatility nitrogen-containing organics. Laboratory experiments were conducted by burning rice straws, the main source material of biomass burning particles in Southern China, to confirm the less volatile composition contributed by biomass burning. Strong CN- with relative area >0.21 was observed in most of the laboratory-made biomass burning particles when heated above 200 °C and was selected as a new marker to identify the biomass burning particles in the field. The TD-SPAMS measured the size-resolved chemical composition of the individual particle residues at different temperatures and offered more information on the aging processes of primary particles and their sources.

  14. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  15. USDA-ARS perspective on PAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyacrylamide (PAM) described herein is a synthetic organic polymer used globally by a number of important industries. It also has a number of valuable applications in irrigated agriculture, including its use in furrow irrigation to control erosion and sediment loss in runoff, manage infiltration,...

  16. Hydrodynamic Issues in PAMS Mandrel Target Fabrication

    SciTech Connect

    McQuillan, B M; Paguio, R; Subramanian, P; Takagi, M; Zebib, A

    2003-08-27

    Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

  17. HYDRODYNAMIC ISSUES IN PAMS MANDREL TARGET FABRICATION

    SciTech Connect

    McQUILLAN,B.W; PAGUIO,R; SUBRAMANIAN,P; TAKAGI,M; ZEBIB,A

    2003-09-01

    OAK-B135 Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

  18. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry.

    PubMed

    Parkhomchuk, E V; Gulevich, D G; Taratayko, A I; Baklanov, A M; Selivanova, A V; Trubitsyna, T A; Voronova, I V; Kalinkin, P N; Okunev, A G; Rastigeev, S A; Reznikov, V A; Semeykina, V S; Sashkina, K A; Parkhomchuk, V V

    2016-09-01

    Accelerator mass spectrometry (AMS) was shown to be applicable for studying the penetration of organic aerosols, inhaled by laboratory mice at ultra-low concentration ca. 10(3) cm(-3). We synthesized polystyrene (PS) beads, composed of radiocarbon-labeled styrene, for testing them as model organic aerosols. As a source of radiocarbon we used methyl alcohol with radioactivity. Radiolabeled polystyrene beads were obtained by emulsifier-free emulsion polymerization of synthesized (14)C-styrene initiated by K2S2O8 in aqueous media. Aerosol particles were produced by pneumatic spraying of diluted (14)C-PS latex. Mice inhaled (14)C-PS aerosol consisting of the mix of 10(3) 225-nm particles per 1 cm(3) and 5·10(3) 25-nm particles per 1 cm(3) for 30 min every day during five days. Several millions of 225-nm particles deposited in the lungs and slowly excreted from them during two weeks of postexposure. Penetration of particles matter was also observed for liver, kidneys and brain, but not for a heart. PMID:27281540

  19. Aerosol Mass Spectrometry via Laser-Induced Incandescence Particle Vaporization Final Report

    SciTech Connect

    Timothy B. Onasch

    2011-10-20

    We have successfully developed and commercialized a soot particle aerosol mass spectrometer (SP-AMS) instrument to measure mass, size, and chemical information of soot particles in ambient environments. The SP-AMS instrument has been calibrated and extensively tested in the laboratory and during initial field studies. The first instrument paper describing the SP-AMS has been submitted for publication in a peer reviewed journal and there are several related papers covering initial field studies and laboratory studies that are in preparation. We have currently sold 5 SP-AMS instruments (either as complete systems or as SP modules to existing AMS instrument operators).

  20. Seasonal differences of urban organic aerosol composition - an ultra-high resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Calvo, A. I.; Dietzel, M.; Kalberer, M.

    2012-04-01

    The understanding of the chemical composition of atmospheric aerosols, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood mainly due to their highly complex chemical composition with several thousand compounds. In the present study the water-soluble organic fraction of ambient particles collected at an urban site in Cambridge, UK, during different seasons were analysed with ultra-high resolution mass spectrometry. For several thousand peaks in the mass specta (between 3000-6000) an elemental composition could be assigned and summer samples generally contained more components than winter samples. Up to 80% of the peaks in the mass spectra contain nitrogen and/or sulphur functional groups and only about 20% of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidized nitrogen and sulphur groups increases compared to winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidized nitrogen compounds a large number of highly unsaturated reduced nitrogen-containing compounds were detected, corresponding likely to cyclic amines. A significant number of oxidized PAHs have been detected in summer samples, which were not present in winter, indicating again photo-chemical aging processes. Both, amines and long-chain aliphatic acids (also frequently observed in these urban samples) are likely signatures of biomass burning and primary biological sources. Potential biomass burning markers are discussed. Particle-phase oligomerisation reactions have only been observed to a very limited degree. Compounds larger than m/z 350 almost exclusively contained N and/or S functional groups indicating that the high molecular weight compounds in these organic aerosol extracts might be mainly due to particle-phase heterogeneous reactions of organic compounds with inorganic

  1. Chemical Nature Of Titan’s Organic Aerosols Constrained from Spectroscopic and Mass Spectrometric Observations

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Cruikshank, D. P.

    2012-10-01

    The Cassini-Huygens observations greately extend our knowledge about Titan’s organic aerosols. The Cassini INMS and CAPS observations clearly demonstrate the formation of large organic molecules in the ionosphere [1, 2]. The VIMS and CIRS instruments have revealed spectral features of the haze covering the mid-IR and far-IR wavelengths [3, 4, 5, 6]. This study attempts to speculate the possible chemical nature of Titan’s aerosols by comparing the currently available observations with our laboratory study. We have conducted a series of cold plasma experiment to investigate the mass spectrometric and spectroscopic properties of laboratory aerosol analogs [7, 8]. Titan tholins and C2H2 plasma polymer are generated with cold plasma irradiations of N2/CH4 and C2H2, respectively. Laser desorption mass spectrum of the C2H2 plasma polymer shows a reasonable match with the CAPS positive ion mass spectrum. Furthermore, spectroscopic features of the the C2H2 plasma polymer in mid-IR and far-IR wavelegths qualitatively show reasonable match with the VIMS and CIRS observations. These results support that the C2H2 plasma polymer is a good candidate material for Titan’s aerosol particles at the altitudes sampled by the observations. We acknowledge funding supports from the NASA Cassini Data Analysis Program, NNX10AF08G, and from the NASA Exobiology Program, NNX09AM95G, and the Cassini Project. [1] Waite et al. (2007) Science 316, 870-875. [2] Crary et al. (2009) Planet. Space Sci. 57, 1847-1856. [3] Bellucci et al. (2009) Icarus 201, 198-216. [4] Anderson and Samuelson (2011) Icarus 212, 762-778. [5] Vinatier et al. (2010) Icarus 210, 852-866. [6] Vinatier et al. (2012) Icarus 219, 5-12. [7] Imanaka et al. (2004) Icarus 168, 344-366. [8] Imanaka et al. (2012) Icarus 218, 247-261.

  2. Measuring Bipolar Charge and Mass Distributions of Powder Aerosols by a Novel Tool (BOLAR).

    PubMed

    Wong, Jennifer; Lin, Yu-Wei; Kwok, Philip Chi Lip; Niemelä, Ville; Crapper, John; Chan, Hak-Kim

    2015-09-01

    The Bipolar Charge Analyzer (BOLAR) was evaluated for measuring bipolar electrostatic charge and mass distributions of powder aerosols generated from a dry powder inhaler. Mannitol powder (5, 10, and 20 mg) was dispersed using an Osmohaler inhaler into the BOLAR at air flow rates of 30 or 60 L/min. As the aerosol sample was drawn through the BOLAR, the air flow was divided into six equal fractions. Five of them entered individual detection tubes with a defined cutoff diameter in the range of 0.95 to 16.36 μm (depending on the flow rate) and the remaining (i.e., the sixth) fraction passed through a reference chamber. The aerosols that entered the detection tubes were separated according to the particle charge polarity (positive, negative, or neutral) and charge was measured by separate electrometers. The deposited powder of a single actuation from the inhaler was chemically assayed using high performance liquid chromatography. Additionally, the aerosol measurements were conducted on a modified Classic Electrical Low Pressure Impactor (ELPI) for comparison of the net specific charge per size fraction. Spray-dried mannitol carried significantly different positively and negatively charged particles in each of the five defined particle size fractions. The charge-to-mass ratio (q/m) of positively charged particles ranged from +1.11 to +32.57 pC/μg and negatively charged particles ranged from -1.39 to -9.25 pC/μg, resulting in a net q/m of -3.08 to +13.34 pC/μg. The net q/m values obtained on the modified ELPI ranged from -5.18 to +4.81 pC/μg, which were comparable to the BOLAR measurements. This is the first full report to utilize the BOLAR to measure bipolar charge and mass distributions of a powder aerosol. Positively and negatively charged particles were observed within each size fraction, and their corresponding q/m profiles were successfully characterized. Despite some potential drawbacks, the BOLAR has provided a new platform for investigating bipolar charge

  3. Mass balance of organic carbon fractions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Alves, CéLia; Carvalho, Abel; Pio, Casimiro

    2002-11-01

    Total suspended particulate matter was collected in two Portuguese urban areas (Lisbon and Aveiro) and in a Finnish forested site. Samples were sequentially extracted with dichloromethane and water. The solvent extract was separated by flash chromatography into aliphatics, aromatics, carbonyls, alcohols, and an acidic fraction, and analyzed by gas chromatography-mass spectrometry. An organic/black carbon analyzer was used to evaluate the carbonaceous matter in filters, the water-soluble fraction, solvent extractable material, and the content of different organic classes. Results showed that the common simple extraction with dichloromethane is able to dissolve less than 50% of the particulate organic material. The successive extraction with water removes an important quantity of the leftover organic polar compounds. The sum of both extractions recovers between 70% and 90% of the organic carbon present. The amount of oxygenated compounds is frequently more than 70% of the extracted material, with a large predominance of organic acids and alcohols, especially for particles with diameters less than 0.49 μm. The organic compounds identified in the extractable atmospheric particulate matter are represented by primary compounds with both anthropogenic and biogenic origin, which mainly derive from vegetation waxes and from petrogenic sources. Secondary products resulting from the oxidation of volatile organic compounds were also detected. The water-soluble fraction contains essentially oxocarboxylic and dicarboxylic acids, and cellulosic constituents. In accordance with the anthropogenic characteristics of the sampling sites, nonpolar fractions constitute up to 24% of the extracted organic carbon in Lisbon and present high levels of petroleum markers, while in the forested station these compounds represent 8%. The oxygenated organic compounds account for 76-92% of the extracted carbon in samples from Aveiro and Finland. Owing to favorable photochemical conditions during

  4. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Godoi, Ricardo H. M.; Connors, Sarah; Levine, James G.; Archibald, Alex T.; Godoi, Ana F. L.; Paralovo, Sarah L.; Barbosa, Cybelli G. G.; Souza, Rodrigo A. F.; Manzi, Antonio O.; Seco, Roger; Sjostedt, Steve; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Smith, James; Martin, Scot T.; Kalberer, Markus

    2016-09-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

  5. Modeling the formation and aging of secondary organic aerosols during CalNex 2010

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Ahmadov, R.; McKeen, S. A.; Washenfelder, R. A.; Alvarez, S.; Rappenglueck, B.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Zotter, P.; Prevot, A. S.; Kleindienst, T. E.; Offenberg, J. H.; Jimenez, J. L.

    2012-12-01

    Several traditional and recently proposed models are applied to predict the concentrations and properties of secondary organic aerosols (SOA) and organic gases at the Pasadena ground site during the CalNex campaign. The models are constrained with and compared against results from available observations. The CalNex campaign and specifically the Pasadena ground site featured a large and sophisticated suite of aerosol and gas phase instrumentation, and thus, it provides a unique opportunity to test SOA models under conditions of strong urban emissions at a range of low photochemical ages. The oxidation of volatile organic compounds (VOCs) using an updated traditional model cannot explain the observed ambient SOA, and under-predicts the measurements by a factor of ~40. Similarly, after accounting for the multi-generation oxidation of VOCs using a volatility basis set (VBS) approach as described by Tsimpidi et al. (2010), SOA is still under-predicted by a factor of ~8. For SOA formed from VOCs (V-SOA) the dominant precursors are aromatics (xylenes, toluene, and trimethylbenzenes). The model SOA formed from the oxidation of primary semivolatile and intermediate volatility organic compounds (P-S/IVOCs, producing SI-SOA) is also predicted using the parameterizations of Robinson et al. (2007) and Grieshop et al. (2009), and the properties of V-SOA + SI-SOA are compared against the measured O:C and volatility. We also compare the results of the different models against fossil/non-fossil carbon measurements as well as tracers of different SOA precursors. Potential Aerosol Mass (PAM) measurements of the SOA forming potential of the Pasadena air masses are also compared against that predicted by the models. The PAM analysis allows for model/measurement comparisons of SOA properties over a range of photochemical ages spanning almost two weeks. Using the V-SOA model, at low photochemical ages (< 1 day) the modeled PAM V-SOA is less than the measured PAM SOA, similar to the

  6. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Smith, Jeffrey S.; Laskin, Alexander; Laskin, Julia

    2009-02-13

    Chemical characterizations of atmospheric aerosols is a serious analytical challenge because of the complexity of particulate matter analyte composed of a large number of compounds with a wide range of molecular structures, physico-chemical properties, and reactivity. In this study chemical composition of biomass burning organic aerosol (BBOA) samples is characterized by high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurement combined with Kendrick analysis allowed us to assign elemental composition for hundreds of compounds in the range of m/z values of 50-1000. ESI/MS spectra of different BBOA samples contain a variety of distinct, sample specific, characteristic peaks that can be used as unique markers for different types of biofuels. Our results indicate that a significant number of high-MW organic compounds in BBOA samples are highly oxidized polar species that can be efficiently detected using ESI/MS but are difficult to observe using the conventional GCMS analysis of aerosol samples. The average O:C ratios obtained for each of the BBOA samples studied in this work are in a strikingly good agreement with the previously reported values obtained using STXM/NEXAFS. The degree of unsaturation of detected organic compounds shows a clear decrease with increase in the molecular weight of the anyalyte molecules. The decrease is particularly pronounced for the samples containing a large number of CH2-based homologous series.

  7. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  8. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs. PMID:17630721

  9. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  10. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  11. Identification of characteristic mass spectrometric markers for primary biological aerosol particles and comparison with field data from submicron pristine aerosol particles

    NASA Astrophysics Data System (ADS)

    Freutel, F.; Schneider, J.; Zorn, S. R.; Drewnick, F.; Borrmann, S.; Hoffmann, T.; Martin, S. T.

    2009-04-01

    The contribution of primary biological aerosol (PBA) to the total aerosol particle concentration is estimated to range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that PBA is a major source of particles in the supermicron range, and is also an important fraction of the submicron aerosol. PBA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. For this reason we have performed mass spectrometric laboratory measurements (Aerodyne C-ToF and W-ToF AMS, single particle laser ablation instrument SPLAT) on pure submicron aerosol particles containing typical PBA compounds in order to identify typical mass spectral patterns of these compounds and to explain the observed fragmentation patterns on the basis of molecular structures. These laboratory data were compared to submicron particle mass spectra obtained during AMAZE-08 (Amazonian Aerosol CharacteriZation Experiment, Brazil, February/March 2008). The results indicate that characteristic m/z ratios for carbohydrates (e.g., glucose, saccharose, levoglucosan, mannitol) can be identified, for example m/z = 60(C2H4O2+) or m/z = 61(C2H5O2+). Certain characteristic peaks for amino acids were also identified in the laboratory experiments. In the field data from AMAZE-08, these characteristic peaks for carbohydrates and amino acids were found, and their contribution to the total organic mass was estimated to about 5%. Fragment ions from peptides and small proteins were also identified in laboratory experiments. Larger proteins, however, seem to become oxidized to CO2+ to a large extend in the vaporizing process of the AMS. Thus, detection of proteins in atmospheric aerosol particles with the AMS appears to be difficult.

  12. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically-resolved aerosol fluxes

    NASA Astrophysics Data System (ADS)

    Farmer, D. K.; Kimmel, J. R.; Phillips, G.; Docherty, K. S.; Worsnop, D. R.; Sueper, D.; Nemitz, E.; Jimenez, J. L.

    2010-12-01

    Although laboratory studies show that biogenic volatile organic compounds (VOCs) yield substantial secondary organic aerosol (SOA), production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR) PM1 fluxes. Average deposition velocity for total NR-PM1 aerosol at noon was 2.05 ± 0.04 mm/s. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm/s and are dominated by deposition of ammonium sulphate.

  13. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes

    NASA Astrophysics Data System (ADS)

    Farmer, D. K.; Kimmel, J. R.; Phillips, G.; Docherty, K. S.; Worsnop, D. R.; Sueper, D.; Nemitz, E.; Jimenez, J. L.

    2011-06-01

    Although laboratory studies show that biogenic volatile organic compounds (VOCs) yield substantial secondary organic aerosol (SOA), production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR) PM1 fluxes. Average deposition velocities for total NR-PM1 aerosol at noon were 2.05 ± 0.04 mm s-1. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s-1 and are dominated by deposition of ammonium sulphate.

  14. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  15. Demonstration of a VUV lamp photoionization source for improvedorganic speciation in an aerosol mass spectrometer

    SciTech Connect

    Northway, M.J.; Jayne, J.T.; Toohey, D.W.; Canagaratna, M.R.; Trimborn, A.; Akiyama, K-I.; Shimono, A.; Jimenez, J.L.; DeCarlo, P.F.; Wilson, K.R.; Worsnop, D.R.

    2007-10-03

    In recent years, the Aerodyne AerosolMass Spectrometer(AMS) has become a widely used tool for determining aerosol sizedistributions and chemical composition for non-refractory inorganic andorganic aerosol. The current version of the AMS uses a combination offlash thermal vaporization and 70 eV electron impact (EI) ionization.However, EI causes extensive fragmentation and mass spectra of organicaerosols are difficult to deconvolute because they are composites of theoverlapping fragmentation patterns of all species present. Previous AMSstudies have been limited to classifying organics in broad categoriessuch as oxidized and hydrocarbon-like." In this manuscript we present newefforts to gain more information about organic aerosol composition byemploying the softer technique of vacuum ultraviolet (VUV) ionization ina Time-of-Flight AMS (ToF-AMS). In our novel design a VUV lamp is placedin direct proximity of the ionization region of the AMS, with only awindow separating the lamp and the ionizer. This design allows foralternation of photoionization and electron impact ionization within thesame instrument on the timescale of minutes. Thus, the EI-basedquantification capability of the AMS is retained while improved spectralinterpretation is made possible by combined analysis of the complementaryVUV and EI ionization spectra. Photoionization and electron impactionization spectra are compared for a number of compounds including oleicacid, long chain hydrocarbons, and cigarette smoke. In general, the VUVspectra contain much less fragmentation than the EI spectra and for manycompounds the parent ion is the dominant ion in the VUV spectrum. As anexample of the usefulness of the integration of PI within the fullcapability of the ToF-AMS, size distributions and size-segregated massspectra are examined for the cigarette smoke analysis. As a finalevaluation of the new VUV module, spectra for oleic acid are compared tosimilar experiments conducted using the tunable VUV radiation

  16. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  17. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1-2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  18. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1-2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes, especially those with relatively low carbon numbers (C4-15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  19. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-03

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1–2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products ofmore » both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  20. On the correlation of atmospheric aerosol components of mass size distributions in the larger region of a central European city

    NASA Astrophysics Data System (ADS)

    Berner, A.; Galambos, Z.; Ctyroky, P.; Frühauf, P.; Hitzenberger, R.; Gomišček, B.; Hauck, H.; Preining, O.; Puxbaum, H.

    Mass size distributions of atmospheric aerosols have been sampled in the region of Vienna, a typical city in central Europe, at an urban and a rural site. The aerosol was collected simultaneously by cascade impactors. Two experiments which had a duration of 4 weeks each, were performed in August 1999 and in January/February 2000. Daily sampling periods were from 8:00 to 20:00, and from 20:00 to 8:00. An evaluation of the mass size distributions is represented in this paper. Emphasis is on the relationships of different aerosol components in a local and a regional context. The main results are as follows. The main components of the atmospheric aerosol are a fine aerosol, the accumulation aerosol, and a coarse aerosol. Specific coarse modes with modal diameters of 4.7 μm average and geometric standard deviations of about 3 occur at the urban and at the rural site, some times surprisingly strong. The fine and the coarse modes are very likely related to motor-car traffic. Usually the PM 2.5 and PM 10 aerosols are regionally strongly correlated. Occasionally, this correlation is effectively disturbed by local and/or regional emissions. Time series of correlation coefficients reveal an episodic character of the atmospheric aerosol. Periods of strong inter-site correlations of PM 2.5 and PM 10 indicate the dominance and the co-variation of the accumulation aerosols or the dominance and the co-variation of the coarse modes.

  1. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    PubMed

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.

  2. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  3. Extractive Electrospray Ionization Mass Spectrometry of Heterogeneous Particles: Implications for Applications to Complex Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Longin, T.; Waring-Kidd, C.; Wingen, L. M.; Lyster, K.; Anderson, C.; Kumbhani, S.; Finlayson-Pitts, B. J.

    2015-12-01

    Extractive electrospray ionization mass spectrometry (EESI-MS) is a direct, real time technique for obtaining mass spectra of gases, liquid droplets, solid particles, and aerosols with little sample processing. EESI-MS involves the interaction of charged electrospray droplets with a separate spray containing the analyte of interest, but the exact mechanism by which the solvent droplets extract analyte from the sample is unclear. Possible mechanisms include complete coalescence of the sample particle with the solvent droplet in which all of the analyte is incorporated into the solvent or a more temporary interaction such that only some of the analyte is transferred to the solvent. Previous studies of the mechanism of EESI-MS on homogeneous particles indicate that both mechanisms are possible. We studied the behavior of EESI-MS toward heterogeneous particles created by coating NaCl particles with various thicknesses of organic diacids. Our results indicate that the signal strength depends on the solubility of the organic acid in the electrospray solvent, in agreement with previous studies, and also that the outer 10-15 nm of the particles are most susceptible to extraction into the electrospray droplets. Our results combined with those of previous studies suggest that the mass spectra obtained with EESI will not necessarily reflect the overall particle composition, especially for particles that are spatially inhomogeneous, and hence caution in interpretation of the data is advised for application to complex atmospheric aerosol.

  4. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  5. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry

    SciTech Connect

    Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-01-05

    Understanding of molecular composition and fundamental chemical transformations of organic aerosols (OA) during their formation and aging is both a major challenge and the area of greatest uncertainty in atmospheric research. Particularly little is known about fundamental relationship between the chemical composition and physicochemical properties of OA, their atmospheric history, evolution, and impact on the environment. Ambient soft-ionization methods combined with high-resolution mass spectrometry (HR-MS) analysis provide detailed information on the molecular content of OA that is pivotal for improved understanding of their complex composition, multi-phase aging chemistry, direct (light absorption and scattering) and indirect (aerosol-cloud interactions) effects on atmospheric radiation and climate, and health effects. The HR-MS methods can detect thousands of individual OA constituents at once, provide their elemental formulae from accurate mass measurements, and provide structural information based on tandem mass spectrometry. Integration with additional analytical tools, such as chromatography and UV/Vis absorption spectroscopy, makes it possible to further separate OA compounds by their polarity and ability to absorb solar radiation. The goal of this perspective is to describe modern HR-MS methods, review recent applications to field and laboratory studies of OA, and explain how the information obtained from HR-MS methods can be translated into improved understanding of OA chemistry.

  6. Extensive aerosol optical properties and aerosol mass related measurements during TRAMP/TexAQS 2006 - Implications for PM compliance and planning

    NASA Astrophysics Data System (ADS)

    Wright, Monica E.; Atkinson, Dean B.; Ziemba, Luke; Griffin, Robert; Hiranuma, Naruki; Brooks, Sarah; Lefer, Barry; Flynn, James; Perna, Ryan; Rappenglück, Bernhard; Luke, Winston; Kelley, Paul

    2010-10-01

    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM 2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM 2.5 air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center.

  7. Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry (AMS)

    SciTech Connect

    Johnson, Kirsten S; Laskin, Alexander; Jimenez, Jose L; Shutthanandan, V; Molina, Luisa T; Salcedo, D; Dzepina, K; Molina, Mario J

    2008-09-01

    A multifaceted approach to atmospheric aerosol analysis is often desirable in field studies where an understanding of technical comparability among different measurement techniques is essential. Herein we report quantitative intercomparisons of Particle-Induced X-ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA), performed off-line under vacuum, with analysis by Aerosol Mass Spectrometry (AMS) carried out in real-time during the MCMA-2003 Field Campaign in the Mexico City Metropolitan Area. Good agreement was observed for mass concentrations of PIXE-measured sulfur (assuming it was dominated by SO42-) and AMS-measured sulfate during the most of the campaign. PESA-measured hydrogen mass was separated into sulfate H and organic H mass fractions assuming the only major contributions were (NH4)2SO4 and organic compounds. Comparison of the organic H mass with AMS organic aerosol measurements indicates that about 75% of the mass of these species evaporated under vacuum. However ~25% of the organics does remain under vacuum, which is only possible with low vapor pressure compounds, and which supports the presence of high molecular weight and/or highly oxidized organics consistent with atmospheric aging. Approximately 10% of the chloride detected by AMS was measured by PIXE, possibly in the form of metal-chloride complexes, while the majority of Cl was likely present as more volatile species including NH4Cl. This is the first comparison of PIXE/PESA and AMS, and to our knowledge also the first report of PESA hydrogen measurements for urban organic aerosols.

  8. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  9. An Analysis of the SLA-PAM Mailing List: What is SLA-PAM Doing?

    NASA Astrophysics Data System (ADS)

    Barve, S.; Dongare, S.

    2010-10-01

    The Physics-Astronomy-Mathematics (PAM) Division of the Special Libraries Association maintains an electronic discussion group which is referred to as PAMnet. In the present paper the PAM mailing list is analyzed from various points of view such as: different topics covered in this list, general nature of the mailing list, yearly postings, individual librarian's postings, postings from different countries, active participants, postings by publishers, postings on current topics, etc. The mailing list archive is available online from August 1998. It is an active mailing list where members get answers to their queries quickly. In the present paper, the mailing list is analyzed in detail to review trends in PAM libraries. A total number of 13 958 email messages (August 1998-September 2009) are analyzed to assess different trends.

  10. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  11. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  12. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.

  13. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low. PMID:15950041

  14. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  15. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  16. The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2008-08-29

    Solvent-analyte reactions in organic aerosol (OA) extracts prepared for analysis by electrospray ionization mass spectrometry (ESI-MS) were examined. Secondary organic aerosol (SOA) produced by ozonation of d-limonene as well as several test organic chemicals with functional groups typical for OA constituents were dissolved and stored in methanol, d3-methanol, acetonitrile, and d3-acetonitrile to investigate the extent and relative rates of reactions between analyte and solvent. High resolution ESI-MS showed that reactions of carbonyls with methanol produce significant amounts of hemiacetals and acetals on time scales ranging from several minutes to several days, with the reaction rates increasing in acidified solutions. Carboxylic acid groups were observed to react with methanol resulting in the formation of esters. In contrast, acetonitrile extracts showed no evidence of reactions with analyte molecules, suggesting that acetonitrile is the preferred solvent for SOA extraction. The use of solvent-analyte reactivity as an analytical chemistry tool for the improved characterization of functional groups in complex organic mixtures was also demonstrated. Direct comparison between ESI mass spectra of the same SOA samples extracted in reactive (methanol) versus non-reactive (acetonitrile) solvents was used to estimate the relative fractions of ketones (≥38%), aldehydes (≥6%), and carboxylic acids (≥55%) in d-limonene SOA.

  17. Performance of an improved monodisperse aerosol generation interface for liquid chromatography/mass spectrometry

    SciTech Connect

    Winkler, P.C.; Perkins, D.D.; Williams, W.K.; Browner, R.F.

    1988-03-01

    An improved monodisperse aerosol generation interface for liquid chromatography/mass spectrometry interfacing (MAG-IC-LC/MS) is described. The interface has an aerodynamically superior momentum separator, which results in decreased analyte loss in passing through the interface. The interface is shown to perform well with a quadrupole mass spectrometer, in addition to earlier studies with a magnetic sector instrument. A new method of forming aerosol has been developed, which reduces the dead volume significantly over earlier designs. The performance of the interface has been evaluated by studying its capabilities for (1) generating electron impact spectra of searchable quality for selected compounds of interest, (2) operating with typical liquid chromatographic separation conditions, including reverse phase and gradient elution, and (3) providing low detection limits for both full scan and selective ion monitoring detection of a range of compounds. Studies include identification of the components of a mixture of cis and trans isomers of the thermally labile compound retinol (vitamin A) acetate. Full scan (m/z 80-350) electron impact spectra were readily obtained with 50-ng injection on-column. Detection limits for this compound were 10 ng full scan and 1 ng with selected ion monitoring. Identification of a free (nonderivatized) fatty acid mixture was also readily obtained, using a reversed-phase separation in gradient mode.

  18. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  19. Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Combustion Engines with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Huffman, J. A.; Cubison, M. J.; Aiken, A. C.; Docherty, K. S.; Kimmel, J. R.; Ulbrich, I. M.; Hannigan, M.; Garcia, J.; Jimenez, J. L.

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS) and supporting instrumentation. A semi-quantitative comparison of emission factors highlights the potential importance of meat cooking as an OA source. GC-MS and AMS mass spectra are compared for the first time and show high similarity, but with more fragmentation in the AMS due to higher vaporization temperatures. High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to mass spectral signatures from hydrocarbon-like OA or primary OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from any of these sources is very unlikely to be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/z's that may be useful for differentiating these sources from each other. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, while motor vehicle emissions have very low signal at this m/z.

  20. A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations

    PubMed Central

    Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An

    2010-01-01

    We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317

  1. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  2. Real-Time Chemical Analysis of E-Cigarette Aerosols By Means Of Secondary Electrospray Ionization Mass Spectrometry.

    PubMed

    García-Gómez, Diego; Gaisl, Thomas; Barrios-Collado, César; Vidal-de-Miguel, Guillermo; Kohler, Malcolm; Zenobi, Renato

    2016-02-12

    Chemical analysis of aerosols collected from electronic cigarettes (ECs) has shown that these devices produce vapors that contain harmful and potentially harmful compounds. Conventional analytical methods used for the analysis of electronic cigarettes do not reflect the actual composition of the aerosols generated because they usually neglect the changes in the chemical composition that occur during the aerosol generation process and after collection. The aim of this work was to develop and apply a method for the real-time analysis of electronic cigarette aerosols, based on the secondary electrospray ionization technique coupled to high-resolution mass spectrometry, by mimicking the "vaping" process. Electronic cigarette aerosols were successfully analyzed and quantitative differences were found between the liquids and aerosols. Thanks to the high sensitivity shown by this method, more than 250 chemical substances were detected in the aerosols, some of them showing a high correlation with the operating power of the electronic cigarettes. The method also allows proper quantification of several chemical components such as alkaloids and flavor compounds.

  3. Fully Automated Data Collection Using PAM and the Development of PAM/SPACE Reversible Cassettes

    NASA Astrophysics Data System (ADS)

    Hiraki, Masahiko; Watanabe, Shokei; Chavas, Leonard M. G.; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Wakatsuki, Soichi; Fujihashi, Masahiro; Miki, Kunio; Baba, Seiki; Ueno, Go; Yamamoto, Masaki; Suzuki, Mamoru; Nakagawa, Atsushi; Watanabe, Nobuhisa; Tanaka, Isao

    2010-06-01

    To remotely control and automatically collect data in high-throughput X-ray data collection experiments, the Structural Biology Research Center at the Photon Factory (PF) developed and installed sample exchange robots PAM (PF Automated Mounting system) at PF macromolecular crystallography beamlines; BL-5A, BL-17A, AR-NW12A and AR-NE3A. We developed and installed software that manages the flow of the automated X-ray experiments; sample exchanges, loop-centering and X-ray diffraction data collection. The fully automated data collection function has been available since February 2009. To identify sample cassettes, PAM employs a two-dimensional bar code reader. New beamlines, BL-1A at the Photon Factory and BL32XU at SPring-8, are currently under construction as part of Targeted Proteins Research Program (TPRP) by the Ministry of Education, Culture, Sports, Science and Technology of Japan. However, different robots, PAM and SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), will be installed at BL-1A and BL32XU, respectively. For the convenience of the users of both facilities, pins and cassettes for PAM and SPACE are developed as part of the TPRP.

  4. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Ge, Xinlei; Chen, Yanfang; Shen, Yafei; Zhang, Qi; Sun, Yele; Xu, Jianzhong; Ge, Shun; Yu, Huan; Chen, Mindong

    2016-07-01

    In this work, the Aerodyne soot particle - aerosol mass spectrometer (SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD) of China, for online characterization of the submicron aerosols (PM1). The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC) simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics). The average PM1 concentration was found to be 28.2 µg m-3, with organics (45 %) as the most abundant component, following by sulfate (19.3 %), nitrate (13.6 %), ammonium (11.1 %), rBC (9.7 %), and chloride (1.3 %). These PM1 species together can reconstruct ˜ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (< 100 nm vacuum aerodynamic diameter) were dominated by organics and rBC, while large particles had significant contributions from secondary inorganic species. Source apportionment of organic aerosols (OA) yielded four OA subcomponents, including hydrocarbon-like OA (HOA), cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5 %), but primary organic aerosol (POA, equal to the sum of HOA and COA) can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand, in contrast to other species

  5. Pro-2-PAM Therapy for Central and Peripheral Cholinesterases

    PubMed Central

    DeMar, James C.; Clarkson, Edward D.; Ratcliffe, Ruthie H.; Campbell, Amy J.; Thangavelu, Sonia G.; Herdman, Christine A.; Leader, Haim; Schulz, Susan M.; Marek, Elizabeth; Medynets, Marie A.; Ku, Theresa C.; Evans, Sarah A.; Khan, Farhat A.; Owens, Roberta R.; Nambiar, Madhusoodana P.; Gordon, Richard K.

    2010-01-01

    Novel therapeutics to overcome the toxic effects of organophosphorus (OP) chemical agents are needed due to the documented use of OPs in warfare (e.g. 1980–1988 Iran/Iraq war) and terrorism (e.g. 1995 Tokyo subway attacks). Standard OP exposure therapy in the United States consists of atropine sulfate (to block muscarinic receptors), the acetylcholinesterase (AChE) reactivator (oxime) pralidoxime chloride (2-PAM), and a benzodiazepine anticonvulsant to ameliorate seizures. A major disadvantage is that quaternary nitrogen charged oximes, including 2-PAM, do not cross the blood brain barrier (BBB) to treat brain AChE. Therefore, we have synthesized and evaluated pro-2-PAM (a lipid permeable 2-PAM derivative) that can enter the brain and reactivate CNS AChE, preventing seizures in guinea pigs after exposure to OPs. The protective effects of the pro-2-PAM after OP exposure were shown using a) surgically-implanted radiotelemetry probes for electroencephalogram (EEG) b) neurohistopathology of brain, c) cholinesterase activities in the PNS and CNS, and d) survivability. The PNS oxime 2-PAM was ineffective at reducing seizures/status epilepticus (SE) in diisopropyl-fluorophosphate (DFP)-exposed animals. In contrast, pro-2-PAM significantly suppressed and then eliminated seizure activity. In OP-exposed guinea pigs, there was a significant reduction in neurological damage with pro-2-PAM, but not 2-PAM. Distinct regional areas of the brains showed significantly higher AChE activity 1.5 h after OP exposure in pro-2-PAM treated animals compared to the 2-PAM treated ones. However, blood and diaphragm showed similar AChE activities in animals treated with either oxime, as both 2-PAM and pro 2-PAM are PNS active oximes. In conclusion, pro-2-PAM can cross the BBB, is rapidly metabolized inside the brain to 2-PAM, and protects against OP-induced SE through restoration of brain AChE activity. Pro-2-PAM represents the first non-invasive means of administering a CNS therapeutic for

  6. Mass Spectra of Individual Aerosol Particles Acquired During Intercepts of a Space Shuttle Exhaust Plume

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    The WB-57 aircraft accomplished fourteen distinct stratospheric intercepts of the exhaust plume from a space shuttle during ACCENT 2000. Liftoff of the shuttle Atlantis for STS-106 occurred at 8:46 am local (12:46 UTC) with intercepts occurring from 5 to 90 minutes afterward. The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument, mounted in the nose of the aircraft, was used to acquire individual mass spectra of over 2500 particles during these intercepts. The majority of positive mass spectra indicate the presence of the metals Al, Fe, Zn, Ga, and V, all components found in the solid rocket fuel. Organic material, presumably from binding and curing agents, was also present. Negative mass spectra showed Cl from the oxidizer, ammonium perchlorate, as well as water. Rare exotic particles, for example those containing Ti and Ag and possibly formed during engine or seal ablation, were also detected. Particles originating from shuttle exhaust but also containing significant sulfuric acid were common toward the outer edge of the plume, especially during late encounters, suggesting that deposition or aerosol collision had occurred.

  7. High-Resolution Mass Spectrometric Analysis of Secondary Organic Aerosol Produced by Ozonation of Limonene

    SciTech Connect

    Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2008-02-08

    Secondary organic aerosol (SOA) particles formed from the ozone-initiated oxidation of limonene are characterized by high-resolution electrospray ionization mass spectrometry in both the positive and negative ion modes. The mass spectra reveal a large number of both monomeric (m/z < 300) and oligomeric (m/z > 300) products of oxidation. A combination of high resolving power (m/Δm ~60,000) and Kendrick mass defect analysis makes it possible to unambiguously determine the composition for hundreds of individual compounds in SOA samples. Van Krevelen analysis shows that the SOA compounds are heavily oxidized, with average O:C ratios of 0.43 and 0.50 determined from the positive and negative ion mode spectra, respectively. An extended reaction mechanism for the formation of the first generation SOA molecular components is proposed. The mechanism includes known isomerization and addition reactions of the carbonyl oxide intermediates generated during the ozonation of limonene, and numerous isomerization pathways for alkoxy radicals resulting from the decomposition of unstable carbonyl oxides. The isomerization reactions yield numerous products with a progressively increasing number of alcohol and carbonyl groups, whereas C-C bond scission reactions in alkoxy radicals shorten the carbon chain. Together these reactions yield a large number of isomeric products with broadly distributed masses. A qualitative agreement is found between the number and degree of oxidation of the predicted and measured reaction products in the monomer range.

  8. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou by a single particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Bi, X.; Qiu, N.; Han, B.; Lin, Q.; Peng, L.; Chen, D.; Wang, X.; Peng, P.; Sheng, G.; Zhou, Z.

    2015-12-01

    Microphysical properties of atmospheric aerosols are essential to better evaluate their radiative forcing. This paper first presents an estimate of the real part of the refractive indices (n) and effective densities (ρeff) of chemically segregated atmospheric aerosols in China. Vacuum aerodynamic diameter, chemical compositions, and light scattering intensities of individual particles were simultaneously measured by a single particle aerosol mass spectrometer (SPAMS) during fall of 2012 in Guangzhou. On the basis of Mie theory, n and ρeff were estimated for 17 particle types in four categories: organics (OC), elemental carbon (EC), internally mixed EC and OC (ECOC), and metal rich, respectively. Results indicate the presence of spherical or nearly spherical shape for majority of particle types, whose partial scattering cross section vs. sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47-1.53), majority of particle types exhibited a wide range of ρeff (0.87-1.51 g cm-3). OC group is associated with the lowest ρeff (0.87-1.07 g cm-3), while metal rich group with the highest ones (1.29-1.51 g cm-3). It is noteworthy that a specific EC type exhibits a complex scattering curve vs. size due to the presence of both compact and irregularly shape particles. Overall, the results on detailed relationship between physical and chemical properties benefits future researches on the impact of aerosols on visibility and climate.

  9. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  10. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis. PMID:22739316

  11. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  12. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  13. Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station

    NASA Astrophysics Data System (ADS)

    Bindu, G.; Nair, Prabha R.; Aryasree, S.; Hegde, Prashant; Jacob, Salu

    2016-02-01

    Aerosol sampling was carried out at four locations in and around Cochin (9°58‧ N, 76°17‧ E), an urban area, located on the southwest coast of India. The gravimetric estimates of aerosol mass loading showed wide range from 78 μg m-3 to >450 μg m-3, occasionally reaching values >500 μg m-3, associated with regional source characteristics. Most of the values were above the air quality standard. Both boundary layer and synoptic scale airflow pattern play role in the temporal features in aerosol mass loading and chemical composition. Chemical analysis of the aerosol samples were done for anionic species viz; F-, Cl-, Br-, NO2-,   NO3-,   PO43-,   SO42- and metallic/cationic species viz; Na, Ca, K, Mg, NH4+, Fe, Al, Cu, Mg, Pb, etc using Ion Chromatography, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES). At all the locations, extremely high mass concentration of SO42- was observed with the mean value of 13±6.4 μg m-3 indicating the strong anthropogenic influence. Statistical analysis of the chemical composition data was carried out and the principal factors presented. Seasonal variation of these chemical species along with their percentage contributions and regional variations were also examined. Increase in level of Na in aerosol samples indicated the influence of monsoonal activity. Most of the species showed mass concentrations well above those measured over another coastal site Thiruvananthapuram (8°29‧ N, 76°57‧ E) situated ~220 km south of Cochin revealing the highly localized aerosol features.

  14. Molecular Characterization of Organic Aerosols Using Nanospray Desorption/Electrospray Ionization-Mass Spectrometry

    SciTech Connect

    Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

    2010-10-01

    Nanospray desorption electrospray ionization (Nano-DESI) combined with high-resolution mass spectrometry (HR/MS) is a promising approach for detailed chemical characterization of atmospheric organic aerosol (OA) collected in laboratory and field experiments. In Nano-DESI analyte is desorbed into a solvent bridge formed between two capillaries and the analysis surface, which enables fast and efficient characterization of OA collected on substrates without special sample preparation. Stable signals achieved using Nano-DESI make it possible to obtain high-quality HR/MS data using only a small amount of material (<10 ng). Furthermore, Nano-DESI enables efficient detection of chemically labile compounds in OA, which is important for understanding chemical aging phenomena.

  15. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment

    SciTech Connect

    Aiken, A.C.; Wang, J.; Salcedo, D.; Cubison, M. J.; Huffman, J. A.; DeCarlo, P. F.; Ulbrich, I. M.; Docherty, K. S.; Sueper, D.; Kimmel, J. R.; Worsnop, D. R.; Trimborn, A.; Northway, M.; Stone, E. A.; Schauer, J. J.; Volkamer, R. M.; Fortner, E.; de Foy, B.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Gaffney, J.; Marley, N. A.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Jimenez, J. L.

    2009-09-01

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previous observations. OA apportionment results from PMF-AMS are compared to the PM{sub 2.5} chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similar magnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM{sub 2.5} emissions by a factor of {approx}4, and it is {approx}16 times lower than afternoon concentrations when secondary species are included. Additionally, the forest fire contribution is at least an order-of-magnitude larger than in the inventory.

  16. Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with a scanning mobility particle sizer (SMPS) and a multi-angle absorption photometer (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of submicron particulate matter (PM1) in Lanzhou, northwest China, during 11 July-7 August 2012. The average (PM1 mass concentration including non-refractory (PM1 (NR-(PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105 μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. Organic aerosol (OA) on average consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution organic mass spectra identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns, both with peak at ~ 07:00-11:00 (BJT: UTC +8), corresponding to the morning rush hours, while cooking-emission related OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ~ 07:00 and 15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak between ~ 08:00-13:00. The later morning and early afternoon maximum in the diurnal profiles of secondary aerosol species was likely caused by downward mixing of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during nighttime. The mass spectrum of SV-OOA was

  17. Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation

    NASA Astrophysics Data System (ADS)

    Chirico, Roberto; Prevot, Andre S. H.; DeCarlo, Peter F.; Heringa, Maarten F.; Richter, Rene; Weingartner, Ernest; Baltensperger, Urs

    2011-04-01

    In this study we present measurements of gas and aerosol phase composition for a mixed vehicle fleet in the Gubrist tunnel (Switzerland) in June 2008. PM 1 composition measurements were made with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) and a Multi Angle Absorption Photometer (MAAP). Gas-phase measurements of CO, CO 2, NO x and total hydrocarbons (THC) were performed with standard instrumentation. Weekdays had a characteristic diurnal pattern with 2 peaks in concentrations for all traffic related species corresponding to high vehicle density (˜300 ± 30 vehicles per 5 min) in the morning rush hour between 06:00 and 09:00 and in the afternoon rush hours from approximately 15:30 to 18:30. The emission factors (EF) of OA were heavily influenced by the OA mass loading. To exclude this partitioning effect, only organic aerosol mass concentrations from 60 μg m -3 to 90 μg m -3 were considered and for these conditions the EF(OA) value for HDV was 33.7 ± 2.3 mg km -1 for a temperature inside the tunnel of 20-25 °C. This value is not directly applicable to ambient conditions because it is derived from OA mass concentrations that are roughly a factor of 10 higher than typical ambient concentrations. An even higher EF(OA) HDV value of 47.4 ± 1.6 mg km -1 was obtained when the linear fit was applied to all data points including OA concentrations up to 120 μg m -3. Similar to the increasing EF, the OA/BC ratio in the tunnel was also affected by the organic loading and it increased by a factor of ˜3 over the OA range 10-120 μg m -3. This means that also the OA emission factors at ambient concentrations of around 5-10 μg m -3 would be 2-3 times lower than the emission factor given above. For OA concentrations lower than 40 μg m -3 the OA/BC mass ratio was below 1, while at an OA concentration of 100-120 μg m -3 the OA/BC ratio was ˜1.5. The AMS mass spectra (MS) acquired in the tunnel were highly correlated with the primary organic aerosol

  18. Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Renjian; Huan, Ning; Zhou, Xiuji; Zhang, Yangmei; Zhou, Huaigang; Zhang, Leiming

    2012-12-01

    In the summer and winter of 2004 and 2005, size-segregated atmospheric aerosols were sampled with modified Andersen KA200 Multi-stage impactor at two regional background stations in the eastern China, the Shangdianzi station (SDZ) in the suburb of Beijing and the Lin'An station (LA) in the Yangtze river delta region, both are WMO Global Atmospheric Watch station, which represent the regional background of air pollutions of the two rapid developing economical zone of China, the Yangtze River Delta region (YRD) and Beijing-Tianjin region. The aerosol mass size distributions, ionic compositions, organic and elemental carbon (OC and EC), and elemental components were analyzed. The mass concentrations for TSP (total suspend particle), PM11 (aerodynamic diameter less than 11 μm), and PM2.1 (aerodynamic diameter less than 2.1 μm) at both sites showed obviously different between the winter and summer, with higher mass concentrations measured in the winter time. All seasonal mean mass concentrations of PM2.1 accounted for over 50% of PM11 at both sites. The aerosol mass closure study indicated that the total mass concentration reconstructed from the aerosol chemical composition agreed well with the measured gravimetric mass at the two stations. The fine aerosol particles at the two stations were composed mainly of sulfate and organic matter. In the summer, more than half of the PM2.1 mass was sulfate, suggesting a dominant contribution of secondary aerosol to the fine particles in these two regions. In the winter, the contribution of nitrate to the fine particles increased significantly due to the lower volatile losses under the cold weather. The proportions of soil type components in the PM2.1 showed similar magnitude in the winter and summer at Lin'An station but significant seasonal differences with higher fractions in the winter at Shangdianzi station. On average EC accounted for about 2%-6% of the fine particle mass (PM2.1) at both sites with proportionally lower EC

  19. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  20. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  1. High-Resolution Mass Spectroscopic Analysis of Secondary Organic Aerosol Generated by Ozonolysis of Isoprene

    SciTech Connect

    Nguyen, Tran B; Bateman, Adam P; Bones, David L; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-02-01

    The chemical composition of secondary organic aerosol (SOA) generated from the ozonolysis of isoprene (C5H8) in the presence of an OH scavenger was examined using high-resolution electrospray ionization mass spectrometry (ESI-MS). The chemical composition of SOA is complex, with more than 1000 assigned peaks observed in the positive and negative ion mode spectra. Only a small fraction of peaks corresponds to known products of isoprene oxidation, such as pyruvic acid, glycolic acid, methylglyoxal, etc. The absolute majority of the detected peaks correspond to highly oxidized oligomeric constituents of SOA, with an average O:C molar ratio of ~0.6. The corresponding organic mass (OM) to organic oxygen (OO) ratio is OM/OO ~2.4. Approximately 8% of oxygen atoms in SOA are in the form of peroxides as quantified with an iodide test. Double bond equivalency (DBE) factors, representing the sum of all double bonds and rings, increase by 1 for every 2-3 additional carbon atoms in the molecule. The prevalent oligomer building blocks are therefore carbonyls or carboxylic acids with a C2-C3 skeleton. Kendrick analysis suggests that simple aldehydes, specifically formaldehyde, acetaldehyde, and methylglyoxal can serve as monomeric building blocks in the observed oligomers. The large number of reactive functional groups, especially organic peroxides and carbonyls, suggests that isoprene/O3 SOA should be prone to chemical and photochemical aging.

  2. Ion mobility-mass spectrometry with a radial opposed migration ion and aerosol classifier (ROMIAC).

    PubMed

    Mui, Wilton; Thomas, Daniel A; Downard, Andrew J; Beauchamp, Jesse L; Seinfeld, John H; Flagan, Richard C

    2013-07-01

    The first application of a novel differential mobility analyzer, the radial opposed migration ion and aerosol classifier (ROMIAC), is demonstrated. The ROMIAC uses antiparallel forces from an electric field and a cross-flow gas to both scan ion mobilities and continuously transmit target mobility ions with 100% duty cycle. In the ROMIAC, diffusive losses are minimized, and resolution of ions, with collisional cross-sections of 200-2000 Å(2), is achieved near the nondispersive resolution of ~20. Higher resolution is theoretically possible with greater cross-flow rates. The ROMIAC was coupled to a linear trap quadrupole mass spectrometer and used to classify electrosprayed C2-C12 tetra-alkyl ammonium ions, bradykinin, angiotensin I, angiotensin II, bovine ubiquitin, and two pairs of model peptide isomers. Instrument and mobility calibrations of the ROMIAC show that it exhibits linear responses to changes in electrode potential, making the ROMIAC suitable for mobility and cross-section measurements. The high resolution of the ROMIAC facilitates separation of isobaric isomeric peptides. Monitoring distinct dissociation pathways associated with peptide isomers fully resolves overlapping peaks in the ion mobility data. The ability of the ROMIAC to operate at atmospheric pressure and serve as a front-end analyzer to continuously transmit ions with a particular mobility facilitates extensive studies of target molecules using a variety of mass spectrometric methods. PMID:23730869

  3. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    PubMed

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-01

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  4. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research. PMID:25639078

  5. A correlation equation for the mass median aerodynamic diameter of the aerosol emitted by solution metered dose inhalers.

    PubMed

    Ivey, James W; Lewis, David; Church, Tanya; Finlay, Warren H; Vehring, Reinhard

    2014-04-25

    A correlation equation for the mass median aerodynamic diameter (MMAD) of the aerosol emitted by solution metered dose inhalers (MDIs) is presented. A content equivalent diameter is defined and used to describe aerosols generated by evaporating metered dose inhaler sprays. A large set of cascade impaction data is analyzed, and the MMAD and geometric standard deviation is calculated for each datum. Using dimensional analysis, the mass median content equivalent diameter is correlated with formulation variables. Based on this correlation in combination with mass balance considerations and the definition of the aerodynamic diameter, an equation for prediction of the MMAD of an inhaler given the pressure of the propellant in the metering chamber of the MDI valve and the surface tension of the propellant is derived. The accuracy of the correlation equation is verified by comparison with literature results. The equation is applicable to both HFA (hydrofluoroalkane) propellants 134a and 227ea, with varying levels of co-solvent ethanol.

  6. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research.

  7. [Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)].

    PubMed

    Mu, Ying-Ying; Lou, Sheng-Rong; Chen, Chang-Hong; Zhou, Min; Wang, Hong-Li; Zhou, Zhen; Qiao, Li-Ping; Huang, Cheng; Li, Mei; Li, Li; Wang, Qian; Huang, Hai-Ying; Zou, Lan-Jun

    2013-06-01

    A single particle aerosol mass spectrometer (SPAMS) was applied to characterize the size distribution (200 nm-2.0 microm) and chemical compositions of ambient particles during a polluted event from 11th to 18th, November 2011. OCEC, METAL, EC, SECONDARY and K-Na types of particulates were the dominant groups observed in hazy day period, which were 27.4%, 3.4%, 7.3% , 45.6% and 5.4% of the overall measured particles, respectively. The observed five types of particles contained the secondary composition such as 18NH4(+), 80SO3(-), 96SO4(-), 97HSO4(-), 46NO2(-), 62NO3(-) and 125H (NO3) -, showing that they probably went through different aging processes, and the increasing of the SECONDARY particles during the event clearly indicated a secondary aerosol pollution. Heterogeneous reactions of SO2 and particles could be the reason of strong 97HSO4(-) signals in the mass spectrums of OCEC type particles while the existence of organic compounds might have an important influence on the aerosol formation with the gas-phase sulfuric acid. Fresh EC particles in the environment tended to be aging with above-mentioned secondary ions by the analysis of particle size distribution and eventually lead to a particle type conversion from EC to SECONDARY. Organic amine in marine environment was brought to the land by the warm, moist marine air mass that dramatically removed atmospheric SECONDARY and OCEC particles from the air with a heavy rain and leading to the observation of amine particles in the clean day period. PMID:23947016

  8. [Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)].

    PubMed

    Mu, Ying-Ying; Lou, Sheng-Rong; Chen, Chang-Hong; Zhou, Min; Wang, Hong-Li; Zhou, Zhen; Qiao, Li-Ping; Huang, Cheng; Li, Mei; Li, Li; Wang, Qian; Huang, Hai-Ying; Zou, Lan-Jun

    2013-06-01

    A single particle aerosol mass spectrometer (SPAMS) was applied to characterize the size distribution (200 nm-2.0 microm) and chemical compositions of ambient particles during a polluted event from 11th to 18th, November 2011. OCEC, METAL, EC, SECONDARY and K-Na types of particulates were the dominant groups observed in hazy day period, which were 27.4%, 3.4%, 7.3% , 45.6% and 5.4% of the overall measured particles, respectively. The observed five types of particles contained the secondary composition such as 18NH4(+), 80SO3(-), 96SO4(-), 97HSO4(-), 46NO2(-), 62NO3(-) and 125H (NO3) -, showing that they probably went through different aging processes, and the increasing of the SECONDARY particles during the event clearly indicated a secondary aerosol pollution. Heterogeneous reactions of SO2 and particles could be the reason of strong 97HSO4(-) signals in the mass spectrums of OCEC type particles while the existence of organic compounds might have an important influence on the aerosol formation with the gas-phase sulfuric acid. Fresh EC particles in the environment tended to be aging with above-mentioned secondary ions by the analysis of particle size distribution and eventually lead to a particle type conversion from EC to SECONDARY. Organic amine in marine environment was brought to the land by the warm, moist marine air mass that dramatically removed atmospheric SECONDARY and OCEC particles from the air with a heavy rain and leading to the observation of amine particles in the clean day period.

  9. Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies

    NASA Astrophysics Data System (ADS)

    Titos, G.; Foyo-Moreno, I.; Lyamani, H.; Querol, X.; Alastuey, A.; Alados-Arboledas, L.

    2012-02-01

    We investigated aerosol optical properties, mass concentration and chemical composition over a 1 year period (from March 2006 to February 2007) at an urban site in Southern Spain (Granada, 37.18°N, 3.58°W, 680 m above sea level). Light-scattering and absorption measurements were performed using an integrating nephelometer and a MultiAngle Absorption Photometer (MAAP), respectively, with no aerosol size cut-off and without any conditioning of the sampled air. PM10 and PM1 (ambient air levels of atmospheric particulate matter finer than 10 and 1 microns) were collected with two high volume samplers, and the chemical composition was investigated for all samples. Relative humidity (RH) within the nephelometer was below 50% and the weighting of the filters was also at RH of 50%. PM10 and PM1 mass concentrations showed a mean value of 44 ± 19 μg/m3 and 15 ± 7 μg/m3, respectively. The mineral matter was the major constituent of the PM10-1 fraction (contributing more than 58%) whereas organic matter and elemental carbon (OM+EC) contributed the most to the PM1 fraction (around 43%). The absorption coefficient at 550 nm showed a mean value of 24 ± 9 Mm-1 and the scattering coefficient at 550 nm presented a mean value of 61 ± 25 Mm-1, typical of urban areas. Both the scattering and the absorption coefficients exhibited the highest values during winter and the lowest during summer, due to the increase in the anthropogenic contribution and the lower development of the convective mixing layer during winter. A very low mean value of the single scattering albedo of 0.71 ± 0.07 at 550 nm was calculated, suggesting that urban aerosols in this site contain a large fraction of absorbing material. Mass scattering and absorption efficiencies of PM10 particles exhibited larger values during winter and lower during summer, showing a similar trend to PM1 and opposite to PM10-1. This seasonality is therefore influenced by the variations on PM composition. In addition, the mass

  10. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Bi, Xinhui; Qiu, Ning; Han, Bingxue; Lin, Qinhao; Peng, Long; Chen, Duohong; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2016-03-01

    Knowledge on the microphysical properties of atmospheric aerosols is essential to better evaluate their radiative forcing. This paper presents an estimate of the real part of the refractive indices (n) and effective densities (ρeff) of chemically segregated atmospheric aerosols in Guangzhou, China. Vacuum aerodynamic diameter, chemical compositions, and light-scattering intensities of individual particles were simultaneously measured by a single-particle aerosol mass spectrometer (SPAMS) during the fall of 2012. On the basis of Mie theory, n at a wavelength of 532 nm and ρeff were estimated for 17 particle types in four categories: organics (OC), elemental carbon (EC), internally mixed EC and OC (ECOC), and Metal-rich. The results indicate the presence of spherical or nearly spherical shapes for the majority of particle types, whose partial scattering cross-section versus sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47-1.53), majority of particle types exhibited a wide range of ρeff (0.87-1.51 g cm-3). The OC group is associated with the lowest ρeff (0.87-1.07 g cm-3), and the Metal-rich group with the highest ones (1.29-1.51 g cm-3). It is noteworthy that a specific EC type exhibits a complex scattering curve versus size due to the presence of both compact and irregularly shaped particles. Overall, the results on the detailed relationship between physical and chemical properties benefits future research on the impact of aerosols on visibility and climate.

  11. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.

    PubMed

    Gurses, Burak K; Smaldone, Gerald C

    2003-01-01

    Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and

  12. Size-resolved aerosol chemistry on Whistler Mountain, Canada with a High-Resolution Aerosol Mass Spectrometer during INTEX-B

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Zhang, Q.; MacDonald, A. M.; Hayden, K.; Li, S. M.; Liggio, J.; Liu, P. S. K.; Anlauf, K. G.; Leaitch, W. R.; Cubison, M.; Worsnop, D.; van Donkelaar, A.; Martin, R. V.

    2008-12-01

    An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the peak of Whistler Mountain (elevation 2182 m-MSL), British Columbia, from 19 April to 16 May 2006, as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign. The mass concentrations and size distributions of non-refractory submicron particle (NR-PM1) species (i.e., sulfate, nitrate, ammonium, chloride, and organics) were measured in situ every 5 min. The HR-ToF-AMS results agreed well with collocated measurements. The average concentration of non-refractory submicron particulate matter (NR-PM1; 1.9 μg m-3) is similar to those observed at other remote, high elevation sites in North America. Episodes of enhanced aerosol loadings were observed, due to influences of regional and trans-Pacific transport of air pollution. Organics and sulfate were the dominant species, on average accounting for 55% and 30%, respectively, of the NR-PM1 mass. The average size distributions of sulfate and ammonium both showed a~large accumulation mode peaking around 500-600 nm in Dva while those of organic aerosol (OA) and nitrate peaked at ~300 nm. The size differences suggest that sulfate and OA were mostly present in external mixtures from different source origins. We also quantitatively determined the elemental composition of OA using the high resolution mass spectra. Overall, OA at Whistler Peak was highly oxygenated, with an average organic-mass-to-organic-carbon ratio (OM/OC) of 2.28±0.23 and an atomic ratio of oxygen-to-carbon (O/C) of 0.83±0.17. The nominal formula for OA was C1H1.66N0.03O0.83 for the entire study. Two significant trans-Pacific dust events originated from Asia were observed at Whistler Peak during this study. While both events were characterized with significant enhancements of coarse mode particles and mineral contents, the composition and characteristics of NR-PM1 were significantly different between them. One trans-Pacific event

  13. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires

    NASA Astrophysics Data System (ADS)

    Okoshi, Rintaro; Rasheed, Abdur; Chen Reddy, Greeshma; McCrowey, Clinton J.; Curtis, Daniel B.

    2014-06-01

    Biomass burning emits large amounts of aerosol particles globally, influencing human health and climate, but the number and size of the particles is highly variable depending on fuel type, burning and meteorological conditions, and secondary reactions in the atmosphere. Ambient measurements of aerosol during wildfire events can therefore improve our understanding of particulate matter produced from biomass burning. In this study, time-resolved sub-micrometer ambient aerosol size and mass distributions of freshly emitted aerosol were measured for three biomass burning wildfire events near Northridge, California, located in the highly populated San Fernando Valley area of Los Angeles. One fire (Marek) was observed during the dry Santa Ana conditions that are typically present during large Southern California wildfires, but two smaller fires (Getty and Camarillo) were observed during the more predominant non-Santa Ana weather conditions. Although the fires were generally small and extinguished quickly, they produced particle number concentrations as high as 50,000 cm-3 and mass concentrations as large as 150 μg cm-3, well above background measurements and among the highest values observed for fires in Southern California. Therefore, small wildfires can have a large impact on air quality if they occur near urban areas. Particle number distributions were lognormal, with peak diameters in the accumulation mode at approximately 100 nm. However, significant Aitken mode and nucleation mode particles were observed in bimodal distributions for one fire. Significant variations in the median diameter were observed over time, as particles generally became smaller as the fires were contained. The results indicate that it is likely that performing mass measurements alone could systematically miss detection of the smaller particles and size measurements may be better suited for studies of ambient biomass burning events. Parameters of representative unimodal and bimodal lognormal

  14. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  15. Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y.-L.; Zhang, Q.; Schwab, J. J.; Demerjian, K. L.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Hogrefe, O.; Frank, B.; Rattigan, O. V.; Lin, Y.-C.

    2011-02-01

    Submicron aerosol particles (PM1) were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer during the summer 2009 Field Intensive Study at Queens College in New York, NY. Organic aerosol (OA) and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of the total PM1 mass. The average mass-based size distribution of OA presents a small mode peaking at ~150 nm (Dva) and an accumulation mode (~550 nm) that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of both sulfate and OA peak between 01:00-02:00 p.m. EST due to photochemical production. The average (±σ) oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of OA in NYC are 0.36 (±0.09), 1.49 (±0.08), and 0.012 (±0.005), respectively, corresponding to an average organic mass-to-carbon (OM/OC) ratio of 1.62 (±0.11). Positive matrix factorization (PMF) of the high resolution mass spectra identified two primary OA (POA) sources, traffic and cooking, and three secondary OA (SOA) components including a highly oxidized, regional low-volatility oxygenated OA (LV-OOA; O/C = 0.63), a less oxidized, semi-volatile SV-OOA (O/C = 0.38) and a unique nitrogen-enriched OA (NOA; N/C = 0.053) characterized with prominent CxH2x + 2N+ peaks likely from amino compounds. Our results indicate that cooking and traffic are two distinct and mass-equivalent POA sources in NYC, together contributing ~30% of the total OA mass during this study. The OA composition is dominated by secondary species, especially during high PM events. SV-OOA and LV-OOA on average account for 34% and 30%, respectively, of the total OA mass. The chemical evolution of SOA in NYC appears to progress with a continuous oxidation from SV-OOA to LV-OOA, which is further supported by a gradual increase of O/C ratio and a simultaneous decrease of H/C ratio in total OOA. Detailed analysis of NOA (5.8% of OA) presents evidence that organic nitrogen

  16. Characterization of the sources and processes of organic and inorganic aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y.-L.; Zhang, Q.; Schwab, J. J.; Demerjian, K. L.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Hogrefe, O.; Frank, B.; Rattigan, O. V.; Lin, Y.-C.

    2010-10-01

    Submicron aerosol particles (PM1) were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) during the summer 2009 Field Intensive Study at Queens College in New York City. Organic aerosol (OA) and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of total PM1 mass on average. The average mass size distribution of OA presents a small mode peaking at ~150 nm (Dva) in addition to an accumulation mode (~550 nm) that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of sulfate and OA both show pronounced peaks between 01:00-02:00 p.m. EST due to photochemical production. The average (±1σ) oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of OA in NYC are 0.36 (±0.09), 1.49 (±0.08), and 0.012(±0.005), respectively, corresponding to an average organic mass-to-carbon (OM/OC) ratio of 1.62(±0.11). Positive matrix factorization (PMF) of the high resolution mass spectra identified five OA components: a hydrocarbon-like OA (HOA), two types of oxygenated OA (OOA) including a low-volatility OOA (LV-OOA) and a semi-volatile OOA (SV-OOA), a cooking-emission related OA (COA), and a unique nitrogen-enriched OA (NOA). HOA appears to represent primary OA (POA) from urban traffic emissions. It comprises primarily of reduced species (H/C=1.83; O/C=0.06) and shows a mass spectral pattern very similar to those of POA from fossil fuel combustion, and correlates tightly with traffic emission tracers including elemental carbon and NOx. LV-OOA, which is highly oxidized (O/C=0.63) and correlates well with sulfate, appears to be representative for regional, aged secondary OA (SOA). SV-OOA, which is less oxidized (O/C=0.38) and correlates well with non-refractory chloride, likely represents less photo-chemically aged, semi-volatile SOA. COA shows a similar spectral pattern to the reference spectra of POA from cooking emissions and a distinct diurnal pattern

  17. Chemical Analysis of Organic Aerosols Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Laskin, J.; Nizkorodov, S.

    2013-12-01

    Nanospray Desorption Electrospray Ionization (nano-DESI) technique integrated with high resolution mass spectrometry (HR-MS) enables molecular level analysis of organic aerosol (OA) samples. In nano-DESI, analyte is desorbed into a small volume solvent bridge formed between two capillaries positioned in contact with analyte and enables fast and efficient characterization of OA collected on substrates without sample preparation. We report applications of the nano-DESI/HR-MS approach in a number of our recent studies focused on molecular identification of organic compounds in laboratory and in field collected OA samples. Reactive nano-DESI approach where selected reagent is added to the solvent is used for examining the presence of individual species containing specific functional groups and for their quantification within complex mixtures of OA. Specifically, we use the Girard's reagent T (GT) to probe and quantify carbonyl compounds in the SOA mixtures. We estimate for the first time the amounts of dimers and trimers in the SOA mixtures. We found that the most abundant dimer in limonene/O3 SOA was detected at the ˜0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ˜11 pg. Understanding of the OA composition at the molecular level allowed us to identify key aging reactions, including the transformation of carbonyls to imines and carbonyl-imine oligomerization, that may contribute to the formation of brown carbon in the atmosphere.

  18. Characterization of near-highway submicron aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2011-11-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g., HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. The particulate organics varied dramatically during periods with highest traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations - with minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA being the major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ~120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  19. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  20. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  1. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 μg m -2) or no traffic conditions (3.73 × 10 5 μg m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

  2. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  3. Effect of conditioning by PAM polymers with different charges on the structural and characteristic evolutions of water treatment residuals.

    PubMed

    Yan, W L; Wang, Y L; Chen, Y J

    2013-11-01

    Three types of polyacrylamide (PAM) flocculants with different charges (cationic PAM WD4960, nonionic PAM M351, and anionic PAM WDA110) were used for water treatment residuals (WTRs) conditioning, and the physicochemical, morphological and structural characteristics of raw and conditioned WTRs were investigated. Rheological methods were employed to analyze the internal structural transition between the raw and conditioned WTRs under a typical dosage of WD4960. Results showed that when the raw WTRs were conditioned with the polymers, the optimum dosage of WD4960 was 4.82 g/kg total suspended solid (TSS) while that of both M351 and WDA110 was 7.24 g/kg TSS. The residual PAM content in the supernatant of the WTR matrix conditioned at the optimum WD4960 dosage was 5.59 mg/L, which is the least among the supernatants obtained with the three types of PAM. Furthermore, the visible fulvic acid (FA) in the supernatant disappeared and the intensity of the ultraviolet FA decreased. The average diameter of irregularly shaped aggregates in the WTR suspensions increased from 35.73 μm to several hundred micrometers with increasing PAM dosage. The size of WTR aggregates conditioned at the optimum WD4960 dosage was much larger than that of aggregates obtained at the optimum M351 or WDA110 dosages. Two-dimensional fractal dimension (D2) values presented an increasing trend with increasing PAM dosage. D2 values of the conditioned WTR aggregates were 1.87, 1.76, and 1.83 at optimum WD4960, M351, and WDA110 dosages, respectively. The cationic PAM (CPAM) WD4960 thus appears to be a more ideal conditioner for WTRs. Consistent relationships were observed among the capillary suction time (CST), average particle size, and D2 values of the conditioned WTR aggregates at the optimum WD4960 dosage. Mass fractal dimensions (D(f)) indicated that both the raw and WD4960-conditioned WTRs behave like weak-link flocs/aggregates. D(f) values (log G'-log TSS) of the WTR aggregates before and after

  4. PAMS Photo Image Retrieval Prototype System Design Description

    SciTech Connect

    Conner, M.L., Westinghouse Hanford

    1996-05-02

    This System Design Description (SDD) documents the detail design of the Photo Audio/Visual Management System (PAMS) Photo Image Retrieval Prototype (PPIRP) subsystem. This SDD shows how the software is structured to satisfy the requirements identified in the PAMS Photo Image Prototype Requirements Document. It is a description of the software structure, software components,interfaces, and data that make up the PPIRP subsystem.

  5. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  6. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  7. Isotopic mass independent signature of black crusts: a proxy for atmospheric aerosols formation in the Paris area (France).

    NASA Astrophysics Data System (ADS)

    Genot, Isabelle; Martin, Erwan; Yang, David Au; De Rafelis, Marc; Cartigny, Pierre; Wing, Boswell; Le Gendre, Erwann; Bekki, Slimane

    2016-04-01

    In view of the negative forcing of the sulfate aerosols on climate, a more accurate understanding of the formation of these particles is crucial. Indeed, despite the knowledge of their effects, uncertainties remain regarding the formation of sulfate aerosols, particularly the oxidation processes of S-bearing gases. Since the discovery of oxygen and sulfur mass independent fractionation (O- and S-MIF) processes on Earth, the sulfate isotopic composition became essential to investigate the atmospheric composition evolution and its consequences on the climate and the biosphere. Large amount of S-bearing compounds (SO2 mainly) is released into the atmosphere by anthropogenic and natural sources. Their oxidation in the atmosphere generates sulfate aerosols, H2SO4, which precipitate on the earth surface mainly as acid rain. One consequence of this precipitation is the formation of black crust on buildings made of carbonate stones. Indeed the chemical alteration of CaCO3 by H2SO4 leads to gypsum (CaSO4·2H2O) concretions on building walls. Associated to other particles, gypsum forms black-crusts. Therefore, black crusts acts as 'sulfate aerosol traps', meaning that their isotopic composition reveals the composition and thus the source and formation processes of sulfate aerosols in the atmosphere in a specific region. In this study we collected 37 black crusts on a 300km NW-SE profile centered on Paris (France). In our samples, sulfate represent 40wt.% and other particles 60wt.% of the black crusts. After sulfate extraction from each samples we measured their O- and S-isotopes composition. Variations of about 10‰ in δ18O and δ34S are observed and both O-MIF (Δ17O from 0 to 1.4‰) and S-MIF (Δ33S from 0 to -0.3‰) compositions have been measured. In regards to these compositions we can discuss the source and formation (oxidation pathways) of the sulfate aerosols in troposphere above the Paris region that covers urban, rural and coastal environments. Furthermore

  8. Survey on the PABC recognition motif PAM2.

    PubMed

    Albrecht, Mario; Lengauer, Thomas

    2004-03-26

    The PABP-interacting motif PAM2 has been identified in various eukaryotic proteins as an important binding site for the PABC domain. This domain is contained in homologs of the poly(A)-binding protein PABP and the ubiquitin-protein ligase HYD. Despite the importance of the PAM2 motif, a comprehensive analysis of its occurrence in different proteins has been missing. Using iterated sequence profile searches, we obtained an extensive list of proteins carrying the PAM2 motif. We discuss their functional context and domain architecture, which often consists of RNA-binding domains. Our list of PAM2 motif proteins includes eukaryotic homologs of eRF3/GSPT1/2, PAIP1/2, Tob1/2, Ataxin-2, RBP37, RBP1, Blackjack, HELZ, TPRD, USP10, ERD15, C1D4.14, and the viral protease P29. The identification of the PAM2 motif in as yet uncharacterized proteins can give valuable hints with respect to their cellular function and potential interaction partners and suggests further experimentation. It is also striking that the PAM2 motif appears to occur solely outside globular protein domains.

  9. Chemical characterization of emissions from vegetable oil processing and their contribution to aerosol mass using the organic molecular markers approach.

    PubMed

    Kavouras, I G; Stratigakis, N; Stephanou, E G

    2001-04-01

    The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethylphenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern. The significant contribution of vehicular emissions was identified by CPI values (approximately 1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.

  10. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Weidinger, Tamás; Maenhaut, Willy

    Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m -3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.

  11. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  12. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  13. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    NASA Astrophysics Data System (ADS)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  14. Mass-analysis of Charged Aerosol Particles in a PMSE/NLC Layer by a Rocket-borne Spectrometer

    NASA Astrophysics Data System (ADS)

    Robertson, Scott; Knappmiller, Scott; Horanyi, Mihaly; Sternovsky, Zoltan; Baumgarten, Gerd; Latteck, Ralph; Rapp, Markus; Holzworth, Robert; Shimogawa, Michael; Gumbel, Jorg; Megner, Ms Linda; Friedrich, Martin

    Two "MASS" rockets (Mesospheric Aerosol Sampling Spectrometer) were launched from the Andoya Rocket Range (Norway) the first week of August 2007. The payloads carried an electrostatic mass analyzer for the charged fraction of the aerosol particles, electric field booms, a photometer for cloud brightness, and Faraday rotation antennas for electron density. Aerosol particles with different ranges of charge-to-mass ratio were collected within the instrument housing on two sets of four biased collector plates, with one set for positive particles and one set for negative particles. The first rocket was launched into PMSE and NLC on 3 August. The sun was 4 degrees below the horizon and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were detected at the same altitude by rocket-borne photometer measurements. The charged aerosol data shows the density of negative particles with radius greater than 3 nm rising sharply at 83 km and continuing to 89 km, collocated with PMSE detected by the ALWIN radar. Particles with 1-2 nm radii with both signs of charge and particles with less than 1 nm radius charged positively were detected at 86-88 km. The occurrence of the positive particles in the smallest size range in the region of lowest temperature suggests that their origin is nucleation and growth on ions. Initial charge-density estimates are several thousands per cubic centimeter for each of these size ranges. The second launch was 6 August into PMSE without NLC. The 1-2 nm particles were seen from 85.4 to 87.4 km, again with both signs of charge. Larger sizes were nearly absent.

  15. Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species

    DOE PAGES

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; et al

    2016-07-25

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS–MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS–MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI–IMS–MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambientmore » field campaign in the forested SE US. The ambient IMS–MS signals are consistent with laboratory IMS–MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS–MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS–MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of

  16. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m3) Estimated Mass Concentration Measurement (µg/m3) Ideal Sampler Fractional...

  17. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m3) Estimated Mass Concentration Measurement (µg/m3) Ideal Sampler Fractional...

  18. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m 3) Estimated Mass Concentration Measurement (µg/m 3) Ideal Sampler Fractional...

  19. Steps Toward an EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2.

  20. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  1. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  2. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1986-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  3. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  4. Molecular composition of aged secondary organic aerosol generated from a mixture of biogenic volatile compounds using ultrahigh resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Doussin, J.-F.; Giorio, C.; Mahon, B.; Wilson, E. M.; Maurin, N.; Pangui, E.; Venables, D. S.; Wenger, J. C.; Kalberer, M.

    2015-02-01

    Field observations over the past decade indicate that a significant fraction of organic aerosol in remote areas may contain highly oxidised molecules. Aerosol processing or further oxidation (ageing) of organic aerosol has been suggested to be responsible for their formation through heterogeneous uptake of oxidants and multigenerational oxidation of vapours by OH radicals. In this study we investigated the influence of several ageing processes on the molecular composition of secondary organic aerosols (SOA) using direct infusion and liquid chromatography ultrahigh resolution mass spectrometry. SOA was formed in simulation chamber experiments from ozonolysis of a mixture of four biogenic volatile organic compounds (BVOC): α-pinene, β-pinene, Δ3-carene and isoprene. The SOA was subsequently aged under three different sets of conditions: in the dark in the presence of residual ozone, with UV irradiation and OH radicals, and using UV light only. Among all studied conditions, only OH radical-initiated ageing was found to influence the molecular composition of the aerosol and showed an increase in carbon oxidation state (OSC) and elemental O/C ratios of the SOA components. None of the ageing processes produced an observable effect on the oligomers formed from ozonolysis of the BVOC mixture, which were found to be equally abundant in both "fresh" and "aged" SOA. Additional experiments using α-pinene as the sole precursor demonstrated that oligomers are an important group of compounds in SOA produced from both ozonolysis and OH radical-initiated oxidation processes; however, a completely different set of oligomers is formed under these two oxidation regimes. SOA from the OH radical-initiated α-pinene oxidation had a significantly higher overall OSC and O/C compared to that from pure ozonolysis experiments confirming that the OH radical reaction is more likely to be responsible for the occurrence of highly oxidised species in ambient biogenic SOA.

  5. A method for segregating the optical absorption properties and the mass concentration of winter time urban aerosol

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Utry, N.; Pintér, M.; Major, B.; Bozóki, Z.; Szabó, G.

    2015-12-01

    A novel in-situ, real time method for the determination of inherent absorption properties of light absorbing carbonaceous particulate matter and its possible application for source apportionment are introduced here. The method is deduced from a two-week campaign under wintry urban conditions during which strong correlation was found between aerosol number size distribution and wavelength dependent optical absorption coefficient (AOC(λ)), measured by a Single Mobility Particle Sizer (SMPS) and a multi-wavelength photoacoustic absorption spectrometer, respectively, while wood burning and traffic (i.e. fossil fuel burning) activity were identified to be the dominant sources of carbonaceous particulate. Indeed, during the whole campaign, regardless of the actual emission strength of the aerosol sources, the measured number size distributions were always dominated by two unimodal modes with Count Mean Diameter (CMD) of 20 and 100 nm, which could be correlated to traffic and wood burning activities, respectively. AAEff, AAEwb (i.e. the Aerosol Angström Exponent of traffic and wood burning aerosol, respectively), σff(266 nm), σff(1064 nm), σwb(266 nm) and σff(1064 nm) (i.e. the segregated mass specific optical absorption coefficients at two of the measurement wavelengths) were found to be 1.17 ± 0.18, 2.6 ± 0.14, 7.3 ± 0.3 m2g-1, 1.7 ± 0.1 m2g-1 3.4 ± 0.3 m2g-1 and 0.31 ± 0.08 m2g-1, respectively. Furthermore the introduced methodology can also disentangle and quantify the temporal variation of both the segregated optical absorptions and the segregated mass concentrations of traffic and wood burning aerosol. Accordingly, the contribution of wood burning to optical absorption of PM was found to be negligible at 1064 nm but increased gradually towards the shorter wavelengths and became commensurable with the optical absorption of traffic at 266 nm during the whole measurement period. Furthermore, the contribution of wood burning mass to CM (mass of carbonaceous

  6. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-07-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions (N = 293), with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. OA mass spectra measured for HD truck exhaust plumes show cycloalkanes are predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in OA and BC emitted by gasoline and diesel engines. This finding indicates a large fraction of OA in gasoline exhaust is lubricant-derived as well. The similarity in OA and BC mass spectra for gasoline and diesel engine exhaust is likely to confound ambient source apportionment efforts to determine contributions to air pollution from these two important sources.

  7. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  8. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-04-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making it the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from

  9. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore » the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA

  10. Comparison of the impact of volcanic eruptions and aircraft emissions on the aerosol mass loading and sulfur budget in the stratosphere

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Poole, Lamont R.

    1992-01-01

    Data obtained by the Stratospheric Aerosol and Gas Experiment (SAGE) 1 and 2 were used to study the temporal variation of aerosol optical properties and to assess the mass loading of stratospheric aerosols from the eruption of volcanos Ruiz and Kelut. It was found that the yearly global average of optical depth at 1.0 micron for stratospheric background aerosols in 1979 was 1.16 x 10(exp -3) and in 1989 was 1.66 x 10(exp -3). The eruptions of volcanos Ruiz and Kelut ejected at least 5.6 x 10(exp 5) and 1.8 x 10(exp 5) tons of materials into the stratosphere, respectively. The amount of sulfur emitted per year from the projected subsonic and supersonic fleet is comparable to that contained in the background aerosol particles in midlatitudes from 35 deg N to 55 deg N.

  11. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  12. Evaluation of aerosol mixing state classes in the GISS modelE-MATRIX climate model using single-particle mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-09-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 µm, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 µm contain large fractions of organic material, internally mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  13. Blood-brain barrier penetration of novel pyridinealdoxime methiodide (PAM)-type oximes examined by brain microdialysis with LC-MS/MS

    SciTech Connect

    Okuno, Sou; Sakurada, Koichi Ohta, Hikoto; Ikegaya, Hiroshi; Kazui, Yuko; Akutsu, Tomoko; Takatori, Takehiko; Iwadate, Kimiharu

    2008-02-15

    To develop a new reactivator of inhibited acetylcholinesterase (AChE) that can easily penetrate the blood-brain barrier (BBB), BBB penetration of 6 known and novel pyridinealdoxime methiodide (PAM)-type oximes (alkylPAMs) with relatively high reactivation activities was examined by in vivo rat brain microdialysis with liquid chromatography-mass spectrometry (LC-MS/MS). The 50% lethal dose (LD{sub 50}) of alkylPAMs was intravenously determined for Wistar rats, then the limit of detection, quantification range and linearity of the calibration curve of the alkylPAMs in dialysate and blood were determined by LC-MS/MS. Following 10% LD{sub 50} intravenous administration of the alkylPAMs, 4-[(hydroxyimino) methyl]-1-(2-phenylethyl) pyridinium bromide (4-PAPE) and 4-[(hydroxyimino) methyl]-1-octylpyridinium bromide (4-PAO) appeared in the dialysate. Striatal extracellular fluid/blood concentration ratios were 0.039 {+-} 0.018 and 0.301 {+-} 0.183 (mean {+-} SEM), respectively, 1 h after treatment. This is the first report of BBB penetration of 4-PAPE, and the concentration ratio was smaller than that of 2-PAM.The mean BBB penetration of 4-PAO was approximately 30%, indicating that intravenous administration of 4-PAO may be effective for the reactivation of blocked cholinesterase in the brain. However, the toxicity of 4-PAO (LD{sub 50}; 8.89 mg/kg) was greater than that of 2-PAM. Further investigation is required to determine the effects of these alkylPAMs in organophosphate poisoning.

  14. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a.

  15. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a. PMID:25766014

  16. Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF

    NASA Astrophysics Data System (ADS)

    Brown, S. G.; Lee, T.; Norris, G. A.; Roberts, P. T.; Collett, J. L., Jr.; Paatero, P.; Worsnop, D. R.

    2011-08-01

    Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) at an elementary school 20 m from the US 95 freeway in Las Vegas, Nevada, during January 2008. Additional collocated continuous measurements of black carbon (BC), carbon monoxide (CO), nitrogen oxides (NOx), and meteorological data were collected. The US Environmental Protection Agency's (EPA) positive matrix factorization (PMF) data analysis tool was used to apportion organic matter (OM) as measured by HR-AMS, and rotational tools in EPA PMF were used to better characterize the solution space and pull resolved factors toward known source profiles. Three- to six-factor solutions were resolved. The four-factor solution was the most interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA), low-volatility oxygenated organic aerosol (LV-OOA), biomass burning organic aerosol (BBOA), and semi-volatile oxygenated organic aerosol (SV-OOA). When the measurement site was downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA accounting for the rest. Attempts to pull the PMF factor profiles toward source profiles were successful but did not qualitatively change the results, indicating that these factors are very stable. Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be the most plausible one. Since solutions found by pulling the profiles or using Fpeak retained these oblique edges, there appears to be little rotational freedom in the base solution. On average, HOA made up 26 % of the OM, and it made up nearly half of the OM when the monitoring site was downwind of US 95 during morning rush hour. LV-OOA was highest in the afternoon and accounted for 26 % of the OM. BBOA occurred in the evening hours, was predominantly from the residential area to the north, and on average constituted 12 % of the OM; SV-OOA accounted for the remaining

  17. Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF

    NASA Astrophysics Data System (ADS)

    Brown, S. G.; Lee, T.; Norris, G. A.; Roberts, P. T.; Collett, J. L., Jr.; Paatero, P.; Worsnop, D. R.

    2012-01-01

    Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) at an elementary school 18 m from the US 95 freeway soundwall in Las Vegas, Nevada, during January 2008. Additional collocated continuous measurements of black carbon (BC), carbon monoxide (CO), nitrogen oxides (NOx), and meteorological data were collected. The US~Environmental Protection Agency's~(EPA) positive matrix factorization (PMF) data analysis tool was used to apportion organic matter (OM) as measured by HR-AMS, and rotational tools in EPA PMF were used to better characterize the solution space and pull resolved factors toward known source profiles. Three- to six-factor solutions were resolved. The four-factor solution was the most interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA), low-volatility oxygenated organic aerosol (LV-OOA), biomass burning organic aerosol (BBOA), and semi-volatile oxygenated organic aerosol (SV-OOA). When the measurement site was downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA accounting for the rest. Attempts to pull the PMF factor profiles toward source profiles were successful but did not qualitatively change the results, indicating that these factors are very stable. Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be the most plausible one. Since solutions found by pulling the profiles or using Fpeak retained these oblique edges, there appears to be little rotational freedom in the base solution. On average, HOA made up 26% of the OM, while LV-OOA was highest in the afternoon and accounted for 26% of the OM. BBOA occurred in the evening hours, was predominantly from the residential area to the north, and on average constituted 12% of the OM; SV-OOA accounted for the remaining third of the OM. Use of the pulling techniques available in EPA PMF and ME-2 suggested that the four

  18. PAMS photo image retrieval prototype system requirements specification

    SciTech Connect

    Conner, M.L.

    1996-04-30

    This project is part of the Photo Audiovisual Management System (PAMS). The project was initially identified in 1989 and has since been has been worked on under various names such as Image Retrieval and Viewing System, Photo Image Retrieval Subsystem and Image Processing and Compression System. This document builds upon the information collected and the analysis performed in the earlier phases of this project. The PAMS Photo Imaging subsystem will provide the means of capturing low resolution digital images from Photography`s negative files and associating the digital images with a record in the PAMS photo database. The digital images and key photo identification information will be accessible to HAN users to assist in locating and identifying specific photographs. After identifying desired photographs, users may request photo prints or high resolution digital images directly from Photography. The digital images captured by this project are for identification purposes only and are not intended to be of sufficient quality for subsequent use.

  19. Engineered CRISPR-Cas9 nucleases with altered PAM specificities

    PubMed Central

    Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.; Topkar, Ved; Nguyen, Nhu T.; Zheng, Zongli; Gonzales, Andrew P.W.; Li, Zhuyun; Peterson, Randall T.; Yeh, Jing-Ruey Joanna; Aryee, Martin J.; Joung, J. Keith

    2015-01-01

    Although CRISPR-Cas9 nucleases are widely used for genome editing1, 2, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM)3–6. As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-Seq analysis7. In addition, we identified and characterized another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also found that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  20. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

    PubMed

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Topkar, Ved V; Nguyen, Nhu T; Zheng, Zongli; Gonzales, Andrew P W; Li, Zhuyun; Peterson, Randall T; Yeh, Jing-Ruey Joanna; Aryee, Martin J; Joung, J Keith

    2015-07-23

    Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.

  1. Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Veres, Patrick R.; Williams, Jonathan; Borrmann, Stephan

    2013-10-01

    Aerosol particles from several anthropogenic sources associated with football stadia including cooking, cigarette smoking, burning of color smoke bombs and hand flares were analyzed by high-resolution aerosol mass spectrometry. The physical and chemical characteristics of these different aerosols, in particular the organic fraction, were explored in laboratory studies to obtain robust references. These data were compared with field campaign results from a Bundesliga (German football league) match in the Coface Arena (Mainz, Germany) on 20th April 2012. The field measurement revealed a strongly elevated mass concentration of organic aerosols (OA) compared to background levels showing a temporal structure clearly related to the match. PMF analysis established that during the football match event cigarette smoke was the predominant component of submicron organic aerosol (67% of total OA). Cooking emissions from food outlets within the stadium correlated well with the sales figures of the catering stations and were also found to be of relevance (24% of total OA) especially in the period before kickoff. Pyrotechnics were not observed during this football match and no signatures of these sources were found in the mass spectra from the stadium measurements. All species that were elevated during the football match returned to their initial background levels within one hour after the match had finished. This demonstrates a good ventilation capacity of the open-topped Coface Arena.

  2. High Resolution Mass Spectrometry of Seasonal Aerosol Samples From an Urban Location in the Italian Po Valley

    NASA Astrophysics Data System (ADS)

    Mahon, Brendan; Giorio, Chiara; Gallimore, Peter J.; Zielinski, Arthur T.; Tapparo, Andrea; Kalberer, Markus

    2016-04-01

    The Po Valley in Northern Italy represents one of the most polluted environments in Europe, with PM2.5 and ozone concentrations regularly exceeding 100μg/m3 and 50ppb respectively. Particularly during winter, prolonged inversion conditions together with biomass burning and anthropogenic emissions regularly lead to severe air pollution events. Over the course of several months in 2013-14, we carried out a sampling program at a city-centre site in Padova, Italy, collecting 24-hour high-volume aerosol filter samples, 18 in winter (mid December - mid March) and 20 in summer (late May - late July). Utilising high-resolution Orbitrap mass spectrometry techniques, we have characterised these sample sets to examine the long-term variation in aerosol composition over the sampling campaign and to determine the effect of anthropogenic gaseous pollutants such as NOx and SO2 on the composition of organic particle components. The results showed that between ca. 450-700 ions were measured in each sample in both the summer and winter sample sets, however the majority (90%) of ions in the winter samples were below 300m/z and below 380m/z in the summer samples. A much higher percentage of CHO-only ions were found in winter (ca. 27%) compared to the summer samples (ca. 6%), indicating a higher degree of photochemical reactions taking place involving pollutants such as NOx and SO2 in summer. Our results represent the first long term data set of high-resolution measurements of aerosol composition and demonstrate that this technique is an important tool in evaluating the composition of aerosol particles in complex polluted urban areas.

  3. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: linking laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Healy, Robert; Alfara, Rami; Ruuskanen, Taina; Wenger, John; McFiggans, Gordon; Kulmala, Markku; Kalberer, Markus

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. To date, most laboratory experiments have been performed using a single organic precursor (e.g., alpha- or beta-pinene, isoprene) while in the atmosphere a wide range of precursors contribute to SOA, which results most likely in a more complex SOA composition compared to the one-precursor laboratory systems. The objective of this work is to compare laboratory generated SOA from oxidation of BVOCs mixtures and remote ambient samples using ultrahigh-resolution mass spectrometry (UHR-MS) that allows detection of hundreds of individual SOA constituents. We examined aerosol samples from a boreal forest site, Hyytiälä, Finland and determined that a dominant fraction of the detected compounds are reaction products of a multi-component mixture of BVOCs. In the subsequent smog chamber experiments, SOA was generated from the ozonolysis and OH initiated reactions with BVOC mixtures containing species (alpha- and beta-pinene, delta-3-carene, and isoprene) that are most abundant in Hyytiälä's environment. The laboratory experiments were performed at conditions (e.g., RH, aerosol seed, and VOC ratios) that would resemble those at the boreal sampling site during the summer period. The elemental composition of the complex mixtures from laboratory generated SOA samples were compared with field samples using statistical data analysis methods.

  4. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  5. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  6. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  7. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  8. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

  9. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  10. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

  11. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  12. Changes in ground-level PM mass concentration and column aerosol optical depth over East Asia during 2004-2014

    NASA Astrophysics Data System (ADS)

    Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.

    2015-12-01

    Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr

  13. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-02-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions, with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in BC and OA emitted by gasoline and diesel engines. Cycloalkanes predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. The presence of trace elements in vehicle exhaust raises the concern that ash deposits may accumulate over time in diesel particle filter systems, and may eventually lead to performance problems that require servicing.

  14. Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2014-02-01

    Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh-resolution mass spectrometry. Kendrick mass defect and van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the BVOC mixtures when compared to the one component precursor system. The molecular composition of SOA from both the BVOC mixture and α-pinene represented the overall composition of the ambient sample from the boreal forest site reasonably well, with 72.3 ± 2.5% (n = 3) and 69.1 ± 3.0% (n = 3) common ions, respectively. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

  15. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: comparing laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I. P.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2013-11-01

    Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

  16. Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition

    NASA Astrophysics Data System (ADS)

    Bruns, E. A.; El Haddad, I.; Keller, A.; Klein, F.; Kumar, N. K.; Pieber, S. M.; Corbin, J. C.; Slowik, J. G.; Brune, W. H.; Baltensperger, U.; Prévôt, A. S. H.

    2015-06-01

    A variety of tools are used to simulate atmospheric aging, including smog chambers and flow reactors. Traditional, large-scale smog chambers age emissions over the course of hours to days, whereas flow reactors rapidly age emissions using high oxidant concentrations to reach higher degrees of oxygenation than typically attained in smog chamber experiments. The atmospheric relevance of the products generated under such rapid oxidation warrants further study. However, no previously published studies have compared the yields and chemical composition of products generated in flow reactors and smog chambers from the same starting mixture. The yields and composition of the organic aerosol formed from the photo-oxidation of α-pinene and of wood-combustion emissions in a smog chamber (SC) and two flow reactors: a potential aerosol mass reactor (PAM) and a micro-smog chamber (MSC), were determined using aerosol mass spectrometry. Reactants were sampled from the SC and aged in the MSC and the PAM using a range of hydroxyl radical (OH) concentrations and then photo-chemically aged in the SC. The chemical composition, as well as the maximum yields and emission factors, of the products in both the α-pinene and wood-combustion systems determined with the PAM and the SC agreed reasonably well. High OH exposures have been shown previously to lower yields by breaking carbon-carbon bonds and forming higher volatility species, which reside largely in the gas phase; however, fragmentation in the PAM was not observed. The yields determined using the PAM for the α-pinene system were slightly lower than in the SC, possibly from increased wall losses of gas phase species due to the higher surface area to volume ratios in the PAM, even when offset with better isolation of the sampled flow from the walls. The α-pinene SOA results for the MSC were not directly comparable, as particles were smaller than the optimal AMS transmission range. The higher supersaturation in the flow reactors

  17. Cristallisation, syncristallisation, et alliages moléculaires entre le lorazépam et l'oxazépam

    NASA Astrophysics Data System (ADS)

    Mascherpa-Corral, D.; Mascherpa, G.; Chauvet, A.

    1993-04-01

    Le polymorphisme et pseudopolymorphisme du lorazépam et oxazépam ont été étudiés par analyse thermique, calorimétrie différentielle à balayage et diffraction de rayons X. Deux formes polymorphes du lorazépam et plusieurs mono et hemisolvates ont été isolés à partir de recristallisation dans divers soivants. Aucun polymorphisme ni solvate n'a été mis en évidence avec l'oxazépam. Les paramètres cristallographiques des phases isolées ont été déterminées. A 160 et 203°C, le lorazépam et l'oxazépam perdent respectivement une molécule d'eau pour donner après réarrangement la quinazolinecarboxaldéhyde correspondante. La syncristallisation des deux benzodiazépines dans le benzène conduit à des alliages moléculaires à miscibilité totale à l'état solide dans tout le domaine de concentration entre l'exazépam el la forme α du lorazépam, elle n'est que partielle avec la forme β. Thermal analysis, differential scanning calorimetry, and X-ray diffraction were carried out to study the polymorphism and pseudopolymorphism of lorazepam and oxazepam. Two polymorphic forms of lorazepam and several mono- or hemisolvates were obtained after recrystallization from various solvents. No polymorphic form or solvate has been found for oxazepam. The crystallographic parameters of these new phases were determined. Lorazepam and oxazepam can lose a molecule of water at 160 and 203°C, respectively, and rearrange to quinazolinecarboxaldehyde. Mixed crystals of the two benzodiazepines, after recrystallization from benzene, lead to molecular alloys with complete solid solubility between oxazepam and the α-form of lorazepam over the whole range of composition but only to partial solubility with the β-form of lorazepam.

  18. Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer

    NASA Astrophysics Data System (ADS)

    Ning, Zhi; Chan, K. L.; Wong, K. C.; Westerdahl, Dane; Močnik, Griša; Zhou, J. H.; Cheung, C. S.

    2013-12-01

    Black carbon (BC) is the dominant component of the light absorbing aerosols in the atmosphere, changing earth's radiative balance and affecting the climate. The mixing state and size distribution of atmospheric BC are largely unknown and cause uncertainties in climate models. BC is also a major component of diesel PM emissions, recently classified by World Health Organization as Category I Carcinogen, and has been associated with various adverse health effects. This study presents a novel approach of direct and continuous measurement of BC mass size distribution by tandem operation of a differential mobility spectrometry and a refined Aethalometer. A condensation particle counter was deployed in parallel with the Aethalometer to determine particle number size distribution. A wide range of particle sizes (20-600 nm) was investigated to determine the BC modal characteristics in fresh diesel engine tailpipe emissions and in different urban environments including a typical urban ambient site and a busy roadside. The study provided a demonstration of a new analytic approach and showed the evolution of BC mass size distribution from fresh engine emissions to the aged aerosols in the roadside and ambient environments. The results potentially can be used to refine the input for climate modeling to determine the effect of particle-bound atmospheric BC on the global climate.

  19. Aging of secondary organic aerosol from small aromatic VOCs. Changes in chemical composition, mass yield, volatility and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2014-12-12

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form and transform SOA from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx. The effects of chemical aging on organic aerosol (OA) composition, mass yield, volatility and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state OSC) and mass yield. The OA oxidation state generally increased during photo-oxidation, and the final OA OSmore » C ranged from -0.29 to 0.45 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  20. Outdoor and indoor aerosol size, number, mass and compositional dynamics at an urban background site during warm season

    NASA Astrophysics Data System (ADS)

    Talbot, N.; Kubelova, L.; Makes, O.; Cusack, M.; Ondracek, J.; Vodička, P.; Schwarz, J.; Zdimal, V.

    2016-04-01

    This paper describes the use of a unique valve switching system that allowed for high temporal resolution indoor and outdoor data to be collected concurrently from online C-ToF-AMS, SMPS and OC/EC, and offline BLPI measurements. The results reveal near real-time dynamic aerosol behaviour along a migration path from an outdoor to indoor environment. An outdoor reduction in NR-PM1 mass concentration occurred daily from AM (06:00-12:00) to PM (12:00-18:00). SO4 (26%-37%) [AM/PM] increased proportionally during afternoons at the expense of NO3 (18%-7%). The influences of mixing height, temperature and solar radiation were considered against the mean mass concentration loss for each species. Losses were then calculated according to species via a basic input/output model. NO3 lost the most mass during afternoon periods, which we attribute to the accelerated dissociation of NH4NO3 through increasing temperature and decreasing relative humidity. Indoor/outdoor (I/O) ratios varied from 0.46 for <40 nm to 0.65 for >100 nm. These ratios were calculated using average SMPS PNC measurements over the full campaign and corroborated using a novel technique of calculating I/O penetration ratios through the indoor migration of particles during a new particle formation event. This ratio was then used to observe changes in indoor composition relative to those outdoors. Indoor sampling was carried out in an undisturbed room with no known sources. Indoor concentrations were found to be proportional to those outdoors, with organic matter [2.7 μg/m3] and SO4 [1.7 μg/m3] being the most prominent species. These results are indicative of fairly rapid aerosol penetration, a source-free indoor environment and small afternoon I/O temperature gradients. Fine fraction NO3 was observed indoors in both real-time AMS PM1 and off-line BLPI measurements. Greater mass concentration losses were observed from filter measurements, highlighting an important time dependency factor when investigating semi

  1. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  2. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  3. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  4. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-07-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particulate matter (NR-PM1) in the southeastern USA. Measurements were performed in both rural and urban sites in the greater Atlanta area, Georgia (GA), and Centreville, Alabama (AL), for approximately 1 year as part of Southeastern Center for Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR-PM1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important, but not dominant, contributions to total OA in urban sites (i.e., 21-38 % of total OA depending on site and season). Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA factor (isoprene-OA) is only deconvolved in warmer months and contributes 18-36 % of total OA. The presence of isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79 %) of OA in all sites. MO-OOA correlates well with ozone in summer but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based

  5. Pam17 and Tim44 act sequentially in protein import into the mitochondrial matrix.

    PubMed

    Schiller, Dirk

    2009-11-01

    Import of proteins into the matrix is driven by the Tim23 presequence translocase-associated import motor PAM. The core component of PAM is the mitochondrial chaperone mtHsp70, which ensures efficient translocation of proteins across the inner membrane through interactions with the J-protein complex Pam16-Pam18 (Tim16-Tim14) and its cochaperone Tim44. The recently identified non-essential Pam17 is a further member of PAM. Genetic and biochemical analyses reveal synthetic interactions between PAM17 and TIM44. Pam17 is involved in an early stage of protein translocation whereas Tim44 assists in a later step of transport, suggesting that both proteins can cooperate in a complementary manner in protein import.

  6. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as required by... (PAMS) Program on September 11, 1995 and made it part of Maryland SIP. As with all components of the...

  7. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as required by... (PAMS) Program on September 11, 1995 and made it part of Maryland SIP. As with all components of the...

  8. Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Nah, Theodora; McVay, Renee C.; Zhang, Xuan; Boyd, Christopher M.; Seinfeld, John H.; Ng, Nga L.

    2016-07-01

    Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of vapor wall deposition on SOA mass yields in chamber experiments can be constrained experimentally by increasing the seed aerosol surface area to promote the preferential condensation of SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis. The observations are analyzed using a coupled vapor-particle dynamics model to interpret the roles of gas-particle partitioning (quasi-equilibrium vs. kinetically limited SOA growth) and α-pinene oxidation rate in influencing vapor wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface area within the range of seed surface area concentrations used in this study. This behavior arises when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations for the same initial α-pinene concentration. When the α-pinene oxidation rate increases relative to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent to which vapor wall deposition affects SOA mass yields depends on the particular volatility organic compound system and can be mitigated through the use of excess oxidant concentrations.

  9. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Onasch, T. B.; Canagaratna, M.; Jayne, J. T.; Kimmel, J.; Yu, X.-Y.; Alexander, M. L.; Worsnop, D. R.; Davidovits, P.

    2008-12-01

    We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA) as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12-30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27-30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information. The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH4)2SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion-generated HOA particles from local sources (e.g. traffic), with number concentrations peaking

  10. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores

  11. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores

  12. Preliminary Observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Sullivan, A. P.; Carrico, C. M.; Jimenez, J. L.; Cubison, M.; Saarikoski, S.; Worsnop, D. R.; Onasch, T. B.; Fortner, E.; Malm, W. C.; Lincoln, E.; Wold, C. E.; Hao, W.

    2010-12-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion of wild land fuels, an experiment was conducted in 2009 at the U.S. Forest Service/United States Department of Agriculture (USFS/USDA) Fire Science Laboratory (FSL) located in Missoula, Montana, to measure volatility of open biomass burning emissions for a variety of fuel types. Both isothermal and temperature-dependent volatilization were studied, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with thermal denuder. Small quantities (200-800g) of various fuel types, primarily from the U.S., were burned in a large combustion chamber and diluted in two stages in continuous-flow residence chambers. The partitioning of particulate organic mass concentrations by the HR-ToF-AMS was evaluated for each fuel type using nominal dilution ratios characterized both by measuring flow rates in continuous-flow residence chambers and from the concentrations of several conserved tracers. The volatility of biomass burning smoke was found to vary across fuel types. Up to ~60% volatile loss of organic matter was observed as a result of dilution for some smoke samples (e.g., Lodgepole pine and Ponderosa pine). We will investigate relationships between volatility and several parameters such as the absolute mass concentration and chemical composition. We will also examine the behavior of biomass burning tracers, such as AMS m/z 60, under dilution conditions. Previous studies (e.g. Lee et al., AS&T 2010 and Aiken et al., ACP 2009) have observed a strong relationship between OA and AMS m/z 60 in fresh biomass burning smoke. We will examine whether this relationship is altered

  13. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.

    PubMed

    Islim, Mohamed Sufyan; Haas, Harald

    2016-05-30

    The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).

  14. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.

    PubMed

    Islim, Mohamed Sufyan; Haas, Harald

    2016-05-30

    The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM). PMID:27410116

  15. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems.

    PubMed

    Leenay, Ryan T; Maksimchuk, Kenneth R; Slotkowski, Rebecca A; Agrawal, Roma N; Gomaa, Ahmed A; Briner, Alexandra E; Barrangou, Rodolphe; Beisel, Chase L

    2016-04-01

    CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature. PMID:27041224

  16. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  17. Development of a Metastable Atom Bombardment (MAB) Source for Penning Ionization Time-of-flight Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Robinson, C. B.; Kimmel, J. R.; David, D.; Jayne, J. T.; Trimborn, A.; Worsnop, D. R.; Jimenez, J. L.

    2009-12-01

    The Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) utilizes thermal vaporization followed by electron ionization (EI) to convert aerosol components to gas-phase ions. The method enables quantification of chemical classes, but the extensive fragmentation caused by EI limits the specificity of both chemical analysis and source identification by factor analysis. To better identify the molecular components of aerosols, we have constructed a metastable atom bombardment (MAB) ionization source that can be interfaced to standard ToF-AMS hardware. A beam of metastable rare gas atoms is produced by a low-voltage DC discharge and focused toward the vaporization plume, yielding Penning Ionization of the analyte molecules. By changing gases, the excited energies of the metastables can be adjusted between 20.61 eV (He) and 9.92 eV (Kr). Source parameters, including pressures, current, geometry, and materials, were optimized for He, Ar, and Kr. Instrument sensitivity and induced fragmentation was characterized for each using lab-generated oleic acid particles. The demonstrated sensitivities are 0.1% of EI (3% of the SNR of EI in the V-mode, comparable to the Q-AMS SNR), which is sufficient for ambient monitoring. A metastable flux of 2.6e14 sr-1sec-1 has been achieved. The MAB-AMS has been deployed to the FLAME-3 campaign at the USDA Fire Sciences Laboratory in Missoula, MT, and used to sample smoke from open burning of different biomass samples. Preliminary results from FLAME-3 will be presented.

  18. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  19. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  20. Comparing momentum and mass (aerosol source function) fluxes for the North Atlantic and the European Arctic using different parameterizations

    NASA Astrophysics Data System (ADS)

    Wróbel, Iwona; Piskozub, Jacek

    2016-04-01

    Wind speed has a disproportionate role in the forming of the climate as well it is important part in calculate of the air-sea interaction thanks which we can study climate change. It influences on mass, momentum and energy fluxes and the standard way of parametrizing those fluxes is use this variable. However, the very functions used to calculate fluxes from winds have evolved over time and still have large differences (especially in the case of aerosol sources function). As we have shown last year at the EGU conference (PICO presentation EGU2015-11206-1) and in recent public article (OSD 12,C1262-C1264,2015) there is a lot of uncertainties in the case of air-sea CO2 fluxes. In this study we calculated regional and global mass and momentum fluxes based on several wind speed climatologies. To do this we use wind speed from satellite data in FluxEngine software created within OceanFlux GHG Evolution project. Our main area of interest is European Arctic because of the interesting air-sea interaction physics (six-monthly cycle, strong wind and ice cover) but because of better data coverage we have chosen the North Atlantic as a study region to make it possible to compare the calculated fluxes to measured ones. An additional reason was the importance of the area for the North Hemisphere climate, and especially for Europe. The study is related to an ESA funded OceanFlux GHG Evolution project and is meant to be part of a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). We have used a modified version FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) for calculating trace gas fluxes to derive two purely wind driven (at least in the simplified form used in their parameterizations) fluxes. The modifications included removing gas transfer velocity formula from the toolset and replacing it with the respective formulas for momentum transfer and mass (aerosol production

  1. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    NASA Astrophysics Data System (ADS)

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp < 0.49 μm, 0.33 (0.26-0.34) μg m-3; 0.49-0.95 μm, 0.20 (0.19-0.24) μg m-3; 0.95-1.5 μm, 0.16 (0.13-0.21) μg m-3; 1.5-3.0 μm 0.075 (0.05-0.11) μg m-3; 3.0-7.2 μm 0.12 (0.02-0.19) μg m-3; 7.2-10 μm 0.06 (0.01-0.03) μg m-3. The average mass concentration of the total PM10 at Faraglione Camp for the entire sampling period was 0.92 (0.67-1.1) μg m-3. Although a great variability, the aerosol mass concentration showed a tri-modal distribution, with an accumulation mode (in the range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while

  2. Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.

    PubMed

    Mihara, Toshiyuki; Mochida, Michihiro

    2011-11-01

    To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM.

  3. Tropical cyclone Pam coastal impact survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Pilarczyk, J.; Kosciuch, T. J.; Hong, I.; Rarai, A.; Harrison, M. J.; Jockley, F. R.; Horton, B.

    2015-12-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam caused the worst natural disaster in Vanuatu's recorded history since severe tropical cyclone Uma in 1987. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands and intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters. Coral boulders of more than 1 m diameter were measured on Erromango and sediment samples were collected at key sites across the archipelago. Infrastructure damage on traditional and modern structures was assessed. Eyewitnesses were interviewed at most sites to document the chronology of the wind and

  4. In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; Hoffmann, T.

    2013-11-01

    The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland, is presented. The focus lies on online measurements of organic acids, which were achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by aerosol mass spectrometry (AMS) measurements and Fourier transform infrared spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas-phase measurements solely and measuring the sum of gas and particle phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2 mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene-derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol-1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia

  5. In-situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; Hoffmann, T.

    2013-07-01

    The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland is presented. The focus lies on online measurements of organic acids, which was achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by Aerosol Mass Spectrometry (AMS) measurements and Fourier-Transform Infrared Spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas phase measurements solely and measuring the sum of gas- and particle-phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2-mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol-1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia

  6. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    The AMS is the only current instrument that provides real-time, quantitative, and size-resolved data on submicron non-refractory aerosol species with a time resolution of a few minutes or better. The AMS field data are multidimensional and massive, containing extremely rich information on aerosol chemistry, microphysics and dynamics—basic information that is required to evaluate and quantify the radiative climate forcing of atmospheric aerosols. The high time resolution of the AMS data also reveals details of aerosol dynamic variations that are vital to understanding the physico-chemical processes of atmospheric aerosols that govern aerosol properties relevant to the climate. There are two primary objectives of this 3-year project. Our first objective is to perform highly integrated analysis of dozens of AMS datasets acquired from various urban, forested, coastal, marine, mountain peak, and rural/remote locations around the world and synthesize and inter-compare results with a focus on the sources and the physico-chemical processes that govern aerosol properties relevant to aerosol climate forcing. Our second objective is to support our collaboration with global aerosol modelers, in which we will supply the size-resolved aerosol composition and temporal variation data (via a public web interface) and our analysis results for use in model testing and validation and for translation of the rich AMS database into model constraints that can improve climate forcing simulations. Several prominent global aerosol modelers have expressed enthusiastic support for this collaboration. The specific tasks that we propose to accomplish include 1) to develop, validate, and apply multivariate analysis techniques for improved characterization and source apportionment of organic aerosols; 2) to evaluate aerosol source regions and relative contributions based on back-trajectory integration (PSCF method); 3) to summarize and synthesize submicron aerosol information, including

  7. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  8. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  9. Sources and composition of submicron organic mass in marine aerosol particles

    SciTech Connect

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak

  10. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group

  11. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  12. Thermal Extraction–Two-Dimensional Gas Chromatography–Mass Spectrometry with Heart-Cutting for Nitrogen Heterocyclics in Biomass Burning Aerosols

    EPA Science Inventory

    A thermal extraction-two-dimensional gas chromatography-mass spectrometry (TE-GC-MS) method (with heart-cutting) is developed for quantitatively assessing nitrogen (N-bearing organic species (e.g., pyrrole, pyridine, nitriles, and amines) in aerosols emitted from agricultural fir...

  13. THERMAL DESORPTION MASS SPECTROMETRIC ANALYSIS OF ORGANIC AEROSOL FORMED FROM REACTIONS OF 1-TETRADECENE AND O3 IN THE PRESENCE OF ALCOHOLS AND CARBOXYLIC ACIDS. (R826235)

    EPA Science Inventory

    The chemistry of secondary organic aerosol formation from reactions of
    1-tetradecene and O3 in dry air in the presence of excess alcohols
    and carboxylic acids was investigated in an environmental chamber using a
    thermal desorption particle beam mass spec...

  14. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
    Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  15. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  16. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.

    PubMed

    Eggersdorfer, M L; Gröhn, A J; Sorensen, C M; McMurry, P H; Pratsinis, S E

    2012-12-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area, and density. Here, zirconia (ZrO(2)) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO(2) and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number, and surface area mean diameter of primary particles, d(va)). The d(va) determined by DMA-APM measurements and this power law is in good agreement with the d(va) obtained by ex situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g., precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835

  17. Mass-Mobility Characterization of Flame-made ZrO2 Aerosols: Primary Particle Diameter & Extent of Aggregation

    PubMed Central

    Eggersdorfer, M.L.; Gröhn, A.J.; Sorensen, C.M.; McMurry, P.H.; Pratsinis, S.E.

    2013-01-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area and density. Here, zirconia (ZrO2) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in-situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO2 and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number and surface area mean diameter of primary particles, dva). The dva determined by DMA-APM measurements and this power law is in good agreement with the dva obtained by ex-situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g. precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835

  18. Origin and impact of particle-to-particle variations in composition measurements with the nano-aerosol mass spectrometer.

    PubMed

    Klems, Joseph P; Johnston, Murray V

    2013-09-01

    In the nano-aerosol mass spectrometer, individual particles in the 10-30 nm size range are trapped and irradiated with a high pulse energy laser beam. The laser pulse generates a plasma that disintegrates the particle into atomic ions, from which the elemental composition is determined. Particle-to-particle variations among the mass spectra are shown to arise from plasma energetics: Low ionization energy species are enhanced in some spectra while high ionization energy species are enhanced in others. These variations also limit the accuracy and precision of elemental analysis, with higher deviations generally observed when low ionization energy species are dominant in the mass spectrum. For standard datasets generated from nominally identical particles, it is shown that that the error associated with composition measurement is random and that averaging the spectra from a few tens of particles is sufficient for measuring the mole fractions of common elements to within about 10% of the expected value. Averaging a greater number of particles offers limited improvement of the measurement precision but has the deleterious effect of degrading the measurement time-resolution, which is given by the time needed to obtain the required number of particle spectra for averaging. An internally mixed ambient particle dataset was found to give a similar result to the standard datasets, that is, the measured elemental composition converged to the average value after a few tens of particles were averaged.

  19. The application of single particle aerosol mass spectrometry for the detection and identification of high explosives and chemical warfare agents

    SciTech Connect

    Martin, Audrey Noreen

    2006-01-01

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  20. Simultaneous analysis of heparosan oligosaccharides by isocratic liquid chromatography with charged aerosol detection/mass spectrometry.

    PubMed

    Ji, Xiaohu; Hu, Guixin; Zhang, Qiongyan; Wang, Fengshan; Liu, Chunhui

    2016-11-01

    Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources. PMID:27516280

  1. First clinical trials of the Twente photoacoustic mammoscope (PAM)

    NASA Astrophysics Data System (ADS)

    Vaartjes, Susanne E.; van Hespen, Johan C. G.; Klaase, Joost M.; van den Engh, Frank M.; Thé, Andy K. H.; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2007-07-01

    Breast cancer dominates cancers in females. This burden on society and the room for improvements in the current practice of mammography have been stimuli for developing new modalities like photoacoustic mammography. At the University of Twente (UT), an instrument had been developed aimed at performing limited area scans on the human breast. This instrument is called the Twente Photoacoustic Mammoscope (PAM). The PAM is based on generating laserinduced ultrasound from absorbing structures in the breast. The heart of the instrument is a flat PVDF based detector matrix comprising 590 active elements. We show the performance characteristics of the ultrasound detector. The exciting source is an Nd:YAG laser operating at 1064 nm with 5 ns pulses. A study protocol was designed to explore the feasibility of using the PAM to detect cancer in the breasts of patients. The protocol was executed at the Medisch Spectrum Twente by using the mammoscope to obtain photoacoustic region-of-interest (ROI) images of the suspect/symptomatic breasts. We compare the photoacoustic images obtained with x-ray mammograms and ultrasound images. We show photoacoustic images of ROI in one case where we attribute high intensity regions to tumor vascularization.

  2. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    SciTech Connect

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  3. Size segregated mass concentration and size distribution of near surface aerosols over a tropical Indian semi-arid station, Anantapur: Impact of long range transport.

    PubMed

    Raghavendra Kumar, K; Narasimhulu, K; Balakrishnaiah, G; Suresh Kumar Reddy, B; Rama Gopal, K; Reddy, R R; Moorthy, K Krishna; Suresh Babu, S

    2009-10-15

    Regular measurements of size segregated as well as total mass concentration and size distribution of near surface composite aerosols, made using a ten-channel Quartz Crystal Microbalance (QCM) cascade impactor during the period of September 2007-May 2008 are used to study the aerosol characteristics in association with the synoptic meteorology. The total mass concentration varied from 59.70+/-1.48 to 41.40+/-1.72 microg m(-3), out of which accumulation mode dominated by approximately 50%. On a synoptic scale, aerosol mass concentration in the accumulation (submicron) mode gradually increased from an average low value of approximately 26.92+/-1.53 microg m(-3) during the post monsoon season (September-November) to approximately 34.95+/-1.32 microg m(-3) during winter (December-February) and reaching a peak value of approximately 43.56+/-1.42 microg m(-3) during the summer season (March-May). On the contrary, mass concentration of aerosols in the coarse (supermicron) mode increased from approximately 9.23+/-1.25 microg m(-3)during post monsoon season to reach a comparatively high value of approximately 25.89+/-1.95 microg m(-3) during dry winter months and a low value of approximately 8.07+/-0.76 microg m(-3) during the summer season. Effective radius, a parameter important in determining optical (scattering) properties of aerosol size distribution, varied between 0.104+/-0.08 microm and 0.167+/-0.06 microm with a mean value of 0.143+/-0.01 microm. The fine mode is highly reduced during the post monsoon period and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. It can be seen that among the two parameters measured, correlation of total mass concentration with air temperature is positive (R(2)=0.82) compared with relative humidity (RH) (R(2)=0.75). PMID:19640569

  4. In-Flight Chemical Composition Observations of Aircraft Emissions using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2015-12-01

    Commercial aircraft are an important source of aerosols to the upper troposphere. The microphysical and chemical properties of these emitted aerosols govern their ability to act as ice nuclei, both in near-field contrails and for cirrus formation downstream. During the ACCESS-II (Alternative Fuel Effects on Contrails and Cruise Emissions) campaign, NASA DC-8 CFM56-2-C1 engine emissions were sampled systematically at a range of cruise-relevant thrust levels and at several altitudes. Sampling was done aboard the NASA HU-25 Falcon aircraft, which was equipped with a suite of aerosol and gas-phase instruments focused on assessing the effects of burning different fuel mixtures on aerosol properties and their associated contrails. Here we present in-flight measurements of particle chemical composition made by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The AMS was able to sufficiently resolve near-field (within 100m) aircraft emissions plumes. Low-sulfur HEFA (hydro-processed esters and fatty-acids) and JetA fuels yielded particles that contained 11 and 8% sulfate, respectively, compared to 30% sulfate contribution for traditional JetA fuel. Each of the fuels produced organic aerosol with similarly low oxygen content. Lubrication oils, which are not a combustion product but result from leaks in the engine, were likely a dominant fraction of the measured organic mass based on mass-spectral marker analysis. These results are compared to similar engine conditions from ground-based testing.

  5. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  6. Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry.

    PubMed

    Beddows, David C S; Donovan, Robert J; Harrison, Roy M; Heal, Mathew R; Kinnersley, Robert P; King, Martin D; Nicholson, David H; Thompson, Katherine C

    2004-02-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was used to determine, in real time, the size and chemical composition of individual particles in the atmosphere at the remote inland site of Eskdalemuir, Scotland. A total of 51,980 particles, in the size range 0.3-7.4 microm, were detected between the 25th and 30th June 2001. Rapid changes in the number density, size and chemical composition of the atmospheric aerosol were observed. These changes are attributed to two distinct types of air mass; a polluted air mass that had passed over the British mainland before reaching Eskdalemuir, interposed between two cleaner air masses that had arrived directly from the sea. Such changes in the background aerosol could clearly be very important to studies of urban aerosols and attempts at source apportionment. The results of an objective method of data analysis are presented. Correlations were sought between the occurrence of: lithium, potassium, rubidium, caesium, beryllium, strontium, barium, ammonium, amines, nitrate, nitrite, boron, mercury, sulfate, phosphate, fluorine, chlorine, bromine, iodine and carbon (both elemental and organic hydrocarbon) in both fine (d < 2.5 microm) and coarse (d > 2.5 microm) particle fractions. Several previously unreported correlations were observed, for instance between the elements lithium, beryllium and boron. The results suggest that about 2 in 3 of all fine particles (by number rather than by mass), and 1 in 2 of all coarse particles containing carbon, consisted of elemental carbon rather than organic hydrocarbon (although a bias in the sensitivity of the ATOFMS could have affected these numbers). The ratio of the number of coarse particles containing nitrate anions to the number of particles containing chloride anions exceeded unity when the air mass had travelled over the British mainland. The analysis also illustrates that an air mass of marine origin that had travelled slowly over agricultural land can accumulate amines and

  7. The uptake of HO2 radicals to organic aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, Pascale; Krapf, Manuel; Dommen, Josef; George, Ingrid; Whalley, Lisa; Ingham, Trevor; Baeza-Romero, Maria Teresa; Ammann, Markus; Heard, Dwayne

    2014-05-01

    HOx (OH + HO2) radicals are responsible for the majority of the oxidation in the troposphere and control the concentrations of many trace species in the atmosphere. There have been many field studies where the measured HO2 concentrations have been smaller than the concentration predicted by model calculations [1,2]. The difference has often been attributed to HO2 uptake by aerosols. Organics are a major component of aerosols accounting for 10 - 70 % of their mass [3]. However, there have been very few laboratory studies measuring HO2 uptake onto organic aerosols [4]. Uptake coefficients (γ) were measured for a range of aerosols using a Fluorescence Assay By Gas Expansion (FAGE) detector combined with an aerosol flow tube. HO2 was injected into the flow tube using a moveable injector which allowed first order HO2 decays to be measured along the flow tube both with and without aerosols. Laboratory generated aerosols were made using an atomiser or by homogeneous nucleation. Secondary organic aerosols (SOA) were made using the Paul Scherrer Institute smog chamber and also by means of a Potential Aerosol Mass (PAM) chamber. The total aerosol surface area was then measured using a Scanning Mobility Particle Sizer (SMPS). Experiments were carried out on aerosols containing glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid and squalene. The HO2 uptake coefficients for these species were measured in the range of γ < 0.004 to γ = 0.008 ± 0.004. Humic acid was also studied, however, much larger uptake coefficients (γ = 0.007 - 0.09) were measured, probably due to the fact that these aerosols contained elevated levels of transition metal ions. For humic acid the uptake coefficient was highly dependent on humidity and this may be explained by the liquid water content of the aerosols. Measurements were also performed on copper doped aerosols containing different organics. An uptake coefficient of 0.23 ± 0.07 was measured for copper doped ammonium sulphate

  8. In situ ship cruise measurements of mass concentration and size distribution of aerosols over Bay of Bengal and their radiative impacts

    NASA Astrophysics Data System (ADS)

    Ganguly, Dilip; Jayaraman, A.; Gadhavi, H.

    2005-03-01

    Simultaneous measurements of surface level aerosol mass concentrations, their size distribution, and aerosol optical depth (AOD) were made during a ship cruise study conducted over the Bay of Bengal (BoB) between 19 and 28 February 2003, when the prevailing surface level wind flow is predominantly from the continent toward the ocean, using a ten-stage QCM cascade impactor and Microtops Sun photometer. On all cruise days, air parcels at different altitude levels were coming either from west or from northwest directions, crossing a significant portion of the Indian subcontinent before finally reaching over BoB. Average value of surface level aerosol mass concentration is found to be around 50, 37, and 13 μg/m3 for coarse mode (>1 μm), accumulation mode (between 1 μm and 0.1 μm), and nucleation mode (<0.1 μm) particles, respectively. Size distribution of aerosols measured during the cruise showed the presence of four distinct modes, all of which could be fitted using lognormal distribution. Mode radii for the distributions lie in the range of 0.025-0.036 μm for mode 1, between 0.15 and 0.165 for mode 2, between 0.39 and 0.55 for mode 3, and between 2.2 and 3.5 for mode 4. Over the study region, daily mean AOD values at 380 nm were in the range of 0.34 to 0.75 while those at 1020 nm varied from 0.09 to 0.25. The mean value of Angstrom wavelength exponent α is found to be 1.19 ± 0.12. Regression analysis for the scatterplots between AOD values and surface mass concentrations showed good correlation between them over the entire cruise region. Aerosol optical depths, as well as extinction coefficients calculated from surface level aerosol number concentrations, show higher values over northern and coastal areas of BoB. An estimate of aerosol scale height has been made from the ratio of columnar AOD values and surface extinction coefficients. Columnar aerosol size distributions were derived using King's inversion technique, and the results are found to be less

  9. Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction.

    PubMed

    Pathak, Ravikant; Donahue, Neil M; Pandis, Spyros N

    2008-07-15

    The SOA formation from beta-pinene ozonolysis at modest precursor concentrations (2-40 ppb) was investigated in the temperature range of 0-40 degrees C. The presence of inert seeds and high ozone concentrations is necessary to minimize losses of semivolatile vapors to the walls of the smog chamber. beta-pinene secondary organic aerosol production increases significantly with decreasing temperature. An increase by a factor of 2-3, depending on the reacted beta-pinene concentration, was observed as the temperature decreased from 40 to 0 degrees C. This increase appearsto be due mainly to the shifting of partitioning of the semivolatile SOA componentstoward the particulate phase and not to a change of the beta-pinene product distribution with temperature. The measurements are used to develop a new temperature-dependent parametrization for the four-component basis-set. The parametrization predicts much higher SOA production for beta-pinene ozonolysis for typical atmospheric conditions than the values that have been suggested by previous studies.

  10. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  11. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  12. Slow aging in Secondary Organic Aerosol observed by Liquid Chromatography coupled with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bones, D. L.; Bateman, A. P.; Nguyen, T. B.; Laskin, J.; Laskin, A.; Nizkorodov, S.

    2009-12-01

    This study investigated long term changes in the chemical composition of model biogenic secondary organic aerosol (SOA) prepared via ozonolysis of the terpene limonene. This SOA has been observed to turn brown when exposed to NH4+. Our hypothesis is that the chromophoric compounds responsible for this color change are suspected to be imidazole-like or pyridinium-like compounds. These compounds are only present in small relative amounts, hence standard mass spectrometry is insufficient to unambiguously detect these compounds. However, a combination of HPLC and high resolution electrospray ionization mass spectrometry allows assignments of chemical formulae to individual peaks. These and other experiments confirm the presence of N-containing compounds in treated SOA. We are in the process of determining the exact identity of these species by MS/MS methods. LC-MS can also provide information about the polarity of the compounds in SOA. Most compounds in limonene-O3 SOA are polar and are detected at short retention times; peaks suggesting trimeric species appear at longer retention times in the case of fresh SOA, but at shorter times with the bulk of the components for aged SOA. Limonene SOA has been shown to be composed of monomers, dimers, trimers and larger oligomers. The appearance of trimers in specific regions of the chromatogram suggests these species are genuine SOA components and not an artifact of electrospray ionization. Changes in biogenic SOA over time are important because of the propensity of SOA to affect direct and indirect radiative forcing.

  13. Effect of operation conditions of the drop-on-demand aerosol generator on aerosol characteristics: Pseudo-cinematographic and plasma mass spectrometric studies

    NASA Astrophysics Data System (ADS)

    Orlandini v. Niessen, Jan O.; Krone, Karin M.; Bings, Nicolas H.

    2014-02-01

    The recently presented drop-on-demand (DOD) aerosol generator overcomes some of the drawbacks of pneumatic nebulization, as its aerosol is no longer generated by gas-liquid interaction. In the current study, an advanced imaging technique is presented, based on a CCD camera equipped with magnifying telecentric optics to allow for fast, automated and precise aerosol characterization as well as fundamental studies on the droplet generation processes by means of pseudo-cinematography. The DOD aerosol generator is thoroughly characterized regarding its droplet size distribution, which shows few distinct populations rather than a continuous distribution. Other important figures, such as the Sauter diameter (D3,2) of 22 μm and the span of 0.4 were also determined. Additionally, the influence of the electrical operation conditions of the dosing device on the aerosol generation process is described. The number and volume of the generated droplets were found to be very reproducible and user-variable, e.g. from 17 to 27 μm (D3,2), within a span of 0.07-0.89. The performances of different setups of the DOD as liquid sample introduction system in ICP-MS are correlated to the respective achievable aerosol characteristics and are also compared to the performance of a state-of-the-art μ-flow nebulizer (EnyaMist). The DOD system allowed for improved sensitivity, but slightly elevated signal noise and overall comparable limits of detection. The results are critically discussed and future directions are outlined.

  14. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  15. Long-Term Observations on Aerosol Elemental Carbon and Mass Concentrations in Winter-Time in New Delhi: Implications for Local Source Changes

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Singh, K.; Singh, N.; Gupta, P. K.

    2009-12-01

    Fossil-fuel and bio-fuel burning are the two major sources identified for high carbonaceous aerosol loadings in several mega cities in India. In the last decade, according to a report from the Central Pollution Control Board (CPCB, 1999), the vehicular emission (mostly diesel-powered engines) was contributed to ~67% of the total air pollution load in New Delhi. Therefore, a policy decision was taken by the government, and most of the diesel-powered engines were converted to compressed natural gas (CNG) -powered engines by 2003. To better understand the effect of these changes on air quality, we collected high volume aerosol samples (total suspended particles, TSP) mostly for a day basis at our institute building in New Delhi almost everyday during winter season (November to January) from 2002 to 2008. We found very high mean aerosol loading, i.e., 488±47 μg m-3 in 2002 winter, which dropped significantly to 280±73 μg m-3 in 2003 winter. Thereafter, a steadily increased trend of aerosol mass loadings was observed, i.e., 339±112, 339±120, 412±107 and 444±55 μg m-3 in 2004, 2005, 2006 and 2007 winters, respectively. Similar trend was also observed for elemental carbon (EC) concentration in TSP, which was peaked in 2002 (47±11 μg m-3) and minimized in 2003 (32±6 μg m-3), and then gradually increased to 41±8 μg m-3 in 2007 winter. These decline trends of aerosol mass and EC concentrations in 2003 can be explained well, because of the conversion of diesel engine to CNG engines of public transport facilities. However, again increase in aerosol mass and EC concentrations possibly because of a high increase in road traffic in recent years. According to the economic survey of New Delhi 2008-09, the number of vehicles (which includes all types of engines, i.e., petrol, diesel and CNG) has grown from ~3.3 millions in 1997-98 to ~5.6 millions in 2007-08. The influence of engine types and vehicle population on aerosol loading can also be explained well by SO2 and

  16. An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry

    PubMed Central

    Breiev, Kostiantyn; Burseg, Kerstin M. M.; O'Connell, Grant; Hartungen, Eugen; Biel, Stefan S.; Cahours, Xavier; Colard, Stéphane; Märk, Tilmann D.

    2016-01-01

    Rationale Due to the recent rapid increase in electronic cigarette (e‐cigarette) use worldwide, there is a strong scientific but also practical interest in analyzing e‐cigarette aerosols. Most studies to date have used standardized but time‐consuming offline technologies. Here a proof‐of‐concept for a fast online quantification setup based on proton transfer reaction mass spectrometry (PTR‐MS) is presented. Methods The combination of a novel sampling interface with a time‐of‐flight PTR‐MS instrument specially designed for three scenarios is introduced: (i) mainstream aerosol analysis (aerosol that the user inhales prior to exhalation), and analysis of exhaled breath following (ii) mouth‐hold (no inhalation) and (iii) inhalation of e‐cigarette aerosols. A double‐stage dilution setup allows the various concentration ranges in these scenarios to be accessed. Results First, the instrument is calibrated for the three principal constituents of the e‐cigarettes' liquids, namely propylene glycol, vegetable glycerol and nicotine. With the double‐stage dilution the instrument's dynamic range was easily adapted to cover the concentration ranges obtained in the three scenarios: 20–1100 ppmv for the mainstream aerosol characterisation; 4–300 ppmv for the mouth‐hold; and 2 ppbv to 20 ppmv for the inhalation experiment. Conclusions It is demonstrated that the novel setup enables fast, high time resolution e‐cigarette studies with online quantification. This enables the analysis and understanding of any puff‐by‐puff variations in e‐cigarette aerosols. Large‐scale studies involving a high number of volunteers will benefit from considerably higher sample throughput and shorter data processing times. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26864521

  17. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings

    NASA Astrophysics Data System (ADS)

    King, S. M.; Rosenoern, T.; Shilling, J. E.; Chen, Q.; Martin, S. T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.

  18. Increased Cloud Activation Potential of Secondary Organic Aerosol for Atmospheric Mass Loadings

    SciTech Connect

    King, Stephanie M.; Rosenoern, Thomas; Shilling, John E.; Chen, Qi; Martin, Scot T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. Of possible changes in surface tension, effective molecular weight, and effective density, a sensitivity analysis implicated a decrease of up to 10% in surface tension at low mass loadings as the plausible dominant mechanism for the observed increase in CCN activity.

  19. Measuring the temporal evolution of aerosol composition in a remote marine environment influenced by Saharan dust outflow using a new single particle mass spectrometer.

    NASA Astrophysics Data System (ADS)

    Marsden, Nicholas; Williams, Paul; Flynn, Michael; Taylor, Jonathan; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Refractory material constitutes a significant fraction of the atmospheric aerosol burden and has a strong influence on climate through the direct radiative effect and aerosol-cloud interactions, particularly in cold and mixed phase clouds. Composition of refractory aerosols is traditionally measured using off-line analytical techniques such as filter analyses. However, when using off-line techniques the temporal evolution of the data set is lost, meaning the measurements are difficult to relate to atmospheric processes. Recently, single particle mass spectrometry (SPMS) has proven a useful tool for the on-line study of refractory aerosols with the ability to probe size resolved chemical composition with high temporal resolution on a particle by particle basis. A new Laser Ablation Aerosol Time-of-Flight (LAAP-TOF) SPMS instrument with a modified optical detection system was deployed for ground based measurements at Praia, Cape Verde during the Ice in Cloud - Dust (ICE-D) multi-platform campaign in August 2015. A primary aim of the project was to evaluate the impact of Saharan dust on ice nucleation in mixed phase clouds. The instrument was operated over a 16 day period in which several hundred thousand single particle mass spectra were obtained from air masses with back trajectories traversing the Mid-Atlantic, Sahara Desert and West Africa. The data presented indicate external mixtures of sea salt and silicate mineral dust internally mixed with secondary species that are consistent with long range transport to a remote marine environment. The composition and size distributions measured with the LAAP-TOF are compared with measurements from an aerodynamic particle sizer (APS), Single Particle Soot Photometer (SP2), and data from SEM-EDX analysis of filter samples. The particle number fraction identified as silicate mineral from the mass spectra correlates with a fraction of the incandescent particles measured with the SP2. We discuss the suitability of the modified

  20. Toward Understanding Amines and Their Degradation Products from Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry

    PubMed Central

    2015-01-01

    Amine-based postcombustion CO2 capture (PCCC) is a promising technique for reducing CO2 emissions from fossil fuel burning plants. A concern of the technique, however, is the emission of amines and their degradation byproducts. To assess the environmental risk of this technique, standardized stack sampling and analytical methods are needed. Here we report on the development of an integrated approach that centers on the application of a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) for characterizing amines and PCCC-relevant species. Molecular characterization is achieved via ion chromatography (IC) and electrospray ionization high-resolution mass spectrometry (ESI-MS). The method has been optimized, particularly, by decreasing the AMS vaporizer temperature, to gain quantitative information on the elemental composition and major nitrogen-containing species in laboratory-degraded amine solvents commonly tested for PCCC applications, including ethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP). The AMS-derived nitrogen-to-carbon (N/C) ratios for the degraded solvent and product mixtures agree well with the results from a total organic carbon and total nitrogen (TOC/TN) analyzer. In addition, marker ions identified in the AMS spectra are used to estimate the mass contributions of individual species. Overall, our results indicate that this new approach is suitable for characterizing PCCC-related mixtures as well as organic nitrogen species in other sample types. As an online instrument, AMS can be used for both real-time characterization of emissions from operating PCCC plants and ambient particles in the vicinity of the facilities. PMID:24617831

  1. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  2. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  3. Using Profile Analysis via Multidimensional Scaling (PAMS) to identify core profiles from the WMS-III.

    PubMed

    Frisby, Craig L; Kim, Se-Kang

    2008-03-01

    Profile Analysis via Multidimensional Scaling (PAMS) is a procedure for extracting latent core profiles in a multitest data set. The PAMS procedure offers several advantages compared with other profile analysis procedures. Most notably, PAMS estimates individual profile weights that reflect the degree to which an individual's observed profile approximates the shape and scatter of latent core profiles. The PAMS procedure was applied to index scores of nonreplicated participants from the standardization sample (N = 1,033) for the Wechsler Memory Scale--Third Edition (D. Tulsky, J. Zhu, & M. F. Ledbetter, 2002). PAMS extracted discrepant visual memory and auditory memory versus working memory core profiles for the complete 16- to 89-year-old sample and discrepant working memory and auditory memory versus working memory core profiles for the 75- to 89-year-old cohort. Implications for use of PAMS in future research are discussed.

  4. The Role of PAM4 in the Management of Pancreatic Cancer: Diagnosis, Radioimmunodetection, and Radioimmunotherapy

    PubMed Central

    Han, Suxia; Jin, Guihua; Wang, Lijuan; Li, Meng; He, Chenchen; Guo, Xijing; Zhu, Qing

    2014-01-01

    PAM4, a new monoclonal antibody (MAb) known as clivatuzumab, is highly reactive with pancreatic cancer and precursor lesions. It is absent from the normal tissues and has limited reactivity with nonpancreatic cancer. The detailed characteristic of the PAM4 epitope is unknown but recent studies have shown that it is dependent on MUC1 glycosylation status. The limited PAM4 expression pattern makes it an attractive candidate for management of pancreatic adenocarcinoma. In addition, PAM4 is a serum biomarker for diagnosis of pancreatic cancer. Several different radiolabeled immunodiagnostic and immunotherapeutic agents of PAM4 have been developed and some are being evaluated in preclinical and/or clinical studies. The review will focus on PAM4 and its potential utility for the diagnosis, radioimmunodetection, and radioimmunotherapy of pancreatic cancer. PMID:24818166

  5. Fundamental studies with a monodisperse aerosol-based liquid chromatography/mass spectrometry interface (MAGIC-LC/MS). Final progress report, December 1, 1989--December 31, 1992

    SciTech Connect

    Browner, R.F.

    1992-12-01

    One of the most dramatic developments in mass spectrometry in the last fifteen years has been the evolution of versatile and powerful interfacing approaches that allow direct chromatographic coupling of separations techniques to mass spectrometers. The most successful of these approaches have been aerosol-based. This report describes the research carried out under DOE support directed toward fundamental studies with the Particle Beam LC/MS interface (also known as the MAGIC LC/MS interface). The primary goal has been to gain a better understanding of aerosol generation, transport, vaporization, and ionization processes which forms the basis of the technique. Gaining a deeper understanding of the basic physical processes on which particle Beam LC/MS is based provides the most direct way to improve performance benchmarks, such as (1) detection limits (2) quality of mass spectra (3) range of compound types possible, and (4) the ability to interface with all types of separation techniques. This research effort has been devoted to developing a fundamental understanding of the basic physical process which underlie aerosol mass spectrometry interfacing approaches. The paper describes chromatographic peak broadening studies and carrier effects with the particle beam interface.

  6. PAM and Copper – a Gene/Nutrient Interaction Critical to Nervous System Function

    PubMed Central

    Bousquet-Moore, Danielle; Mains, Richard E.; Eipper, Betty A.

    2013-01-01

    Peptidylgycine α-amidating monooxygenase (PAM), a highly conserved copper-dependent enzyme, is essential for the synthesis of all amidated neuropeptides. Biophysical studies revealed that the binding of copper to PAM affects its structure, and cell biological studies demonstrated that the endocytic trafficking of PAM was sensitive to copper. We review data indicating that genetic reduction of PAM expression and mild copper deficiency in mice cause similar alterations in several physiological functions known to be regulated by neuropeptides - thermal regulation, seizure sensitivity and anxiety-like behavior. PMID:20648645

  7. Laboratory Studies to Examine the Impact of Polyacrylamide (PAM) on Soil Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Moran, E. A.; Young, M. H.; Yu, Z.

    2005-12-01

    Polyacrylamide (PAM) is a long-chain synthetic polymer made of the monomer acrylamide (AMD). PAM has numerous uses ranging from food processing to drilling to wastewater treatment. More recently it has been proposed as a canal sealant in the western US to improve water conservation. To support a larger field-based experimental program being implemented in Grand Junction, CO, soil column experiments are being conducted to evaluate the mechanisms of how, and to what extent, PAM reduces soil hydraulic conductivity. The goal of the experiments is to find the optimum concentration and application method of PAM that reduces hydraulic conductivity to the greatest extent. Column tests were conducted, in triplicate, using a constant head method in acrylic columns of 15 cm length and 6.4 cm diameter. An unbalanced multi-factorial design was used with experimental variables including soil type (medium silica sand, locally-derived sand, and locally-derived loam), PAM concentration (11, 22, 44, 88 kg/canal-ha), turbidity (0, 100, 350 NTU), and application method (hydrated PAM on dry soil and powdered PAM applied to water column above saturated soil). Non-crosslinked anionic PAM with a molecular weight of 12 to 24 Mg/mol was used for all experiments. Additional experiments were conducted in graduated cylinders to evaluate interactions between PAM, turbidity and water chemistry. Results of the laboratory tests will be presented and discussed in the context of water conservation in the western US.

  8. Characterization of polar compounds and oligomers in secondary organic aerosol using liquid chromatography coupled to mass spectrometry.

    PubMed

    Hamilton, Jacqueline F; Lewis, Alastair C; Carey, Trevor J; Wenger, John C

    2008-01-15

    A generic method has been developed for the analysis of polar compounds and oligomers in secondary organic aerosol (SOA) formed during atmospheric simulation chamber experiments. The technique has been successfully applied to SOA formed in a variety of systems, ranging from ozonolysis of biogenic volatile organic compounds to aromatic photooxidation. An example application of the method is described for the SOA produced from the reaction of ozone with cis-3-hexenyl acetate, an important biogenic precursor. A range of solvents were tested as extraction media, and water was found to yield the highest recovery. Extracts were analyzed using reversed-phase liquid chromatography coupled to ion trap mass spectrometry. In order to determine correct molecular weight assignments and increase sensitivity for less polar species, a series of low-concentration mobile-phase additives were used (NaCl, LiBr, NH4OH). Lithium bromide produced better fragmentation patterns, with more structural information than in the other cases with no reduction in sensitivity. The main reaction products identified in the particle-phase were 3-acetoxypropanal, 3-acetoxypropanoic acid, and 3-acetoxypropane peroxoic acid and a series of dimers and trimers up to 500 Da. Structural identification of oligomers indicates the presence of linear polyesters possibly formed via esterfication reactions or decomposition of peroxyhemiacetals.

  9. Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry.

    PubMed

    Tong, Haijie; Kourtchev, Ivan; Pant, Pallavi; Keyte, Ian J; O'Connor, Ian P; Wenger, John C; Pope, Francis D; Harrison, Roy M; Kalberer, Markus

    2016-07-18

    Organic aerosol composition in the urban atmosphere is highly complex and strongly influenced by vehicular emissions which vary according to the make-up of the vehicle fleet. Normalized test measurements do not necessarily reflect real-world emission profiles and road tunnels are therefore ideal locations to characterise realistic traffic particle emissions with minimal interference from other particle sources and from atmospheric aging processes affecting their composition. In the current study, the composition of fine particles (diameter ≤2.5 μm) at an urban background site (Elms Road Observatory Site) and a road tunnel (Queensway) in Birmingham, UK, were analysed with direct infusion, nano-electrospray ionisation ultrahigh resolution mass spectrometry (UHRMS). The overall particle composition at these two sites is compared with an industrial harbour site in Cork, Ireland, with special emphasis on oxidised mono-aromatics, polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatics. Different classification criteria, such as double bond equivalents, aromaticity index and aromaticity equivalent are used and compared to assess the fraction of aromatic components in the approximately one thousand oxidized organic compounds at the different sampling locations. PMID:27143100

  10. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-06-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1-300 ppm) and D-limonene (0.02-3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  11. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-02-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1-300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  12. Fundamental studies with a monodisperse aerosol-based liquid chromatography/mass spectrometry interface (MAGIC-LC/MS)

    SciTech Connect

    Browner, R.F.

    1990-10-01

    Accomplishments on the fundamental studies with a monodisperse aerosol-based liquid chromatography/mass spectrometry (LC/MS) interface during the period 1 December 1989 to 30 November 1990 are summarized. In order to determine the influence of temperature on the vaporization and decomposition properties of molecules, test have been carried out on both thermally stable and thermally labile molecules. The test compounds used were a series of polynuclear aromatic (PAH) compounds covering a wide range of molecular weights from two-ring naphthalene to twelve-ring perylene. The less thermally stable species examined were aldicarb, a highly thermally labile pesticide, and cholesterol, which readily loses water when subjected to high temperatures. A new, externally heated probe, which can be raised to temperatures as high as 500{degree}C was also used. Matrix loading effects for a range of surface active and non-surface active compounds in three different matrices: glycerol, 3-nitrobenzyl alcohol, and thioglycerol for fast atom bombardment (FAB) particle beam LC/MS have been studied. The time dependence of FAB spectra generation in the particle beam system has been examined and contrasted with ion generation in normal probe FAB work. Future FAB LC/MS research is outlined. 3 refs. (BM)

  13. Extending the Technology Acceptance Model: Policy Acceptance Model (PAM)

    NASA Astrophysics Data System (ADS)

    Pierce, Tamra

    There has been extensive research on how new ideas and technologies are accepted in society. This has resulted in the creation of many models that are used to discover and assess the contributing factors. The Technology Acceptance Model (TAM) is one that is a widely accepted model. This model examines people's acceptance of new technologies based on variables that directly correlate to how the end user views the product. This paper introduces the Policy Acceptance Model (PAM), an expansion of TAM, which is designed for the analysis and evaluation of acceptance of new policy implementation. PAM includes the traditional constructs of TAM and adds the variables of age, ethnicity, and family. The model is demonstrated using a survey of people's attitude toward the upcoming healthcare reform in the United States (US) from 72 survey respondents. The aim is that the theory behind this model can be used as a framework that will be applicable to studies looking at the introduction of any new or modified policies.

  14. Extending the Capabilities of Single Particle Mass Spectrometry: II. Measurements of Aerosol Particle Density without DMA

    SciTech Connect

    Vaden, Timothy D.; Imre, D.; Beranek, Josef; Zelenyuk, Alla

    2011-01-04

    Particle density is an important and useful property that is difficult to measure because it usually 5 requires separate instruments to measure two particle attributes. As density measurements are 6 often performed on size-classified particles, they are hampered by low particle numbers, and 7 hence poor temporal resolution. We present here a new method for measuring particle densities 8 using our single particle mass spectrometer, SPLAT. This method takes advantage of the fact 9 that the detection efficiency in our single particle mass spectrometer drops off very rapidly as the 10 particle size decreases below ~125 nm creating a distinct sharp feature on the small particle side 11 of the vacuum aerodynamic size distribution. Thus, the two quantities needed to determine 12 particle density, the particle diameter and vacuum aerodynamic diameter, are known. We first 13 test this method on particles of known composition and find that the densities it yields are 14 sufficiently accurate. We then apply the method to obtain the densities of particles that were 15 characterized during an airborne field campaign. In addition, we show that the distinctive 16 features of the vacuum aerodynamic size distribution can be used to characterize the instrument 17 detection efficiency as a function of particle size. In general, the method presented here reduces 18 complexity and yields information with high temporal resolution while the instrument is 19 collecting routine data on particle size and composition.

  15. Real time analysis of lead-containing atmospheric particles in Beijing during springtime by single particle aerosol mass spectrometry.

    PubMed

    Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2016-07-01

    Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time.

  16. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-01

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam-laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam-particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.

  17. Initial characterization of micafungin pulmonary delivery via two different nebulizers and multivariate data analysis of aerosol mass distribution profiles.

    PubMed

    Shi, Shuai; Ashley, Elizabeth S Dodds; Alexander, Barbara D; Hickey, Anthony J

    2009-01-01

    Pharmaceutical aerosols have been targeted to the lungs for the treatment of asthma and pulmonary infectious diseases successfully. Micafungin (Astellas Pharma US, Deerfield, IL, USA) has been shown to be an effective antifungal agent when administrated intravenously. Pulmonary delivery of micafungin has not previously been reported. In the present pilot study, we characterize the performance of two nebulizers and their potential for delivering micafungin to the lungs as well as the use of multivariate data analysis for mass distribution profile comparison. The concentration of micafungin sodium increased by 21% when delivered by the Acorn II nebulizer and by 20% when delivered by the LC Plus nebulizer, respectively, from the first to the second sampling period. The Acorn II nebulizer delivered a fine particle fraction FPF(5.8) (%<5.8 microm) of 92.5 +/- 0.8 and FPF(3.3) (%<3.3 microm) of 82.3 +/- 2.1 during the first sampling period. For the LC Plus nebulizer, FPF(5.8) was 92.3 +/- 0.1 and FPF(3.3) was 67.0 +/- 0.7 during the first sampling period. The mass median aerodynamic diameter (MMAD) increased from 1.67 +/- 0.05 to 1.77 +/- 0.04 mum (Acorn II nebulizer) and from 2.09 +/- 0.01 to 2.20 +/- 0.01 microm (Pari LC Plus nebulizer) from the first to the second sampling periods. These changes in MMAD were statistically significant by paired t test. Multivariate data analysis showed that this could be explained systematically by greater drug deposition on stages with larger cutoff sizes and reduced drug deposition on stages with smaller cutoff sizes rather than multimodal deposition or other anomalies in size distribution.

  18. What is the "Clim-Likely" aerosol product?

    Atmospheric Science Data Center

    2014-12-08

    ... model were medium and coarse mode mineral dust, sulfate, sea salt, black carbon, and carbonaceous aerosols. Five aerosol air mass "Mixing ... component particles in the column for climatologically common aerosol air masses. Each sub-group identifies the dominant particles ...

  19. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    NASA Astrophysics Data System (ADS)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.

    We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  20. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution F Table F-4 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated...

  1. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution F Table F-6 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated...

  2. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized âTypicalâ Coarse Aerosol Size Distribution F Table F-5 to Subpart F of Part... of Class II Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-5 Table F-5 to Subpart F of...

  3. High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols.

    PubMed

    Romonosky, Dian E; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2015-03-19

    This work presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d-limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow-tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx-generated SOA had more unique visual appearance and indicated a lower extent of product overlap. Furthermore, the fraction of nitrogen-containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone-driven oxidation. Comparison of the SOA constituents before and after photolysis showed the tendency to reduce the average number of atoms in the SOA compounds without a significant effect on the overall O/C and H/C ratios. SOA prepared by OH/NOx photooxidation of 1,3,5-trimethylbenzene and guaiacol were more resilient to photolysis despite being the most light-absorbing. The composition of SOA prepared by ozonolysis of

  4. High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols.

    PubMed

    Romonosky, Dian E; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2015-03-19

    This work presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d-limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow-tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx-generated SOA had more unique visual appearance and indicated a lower extent of product overlap. Furthermore, the fraction of nitrogen-containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone-driven oxidation. Comparison of the SOA constituents before and after photolysis showed the tendency to reduce the average number of atoms in the SOA compounds without a significant effect on the overall O/C and H/C ratios. SOA prepared by OH/NOx photooxidation of 1,3,5-trimethylbenzene and guaiacol were more resilient to photolysis despite being the most light-absorbing. The composition of SOA prepared by ozonolysis of

  5. Climatological classification of five sectors in the Iberian Peninsula using columnar (AOD, α) and surface (PM10, PM2.5) aerosol data supported by air mass apportioning

    NASA Astrophysics Data System (ADS)

    Cachorro, Victoria; Mateos, David; Toledano, Carlos; Burgos, Maria A.; Bennouna, Yasmine; Torres, Benjamín; Fuertes, David; González, Ramiro; Guirado, Carmen; Román, Roberto; Velasco-Merino, Cristian; Marcos, Alberto; Calle, Abel; de Frutos, Angel M.

    2015-04-01

    The study of atmospheric aerosol over the Iberian Peninsula (IP) under a climatologic perspective is an interesting and meaningful aim due to the wide variety of conditions (geographical position, air masses, topography, among others) which cause a complex role of the distribution of aerosol properties. In the deeply investigation on the annual cycle and time evolution of the particulate matter lower than 10 µm (PM10, surface) and aerosol optical depth (AOD, columnar) in a large number of sites covering the period 2000-2013, five sectors can be distinguished in the IP. Both set of data belong to EMEP and AERONET networks respectively, as representative of aerosol air quality and climate studies, are complementary elements for a global aerosol research. The prevalence of fine-coarse particles is also analyzed over each sector. Seasonal bimodality of the PM10 annual cycle with a strong North-South gradient is observed in most sites, but this is only reported in the AOD climatology for the southern IP. The northern coast is clearly governed by the Atlantic Ocean influence, while the northeastern area is modulated by the Mediterranean Sea. The southern area, very close to the African continent, presents a large influence of desert dust intrusions. However, the southern Atlantic and Mediterranean coast present discrepancies and two sectors have been defined in this area. Finally, the center of the Peninsula is a mix of conditions, with north-south and east-west gradients of different magnitude. Overall, there is a relationship between PM10 and AOD with a proportional factor varying from 20 to 90, depending on the sector. The particular characteristic of PM10-AOD annual cycle of each geographical sector can be understood by the different climatology of the air mass origins observed at 500 and 1500 m (a.s.l.) and its apportioning to PM10 and AOD, respectively.

  6. Elemental Composition Analysis to Investigate NOx Effects on Secondary Organic Aerosol from α-Pinene Using Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lim, H. J.; Park, J. H.; Babar, Z.

    2015-12-01

    Secondary organic aerosol (SOA) accounts for 20-70% of atmospheric fine aerosol. NOx plays crucial roles in SOA formation and consequently affects the composition and yield of SOA. SOA component speciation is incomplete due to its complex composition of polar oxygenated and multifunctional species. In this study, ultrahigh resolution mass spectrometry (UHR MS) was applied to improve the understanding of NOx effects on biogenic SOA formation by identifying the elemental composition of SOA. Additional research aim was to investigate oligomer components that are considered as a driving force for SOA formation and growth. In this study α-pinene SOA from photochemical reaction was examined. SOA formation was performed in the absence and presence of NOx at dry condition (<5% RH) of room temperature (~25oC) in ~8 m3 KNU smog chamber. SOA was collected on Teflon-coated glass fiber filter, which was extracted using acetonitrile and analyzed by ultrahigh resolution 15T FT-ICR MS. UHR MS data were interpreted in various ways including molecular formula, Kendrick diagram, van Krevelen diagram, and double bond equivalent values. Substantially large fractions of them are nitrogen containing species. Thousands of individual species of SOA were identified. For SOA in the absence of NOx. intensity normalized mean O/C, H/C, N/C, OM/OC ratios were 0.43, 1.52, 0.02, and 1.68, respectively. For SOA in the presence of NOx, those ratios were 0.52, 0.95, 0.08, and 1.48, respectively. 4 different oligomer formation mechanisms (addition, H abstraction, hydrolysis and de-hydrolysis reaction) were examined on the basis of SOA compositions. Detailed discussion will be presented on the molecular structure and building block of oligomers in SOA as well as the evolution of individual elemental composition by multi-generation reactions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-01350000).

  7. Mass spectrometry of interfacial layers during fast aqueous aerosol/ozone gas reactions of atmospheric interest

    NASA Astrophysics Data System (ADS)

    Enami, S.; Vecitis, C. D.; Cheng, J.; Hoffmann, M. R.; Colussi, A. J.

    2008-04-01

    The oxidations of sulfite and iodide in the interfacial layers of aqueous microdroplets exposed to O 3(g) for 1 ms are investigated by online mass spectrometry of the electrostatically ejected anions. S(IV) oxidation losses in Na 2SO 3 microdroplets are proportional to [S(IV)] [O 3(g)] up to ˜90% conversion. I - is more abundant than HSO3- in the interfacial layers of equimolar (Na 2SO 3 + NaI) microdroplets and ˜3 times more reactive than HSO3- toward O 3(aq) in bulk solution, but it is converted withminimalloss to I3- and IO3- plus a persistent ISO3- intermediate. These observations reveal unanticipated interfacial gradients, reactivity patterns and transport phenomena that had not been taken into account in previous treatments of fast gas-liquid reactions.

  8. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  9. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 2. Aerosol effects on warm convective clouds

    NASA Astrophysics Data System (ADS)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian

    2016-06-01

    In Part I of this work a 3-D cloud tracking algorithm and phase space of center of gravity altitude versus cloud liquid water mass (CvM space) were introduced and described in detail. We showed how new physical insight can be gained by following cloud trajectories in the CvM space. Here this approach is used to investigate aerosol effects on cloud fields of warm cumuli. We show a clear effect of the aerosol loading on the shape and size of CvM clusters. We also find fundamental differences in the CvM space between simulations using bin versus bulk microphysical schemes, with the bin scheme precipitation expressing much higher sensitivity to changes in aerosol concentrations. Using the bin microphysical scheme, we find that the increase in cloud center of gravity altitude with increase in aerosol concentrations occurs for a wide range of cloud sizes. This is attributed to reduced sedimentation, increased buoyancy and vertical velocities, and increased environmental instability, all of which are tightly coupled to inhibition of precipitation processes and subsequent feedbacks of clouds on their environment. Many of the physical processes shown here are consistent with processes typically associated with cloud invigoration.

  10. Linearization of calibration curves by aerosol carrier effect of CCl 4 vapor in electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; de Loos-Vollebregt, Margaretha T. C.

    2005-03-01

    Carbon tetrachloride vapor as gaseous phase modifier in a graphite furnace electrothermal vaporizer (GFETV) converts heavy volatile analyte forms to volatile and medium volatile chlorides and produces aerosol carrier effect, the latter being a less generally recognized benefit. However, the possible increase of polyatomic interferences in inductively coupled plasma mass spectrometry (GFETV-ICP-MS) by chlorine and carbon containing species due to CCl 4 vapor introduction has been discouraging with the use of low resolution, quadrupole type MS equipment. Being aware of this possible handicap, it was aimed at to investigate the feasibility of the use of this halogenating agent in ICP-MS with regard of possible hazards to the instrument, and also to explore the advantages under these specific conditions. With sample gas flow (inner gas flow) rate not higher than 900 ml min -1 Ar in the torch and 3 ml min -1 CCl 4 vapor flow rate in the furnace, the long-term stability of the instrument was ensured and the following benefits by the halocarbon were observed. The non-linearity error (defined in the text) of the calibration curves (signal versus mass functions) with matrix-free solution standards was 30-70% without, and 1-5% with CCl 4 vapor introduction, respectively, at 1 ng mass of Cu, Fe, Mn and Pb analytes. The sensitivity for these elements increased by 2-4-fold with chlorination, while the relative standard deviation (RSD) was essentially the same (2-5%) for the two cases in comparison. A vaporization temperature of 2650 °C was required for Cr in Ar atmosphere, while 2200 °C was sufficient in Ar + CCl 4 atmosphere to attain complete vaporization. Improvements in linear response and sensitivity were the highest for this least volatile element. The pyrolytic graphite layer inside the graphite tube was protected by the halocarbon, and tube life time was further increased by using traces of hydrocarbon vapor in the external sheath gas of the graphite furnace. Details

  11. PM₂.₅., EC and OC in atmospheric outflow from the Indo-Gangetic Plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor.

    PubMed

    Srinivas, Bikkina; Sarin, M M

    2014-07-15

    Temporal variability (November'09-March'10) in the mass concentrations of PM2.5, mineral dust, organic carbon and elemental carbon (OC and EC), water-soluble organic carbon (WSOC) and inorganic species (WSIS) has been studied in the atmospheric outflow to the Bay of Bengal from a sampling site [Kharagpur: 22.02°N, 87.11°E] in the Indo-Gangetic Plain (IGP). Based on diagnostic ratios of carbonaceous species [OC/EC ≈ 7.0 ± 2.2, WSOC/OC ≈ 0.52 ± 0.16, and K(+)/EC≈0.48±0.17], we document dominant impact from biomass burning emissions (wood-fuel and post-harvest agricultural-waste burning) in the IGP-outflow. Relatively high concentration of sulphate (SO4(2-) ≈ 6.9-25.3 μg m(-3); SO4(2-)/ΣWSIS=45-77%) and characteristic ratios of nss-SO4(2-)/EC (3.9 ± 2.1) and nss-SO4(2-)/OC (0.61 ± 0.46) provide information on absorption/scattering properties of aerosols. Based on quantitative assessment of individual components of PM2.5, we document aerosol organic carbon-to-organic mass (OC to OM) conversion factor centring at 1.5 ± 0.2 (range: 1.3-2.7) in the atmospheric outflow from IGP. The aerosol composition over the Bay of Bengal shows striking similarity with the diagnostic ratios documented for the IGP-outflow. Relatively high conversion factor for assessing the mass of organic aerosols over the Bay of Bengal (1.1-3.7) provides evidence for their oxidation during long-range atmospheric transport.

  12. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    PubMed

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions.

  13. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    NASA Astrophysics Data System (ADS)

    Claverie, Fanny; Pécheyran, Christophe; Mounicou, Sandra; Ballihaut, Guillaume; Fernandez, Beatriz; Alexis, Joël; Lobinski, Ryszard; Donard, Olivier F. X.

    2009-07-01

    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pécheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 µm. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 µm depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source (Δ T~ 25 ± 5 K). This suggests that the cohesion forces between the thin particles composing these large aggregates were weak

  14. Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009.

    PubMed

    Kim, Hak-Sung; Chung, Yong-Seung; Lee, Sun-Gu

    2013-01-01

    Satellite-retrieved data on aerosol optical depth (AOD) and Ångström exponent (AE) using a moderate resolution imaging spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March (0.44 ± 0.25) and low in September (0.24 ± 0.21) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. However, whereas PM10 with diameters ≤10 μm was the highest in February at Anmyon, Cheongwon, and Ulleung, located leeward about halfway through the Korean Peninsula, AOD rose to its highest in May. The growth of hygroscopic aerosols attendant on increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically appears at high levels (1.30 ± 0.37) in August due to anthropogenic aerosols originating from the industrial areas in eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of PM10 at Anmyon, Cheongwon, and Ulleung were measured at 0.4~0.6. Four cases (6 days) of mineral dustfall from sandstorms and six cases (12 days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. PM10 mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing PM10 mass concentrations, showed higher AOD values in the Yellow Sea region.

  15. Potential Organic Aerosol Formation from Biogenic Compounds: Model and Measurement analysis of the BEACHON-RoMBAS 2011 field data

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Lee-Taylor, J.; Aumont, B.; Madronich, S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Karl, T.; Apel, E. C.; Kaser, L.; Hansel, A.

    2012-12-01

    comparing the results of GECKO with the experimental results of the Potential Aerosol Mass (PAM, Kang et al., ACP, 2007) photochemical reactor analyzed by an AMS and SMPS (Palm et al., this conference). PAM is a flowtube reactor through which ambient air is continually sampled and exposed for 4 minutes to high levels of oxidants (100-10000 higher than atmospheric conditions), allowing quantification of the maximum aerosol mass that can be produced by oxidation of biogenic VOCs and its chemical evolution with oxidant exposure. PAM measurements were simulated by running the GECKO-A model for the RoMBAS conditions with ambient to extremely high amounts of oxidants: [OH] of 1e7 to 2.5e10 molec/cc and [O3] of 50 to 20,000 ppb. The results show that all precursor gases were rapidly oxidized, yielding substantial concentrations of low volatility compounds and SOA. The simulations are performed for daytime and nighttime mixtures. Similarities and differences between the PAM measurements and GECKO-A predictions, especially for very high OH (~1e10 molec/cc) exposure, are discussed.

  16. Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a Central European mountain site during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Roth, A.; Schneider, J.; Klimach, T.; Mertes, S.; van Pinxteren, D.; Herrmann, H.; Borrmann, S.

    2015-09-01

    Cloud residues and out-of-cloud aerosol particles with diameters between 150 and 900 nm have been analysed by on-line single particle aerosol mass spectrometry during the six-week study HCCT-2010 in September/October 2010. The measurement location was the mountain Schmücke (937 m a.s.l.) in Central Germany. More than 170 000 bipolar mass spectra from out-of-cloud aerosol particles and more than 14 000 bipolar mass spectra from cloud residual particles were obtained and were classified using a fuzzy c-means clustering algorithm. Analysis of the uncertainty of the sorting algorithm was conducted on a subset of the data by comparing the clustering output with particle-by-particle inspection and classification by the operator. This analysis yielded a false classification probability between 13 and 48 %. Additionally, particle types were identified by specific marker ions. The results from the ambient aerosol analysis show that 63 % of the analysed particles belong to clusters indicating a diurnal variation, suggesting that local or regional sources dominate the aerosol, especially for particles containing soot and biomass burning particles. In the cloud residues the relative percentage of large soot-containing particles and particles containing amines was found to be increased compared to the out-of-cloud aerosol, while in general organic particles were less abundant in the cloud residues. In the case of amines this can be explained by the high solubility of the amines, while the large soot-containing particles were found to be internally mixed with inorganics, which explains their activation as cloud condensation nuclei. Furthermore, the results show that during cloud processing, both sulphate and nitrate are added to the residual particles, thereby changing the mixing state and increasing the fraction of particles with nitrate and/or sulphate. This is expected to lead to higher hygroscopicity after cloud evaporation, and therefore to an increase of the particles

  17. Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Roth, A.; Schneider, J.; Klimach, T.; Mertes, S.; van Pinxteren, D.; Herrmann, H.; Borrmann, S.

    2016-01-01

    Cloud residues and out-of-cloud aerosol particles with diameters between 150 and 900 nm were analysed by online single particle aerosol mass spectrometry during the 6-week study Hill Cap Cloud Thuringia (HCCT)-2010 in September-October 2010. The measurement location was the mountain Schmücke (937 m a.s.l.) in central Germany. More than 160 000 bipolar mass spectra from out-of-cloud aerosol particles and more than 13 000 bipolar mass spectra from cloud residual particles were obtained and were classified using a fuzzy c-means clustering algorithm. Analysis of the uncertainty of the sorting algorithm was conducted on a subset of the data by comparing the clustering output with particle-by-particle inspection and classification by the operator. This analysis yielded a false classification probability between 13 and 48 %. Additionally, particle types were identified by specific marker ions. The results from the ambient aerosol analysis show that 63 % of the analysed particles belong to clusters having a diurnal variation, suggesting that local or regional sources dominate the aerosol, especially for particles containing soot and biomass burning particles. In the cloud residues, the relative percentage of large soot-containing particles and particles containing amines was found to be increased compared to the out-of-cloud aerosol, while, in general, organic particles were less abundant in the cloud residues. In the case of amines, this can be explained by the high solubility of the amines, while the large soot-containing particles were found to be internally mixed with inorganics, which explains their activation as cloud condensation nuclei. Furthermore, the results show that during cloud processing, both sulfate and nitrate are added to the residual particles, thereby changing the mixing state and increasing the fraction of particles with nitrate and/or sulfate. This is expected to lead to higher hygroscopicity after cloud evaporation, and therefore to an increase of

  18. 40 CFR 52.430 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Photochemical Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as... Stations (PAMS) Program on September 11, 1995 and made it part of the Delaware SIP. As with all components of the SIP, Delaware must implement the program as submitted and approved by EPA....

  19. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Photochemical Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all components of the SIP, Virginia must implement the program as submitted and approved by EPA....

  20. 40 CFR 52.430 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Photochemical Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as... Stations (PAMS) Program on September 11, 1995 and made it part of the Delaware SIP. As with all components of the SIP, Delaware must implement the program as submitted and approved by EPA....

  1. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Photochemical Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all components of the SIP, Virginia must implement the program as submitted and approved by EPA....

  2. Infiltration and Erosion in Soils Treated with Dry PAM of Two Molecular Weights and Phosphogypsum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface application of dissolved linear polyacrylamide (PAM) of high molecular weight (MW) can mitigate seal formation, runoff and erosion, especially when added with a source of electrolytes (e.g., gypsum). Practical difficulties associated with PAM solution application prohibited commercial u...

  3. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  4. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  5. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  6. PHBV/PAM Scaffolds with Local Oriented Structure through UV Polymerization for Tissue Engineering

    PubMed Central

    Wang, Yingjun

    2014-01-01

    Locally oriented tissue engineering scaffolds can provoke cellular orientation and direct cell spread and migration, offering an exciting potential way for the regeneration of the complex tissue. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with locally oriented hydrophilic polyacrylamide (PAM) inside the macropores of the scaffolds were achieved through UV graft polymerization. The interpenetrating PAM chains enabled good interconnectivity of PHBV/PAM scaffolds that presented a lower porosity and minor diameter of pores than PHBV scaffolds. The pores with diameter below 100 μm increased to 82.15% of PHBV/PAM scaffolds compared with 31.5% of PHBV scaffolds. PHBV/PAM scaffold showed a much higher compressive elastic modulus than PHBV scaffold due to PAM stuffing. At 5 days of culturing, sheep chondrocytes spread along the similar direction in the macropores of PHBV/PAM scaffolds. The locally oriented PAM chains might guide the attachment and spreading of chondrocytes and direct the formation of microfilaments via contact guidance. PMID:24579074

  7. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Maryland § 52.1080 Photochemical Assessment Monitoring Stations (PAMS) Program. On March 24, 1994 Maryland's... (PAMS) Program on September 11, 1995 and made it part of Maryland SIP. As with all components of the...

  8. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Maryland § 52.1080 Photochemical Assessment Monitoring Stations (PAMS) Program. On March 24, 1994 Maryland's... (PAMS) Program on September 11, 1995 and made it part of Maryland SIP. As with all components of the...

  9. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Maryland § 52.1080 Photochemical Assessment Monitoring Stations (PAMS) Program. On March 24, 1994 Maryland's... (PAMS) Program on September 11, 1995 and made it part of Maryland SIP. As with all components of the...

  10. Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol.

    PubMed

    Yasmeen, Farhat; Szmigielski, Rafal; Vermeylen, Reinhilde; Gómez-González, Yadian; Surratt, Jason D; Chan, Arthur W H; Seinfeld, John H; Maenhaut, Willy; Claeys, Magda

    2011-04-01

    In this study, we present liquid chromatographic and mass spectral data for predominant terpenoic acids formed through oxidation of α-pinene, β-pinene, d-limonene, and Δ(3)-carene that occur in fine forest aerosol from K-puszta, Hungary, a rural site with coniferous vegetation. Characterization of these secondary organic aerosol tracers in fine ambient aerosol is important because it allows one to gain information on monoterpene precursors and source processes such as oxidation and aging processes. The mass spectral data were obtained using electrospray ionization in the negative ion mode, accurate mass measurements, and linear ion trap tandem mass spectrometric experiments. Emphasis is given to the mass spectrometric differentiation of isobaric terpenoic acids, such as, e.g. the molecular weight (MW) 186 terpenoic acids, cis-pinic, cis-caric, homoterpenylic, ketolimononic, and limonic acids. Other targeted isobaric terpenoic acids are the MW 184 terpenoic acids, cis-pinonic and cis-caronic acids, and the MW 204 tricarboxylic acids, 3-methyl-1,2,3-butanetricarboxylic and 3-carboxyheptanedioic acids. Fragmentation pathways are proposed to provide a rational explanation for the observed isomeric differences and/or to support the suggested tentative structures. For the completeness of the data set, data obtained for recently reported lactone-containing terpenoic acids (i.e. terpenylic and terebic acids), related or isobaric compounds (i.e. norpinic acid, diaterpenylic acid acetate, and unknown MW 188 compounds) are also included, the rationale being that other groups working on this topic could use this data compilation as a reference.

  11. Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.

    2003-01-01

    ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.

  12. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    SciTech Connect

    Cross, E.; Onasch, Timothy B.; Canagaratna, Manjula; Jayne, J. T.; Kimmel, Joel; Yu, Xiao-Ying; Alexander, M. L.; Worsnop, Douglas R.; Davidovits, Paul

    2009-10-01

    To accurately model the radiative forcing of aerosol particles, one must measure in real-time the size, shape, density, chemical composition, and mixing state of ambient particles. This is a formidable challenge because the chemical and physical properties of the aerosol particles are highly complex, dependent on the emission sources, the geography and meteorology of the surroundings, and the gas phase composition of the regional atmosphere.

  13. Anionic Polyacrylamide (PAM) and Extracellular Polysaccharides (EPS) effects on flocculation and aggregate stability of soil

    NASA Astrophysics Data System (ADS)

    Albalasmeh, A. A.; Gharaibeh, M. A.; Ghezzehei, T. A.

    2015-12-01

    Soil structure influences many soil properties including aeration, water retention, drainage, bulk density, and resistance to erosion and indirectly influences most biological and chemical processes that occur in and around soil. A significant amount of literature showed that PAM plays an important role to control erosion. However, researchers are looking for more natural alternative for PAM. This study evaluated two anionic polymers including low and high molecular weight (MW), root exudates and bacterial exudates. We evaluated their influence on the rate and efficacy of colloid flocculation and the percent of water stable aggregates. We found that PAM was more effective than EPS in flocculating the colloids and all polymers increased the percent of stable soil aggregates although the PAM was more effective. These data suggest that the EPS would be less effective than PAM for reducing water erosion owing to its lesser flocculation and aggregate stabilizing potential.

  14. Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Doussin, J.-F.; Giorio, C.; Mahon, B.; Wilson, E. M.; Maurin, N.; Pangui, E.; Venables, D. S.; Wenger, J. C.; Kalberer, M.

    2015-05-01

    Field observations over the past decade indicate that a significant fraction of organic aerosol in remote areas may contain highly oxidized molecules. Aerosol processing or further oxidation (aging) of organic aerosol has been suggested to be responsible for their formation through heterogeneous reaction with oxidants and multigenerational oxidation of vapours by OH radicals. In this study we investigated the influence of several aging processes on the molecular composition of secondary organic aerosols (SOA) using direct infusion and liquid chromatography high-resolution mass spectrometry. SOA was formed in simulation chamber experiments from ozonolysis of a mixture of four biogenic volatile organic compounds (BVOC): α-pinene, β-pinene, Δ3-carene and isoprene. The SOA was subsequently aged under three different sets of conditions: in the dark in the presence of residual ozone, with UV irradiation and OH radicals, and using UV light only. Among all studied conditions, only OH radical-initiated aging was found to influence the molecular composition of the aerosol and showed an increase in carbon oxidation state (OSC) and elemental O / C ratios of the SOA components. None of the aging processes produced an observable effect on the oligomers formed from ozonolysis of the BVOC mixture, which were found to be equally abundant in both "fresh" and "aged" SOA. Additional experiments using α-pinene as the sole precursor demonstrated that oligomers are an important group of compounds in SOA produced from both ozonolysis and OH radical-initiated oxidation processes; however, a completely different set of oligomers is formed under these two oxidation regimes. SOA from the OH-initiated oxidation of α-pinene had a significantly higher overall OSC and O / C compared to that from pure ozonolysis experiments confirming that the OH radical reaction is more likely to be responsible for the occurrence of highly oxidized species in ambient biogenic SOA.

  15. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-08-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  16. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; Simoes de Sa, S.; Fry, J.; Ayres, B. R.; Draper, D. C.; Ortega, A. M.; Kiendler-Scharr, A.; Panujoka, A.; Virtanen, A.; Miettinen, P.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, L. R.; Stark, H.; Worsnop, D. R.; Lechner, M.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2013-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area (Centreville Supersite) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 flow reactors (potential aerosol mass, PAM) were used to expose ambient air to oxidants and their output was analyzed by state-of-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a High-Resolution Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and for the first time, two different High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS), and an SMPS. Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, O3 and NO3) to investigate SOA formation and aging. The OH exposure was estimated by 3 different methods (empirical parameterization, carbon monoxide consumption, and chemical box model). Effective OH exposures up to 7e12 molec cm-3 s were achieved, which is equivalent to over a month of aging in the atmosphere. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ambient OA by ≈ 30%, indicating shifting contributions of functionalization vs. fragmentation, which is similar to previous results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than the ambient OA. More SOA is typically formed during nighttime when terpenes are higher and lower during daytime when isoprene is higher. SOA formation is also observed after exposure of ambient air to O3 or NO3, although the amount and oxidation was lower than for OH exposure. Formation of organic nitrates in the NO3 reaction will be discussed. High SOA formation (above 40 μg m-3) and a large number of CIMS ions, indicating many different

  17. Preferential Acquisition and Activation of Plasminogen Glycoform II by PAM Positive Group A Streptococcal Isolates.

    PubMed

    De Oliveira, David M P; Law, Ruby H P; Ly, Diane; Cook, Simon M; Quek, Adam J; McArthur, Jason D; Whisstock, James C; Sanderson-Smith, Martina L

    2015-06-30

    Plasminogen (Plg) circulates in the host as two predominant glycoforms. Glycoform I Plg (GI-Plg) contains glycosylation sites at Asn289 and Thr346, whereas glycoform II Plg (GII-Plg) is exclusively glycosylated at Thr346. Surface plasmon resonance experiments demonstrated that Plg binding group A streptococcal M protein (PAM) exhibits comparative equal affinity for GI- and GII-Plg in the "closed" conformation (for GII-Plg, KD = 27.4 nM; for GI-Plg, KD = 37.0 nM). When Plg was in the "open" conformation, PAM exhibited an 11-fold increase in affinity for GII-Plg (KD = 2.8 nM) compared with that for GI-Plg (KD = 33.2 nM). The interaction of PAM with Plg is believed to be mediated by lysine binding sites within kringle (KR) 2 of Plg. PAM-GI-Plg interactions were fully inhibited with 100 mM lysine analogue ε-aminocaproic acid (εACA), whereas PAM-GII-Plg interactions were shown to be weakened but not inhibited in the presence of 400 mM εACA. In contrast, binding to the KR1-3 domains of GII-Plg (angiostatin) by PAM was completely inhibited in the presence 5 mM εACA. Along with PAM, emm pattern D GAS isolates express a phenotypically distinct SK variant (type 2b SK) that requires Plg ligands such as PAM to activate Plg. Type 2b SK was able to generate an active site and activate GII-Plg at a rate significantly higher than that of GI-Plg when bound to PAM. Taken together, these data suggest that GAS selectively recruits and activates GII-Plg. Furthermore, we propose that the interaction between PAM and Plg may be partially mediated by a secondary binding site outside of KR2, affected by glycosylation at Asn289. PMID:26029848

  18. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    SciTech Connect

    Maruyama, Akira; Shime, Hiroaki Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  19. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  20. Feasibility of the detection of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry

    SciTech Connect

    Salcedo, D.; Laskin, Alexander; Shutthanandan, V.; Jimenez, Jose L.

    2012-08-10

    The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measured ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple

  1. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  2. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  3. Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Gao, Yuan

    2008-06-01

    To characterize the mass size distributions of water-soluble inorganic and organic ions associated with urban particulate matter, a total of 15 sets of size-segregated aerosol samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) in the urban area of Newark in New Jersey from July to December 2006. The mass concentrations of PM1.8 accounted for ∼68% of the mass concentrations of PM10. The mass concentrations of the total water-soluble ions in PM1.8 accounted for 31-81% of the mass concentrations of PM1.8. Sulfate was the dominant ion in fine particles, accounting for 31% of the PM1.8 mass with its dominant mode at 0.32-0.56 μm throughout all the samples. Nitrate size distributions were bi-modal, peaking at 0.32-0.56 and 3.2-5.6 μm, and the shift of the nitrate dominant fraction between fine and coarse modes was affected by temperature. The ratios of nitrate to PM1.8 varied significantly, 0.5-27%. The C2-C4 dicarboxylic acids accounted for 1.9±0.9% of PM1.8 mass, with oxalate being the dominant ion. The size distributions of oxalate exhibited two to four modes with the dominant one at 0.32-0.56 μm. Chloride existed in both coarse and fine modes, suggesting the influence of sea-salt aerosol and anthropogenic emissions. A crucial formation mechanism for the mass size distributions of these ions observed at this location is likely to be a combination of the gas-to-particle conversion and in-cloud/fog processing.

  4. A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, S. J.; Campuzano-Jost, P.; Simpson, E. A.; Robb, D. B.; Burak, I.; Blades, M. W.; Hepburn, J. W.; Bertram, A. K.

    2009-01-01

    A laser based vacuum ultraviolet (VUV) light source using resonance enhanced four wave difference mixing in xenon gas was developed for near threshold ionization of organics in atmospheric aerosol particles. The source delivers high intensity pulses of VUV light (in the range of 1010 to 1013 photons/pulse depending on wavelength, 5 ns FWHM) with a continuously tunable wavelength from 122 nm (10.2 eV) to 168 nm (7.4 eV)E The setup allows for tight (<1 mm2) and precise focusing ([mu]rad pointing angle adjustability), attributes required for single particle detection. The generated VUV is separated from the pump wavelengths by a custom monochromator which ensures high spectral purity and minimizes absorptive losses. The performance of the source was characterized using organic molecules in the gas phase and optimal working conditions are reported. In the gas phase measurements, photoionization efficiency (PIE) curves were collected for seven different organic species with ionization energies spanning the full wavelength range of the VUV source. The measured appearance energies are very close to the literature values of the ionization energies for all seven species. The effectiveness of the source for single particle studies was demonstrated by analysis of individual caffeine aerosols vaporized by a pulsed CO2 laser in an ion trap mass spectrometer. Mass spectra from single particles down to 300 nm in diameter were collected. Excellent signal to noise characteristics for these small particles give a caffeine detection limit of 8 × 105 molecules which is equivalent to a single 75 nm aerosol, or approximately 1.5% of a 300 nm particleE The appearance energy of caffeine originating from the aerosol was also measured and found to be 7.91 ± 0.05 eV, in good agreement with literature values.

  5. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  6. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  7. Plume Aerosol Size Distribution Modeling and Comparisons to PrAIRie2005 Field Study Data

    NASA Astrophysics Data System (ADS)

    Cho, S.; Liggio, J.; Makar, P.; Li, S.; Racinthe, J.

    2006-12-01

    As part of the analysis phase of the PrAIRie2005 field study, the effects of different Edmonton-area emission sources on local air-quality are being examined. Four large coal-fired power-plants are located to the West of the city. Here, the effects of these power-plants on urban and regional air-quality will be examined, using both plume and regional air-quality models. During the last few decades, coal-fired power plants have been found to be as a major source of pollution, affecting public-health. According to NACEC (North American Commission for Environmental Corporation, 2001)'s report, 46 of the top 50 air polluters in North America were power plants. The importance of such sources has resulted in several attempts to improve understanding of the basic formation mechanisms of plume particulate matter. Sulphur dioxide contributes to acidifying emissions and to the production of secondary acidic aerosols that have been linked to a number of serious human health problems, acid rain and visibility (Seinfeld and Pandis, 1998; Hidy, 1984; Wilson and McMurray, 1981). Primary particulate matter originating directly from coal-fired power plants may also increase secondary particulate mass by providing a surface for sulphuric acid absorption . Environment Canada's PrAIRie2005 field study between August 12th and September 7th, 2005 included overflights and downwind measurements near the Edmonton powerplants (Wabamun, Sundance, Keephills and Genesee). The data collected consisted of particle size distributions, ozone, NOX, total mass and the chemical composition of fine particles. In order to investigate and improve our understanding of the formation mechanisms and physical properties of power-plant-generated aerosols in the Edmonton area, the Plume Aerosol Microphysical (PAM) model has been employed. This model accounts for gas-phase chemistry, aerosol microphysical processes (i.e. homogeneous/heterogeneous nucleation, condensation/evaporation and coagulation) and

  8. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  9. Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer.

    PubMed

    Brüggemann, Martin; Vogel, Alexander Lucas; Hoffmann, Thorsten

    2014-01-01

    We present the development and characterization of a combination of a micro-orifice volatilization impactor (MOVI) and an ion trap mass spectrometer (IT/MS) with an atmospheric-pressure chemical ionization (APCI) source. The MOVI is a multi-jet impactor with 100 nozzles, allowing the collection of aerosol particles by inertial impaction on a deposition plate. The pressure drop behind the nozzles is approximately 5%, resulting in a pressure of 96kPa on the collection surface for ambient pressures of 101.3 kPa. The cut-point diameter (diameter of 50% collection efficiency) is at 0.13 microm for a sampling flow rate of 10 L min(-1). After the collection step, aerosol particles are evaporated by heating the impaction surface and transferred into the APCI-IT/MS for detection of the analytes. APCI was used in the negative ion mode to detect predominantly mono- and dicarboxylic acids, which are major oxidation products of biogenic terpenes. The MOVI-APCI-IT/MS instrument was used for the analysis of laboratory-generated secondary organic aerosol (SOA), which was generated by ozonolysis of alpha-pinene in a 100 L continuous-flow reactor under dark and dry conditions. The combination of the MOVI with an APCI-IT/MS improved the detection Limits for small dicarboxylic acids, such as pinic acid, compared to online measurements by APCI-IT/MS. The Limits of detection and quantification for pinic acid were determined by external calibration to 4.4 ng and 13.2 ng, respectively. During a field campaign in the southern Rocky Mountains (USA) in summer 2011 (BEACHON-RoMBAS), the MOVI-APCI-IT/MS was applied for the analysis of ambient organic aerosols and the quantification of individual biogenic SOA marker compounds. Based on a measurement frequency of approximately 5 h, a diurnal cycle for pinic acid in the sampled aerosol particles was found with maximum concentrations at night (median: 10.1 ngm(-3)) and minimum concentrations during the day (median: 8.2 ng m(-3)), which is likely

  10. Online analysis of single cyanobacteria and algae cells under nitrogen-limited conditions using aerosol time-of-flight mass spectrometry.

    PubMed

    Cahill, John F; Darlington, Thomas K; Fitzgerald, Christine; Schoepp, Nathan G; Beld, Joris; Burkart, Michael D; Prather, Kimberly A

    2015-08-18

    Metabolomics studies typically perform measurements on populations of whole cells which provide the average representation of a collection of many cells. However, key mechanistic information can be lost using this approach. Investigating chemistry at the single cell level yields a more accurate representation of the diversity of populations within a cell sample; however, this approach has many analytical challenges. In this study, an aerosol time-of-flight mass spectrometer (ATOFMS) was used for rapid analysis of single algae and cyanobacteria cells with diameters ranging from 1 to 8 μm. Cells were aerosolized by nebulization and directly transmitted into the ATOFMS. Whole cells were determined to remain intact inside the instrument through a combination of particle sizing and imaging measurements. Differences in cell populations were observed after perturbing Chlamydomonas reinhardtii cells via nitrogen deprivation. Thousands of single cells were measured over a period of 4 days for nitrogen-replete and nitrogen-limited conditions. A comparison of the single cell mass spectra of the cells sampled under the two conditions revealed an increase in the dipalmitic acid sulfolipid sulfoquinovosyldiacylglycerol (SQDG), a chloroplast membrane lipid, under nitrogen-limited conditions. Single cell peak intensity distributions demonstrate the ability of the ATOFMS to measure metabolic differences of single cells. The ATOFMS provides an unprecedented maximum throughput of 50 Hz, enabling the rapid online measurement of thousands of single cell mass spectra. PMID:26237223

  11. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2013-02-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a different oxidant

  12. Hyphenation of a EC / OC thermal-optical carbon analyzer to photo-ionization time-of-flight mass spectrometry: an off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter

    NASA Astrophysics Data System (ADS)

    Diab, J.; Streibel, T.; Cavalli, F.; Lee, S. C.; Saathoff, H.; Mamakos, A.; Chow, J. C.; Chen, L.-W. A.; Watson, J. G.; Sippula, O.; Zimmermann, R.

    2015-08-01

    Source apportionment and characterization of primary and secondary aerosols remains a challenging research field. In particular, the organic composition of primary particles and the formation mechanism of secondary organic aerosols (SOAs) warrant further investigations. Progress in this field is strongly connected to the development of novel analytical techniques. In this study an off-line aerosol mass spectrometric technique based on filter samples, a hyphenated thermal-optical analyzer photo-ionization time-of-flight mass spectrometer (PI-TOFMS) system, was developed. The approach extends the capability of the widely used particulate matter (PM) carbon analysis (for elemental / organic carbon, EC / OC) by enabling the investigation of evolved gaseous species with soft and selective (resonance enhanced multi-photon ionization, REMPI) and non-selective photo-ionization (single-photon ionization, SPI) techniques. SPI was tuned to be medium soft to achieve comparability with results obtained by the electron ionization aerosol mass spectrometer (AMS). Different PM samples including wood combustion emission samples, smog chamber samples from the reaction of ozone with different SOA precursors, and ambient samples taken at Ispra, Italy, in winter as well as in summer were tested. The EC / OC-PI-TOFMS technique increases the understanding of the processes during thermal-optical analysis and identifies marker substances for the source apportionment. Composition of oligomeric or polymeric species present in PM can be investigated by the analysis of the thermal breakdown products. In the case of wood combustion, in addition to the well-known markers at m/z ratios of 60 and 73, two new characteristic masses (m/z 70 and 98) have been revealed as potentially linked to biomass burning. All four masses were also the dominant signals in an ambient sample taken in winter time in Ispra, Italy, confirming the finding that wood burning for residential heating is a major source of PM

  13. Titan's Organic Aerosols : Molecular Composition And Structure Inferred From Systematic Pyrolysis Gas Chromatography Mass Spectrometry Analysis of Analogues

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Buch, Arnaud; Carrasco, Nathalie; Gautier, Thomas

    2015-04-01

    In spite of numerous studies carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), their molecular composition as well as their structuration are still little known. If Pyrolysis gas chromatography mass spectrometry (Pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained show that they can be attributed to the analytical conditions used, to differences in the nature of the analogues studied, or both. In order to have a better description of Titan's tholins molecular composition, we led a systematic analysis of these materials by pyr-GCMS, exploring the analytical parameters to estimate the biases this technique can induce. With this aim, we used the PAMPRE experiment, a capacitively coupled RF cold plasma reactor (Szopa et al. 2006), to synthetize tholins with 2%, 5% and 10% of CH4 in N2. The three samples were systematically pyrolyzed in the temperature range 200-600°C with a 100°C step. The evolved gases were then injected into a GC-MS device for molecular identification. This systematic pyr-GC-MS analysis had two major objectives: (i) optimizing all the analytical parameters for the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio on the tholins molecular structure. About a hundred of molecules have been identified in the pyrolysis products. Although an identical major pattern of nitriles and ethylene appears clearly for the three samples, some discriminant signatures were highlighted. The samples mainly differ by the number of released compounds. The results show especially an increase in the hydrocarbonaceous chains when the CH4 ratio increases. At the opposite, the formation of poly-nitrogenous compounds seems to be easier for lower CH4 ratios. We also performed a semi-quantitative study on the best represented chemical family in

  14. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Analysis of the Biomass Burning Contribution and the Modern Carbon Fraction

    SciTech Connect

    Aiken, Allison; de Foy, B.; Wiedinmyer, Christine; DeCarlo, Peter; Ulbrich, Ingrid M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, Rainer M.; Fortner, Edward; Wang, J. X.; Laskin, Alexander; Shutthanandan, V.; Zheng, J.; Zhang, Renyi; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luis; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning OA (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact index correlates well with the observed BBOA, CH3CN, levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is very small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100-150 ppt, and PM2.5 potassium having a background of ~160 ng m-3 (two-thirds of its average concentration), which does not appear to be related to BB sources.

  15. A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Huang, X. H. Hilda; Griffith, Stephen M.; Li, Mei; Li, Lei; Zhou, Zhen; Wu, Cheng; Meng, Junwang; Chan, Chak K.; Louie, Peter K. K.; Yu, Jian Zhen

    2016-10-01

    Single Particle Aerosol Mass Spectrometers (SPAMS) have been increasingly deployed for aerosol studies in Asia. To date, SPAMS is most often used to provide unscaled information for both the size and chemical composition of individual particles. The instrument's lack of accuracy is primarily due to only a fraction of particles being detected after collection, and the instrumental sensitivity is un-calibrated for various chemical species in mixed ambient aerosols. During a campaign from January to April 2013 at a coastal site in Hong Kong, the particle number information and ion intensity of major PM2.5 components collected by SPAMS were scaled by comparing with collocated bulk PM2.5 measurements of hourly or higher resolution. The bulk measurements include PM2.5 mass by a SHARP 5030 Monitor, major ions by a Monitor for Aerosols & Gases in ambient Air (MARGA), and organic carbon (OC) and elemental carbon (EC) by a Sunset OCEC analyzer. During the data processing, both transmission efficiency (scaled with the Scanning Mobility Particle Sizer) and hit efficiency conversion were considered, and component ion intensities quantified as peak area (PA) and relative peak area (RPA) were analyzed to track the performance. The comparison between the scaled particle mass assuming a particle density of 1.9 g cm-3 from SPAMS and PM2.5 concentration showed good correlation (R2 = 0.81) with a slope of 0.814 ± 0.004. Regression analysis results suggest an improved scaling performance using RPA compared with PA for most of the major PM2.5 components, including sulfate, nitrate, potassium, ammonium, OC and EC. Thus, we recommend preferentially scaling these species using the RPA. For periods of high K+ concentrations (>1.5 μg m-3), under-estimation of K+ by SPAMS was observed due to exceeding the dynamic range of the acquisition board. When only applying the hit efficiency correction, data for sulfate, nitrate, ammonium, potassium and OC were in reasonably good correlation (R2 = 0

  16. 40 CFR 52.2035 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (PAMS) Program as a state implementation plan (SIP) revision, as required by section 182(c)(1) of the... 11, 1995 and made it part of Pennsylvania SIP. As with all components of the SIP, Pennsylvania...

  17. 40 CFR 52.2035 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (PAMS) Program as a state implementation plan (SIP) revision, as required by section 182(c)(1) of the... 11, 1995 and made it part of Pennsylvania SIP. As with all components of the SIP, Pennsylvania...

  18. Three years' experience with the offshore self-boring pressuremeter ''PAM''

    SciTech Connect

    Brucy, F.; Fay, J.B.; LeTirant, P.

    1984-05-01

    The Offshore Self-Boring Pressuremeter (PAM) has been developed by the Institut Francais du Petrole for geotechnical investigations in water depths up to 1000 meters. The PAM was first presented at the 1981 OTC. It mainly consists of a seabed frame from which a self-boring pressuremeter probe is operated. To date, the PAM has totaled nearly 450 meters of borehole depth and more than 200 pressuremeter tests. Investigations have been performed in a wide variety of soil types. The latest deepwater campaign was carried out successfully in the Mediterranean at a water depth of 625 meters. Extensive geotechnical information is obtained from a PAM boring operation. The use of the pressuremeter method for offshore investigations and foundation designing should open up very interesting prospects.

  19. Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment

    NASA Astrophysics Data System (ADS)

    Bennouna, Y. S.; Cachorro, V. E.; Mateos, D.; Burgos, M. A.; Toledano, C.; Torres, B.; de Frutos, A. M.

    2016-09-01

    The relationship between columnar and surface aerosol properties is not a straightforward problem. The Aerosol Optical Depth (AOD), Ångström exponent (AE), and ground-level Particulate Matter (PMX, x = 10 or 2.5 μm) data have been studied from a climatological point of view. Despite the different meanings of AOD and PMx both are key and complementary quantities that quantify aerosol load in the atmosphere and many studies intend to find specific relationships between them. Related parameters such as AE and PM ratio (PR = PM2.5/PM10), giving information about the predominant particle size, are included in this study on the relationships between columnar and surface aerosol parameters. This study is based on long measurement records (2003-2014) obtained at two nearby background sites from the AERONET and EMEP networks in the north-central area of Spain. The climatological annual cycle of PMx shows two maxima along the year (one in late-winter/early-spring and another in summer), but this cycle is not followed by the AOD which shows only a summer maximum and a nearly bell shape. However, the annual means of both data sets show strong correlation (R = 0.89) and similar decreasing trends of 40% (PM10) and 38% (AOD) for the 12-year record. PM10 and AOD daily data are moderately correlated (R = 0.58), whereas correlation increases for monthly (R = 0.74) and yearly (R = 0.89) means. Scatter plots of AE vs. AOD and PR vs. PM10 have been used to characterize aerosols over the region. The PR vs. AE scatterplot of daily data shows no correlation due to the prevalence of intermediate-sized particles. As day-to-day correlation is low (especially for high turbidity events), a binned analysis was also carried out to establish consistent relationships between columnar and surface quantities, which is considered to be an appropriate approach for environmental and climate studies. In this way the link between surface concentrations and columnar remote sensing data is shown to

  20. Thermally-driven advections of aerosol-rich air masses to an Alpine valley: Theoretical considerations and experimental evidences

    NASA Astrophysics Data System (ADS)

    Diémoz, Henri; Magri, Tiziana; Pession, Giordano; Zublena, Manuela; Campanelli, Monica; Gobbi, Gian Paolo; Barnaba, Francesca; Di Liberto, Luca; Dionisi, Davide

    2016-04-01

    A CHM-15k laser radar (lidar) was installed in April 2015 at the solar observatory of the Environmental Protection Agency (ARPA) of the Aosta Valley (Northern Italy, 45.74N, 7.36E, 560 m a.s.l.). The instrument operates at 1064 nm, is capable of mapping the vertical profile of aerosols and clouds up to the tropopause and is part of the Alice-net ceilometers network (www.alice-net.eu). The site is in a large Alpine valley floor, in a semi-rural context. Among the most interesting cases observed in the first months of operation, several days characterised by weak synoptic circulation and well-developed, thermally-driven up-valley winds are accompanied by the appearance of a thick aerosol layer in the afternoon. The phenomenon is frequent in Spring and Summer and is likely to be related to easterly airmass advections from polluted sites (e.g., the Po basin) rather than to local emissions. To test this hypothesis, the following method was adopted. First, some case studies were selected and the respective meteorological fields were analysed based on both observations at ground and the high-resolution output of the nonhydrostatic limited-area atmospheric prediction model maintained by the COnsortium for Small-scale MOdelling (COSMO) over the complex orography of the domain. Then, to evaluate the dynamics of the aerosol diffusion in the valley, the chemical transport 2D/3D eulerian Flexible Air quality Regional Model (FARM) was run. Finally, the three-dimensional output of the model was compared to the vertically-resolved aerosol field derived from the lidar-ceilometer soundings. The effects of up-slope winds, and the resulting subsidence along the main axis of the valley, is hypothesised to break up the aerosol layer close to the ground in the middle of the day and to drag the residual layer down into the mixing layer. The measurements by a co-located sun/sky photometer operating in the framework of the EuroSkyRad (ESR) network were additionally analysed to detect any

  1. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  2. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V Ronald Brown during TEXAQS/GoMACCS 2006

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Takahama, S.; Liu, S.; Hawkins, L. N.; Co