Science.gov

Sample records for aerosol measurement equipment

  1. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  2. ACID AEROSOL MEASUREMENT WORKSHOP

    EPA Science Inventory

    This report documents the discussion and results of the U.S. EPA Acid Aerosol Measurement Workshop, conducted February 1-3, 1989, in Research Triangle Park, North Carolina. t was held in response to recommendations by the Clean Air Scientific Advisory Committee (CASAC) regarding ...

  3. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  4. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  5. Method for volatility measurements on polydisperse aerosol

    NASA Astrophysics Data System (ADS)

    Schmid, Otmar; Hagen, Donald E.; Whitefield, Philip D.; Hopkins, Alfred R.; Eimer, Ben

    2000-08-01

    We describe a method for measuring the amount of volatile material in the aerosol phase using a thermal discriminator. This method, which requires the measurement of the particle size distributions of the heated (through discriminator) and non-heated (bypassing discriminator) sample aerosol, includes the effects due to both particle loss and partially volatile aerosols. Tests with polydisperse internally mixed, i.e. partially volatile, aerosol (not shown here) indicate a high degree of accuracy of this method even for ultrafine particles.

  6. Aerosol Measurement and Processing System (AMAPS)

    Atmospheric Science Data Center

    2016-03-22

    Description:  Access aerosol data from MISR and MODIS Subset Level-2 MISR granules by parameter and by space/time region Extract MISR aerosol data for overflights of specific geographic regions or ground site ... or concerns. Details:  Aerosol Measurement and Processing System (AMAPS) Screenshot:  ...

  7. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  8. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  9. Antenna Calibration and Measurement Equipment

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  10. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  11. New ARM Measurements of Clouds, Aerosols, and the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Mather, J.

    2012-04-01

    The DOE Atmospheric Radiation Measurement (ARM) program has recently enhanced its observational capabilities at its fixed and mobile sites as well as its aerial facility. New capabilities include scanning radars, several types of lidars, an array of aerosol instruments, and in situ cloud probes. All ARM sites have been equipped with dual frequency scanning cloud radars that will provide three-dimensional observations of cloud fields for analysis of cloud field evolution. Sites in Oklahoma, Alaska, and Papua New Guinea have also received scanning centimeter wavelength radars for observing precipitation fields. This combination of radars will provide the means to study the interaction of clouds and precipitation. New lidars include a Raman lidar in Darwin, Australia and High Spectral Resolution Lidars in Barrow and with the second ARM Mobile Facility. Each of these lidars will provide profiles of aerosol extinction while the Raman will also measure profiles of water vapor. ARM has also expanded its capabilities in the realm of aerosol observations. ARM is adding Aerosol Observing Systems to its sites in Darwin and the second mobile facility. These aerosol systems principally provided measurements of aerosol optical properties. In addition, a new Mobile Aerosol Observing System has been developed that includes a variety of instruments to provide information about aerosol chemistry and size distributions. Many of these aerosol instruments are also available for the ARM Aerial Facility. The Aerial Facility also now includes a variety of cloud probes for measuring size distribution and water content. The new array of ARM instruments is intended to build upon the existing ARM capabilities to better study the interactions among aerosol, clouds, and precipitation. Data from these instruments are now available and development of advanced data products is underway.

  12. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  13. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  14. Requirements For Lidar Aerosol and Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Frey, S.; Woeste, L.

    Laser remote sensing is the preferable method, when spatial-temporal resolved data is required. Data from stationary laser remote sensing devices at the earth surface give a very good impression about daily, annual and in general time trends of a measurand and can be compared sometimes to airborne instruments to get a direct link between optical and other methods. Space borne measurements on the other hand are the only possibility for obtaining as much data, as modeller wish to have to initialise, compare or validate there computation. But in this case it is very difficult to get the input in- formation, which is necessary for good quantitative analysis as well as to find points for comparison. In outer space and other harsh field environments only the simplest and most robust equipment for the respective purpose should be applied, to ensure a long-term stable operation. The first question is: what do we have to know about the properties of the atmosphere to get reliable data from instruments, which are just simple enough?, and secondly: how to set-up the instruments? Even for the evaluation of backscatter coefficients a density profile and the so-called Lidar-ratio, the ratio of backscatter to total volume scatter intensity, is necessary. Raman Lidar is a possibility to handle this problem by measuring aerosol extinction profiles. But again a density profile and in addition a guess about the wavelength dependence of the aerosol extinc- tion between the Raman and laser wavelength are required. Unfortunately the tech- nique for Raman measurements is much more sensible and less suited for space borne measurements, because of the much smaller back scatter cross sections and the result- ing weak signals. It becomes worth, when we will have to maintain special laser with colours at molecular absorption bands in outer space, to measure gas concentration. I want to present simulation of optical systems for laser remote sensing, experimental experiences and compare air

  15. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  16. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  17. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  18. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  19. Aerosol optical depth measuring network - project description

    NASA Astrophysics Data System (ADS)

    Aaltonen, A.; Koskela, K.; Lihavainen, L.

    2003-04-01

    The Finnish Meteorological Institute (FMI), in collaboration with Servicio Meteorológico Nacional (SMN), Argentina, is constructing a network for aerosol optical depth (AOD) measurements. Measurements are to be started in the summer 2003 with three sunphotometers, model PFR, Davos. One of them will be sited in Marambio (64°S), Antarctica, and the rest two in the Observatory of Jokioinen (61°N) and Sodankylä GAW station (67°N), Finland. Each instrument consists of a precision filter radiometer and a suntracker. Due to the harsh climate conditions special solutions had to be introduced to keep the instrument warm and free from snow. Aerosol optical depth measured at Pallas-Sodankylä GAW station can be compared with estimated aerosol extinction, which is calculated from ground base aerosol scattering and absorption coefficient measurements.

  20. Measuring Sodium Chloride Contents of Aerosols

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.

  1. Aerosol optical thickness measurements during FIFE '89

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Bruegge, Carol J.; Markham, Brian L.

    1990-01-01

    The measurements used for correction and calibration are presented which permit the estimation of atmospheric effects on reflected and transmitted solar radiation. Four sun-photometers are calibrated and used to derive aerosol optical thicknesses that agree with expected uncertainties, and lower values and higher values are associated with cool dry northerly flows and warm humid southerly flows, respectively. The rapid increase in the vertical aerosol optical thickness after sunrise is related to the growth of the mixing layer which can be inferred from the 2D maps of the instantaneous aerosol number densities.

  2. Development of Turbulence-Measuring Equipment

    NASA Technical Reports Server (NTRS)

    Kovasznay, Leslie S G

    1954-01-01

    Hot wire turbulence-measuring equipment has been developed to meet the more stringent requirements involved in the measurement of fluctuations in flow parameters at supersonic velocities. The higher mean speed necessitates the resolution of higher frequency components than at low speed, and the relatively low turbulence level present at supersonic speed makes necessary an improved noise level for the equipment. The equipment covers the frequency range from 2 to about 70,000 cycles per second. Constant-current operation is employed. Compensation for hot-wire lag is adjusted manually using square-wave testing to indicate proper setting. These and other features make the equipment adaptable to all-purpose turbulence work with improved utility and accuracy over that of older types of equipment. Sample measurements are given to demonstrate the performance.

  3. Solar-Radiation Measuring Equipment and Glossary

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Patel, A. M.; Greenbaum, S. A.

    1982-01-01

    1976 listing of commercially available solar-radiation measuring equipment is presented in 50-page report. Sensor type, response time, cost data, and comments concerning specifications and intended usage are listed for 145 instruments from 38 manufactures.

  4. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  5. Space measurements of tropospheric aerosols

    NASA Technical Reports Server (NTRS)

    Griggs, M.

    1981-01-01

    A global-scale ground-truth experiment was conducted in the summer of 1980 with the AVHRR sensor on NOAA-6 to investigate the relationship between the upwelling visible radiance and the aerosol optical thickness over oceans at different sites around the globe. The possibility of using inland bodies of water such as rivers, lakes and reservoirs has been recently investigated using the Landsat MSS7 (approximately 0.9 micron) channel. This upwelling near-infrared radiance is less influenced than the visible radiance by the suspended matter generally found in the inland bodies of water, and by the adjacency effect of the surrounding higher albedo land. It is found that the water turbidity has more influence than the adjacency effect and reduces the effectiveness of the technique for inland observations.

  6. Aerosol and Plasma Measurements in Noctilucent Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Scott

    2000-01-01

    The purpose of this project was to develop rocket-borne probes to detect charged aerosol layers in the mesosphere. These include sporadic E layers, which have their origin in meteoric dust, and noctilucent clouds, which form in the arctic summer and are composed of ice crystals. The probe being developed consists of a charge collecting patch connected to a sensitive electrometer which measures the charge deposited on the patch by impacting aerosols. The ambient electrons and light ions in the mesosphere are prevented from being collected by a magnetic field. The magnetic force causes these lighter particles to turn so that they miss the collecting patch.

  7. Crowdsourced aerosol measurements using smartphone spectropolarimeters

    NASA Astrophysics Data System (ADS)

    Rietjens, J.; Snik, F.; Keller, C. U.; Heinsbroek, R.; van Harten, G.; Heikamp, S.; de Boer, J.; Zeegers, E.; Einarsen, L.; Hasekamp, O.; Smit, M.; di Noia, A.; Apituley, A.; Mijling, B.; Hendriks, E.; Stammes, P.; Volten, H.; Vonk, J.; Berkhout, S.; Haaima, M.; van der Hoff, R.; Stam, D.; Navarro, R.; Bettonvil, F.

    2013-12-01

    We present the development, organisation and results of a large citizen science project with the goal to measure and characterise atmospheric aerosols using a network of smartphone spectropolarimeters. The project, called ';iSPEX', was conceived and carried out in the Netherlands, and organised the first National iSPEX measurement day on July 8th 2013. During this day, more than 3000 people performed over 6000 measurements with their own smartphones using a special add-on and a dedicated app. These measurements were sent to a central database, processed and analysed using a vector-radiative transfer based inversion code in order to extract aerosol properties. The add-on that transforms the camera of the smartphone into a spectropolarimeter and thereby the smartphone into a scientific instrument, employs the method of spectral modulation [1]. The add-on is comprised of polymer parts and was mass-produced and distributed to almost 10000 people. A single measurement involves scanning the blue sky, thereby yielding the angular behaviour of the degree of linear polarisation as a function of wavelength. Although a single iSPEX measurement is not accurate enough, combining many measurements of a crowdsourced experiment with thousands of people should yield sufficiently accurate results that may be interpreted in terms of aerosol optical thickness and aerosol particle properties. By analysing not only the measured results, but also the motivation of the general public to participate, we learn about the possibilities to create a new kind of air quality measurement network. At the conference, we will demonstrate iSPEX and present the results of the first measurement day. We hope to convince you that iSPEX is not only a great outreach tool to engage the public in issues pertaining to atmospheric aerosols, but that it may also contribute to the solution of several urgent societal and scientific problems. [1] Snik, F., Karalidi, T., Keller, C.U.. Spectral modulation for full

  8. Aerosol measurements at the South Pole

    NASA Astrophysics Data System (ADS)

    Bodhaine, Barry A.; Deluisi, John J.; Harris, Joyce M.; Houmere, Pamela; Bauman, Sene

    1986-09-01

    Some results are given regarding the aerosol measurement program conducted by the NOAA at their atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. A time series of sodium, chlorine, and sulfur concentrations shows that the sulfur and CN records are similar and that the sodium, chlorine, and extinction coefficient records are similar. Large episodes of sodium are measured at the ground in the austral winter and are apparently caused by large-scale warming and weakening of the surface temperature inversion. The CN data show an annual cycle with a maximum exceeding 100 per cubic centimeter in the austral summer and a minimum of about 10 per cubic centimeter in the winter. The extinction coefficient data show an anual cycle markedly different from that of CN with a maximum in late winter, a secondary maximum in summer, and a minimum in May.

  9. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  10. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  11. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution. PMID:23216158

  12. Aerosol measurements in the IR: from limb to nadir?

    NASA Technical Reports Server (NTRS)

    Eldering, A.; Irion, F. W.; Mills, F. P.; Steele, H. M.; Gunson, M. R.

    2001-01-01

    Vertical profiles of aerosol concentration have been derived from the ATMOS solar occultation dataset. The EOS instrument TES has motivated studies of the feasibility of quantifying aerosols in nadir and limb emission measurements.

  13. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  14. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  15. Balloon measurements of aerosol in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Morita, Y.; Takagi, M.; Iwasaka, Y.; Ono, A.

    1985-01-01

    Three balloon soundings of aerosol were conducted from Syowa Station, Antarctica in April, June and October 1983. Number concentration and the size distribution of aerosol particles with diameter greater than 0.3 microns were measured by using a light scattering aerosol particle counter. The influence of the eruption of Mt. El Chichon on the aerosol concentration in the stratosphere was observed on October 16. Very high aerosol concentration at stratospheric heights was obtained from the first successful aerosol sounding in winter Antarctic stratosphere. The result gives direct evidence of winter enhancement in the Antarctic stratosphere.

  16. Stackable differential mobility analyzer for aerosol measurement

    DOEpatents

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  17. 21 CFR 820.72 - Inspection, measuring, and test equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Inspection, measuring, and test equipment. 820.72..., measuring, and test equipment. (a) Control of inspection, measuring, and test equipment. Each manufacturer shall ensure that all inspection, measuring, and test equipment, including mechanical, automated,...

  18. 21 CFR 820.72 - Inspection, measuring, and test equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Inspection, measuring, and test equipment. 820.72..., measuring, and test equipment. (a) Control of inspection, measuring, and test equipment. Each manufacturer shall ensure that all inspection, measuring, and test equipment, including mechanical, automated,...

  19. 21 CFR 820.72 - Inspection, measuring, and test equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Inspection, measuring, and test equipment. 820.72..., measuring, and test equipment. (a) Control of inspection, measuring, and test equipment. Each manufacturer shall ensure that all inspection, measuring, and test equipment, including mechanical, automated,...

  20. 21 CFR 820.72 - Inspection, measuring, and test equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Inspection, measuring, and test equipment. 820.72..., measuring, and test equipment. (a) Control of inspection, measuring, and test equipment. Each manufacturer shall ensure that all inspection, measuring, and test equipment, including mechanical, automated,...

  1. Aerosol measurements in the stratocumulus project

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) and Condensation Nuclei (CN) were measured from the National Center for Atmospheric Research (NCAR) Electra throughout the marine stratocumulus project. The total particle concentration was measured with a condensation nucleus counter. The CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. This instrument simultaneously measures the concentration of aerosol active at up to 100 different critical supersaturations (Sc). This is accomplished by exposing the sample to a fixed supersaturation field and using the size of the droplets produced in this cloud chamber to deduce the Sc of the nuclei upon which they have grown. Droplet size is associated with Sc through a calibration which is accomplished by passing soluble aerosols of known size and composition through the cloud chamber. This procedure results in a calibration curve of Sc vs. droplet size. This then allows the channel number to be directly associated with Sc. Thus, number concentration vs. Sc is obtained and this is a CCN spectrum. Since the instrument operates continuously, the measurements at all Sc's are available simultaneously. Samples are drawn directly from the ambient air and data is displayed in nearly real time. Samples were integrated over times of about 10 seconds so that substantial spatial resolution is available. Calibrations were performed once or twice a day and were found to be consistent. Preliminary results are shown.

  2. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements.

    PubMed

    Wang, P H; McCormick, M P; McMaster, L R; Chu, W P; Swissler, T J; Osborn, M T; Russell, P B; Oberbeck, V R; Livingston, J; Rosen, J M; Hofmann, D J; Grams, G W; Fuller, W H; Yue, G K

    1989-06-20

    This paper describes an investigation of the comprehensive aerosol correlative measurement experiments conducted between November 1984 and July 1986 for satellite measurement program of the Stratospheric Aerosol and Gas Experiment (SAGE II). The correlative sensors involved in the experiments consist of the NASA Ames Research Center impactor/laser probe, the University of Wyoming dustsonde, and the NASA Langley Research Center airborne 14-inch (36 cm) lidar system. The approach of the analysis is to compare the primary aerosol quantities measured by the ground-based instruments with the calculated ones based on the aerosol size distributions retrieved from the SAGE II aerosol extinction measurements. The analysis shows that the aerosol size distributions derived from the SAGE II observations agree qualitatively with the in situ measurements made by the impactor/laser probe. The SAGE II-derived vertical distributions of the ratio N0.15/N0.25 (where Nr is the cumulative aerosol concentration for particle radii greater than r, in micrometers) and the aerosol backscatter profiles at 0.532- and 0.6943-micrometer lidar wavelengths are shown to agree with the dustsonde and the 14-inch (36-cm) lidar observations, with the differences being within the respective uncertainties of the SAGE II and the other instruments. PMID:11539801

  3. Aerosol Optical Depth Measurements in the Southern Ocean Within the Framework of Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sayer, A. M.; Sakerin, S. M.; Radionov, V. F.; Courcoux, Y.; Broccardo, S. P.; Evangelista, H.; Croot, P. L.; Disterhoft, P.; Piketh, S.; Milinevsky, G. P.; O'Neill, N. T.; Slutsker, I.; Giles, D. M.

    2013-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. The Maritime Aerosol Network (MAN) as a component of AERONET has been collecting aerosol optical depth data over the oceans since 2006. A significant progress has been made in data acquisition over areas that previously had very little or no coverage. Data collection included intensive study areas in the Southern Ocean and off the coast of Antarctica including a number of circumnavigation cruises in high southern latitudes. It made an important contribution to MAN and provided a valuable reference point in atmospheric aerosol optical studies. The paper presents results of this international and multi-agency effort in studying aerosol optical properties over Southern Ocean and adjacent areas. The ship-borne aerosol optical depth measurements offer an excellent opportunity for comparison with global aerosol transport models, satellite retrievals and provide useful information on aerosol distribution over the World Ocean. A public domain web-based database dedicated to the MAN activity can be found at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html.

  4. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  5. Drop size measurement of liquid aerosols

    NASA Astrophysics Data System (ADS)

    Liu, B. Y. H.; Pui, D. Y. H.; Xian-Qing, Wang

    The factor B = D/ D' relating the diameter D of a spherical liquid drop to the diameter, D˜, of the same drop collected on a microscope slide has been measured for DOP (di-octyl phthalate) and oleic acid aerosols. The microscope slide was coated with a fluorocarbon, oleophobic surfactant (L-1428, 3M Co., St. Paul, MN). The ratio was found to be independent of drop diameter in the 2-50 μm range and the mean value of B was found to be 0.700 for oleic acid and 0.690 for DOP. Similar measurements for oleic acid and DOP drops collected on a clean, uncoated slide resulted in the values of 0.419 and 0.303, respectively. The experimental values of B were compared with the theoretical values based on contact angle measurements. Good agreement was obtained.

  6. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  7. Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Lea; Kostenidou, Evangelia; Mihalopoulos, Nikos; Worsnop, Douglas R.; Donahue, Neil M.; Pandis, Spyros N.

    2010-12-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiments (FAME-08 and FAME-09), which were part of the EUCAARI intensive campaigns. Quadrupole aerosol mass spectrometers (Q-AMSs) were employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the OA. The experiments provide unique insights into ambient oxidation of aerosol by measuring at the same site but under different photochemical conditions. NR-PM1 concentrations were about a factor of three lower during FAME-09 (winter) than during FAME-08 (summer). The OA sampled was significantly less oxidized and more variable in composition during the winter than during the early summer. Lower OH concentrations in the winter were the main difference between the two campaigns, suggesting that atmospheric formation of highly oxygenated OA is associated with homogeneous photochemical aging.

  8. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  9. [Basic principles of comprehensive approach to the development of aerosol inhalation equipment].

    PubMed

    Liutov, G P

    1994-01-01

    The comprehensive approach to choosing the nomenclature of aerosol inhalers is based on the definition of the basic principles in the development of apparatuses as to the optimization of their consumer qualities, the unification of basic blocks and the enhancement of their reliability. With the use of the approach, two models of fixed inhalers have been put into practice, a portable universal inhaler is brought to a commercial level, and two models of portable heat humid inhalers are under development, which is in full conformity with health care requirements for this medical equipment. PMID:7707891

  10. Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prévôt, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-01-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with time of day, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  11. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment - 2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prevot, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-05-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  12. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-07-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  13. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  14. Online Aerosol Size and Composition Measurements in Coastal Antarctica

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Giordano, M.; Kalnajs, L.; Johnson, A.; Davis, S. M.; Deshler, T.; Toohey, D. W.

    2014-12-01

    Aerosol particles play a critical role in the chemical and radiative balance of the Antarctic atmosphere. Aerosols are both a source and sink of gas phase constituents, as well as a transport mechanism for oceanic chemical species into the continental interior. The interaction between aerosols, the gas phase, sea ice and the snow pack is complex and not well understood. Recent observations of ozone depletion events coupled with submicron aerosol mass increase highlight the interaction between the gas and particle phases. These interactions can lead to aerosol formation as well as the deposition of trace elements to the snow pack. To determine the composition and source regions of aerosols in the coastal Antarctic atmosphere, a suite of instruments was deployed in the 2014 Antarctic measurement season including a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-AMS), Ultra High Sensitivity Aerosol Spectrometer (UHSAS), Ozone analyzer, Scanning Electrical Mobility Sizer (SEMS), and Particle-into-Liquid Sampler (PILS). Measurements of gas phase constituents and aerosol composition were interpreted in the context of back trajectories and local meteorological conditions to link the measured air masses to their source regions.

  15. Advances in Measurement of Carbonyls in Aerosols.

    NASA Astrophysics Data System (ADS)

    Charles, M.; Jakober, C.; Spaulding, R.; Green, P.; Destaillats, H.; Hughes, J. M.

    2002-12-01

    Chamber studies establish the formation of highly polar oxygenated species from the reaction of anthropogenic and biogenic hydrocarbons with hydroxyl radicals or ozone. A paucity of data exists however on the generation and fate of these organics in the ambient atmospheric environment. This is primarily due to the absence of suitable analytical methods. To address limitations of existing methods, we developed methods that rely on O-(2,3,4,5,6)-pentafluorobenzylhydroxylamine (PFBHA), and bis-(trimethylsilyl) trifluoroacetamide (BSTFA) in concert with GC/ion trap mass spectrometry (GC/ITMS) to identify and quantify carbonyl, dicarbonyl and hydroxy carbonyl photooxidation products in aerosols at part-per-trillion (pptv) levels. We also optimized and evaluated a mist chamber to sample carbonyls and multi-functional carbonyls with 10 minute sampling times. We applied the method to identify and quantify 2-hydroxy-2-methyl propanal (2-HMPR), a proposed photooxidation product of 2-methyl-3-buten-2-ol (MBO) in the Blodgett Forest, CA. The average 2-HMPR/MBO mixing ratio was 0.33ñ 0.25, which is reasonable since the expected yield of 2-HMPR from the hydroxyl radical oxidation of MBO is 0.19-0.35. Further method development in our laboratory is exploring the employment of HPLC/atmospheric pressure chemical ionization (APCI) mass spectra to identify model aliphatic and aromatic carbonyls (the major classes were aldehydes, ketones, dicarbonyls, and quinones) in aerosols. The data indicate the potential for pentafluorobenzyl derivatization in concert with GC/ITMS and HPLC/ITMS to measure a broad range of carbonyls.

  16. Deriving simple empirical relationships between aerodynamic and optical aerosol measurements and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different measurement techniques for aerosol characterization and quantification either directly or indirectly measure different aerosol properties (i.e. count, mass, speciation, etc.). Comparisons and combinations of multiple measurement techniques sampling the same aerosol can provide insight into...

  17. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  18. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  19. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  20. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  1. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  2. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  3. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  4. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  5. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  6. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  7. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  8. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  9. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  10. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    NASA Astrophysics Data System (ADS)

    Keck, L.; Pesch, M.; Grimm, H.

    2011-07-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeißenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  11. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  12. 47 CFR 73.1590 - Equipment performance measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Equipment performance measurements. 73.1590... measurements. (a) The licensee of each AM, FM, TV and Class A TV station, except licensees of Class D non... equipment performance measurements for each main transmitter as follows: (1) Upon initial installation of...

  13. 47 CFR 73.1590 - Equipment performance measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Equipment performance measurements. 73.1590... measurements. (a) The licensee of each AM, FM, TV and Class A TV station, except licensees of Class D non... equipment performance measurements for each main transmitter as follows: (1) Upon initial installation of...

  14. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  15. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  16. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2015-07-01

    Four years of continuous aerosol number size distribution measurements from an Arctic Climate Observatory in Tiksi Russia are analyzed. Source region effects on particle modal features, and number and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June of 0.42 μg m-3 and in September-October of 0.36-0.57 μg m-3. These seasonal cycles in number and mass concentrations are related to isolated aerosol sources such as Arctic haze in early spring which increases accumulation and coarse mode numbers, and biogenic emissions in summer which affects the smaller, nucleation and Aitken mode particles. The impact of temperature dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant. Therefore, in addition to the precursor emissions of biogenic volatile organic compounds, the frequent Siberian forest fires, although far are suggested to play a role in Arctic aerosol composition during the warmest months. During calm and cold months aerosol concentrations were occasionally increased by nearby aerosol sources in trapping inversions. These results provide valuable information on inter-annual cycles and sources of Arctic aerosols.

  17. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  18. The Cloud-Aerosol Transport System (CATS): Demonstrating New Techniques for Cloud and Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Nowottnick, E. P.; Selmer, P. A.

    2015-12-01

    The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that provides vertical profiles of cloud and aerosol properties. The CATS payload has been operating since early February 2015 from the International Space Station (ISS). CATS was designed to operate for six months, and up to three years, providing a combination of operational science, in-space technology demonstration, and technology risk reduction for future Earth Science missions. One of the primary project goals of CATS is to demonstrate technology in support of future space-based lidar mission development. The CATS instrument has been demonstrating the high repetition rate laser and photon counting detection approach to lidar observations, in contrast to the low repetition rate, high energy technique employed by CALIPSO. Due to this technique, cloud and aerosol profile data exhibit high spatial and temporal resolution, which was never before possible from a space-based platform. Another important science goal of the CATS-FO project is accurate determination of aerosol type on a global scale. CATS provided the first space-based depolarization measurements at multiple wavelengths (532 and 1064 nm), and first measurements at 1064 nm from space. The ratio of the depolarization measurements at these two wavelengths enables significant improvement in aerosol typing. The CATS retrievals at 1064 nm also provide improvements to detecting aerosols above clouds. The CATS layer identification algorithm is a threshold-based layer detection method that uses the 1064 nm attenuated scattering ratio and also includes a routine to identify clouds embedded within aerosol layers. This technique allows CATS to detect the full extent of the aerosol layers above the cloud, and differentiate these two layers so that the optical properties can be more accurately determined.

  19. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  20. Aerosol Measurements from Current and Future EUMETSAT Satellites

    NASA Astrophysics Data System (ADS)

    Lang, Ruediger; Munro, Rosemary; Kokhanovsky, Alexander; Grzegorski, Michael; Poli, Gabriele; Holdak, Andriy; Retscher, Christian; Marbach, Thierry

    2014-05-01

    EUMETSAT supports the operational monitoring and forecasting of atmospheric composition including various aerosol optical properties through specific products from its geostationary and polar-orbiting satellites. Meteosat imagery is used to characterise aerosols in the atmosphere, including volcanic ash and dust storms at high temporal resolution, while the GOME-2, AVHRR and IASI and instruments on Metop observe aerosol optical properties from the UV/vis to the infra-red spectral region from a polar morning orbit. The role of EUMETSAT in observing aerosol optical properties will expand further towards the 2020 timeframe when EUMETSAT also becomes the operator of the Copernicus Sentinel-3, 4 and 5 missions. This expanding role will be realised through additional atmospheric composition sounding instruments such as the UVN/Sentinel-4 on the Meteosat Third Generation (MTG) geostationary platforms and the 3MI, METimage, and Sentinel-5 instruments on the EPS Second Generation (EPS-SG) satellites. The synergistic use of imager, spectrometer and interferometer data will, with the availability of this new generation of instrumentation and with the need for measuring aerosol optical properties at short-time scales, high spatial resolution and over a broad spectra region, play and increasingly important role in the field of aerosol remote sensing. With its new Polar Multi-mission Aerosol optical properties (PMAp) product, providing aerosol and cloud optical depth information, as well as fine mode, dust and volcanic ash characterisation over ocean and in the future also over land, EUMETSAT has recently been implementing the first framework for such synergistic retrievals for the remote sensing of aerosol optical properties from GOME-2, AVHRR and IASI instruments on Metop. We will present an overview of the ongoing and the future developments at EUMETSAT concerning aerosol remote sensing from Metop as well as from the current MSG geostationary platforms and from the future

  1. Airflow measurement inaccuracies in aerosol imaging

    SciTech Connect

    Sirr, S.A.; Miltz-Miller, S.; Notman, D.N.; Boyle, M.J.; Boudreau, R.J.; Loken, M.K.

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors.

  2. Airflow measurement inaccuracies in aerosol imaging.

    PubMed

    Sirr, S A; Miltz-Miller, S; Notman, D N; Boyle, M J; Boudreau, R J; Loken, M K

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors. PMID:3952316

  3. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  4. 21 CFR 820.72 - Inspection, measuring, and test equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspection, measuring, and test equipment. 820.72 Section 820.72 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Production and Process Controls § 820.72 Inspection, measuring, and test equipment. (a)...

  5. Field power measurements of imaging equipment

    SciTech Connect

    McWhinney, Marla; Homan, Gregory; Brown, Richard; Roberson, Judy; Nordman, Bruce; Busch, John

    2004-05-14

    According to the U.S. Department of Energy, electricity use by non-PC commercial office equipment is growing at an annual rate of nearly 5 percent (AEO 2003). To help address this growth in consumption, U.S. EPA periodically updates its ENERGY STAR specifications as products and markets change. This report presents background research conducted to help EPA update the ENERGY STAR specification for imaging equipment, which covers printers, fax machines, copiers, scanners, and multifunction devices (MFDs). We first estimated the market impact of the current ENERGY STAR imaging specification, finding over 90 percent of the current market complies with the specification. We then analyzed a sample of typical new imaging products, including 11 faxes, 57 printers and 19 copiers/MFD. For these devices we metered power levels in the most common modes: active/ready/sleep/off, and recorded features that would most likely affect energy consumption. Our metering indicates that for many products and speed bins, current models consume substantially less power than the current specification. We also found that for all product categories, power consumption varied most considerably across technology (i.e. inkjet vs. laser). Although inkjet printers consumed less energy than laser printers in active, ready and sleep-mode, they consumed more power on average while off, mostly due to the use of external power supplies. Based on these findings, we developed strategies for the ENERGY STAR program to achieve additional energy reductions. Finally, we present an assessment of manufacturer's ENERGY STAR labeling practices.

  6. Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements

    NASA Astrophysics Data System (ADS)

    Quijano, Ana Lía; Sokolik, Irina N.; Toon, Owen B.

    2000-11-01

    We investigate the importance of the layered vertical distribution of absorbing and non-absorbing tropospheric aerosols for the retrieval of the aerosol optical depth from satellite radiances measured at visible wavelengths at a single viewing angle. We employ lidar and in-situ measurements of aerosol extinction coefficients and optical depths to model radiances which would have been observed by a satellite. Then, we determine the aerosol optical depth that would produce the observed radiance under various sets of assumptions which are often used in current retrieval algorithms. We demonstrate that, in the presence of dust or other absorbing aerosols, the retrieved aerosol optical depth can underestimate or overestimate the observed optical depth by a factor of two or more depending on the choice of an aerosol optical model and the relative position of different aerosol layers. The presence of undetected clouds provides a further complication.

  7. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  8. Aerosol effect on Umkehr ozone profiles using Stratospheric Aerosol and Gas Experiment II measurements

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Cunnold, D. M.

    1994-01-01

    This study examines 1211 cases of coincident ozone profiles derived from 1164 Umkehrs and 928 Stratospheric Aerosol and Gas Experiment II (SAGE II) profiles within 1000 km and 12 hours between October 1984 and April 1989 to study the stratospheric-aerosol effect on Umkehr ozone profiles. Because of the close correspondence of stratospheric aerosol optical depth at the SAGE II-measured 0.525-micrometer wavelength and the extrapolated 0.32 Umkehr wavelength determined in this study we use the 0.525-micrometer data to determine the aerosol effect on Umkehr profiles. At the 95% confidence level, we find the following errors to the Umkehr ozone amounts: in Umkehr layer 9 (-2.9 +/- 2.1), layer 8 (-2.3 +/- 1.1), layer 7 (0.1 +/- 1.1), layer 6 (2.2 +/- 1.0), layer 5 (-1.5 +/- 0.8), and layer 4 (-2.4 +/- 1.7) in percent ozone amount per 0.01 stratospheric aerosol optical depth. These results agree with previous theoretical and empirical studies within their respective error bounds in layers 9, 8, and 7. The results in layers 6, 5, and 4 differ significantly from those in previous works. Using only those eight stations with more than 47 coincidences results in mean aerosol effects that are not significantly different from the 14-station results. Because SAGE II and Umkehr produce different ozone retrievals in layer 9 and because the intralayer correlation of SAGE II ozone and aerosol in layer 9 is nonzero, one must exercise some caution in attributing the entire SAGE II-Umkehr difference in this layer to an aerosol effect.

  9. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  10. Precision Ultrasonic Wave Measurements With Simple Equipment

    PubMed Central

    Fick, Steven E.; Palmer, C. Harvey

    2001-01-01

    We describe the design and construction of a relatively simple, inexpensive laser interferometer system for accurate measurements of ultrasonic surface displacement waveforms in reasonably friendly environments. We show how analysis of a single waveform can provide both the calibration constant required for absolute measurements and an estimate of the uncertainty of these measurements. We demonstrate the performance of this interferometer by measuring ultrasonic waveforms generated by a novel conical-element ultrasonic transducer.

  11. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prévôt, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-07-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  12. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prevot, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-03-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 26%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  13. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  14. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  15. Aircraft measurement of organic aerosols over China.

    PubMed

    Wang, Gehui; Kawamura, Kimitaka; Hatakeyama, Shiro; Takami, Akinori; Li, Hong; Wang, Wei

    2007-05-01

    Lower to middle (0.5-3.0 km altitude) tropospheric aerosols (PM2.5) collected by aircraft over inland and east coastal China were, for the first time, characterized for organic molecular compositions to understand anthropogenic, natural, and photochemical contribution to the air quality. n-Alkanes, fatty acids, sugars, polyacids are detected as major compound classes, whereas lignin and resin products, sterols, polycyclic aromatic hydrocarbons, and phthalic acids are minor species. Average concentrations of all the identified compounds excluding malic acid correspond to 40-50% of those reported on the ground sites. Relative abundances of secondary organic aerosol (SOA) components such as malic acid are much higher in the aircraft samples, suggesting an enhanced photochemical production over China. Organic carbon (OC) concentrations in summer (average, 24.3 microg m(-3)) were equivalent to those reported on the ground sites. Higher OC/EC (elemental carbon) ratios in the summer aircraft samples also support a significant production of SOA over China. High loadings of organic aerosols in the Chinese troposphere may be responsible to an intercontinental transport of the pollutants and potential impact on the regional and global climate changes. PMID:17539513

  16. Design and performance measurements of an airborne aerosol backscatter lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.; Brothers, Alan M.; Dermenjian, Stephen H.; Esproles, Carlos

    1990-01-01

    The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of atmospheric aerosol backscatter at infrared wavelengths. An airborne backscatter lidar is discussed, which has been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. The instrument characteristics and representative flight measurement results are presented.

  17. Equipment Development for Automatic Anthropometric Measurements

    NASA Technical Reports Server (NTRS)

    Cater, J. P.; Oakey, W. E.

    1978-01-01

    An automated procedure for measuring and recording the anthropometric active angles is presented. The small portable system consists of a microprocessor controlled video data acquisition system which measures single plane active angles using television video techniques and provides the measured data on sponsored-specified preformatted data sheets. This system, using only a single video camera, observes the end limits of the movement of a pair of separated lamps and calculates the vector angle between the extreme positions.

  18. Global distribution of stratospheric aerosols by satellite measurements

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    1982-01-01

    A description is given of the first-ever global stratospheric aerosol climatology which is being developed by the earth-orbiting SAM II and SAGE satellite-based sensors. These sensors use the technique of solar occulation; that is, for every spacecraft sunrise and sunset, the modulation of solar intensity caused by the intervening earth-limb is measured. These data are mathematically inverted to yield vertical profiles of aerosol extinction coefficients with 1 km resolution. The data show seasonal variations which are similar in each hemisphere, with strong correlation between aerosol extinction and the corresponding temperature field. Typical values of extinction in the stratosphere are found to be about 0.0001 to 0.0002 per km at 1 micrometer; stratospheric optical depths at this wavelength are about 0.002. The peak extinction in the stratospheric aerosol layer follows the tropopause with altitude, with peak extinction ratios about 10 km above the local tropopause.

  19. Optical Modeling and Interpretation of TRACE-P Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Grant, W. B.; Anderson, B. E.; Browell, E. V.; Butler, C. F.; Brackett, V. G.; Jordan, C. E.

    2002-12-01

    The NASA Langley airborne UV Differential Absorption Lidar (DIAL) system participated in the NASA-sponsored Transport and Atmospheric Chemistry near the Equator-Pacific (TRACE-P) mission, designed to study transport and transformation of emissions from Asia, from February 26 to April 9, 2001. The UV DIAL system measures backscatter in both nadir and zenith at 1064, 600, and 300 nm and depolarization ratio in the nadir at 600 nm. From the lidar backscatter measurement, the aerosol scattering ratio (ASR) is determined. The ASR is the ratio of aerosol backscatter to molecular backscatter and is derived by dividing the total backscatter by a standard atmosphere molecular density profile then normalizing in some low-aerosol region of the atmosphere. The wavelength dependence of aerosol backscatter, which is related to aerosol size, is determined from the ASRs at 1064 and 600 nm. The depolarization ratio, which is sensitive to irregularly shaped particles, is used to determine the presence of dust. Dust encountered during this mission originated primarily in China, but also in India and Africa. In situ instruments onboard the DC-8 provide additional information such as meteorological parameters, aerosol size distributions and chemical composition, and gas concentrations. These in situ data are being used along with the ASRs to help determine the aerosol optical properties. These optical properties will then enable the use of the extensive lidar profiles to achieve the goal of estimating the effects of aerosols on radiative forcing of the atmosphere over the western Pacific as well as over Asia near the coast.

  20. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements. PMID:19204483

  1. Trace gas and aerosol measurements at Whiteface Mountain, New York

    SciTech Connect

    Kelly, T.J.

    1985-09-01

    This report presents the results of a 12-month program of atmospheric chemical measurements performed at Whiteface Mountain, New York. The purpose of this program was to study the concentrations and seasonal variability of several atmospheric chemical species which are of importance in the acid deposition issue. Whiteface Mountain (WFM) was chosen as the site of these measurements because it lies in the Adirondack Mountains of New York State, one of the areas considered susceptible to ecological damage from acid deposition. These measurements were the first long term study of atmospheric chemistry in the Adirondacks. Continuous real-time measurements of SO/sub 2/ and NO/sub x/ were made with commercial instruments modified for increased sensitivity and stability, and aerosol composition, HNO/sub 3/ and SO/sub 2/ were measured with a three-stage filter pack. The main conclusions of this work are (1) that concentrations of gaseous SO/sub 2/ and NO/sub x/ are highest in the winter months, whereas their oxidation products SO/sub 4//sup 2 -/ and HNO/sub 3/ were highest in summer; (2) that aerosol acidity is closely associated with SO/sub 4//sup 2 -/, aerosol NO/sub 3//sup -/ concentrations being very low in all seasons; (3) and that the relative importance of aerosol acidity and HNO/sub 3/ vary with season, because the strong seasonal variation in SO/sub 4//sup 2 -/ results in a very strong seasonal variation in aerosol acidity.

  2. iSPEX: everybody can measure atmospheric aerosols with a smartphone spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Snik, F.; Heikamp, S.; de Boer, J.; Keller, C. U.; van Harten, G.; Smit, J. M.; Rietjens, J. H. H.; Hasekamp, O.; Stam, D. M.; Volten, H.; iSPEX Team

    2012-04-01

    An increasing amount people carry a mobile phone with internet connection, camera and large computing power. iSPEX, a spectropolarimetric add-on with complementary app, instantly turns a smartphone into a scientific instrument to measure dust and other aerosols in our atmosphere. A measurement involves scanning the blue sky, which yields the angular behavior of the degree of linear polarization as a function of wavelength, which can unambiguously be interpreted in terms of size, shape and chemical composition of the aerosols in the sky directly above. The measurements are tagged with location and pointing information, and submitted to a central database where they will be interpreted and compiled into an aerosol map. Through crowdsourcing, many people will thus be able to contribute to a better assessment of health risks of particulate matter and of whether or not volcanic ash clouds are dangerous for air traffic. It can also contribute to the understanding of the relationship between atmospheric aerosols and climate change. We will give a live presentation of the first iSPEX prototype. Furthermore, we will present the design and the plans for producing the iSPEX add-on, app and website. We aim to distribute thousands of iSPEX units, such that a unique network of aerosol measurement equipment is created. Many people will thus contribute to the solution of several urgent social and scientific problems, and learn about the nature of light, remote sensing and the issues regarding atmospheric aerosols in the process. In particular we focus on school classes where smartphones are usually considered a nuisance, whereas now they can be a crucial part of various educational programs in science class.

  3. Measurement of mixed biomass burning and mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Koehler, C. H.; Trautmann, T.; Lindermeir, E.

    2009-03-01

    From January 19th to February 7th, 2008, we installed a Fourier transform infrared spectrometer (FTIR) at Praia Airport on the island of Santiago, Cape Verde. Our goal was to measure the combined radiative effect of biomass burning aerosol and mineral dust usually observed there during that time of the year, when mineral dust emerging from the Sahara mixes with biomass burning aerosol transported north-westwards from the Sahelian region. Our measurements were part of the Saharan Mineral Dwst Experiment 2 (SAMUM 2) funded by the German Research Foundation (DFG) as continuation of the SAMUM field experiment in Morocco in 2006. SAMUM 2 is a joint venture of several German research institutes and universities and included both ground based as well as airborne measurements with the DLR Falcon research aircraft. The ground based instrumentation included spectrometers for visible and thermal infrared downwelling radiation, sun photometers, LIDAR and particle impactors while the Falcon was equipped with LIDAR and several instruments for aerosol analysis and sample return. A comparison of the FTIR measurements with radiative transfer simulations yields the expected aerosol forcing in the atmospheric window region after application of a suitable calibration method.

  4. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  5. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  6. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  7. A Measurement-Based Climatology of Aerosol Radiative Properties and Direct Radiative Forcing in the Southeastern U.S.-Initial Results from a Regionally-Representative Site

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Robertson, L.; Taubman, B.; Brewbaker, A.; Sheridan, P. J.

    2011-12-01

    The southeastern U.S.(SEUS), home to large emission sources of biogenic VOCs, is one of only a few regions where surface temperatures did not increase from 1901-2005. Recent studies (Goldstein et al., 2008) show that negative top-of-atmosphere (TOA) aerosol direct radiative forcing (DRF) is consistent with a warm-season regional cooling effect dominated by secondary organic aerosols resulting from BVOC oxidation in the presence of anthropogenic NOx and SO2. Established in 2009, the Appalachian Atmospheric Interdisciplinary Research Facility (AppalAIR) at Appalachian State University is home to the only co-located NOAA-ESRL and NASA AERONET aerosol monitoring sites in the SEUS. Equipped with a comprehensive list of aerosol optical, microphysical, and newly-added chemical measurements, this regionally representative, high elevation site (1100 m asl) removed from local pollution sources allows us to significantly advance the state of the science by better quantifying regional aerosol DRF, the relative contributions of source types and source regions to DRF, seasonal and diurnal DRF variability, and an estimate of the anthropogenic contribution to DRF. Seasonal statistics of measured aerosol optical and microphysical properties, aerosol optical depth, and aerosol DRF will be presented. The optical property statistics are placed in the context of those measured at the other three U.S.-based NOAA-ESRL aerosol monitoring sites. Winter months are characterized by smaller, more absorbing particles, low aerosol loading, and negligible DRF. Summer months are characterized by lower aerosol concentrations of primarily scattering particles, high aerosol loading, and a significant negative DRF. Aerosols measured at AppalAIR were smaller in size than those measured at the other U.S. NOAA-ESRL sites for all seasons and seasonal variability of aerosol light scattering was largest. Air mass back-trajectories were used to classify aerosols by source type and region for each season in

  8. 27 CFR 19.84 - Gauging and measuring equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... measuring equipment and means required by 27 CFR part 30 and this part to be furnished by the proprietor for the purpose of ascertaining the quantity, alcoholic content, specific gravity, and producing...

  9. RADIOCARBON MEASUREMENTS ON PM-2.5 AMBIENT AEROSOL

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. The methodology has been extensively used in past wintertime studies to quantify the contribution of wood smoke to ambient aerosol. In summertime such measurements can p...

  10. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall

  11. AEROSOL MEASUREMENTS IN THE SUBMICRON SIZE RANGE, STUDIES WITH AN AEROSOL CENTRIFUGE, A NEW DIFFUSION BATTERY, A LOW PRESSURE IMPACTOR AND AN ADVANCED CONDENSATION NUCLEI COUNTER

    EPA Science Inventory

    The report summarizes the investigations of four aerosol classifiers which cover finite, but overlapping ranges of the aerosol particle size spectrum. The first part is concerned with a cylindrical aerosol centrifuge, which measures aerodynamic equivalent diameters precisely. Thi...

  12. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  13. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  14. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  15. Towards an improved aerosol product from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Burrows, John; Hommel, Rene

    2015-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite from August 2002 to April 2012. A progress in the development of SCIAMACHY aerosol data product within the ROSA/ROMIC project including the improvements in the extinction coefficient data base and steps towards the retrieval of particle size distribution parameters is reported.

  16. Aerosols in the arid southwestern United States - Measurements of mass loading, volatility, size distribution, absorption characteristics, black carbon content, and vertical structure to 7 km above sea level

    NASA Astrophysics Data System (ADS)

    Pinnick, R. G.; Fernandez, G.; Martinez-Andazola, E.; Hinds, B. D.; Hansen, A. D. A.; Fuller, K.

    1993-02-01

    A variety of methods and sensors including quartz fiber filter samplers, hi-vol samplers, ground-based and aircraft-mounted light-scattering aerosol counters, an aerosol counter equipped with a heated inlet, and an aethalometer are used to determine near-surface and lower tropospheric aerosol characteristics at several remote sites near Orogrande, New Mexico. The results of these measurements, which were taken sporadically over the last 15 yr, suggest that regardless of season, aerosol consists of two modes - a submicron fraction composed primarily of ammonium/acid sulfates and elemental black carbon and a supermicron fraction composed mainly of quartz and clay minerals of soil origin. Limited aircraft measurements in the lowest few kilometers of the troposphere reveal a well-mixed aerosol for a neutral atmospheric condition, and a significant decrease in aerosol concentration with altitude for a stable atmospheric condition.

  17. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  18. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  19. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  20. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  1. Balloonborne ozone and aerosol measurements in the antarctic ozone hole

    SciTech Connect

    Hofmann, D.J.; Harder, J.W.; Rolf, S.R.; Rosen, J.M. )

    1987-01-01

    The National Ozone Expedition (NOZE) was mounted in 1986 using winter fly-in flights to McMurdo Station in August, which is approximately the time the ozone reduction begins. The University of Wyoming Atmospheric Physics group participated in this expedition through balloonborne measurements of the vertical distribution of ozone and aerosol particles. Between 24 August and 6 November, 33 ozone soundings, 6 aerosol sounding, and 3 condensation nuclei soundings were conducted using polyethylene balloons which were able to penetrate the cold (< {minus}80C) antarctic stratosphere. The authors summarize these results here.

  2. FERMENTATION PROCESS MONITORING THROUGH MEASUREMENT OF AEROSOL RELEASE

    EPA Science Inventory

    Fermentation involves many complex biological processes some of which are sometimes difficult to monitor. n this study, aerosol measurement was explored as an additional technique for monitoring a batch aerobic fermentation process using Escherichia coli strain W3110. sing this t...

  3. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    Efforts to bound the contribution of light absorption in aerosol radiative forcing is still very much an active area of research in large part because aerosol extinction is dominated by light scattering. In response to this and other technical issues, the aerosol community has actively pursued the development of new instruments to measure aerosol absorption (e.g., photoacoustic spectroscopy (PAS) and multi-angle absorption photometer (MAAP)). In this poster, we introduce the technique of photothermal interferometry (PTI), which combines the direct measurement capabilities of photothermal spectroscopy (PTS) with high-sensitivity detection of the localized heating brought about by the PT process through interferometry. At its most fundamental level, the PTI technique measures the optical pathlength change that one arm of an interferometer (referred to as the 'probe' arm) experiences relative to the other arm of the interferometer (called the 'reference' arm). When the two arms are recombined at a beamsplitter, an interference pattern is created. If the optical pathlength in one arm of the interferometer changes, a commensurate shift in the interference pattern will take place. For the specific application of measuring light absorption, the heating of air surrounding the light- absorbing aerosol following laser illumination induces the optical pathlength change. This localized heating creates a refractive index gradient causing the probe arm of the interferometer to take a slightly different optical pathlength relative to the unperturbed reference arm. This effect is analogous to solar heating of a road causing mirages. As discussed above, this altered optical pathlength results in a shift in the interference pattern that is then detected as a change in the signal intensity by a single element detector. The current optical arrangement utilizes a folded Jamin interferometer design (Sedlacek, 2006) that provides a platform that is robust with respect to sensitivity

  4. Measurements of Gases and Aerosols during 2010Cal-Mex

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhang, R.; Molina, L.

    2012-04-01

    The major goal of the collaborative Cal-Mex 2010 research project is to assess the sources and processing of emissions along the California-Mexico border region and their effects on regional air quality and climate in order to provide scientific information to decision makers of both nations when addressing these two inter-related issues. During the Cal-Mex 2010 field study, the TAMU teams have collected extensive data sets from Tijuana/San Diego border, including volatile organic compounds (VOCs), gaseous sulfuric acid (H2SO4) and a suite set of physical and chemical parameters of aerosols. This comprehensive data set requires additional effort to process and analyze the measurements of gases and aerosols during Cal-Mex 2010. In this talk, preliminary data analysis of gases and aerosols will be presented, including VOCs and particle mixing states, morphology, and effective densities.

  5. Modeling of the Process of Welding Aerosol Formation Taking Place During Mining Equipment Fabrication

    NASA Astrophysics Data System (ADS)

    Grishagin, V. M.; Filonov, A. V.; Kiselev, S. V.

    2016-04-01

    In the paper the authors formulate the thermodynamic model of welding aerosol formation. The thermodynamic parameters of chemical compounds and aerosol phases are calculated. The authors develop a program for numerical calculation of various elements emission under varied parameters changing the welding conditions.

  6. Coarse mode aerosol measurement using a Low Turbulence Inlet

    NASA Astrophysics Data System (ADS)

    Brooke, J.; Bart, M.; Trembath, J.; McQuaid, J. B.; Brooks, B. J.; Osborne, S.

    2012-04-01

    The Sahara desert is a major natural source of global mineral dust emissions (Forster et al., 2007) through the mobilisation and lifting of dust particles into the atmosphere from dust storms. A significant fraction of this dust is in the aerosol coarse mode (Weinzierl et al., 2009). It is highlighted of the difficulty in making accurate and reliable measurements from an aircraft platform, particularly that of coarse mode aerosol (Wendisch et al., 2004). To achieve the measurement of a representative aerosol sample an aerosol inlet, on an aircraft, is required for the delivery of the sample to the instruments making the measurements. Inlet design can modify aerosol size distribution through either underestimating due to aerosol losses or overestimation due to enhancements. The Low Turbulence Inlet (LTI) was designed to improve inlet efficiency. This is achieved by reducing turbulence flow within the tip of the inlet, reducing impaction of particles to the walls of the inlet (Wilson et al., 2004). The LTI further maintains isokinetic sampling flow (free stream velocity, U0 and sampling velocity, U are equal to 1). Dust aerosol over the Sahara desert provides an excellent environment to test and quantify the capabilities of the LTI on the FAAM BAe 146, whilst enabling in-situ dust measurement. The LTI was operated during the Fennec field campaign in June 2011 with 11 flights during the campaign over Mauritania and Mali. We are using the LTI to provide critical information on the sampling characteristics of the inlet used by nearly all aerosol instruments inside the aircraft (AMS, Nephelometer, PSAP, and CCN). Inlet experiments were performed with identical Optical Particle Counters (OPC) connected to the rosemount and LTI with size distribution for each inlet measured and Rosemount enhancements determined. Rosemount inlet enhancements were determined to be 2 to 4 times for particles up to 2.5 µm. A key parameter in aerosol measurement is size distribution, in which

  7. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  8. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Ichoku, C.

    2013-02-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS - altogether, a total of 11 different aerosol products - were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the

  9. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  10. Retrieval of Aerosol Properties from Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.

    1999-01-01

    The direct-beam spectral extinction of solar radiation contains information on atmospheric composition in a form that is essentially free from the data analysis complexities that often arise from multiple scattering. Ground based Multi-Filter Shadowband Radiometer (MFRSR) measurements provide such information for the vertical atmospheric column path, while solar occultation measurements from a satellite platform provide horizontal slices through the atmosphere. We describe application of a Multi-Spectral Atmospheric Column Extinction (MACE) analysis technique used to analyze MFRSR data also to occultation measurements made by SAGE II. For analysis, we select the 1985 Nevado del Ruiz volcanic eruption period to retrieve atmospheric profiles of ozone and NO2, and changes in the stratospheric aerosol size and optical depth. The time evolution of volcanic aerosol serves as a passive tracer to study stratospheric dynamics, and changes in particle size put constraints on the sulfur chemistry modeling of volcanic aerosols. Paper presented at The '99 Kyoto Aerosol-Cloud Workshop, held Dec 1-3, 1999, Kyoto, Japan

  11. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  12. SAMPLING DURATION DEPENDENCE OF SEMI-CONTINUOUS ORGANIC CARBON MEASUREMENTS ON STEADY STATE SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Semi-continuous organic carbon concentrations were measured through several experiments of statically generated secondary organic aerosol formed by hydrocarbon + NOx irradiations. Repeated, randomized measurements of these steady state aerosols reveal decreases in the observed c...

  13. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2016-02-01

    Four years of continuous aerosol number size distribution measurements from the Arctic Climate Observatory in Tiksi, Russia, are analyzed. Tiksi is located in a region where in situ information on aerosol particle properties has not been previously available. Particle size distributions were measured with a differential mobility particle sizer (in the diameter range of 7-500 nm) and with an aerodynamic particle sizer (in the diameter range of 0.5-10 μm). Source region effects on particle modal features and number, and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July, with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June (0.42 μg m-3) and in September-October (0.36-0.57 μg m-3). These seasonal cycles in number and mass concentrations are related to isolated processes and phenomena such as Arctic haze in early spring, which increases accumulation and coarse-mode numbers, and secondary particle formation in spring and summer, which affects the nucleation and Aitken mode particle concentrations. Secondary particle formation was frequently observed in Tiksi and was shown to be slightly more common in marine, in comparison to continental, air flows. Particle formation rates were the highest in spring, while the particle growth rates peaked in summer. These results suggest two different origins for secondary particles, anthropogenic pollution being the important source in spring and biogenic emissions being significant in summer. The impact of temperature-dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant: the increase in both the particle mass and the CCN (cloud condensation nuclei) number with temperature was found to be higher than in any previous study done over the boreal forest region. In addition

  14. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  15. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  16. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  17. Measurements of ocean derived aerosol off the coast of California

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Frossard, A. A.; Russell, L. M.; Hakala, J.; PetäJä, T.; Kulmala, M.; Covert, D. S.; Cappa, C. D.; Li, S.-M.; Hayden, K. L.; Nuaaman, I.; McLaren, R.; Massoli, P.; Canagaratna, M. R.; Onasch, T. B.; Sueper, D.; Worsnop, D. R.; Keene, W. C.

    2012-06-01

    Reliable characterization of particles freshly emitted from the ocean surface requires a sampling method that is able to isolate those particles and prevent them from interacting with ambient gases and particles. Here we report measurements of particles directly emitted from the ocean using a newly developed in situ particle generator (Sea Sweep). The Sea Sweep was deployed alongside R/V Atlantis off the coast of California during May of 2010. Bubbles were generated 0.75 m below the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation on board the ship. The number size distribution of the directly emitted, nascent particles had a dominant mode at 55-60 nm (dry diameter) and secondary modes at 30-40 nm and 200-300 nm. The nascent aerosol was not volatile at 230°C and was not enriched in SO4=, Ca++, K+, or Mg++above that found in surface seawater. The organic component of the nascent aerosol (7% of the dry submicrometer mass) volatilized at a temperature between 230 and 600°C. The submicrometer organic aerosol characterized by mass spectrometry was dominated by non-oxygenated hydrocarbons. The nascent aerosol at 50, 100, and 145 nm dry diameter behaved hygroscopically like an internal mixture of sea salt with a small organic component. The CCN/CN activation ratio for 60 nm Sea Sweep particles was near 1 for all supersaturations of 0.3 and higher indicating that all of the particles took up water and grew to cloud drop size. The nascent organic aerosol mass fraction did not increase in regions of higher surface seawater chlorophyll but did show a positive correlation with seawater dimethylsulfide (DMS).

  18. Eddy Covariance Measurements of the Sea-Spray Aerosol Flu

    NASA Astrophysics Data System (ADS)

    Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.

    2015-12-01

    Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.

  19. In situ measurements of light extinction of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Metzig, Gunthard

    1991-01-01

    The extinction coefficient of ambient aerosol particles was measured using a multiple transverse cell (White Cell) with an effective path length of 100 m. Measurements were performed at seven fixed wavelengths in the visible region using a white light source and an interference filter set with 2 nm bandwidth and center wavelengths of 405.5, 450, 500, 550, 600, 650, and 692.5 nm. The total air flow in the system was 16.7 1/min; the volume of the chamber is close to 10 liters. It takes about one minute to fill the chamber with particles homogeneously, but it needs up to five minutes to get the chamber particle-free. Before measuring the aerosol, the transmission of the particle-free air is determined; then the aerosol passes through the chamber for a period of ten minutes; after this the transmission of particle-free ambient air is measured again for eight minutes. All times are subject to change. At present the measurements are done with a frequency of 1 Hz, but an increase of up to 30 Hz is possible. The lower detection limit of the used White Cell is 3.4 by 10(exp -06) per m. This is sufficient for measuring the extinction coefficient during most tropospheric and some stratospheric conditions. It will be necessary to increase the sensitivity by a factor of ten when measurements under the clearest stratospheric conditions take place.

  20. Methods for measuring performance of vehicle cab air cleaning systems against aerosols and vapours.

    PubMed

    Bémer, D; Subra, I; Régnier, R

    2009-06-01

    Vehicle cabs equipped with an effective air cleaning and pressurization system, fitted to agricultural and off-road machineries, isolate drivers from the polluted environment, in which they are likely to work. These cabs provide protection against particulate and gaseous pollutants generated by these types of work activities. Two laboratory methods have been applied to determining the performance characteristics of two cabs of different design, namely, optical counting-based measurement of a potassium chloride (KCl) aerosol and fluorescein aerosol-based tracing. Results of cab confinement efficiency measurements agreed closely for these two methods implemented in the study. Measurements showed that high confinement efficiencies can be achieved with cabs, which are properly designed in ventilation/cleaning/airtightness terms. We also noted the importance of filter mounting airtightness, in which the smallest defect is reflected by significant degradation in cab performance. Determination of clean airflow rate by monitoring the decrease in test aerosol concentration in the test chamber gave excellent results. This method could represent an attractive alternative to methods involving gas tracing or air velocity measurement at blowing inlets. PMID:19406910

  1. SAGE measurements of Mount St. Helens volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Kent, G. S.

    1982-01-01

    The SAGE satellite system was used to make measurements on the optical extinction produced by stratospheric aerosols from the Mount St. Helens eruption. Two periods of observation were analyzed. In the first period (May 21 to 31, 1980), SAGE moved southward from latitude 60 N, and crossed the United States approximately one week after the May 18th eruption. Enhancements in stratospheric extinction were confined to latitudes between about 55 N and 25 N and longitudes between 10 W and 140 W. Individual layers were observed up to altitudes of 23 km. The geographical location of these layers corresponded closely to that expected on the basis of high-altitude meteorological data. During June and much of July, SAGE was, by reason of its geographical position and other orbital characteristics, unable to make further measurements on the northern hemisphere. Between July 19th and August 12th a second southward pass over the northern hemisphere occurred and further observations were made. The volcanic aerosol in the stratosphere was now found to be widely distributed over the hemisphere, the maximum concentrations being north of 50 N. The aerosol showed considerable inhomogeneity and had reached as far south as 15 N but little, if any, had crossed the equator into the southern hemisphere. Individual layers at different heights were still distinguishable. The total stratospheric aerosol loading on this occasion appeared to be greater than in May and corresponded to an increase in global stratospheric mass of between 50 and 100 percent.

  2. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  3. Measurements of Natural Radioactivity in Submicron Aerosols in Mexico City.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Sterling, K.; Sturchio, N. C.

    2003-12-01

    Natural radionuclides can be useful in evaluating the transport of ozone and aerosols in the troposphere. Beryllium-7, which is produced by cosmic ray interactions in the upper troposphere and lower stratosphere and becomes adsorbed on fine aerosols, can be a useful indicator of upper air transport into a region. Lead-210 is produced by the decay of radon-222 out-gassed into the lower atmosphere from ground-based uranium deposits. Potassium-40, found in soils, can act as a measure of wind-blown dust and also comes from burning of wood and other biomass that is enriched in this natural radioisotope. Thus, both lead-210 and potassium-40 can aid in identification of aerosols sourced in the lower atmosphere. As part of our continuing interest in the lifetimes and sources of aerosols and their radiative effects, we report here measurements of fine aerosol radioactivity in Mexico City, one of the largest megacities in the world. Samples were collected on quartz fiber filters by using cascade impactors (Sierra type, Anderson Instruments) and high-volume air samplers from the rooftop of the main laboratory of El Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA). By using stage 4 of the impactor and timers, we were able to collect integrated samples of sizes > 1 micrometer and < 1 micrometer over 12-hr time periods daily for approximately one month in April 2003. Samples were counted at the University of Illinois at Chicago by using state-of-the-art gamma counting (beryllium-7, 477.6 keV; potassium-40, 1460.8 keV; lead-210, 46.5 keV). The beryllium-7 data indicate one possible upper-air transport event during April 2003. As expected, the lead-210 data indicate very little soil contribution to the fine aerosol. The potassium-40 data showed an increase in fine aerosol potassium during Holy Week that might be attributed to local combustion of biomass fuels. The data will be presented and discussed in light of future data analysis and comparison with other

  4. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  5. Residual oil aerosol measurements on refrigerators and liquefiers

    NASA Astrophysics Data System (ADS)

    Pflueckhahn, D.; Anders, W.; Hellwig, A.; Knobloch, J.; Rotterdam, S.

    2014-01-01

    The purity of the process gas is essential for the reliability of refrigerators and liquefiers. Filtration and adsorption of impurities like water, nitrogen, and oil result in a major effort, cost, and maintenance in the helium process. Expensive impurity monitors for moisture, nitrogen, and hydrocarbon contents are required to identify filter failures and leakage immediately during the operation. While water and nitrogen contaminants can be detected reliably, the measurement of oil aerosols at the ppb-level is challenging. We present a novel diagnostic oil aerosol measurement system able to measure particles in the sub-μm range. This unit enabled us to evaluate and improve the oil separation system on a LINDE TCF 50 helium liquefier.

  6. Equipment

    NASA Astrophysics Data System (ADS)

    Szumski, Michał

    This chapter describes the most important features of capillary electrophoretic equipment. A presentation of the important developments in high voltage power supplies for chip CE is followed by preparation of fused silica capillaries for use in CE. Detection systems that are used in capillary electrophoresis are widely described. Here, UV-Vis absorbance measurements are discussed including different types of detection cells—also those less popular (u-shaped, Z-shaped, mirror-coated). Fluorescence detection and laser-induced fluorescence detection are the most sensitive detection systems. Several LIF setups, such as collinear, orthogonal, confocal, and sheath-flow cuvette, are presented from the point of view of the sensitivity they can provide. Several electrochemical detectors for CE, such as conductivity, amperometric, and potentiometric, are also shown and their constructions discussed. CE-MS and much less known CE (CEC)-NMR systems are also described. The examples of automation and robotized CE systems together with their potential fields of application are also presented.

  7. Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements.

    PubMed

    Yamada, Maromu; Takaya, Mitsutoshi; Ogura, Isamu

    2015-01-01

    Nanomaterial particles exhibit a wide range of sizes through the formation of agglomerates/aggregates. To assess nanomaterial exposure in the workplace, accurate measurements of particle concentration and size distribution are needed. In this study, we evaluated the performance of two recently commercialized instruments: a portable scanning mobility particle sizer (SMPS) (NanoScan, TSI Inc.), which measures particle size distribution between 10 and 420 nm and an optical particle sizer (OPS, TSI Inc.), which measures particle size distribution between 300 and 10,000 nm. We compared the data measured by these instruments to conventional instruments (i.e., a widely used laboratory SMPS and an optical particle counter (OPC)) using nano-TiO(2) powder as test aerosol particles. The results showed obvious differences in the size distributions between the new and old SMPSs. A possible reason for the differences is that the cyclone inlet of the new SMPS (NanoScan) acted as a disperser of the weakly agglomerated particles and consequently the concentration increased through the breakup of the agglomerates. On the other hand, the particle concentration and size distributions measured by the OPS were similar to the OPC. When indoor aerosol particles were measured, the size distribution measured by the NanoScan was similar to the laboratory SMPS. PMID:26320727

  8. Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements

    PubMed Central

    YAMADA, Maromu; TAKAYA, Mitsutoshi; OGURA, Isamu

    2015-01-01

    Nanomaterial particles exhibit a wide range of sizes through the formation of agglomerates/aggregates. To assess nanomaterial exposure in the workplace, accurate measurements of particle concentration and size distribution are needed. In this study, we evaluated the performance of two recently commercialized instruments: a portable scanning mobility particle sizer (SMPS) (NanoScan, TSI Inc.), which measures particle size distribution between 10 and 420 nm and an optical particle sizer (OPS, TSI Inc.), which measures particle size distribution between 300 and 10,000 nm. We compared the data measured by these instruments to conventional instruments (i.e., a widely used laboratory SMPS and an optical particle counter (OPC)) using nano-TiO2 powder as test aerosol particles. The results showed obvious differences in the size distributions between the new and old SMPSs. A possible reason for the differences is that the cyclone inlet of the new SMPS (NanoScan) acted as a disperser of the weakly agglomerated particles and consequently the concentration increased through the breakup of the agglomerates. On the other hand, the particle concentration and size distributions measured by the OPS were similar to the OPC. When indoor aerosol particles were measured, the size distribution measured by the NanoScan was similar to the laboratory SMPS. PMID:26320727

  9. Confined Aerosol Jet in Fiber Classification and Dustiness Measurement

    NASA Astrophysics Data System (ADS)

    Dubey, Prahit

    The focus of this dissertation is the numerical analysis of confined aerosol jets used in fiber classification and dustiness measurement. Of relevance to the present work are two devices, namely, the Baron Fiber Classifier (BFC), and the Venturi Dustiness Tester (VDT). The BFC is a device used to length-separate fibers, important for toxicological research. The Flow Combination Section (FCS) of this device consists of an upstream region, where an aerosol of uncharged fibers is introduced in the form of an annular jet, in-between two sheath flows. Length-separation occurs by dielectrophoresis, downstream of the FCS in the Fiber Classification Section (FClS). In its standard operation, BFC processes only small quantities of fibers. In order to increase its throughput, higher aerosol flow rates must be considered. The goal of the present investigation is to understand the interaction of sheath and aerosol flows inside the FCS, and to identify possible limits to increasing aerosol flow rates using Computational Fluid Dynamics (CFD). Simulations involve solution of Navier-Stokes equations for axisymmetric and 3D models of the FCS for six different flow rates, and a pure aerodynamic treatment of the aerosol jet. The results show that the geometry of the FCS, and the two sheath flows, are successful in preventing the emergence of vortices in the FCS for aerosol-to-sheath flow inlet velocity ratios below ≈ 50. For larger aerosol-to-sheath flow inlet velocity ratios, two vortices are formed, one near the inner cylinder and one near the outer cylinder. The VDT is a novel device for measuring the dustiness of powders, relevant for dust management and controlling hazardous exposure. It uses just 10 mg of the test powder for its operation, during which the powder is aerosolized and turbulently dispersed (Re = 19,900) for 1.5s into a 5.7 liter chamber; the aerosol is then gently sampled (Re = 2050) for 240s through two filters located at the chamber top. Pump-driven suction at

  10. A Search for Correlations Between Four Different Atmospheric Aerosol Measurement Systems Atop Rattlesnake Mountain, Washington

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2004-05-01

    Accurate atmospheric aerosol transport measurements are important to international nuclear test monitoring, emergency response, health and ecosystem toxicology, and climate change. An International Monitoring System (IMS) is being established which will include a suite of aerosol radionuclide sensors. To explore the possibility of using the IMS sites to improve the understanding of global atmospheric aerosol transport, four state-of-the-art aerosol measurement systems were placed atop Rattlesnake Mountain at Pacific Northwest National Laboratory. The Radionuclide Aerosol Sampler/Analyzer measures radionuclide concentration via gamma-ray spectroscopy. The Cascade Impactor Beam Analyzer Technique measures 30 elements in three aerosol sizes using PNNLâ's Ion Beams Materials Analysis Laboratory. The Tapered Element Oscillating Microbalance provides time-averaged aerosol mass concentrations for a range of sizes. The Multi-Filter Rotating Shadowband Radiometer measures the solar irradiance to derive an aerosol optical depth. Results and correlations from the four different detectors will be presented.

  11. How Well Can Aerosol Measurements from the Terra Morning Polar Orbiting Satellite Represent the Daily Aerosol Abundance and Properties?

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Holben, B. N.; Tanre, D.; Slutzker, I.; Eck, T. F.; Smirnov, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Terra mission, launched at the dawn of 1999, and Aqua mission to be launched soon, will possess innovative measurements of the aerosol daily spatial distribution, distinguish between dust, smoke and regional pollution and measure aerosol radiative forcing of climate. Their polar orbit gives daily global coverage, however measurements are acquired at specific time of the day. To what degree can present measurements from Terra taken between 10:00 and 11:30 AM local time, represent the daily average aerosol forcing of climate? Here we answer this question using 7 years of data from the distributed ground based 50-70 instrument Aerosol Robotic Network (AERONET) This (AERONET) half a million measurement data set shows that Terra aerosol measurements represent the daily average values within 5%. The excellent representation is found for large dust particles or small aerosol particles from Fires or regional pollution and for any range of the optical thickness, a measure of the amount of aerosol in the atmosphere.

  12. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  13. 21 CFR 890.5360 - Measuring exercise equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360...

  14. 21 CFR 890.5360 - Measuring exercise equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360...

  15. 21 CFR 890.5360 - Measuring exercise equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360...

  16. 21 CFR 890.5360 - Measuring exercise equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360...

  17. Listing of solar radiation measuring equipment and glossary

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Greenbaum, S. A.; Patel, A. M.

    1976-01-01

    An attempt is made to list and provide all available information about solar radiation measuring equipment which are being manufactured and are available on the market. The list is in tabular form and includes sensor type, response time, cost data and comments for each model. A cost code is included which shows ranges only.

  18. 21 CFR 890.5360 - Measuring exercise equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360...

  19. Measuring Learner Engagement in Computer-Equipped College Classrooms

    ERIC Educational Resources Information Center

    Bulger, Monica E.; Mayer, Richard E.; Almeroth, Kevin C.; Blau, Sheridan D.

    2008-01-01

    Although engagement and learning appear linked, quantitatively measuring this relationship is challenging. New technologies offer a window into studying the interactions among classroom activity, student engagement, and positive learning outcomes in computer-equipped classrooms. A Classroom Behavioral Analysis System (CBAS) was developed to…

  20. Retrieving Stratospheric Aerosol Extinction from SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, Steffen; Penning de Vries, Marloes; Pukite, Janis; Beirle, Steffen; Wagner, Thomas

    2015-04-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellite measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra-violet, visible and near infra-red spectral range since the launch on EnviSat in 2002 until an instrumental error occurred in April 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g. size distribution) have to be made which results in large uncertainties especially for wavelengths below 700nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. A large scale comparison study with SAGE II for the temporal overlap of both instruments (2002 to 2005) shows promising results.

  1. Aerosol-cloud closure study using RPAS measurements

    NASA Astrophysics Data System (ADS)

    Calmer, R.; Roberts, G.; Sanchez, K. J.; Nicoll, K.; Preissler, J.; Ovadnevaite, J.; Sciare, J.; Bronz, M.; Hattenberger, G.; Rosenfeld, D.; Lauda, S.; Hashimshoni, E.

    2015-12-01

    Enhancements in Remotely Piloted Aircraft Systems (RPAS) have increased their possible uses in many fields for the past two decades. For atmospheric research, ultra-light RPAS (< 2.5kg) are now able to fly at altitudes greater than 3 km and even in cloud, which opens new opportunities to understand aerosol-cloud interactions. We are deploying the RPAS as part of the European project BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). Field experiments in Cyprus and Ireland have already been conducted to study aerosol-cloud interactions in climatically different environments. The RPAS are being utilized in this study with the purpose of complementing ground-based observations of cloud condensation nuclei (CCN) to conduct aerosol-cloud closure studies Cloud microphysical properties such as cloud drop number concentration and size can be predicted directly from the measured CCN spectrum and the observed updraft, the vertical component of the wind vector [e.g., Conant et al, 2004]. On the RPAS, updraft measurements are obtained from a 5-hole probe synchronized with an Inertial Measurement Unit (IMU). The RPA (remotely piloted aircraft) are programmed to fly at a level leg just below cloud base to measure updraft measurements while a scanning CCN counter is stationed at ground level. Vertical profiles confirm that CCN measurements on the ground are representative to those at cloud base. An aerosol-cloud parcel model is implemented to model the cloud droplet spectra associated with measured updraft velocities. The model represents the particle size domain with internally mixed chemical components, using a fixed-sectional approach [L. M. Russell and Seinfeld, 1998]. The model employs a dual moment (number and mass) algorithm to calculate growth of particles from one section to the next for non-evaporating species. Temperature profiles, cloud base, updraft velocities and aerosol size and composition, all

  2. Measurements of Ocean Derived Aerosol Over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P.; Frossard, A. A.; Russell, L. M.; Hakala, J. P.; Kieber, D. J.; Keene, W. C.

    2012-12-01

    Breaking waves on the ocean surface inject sea spray particles into the atmosphere which can act as CCN. Characterization of particles freshly emitted from the ocean surface requires a sampling method that is able to isolate those particles and prevent them from interacting with ambient gases and particles. Here we report measurements of particles directly emitted from the ocean using a newly developed in-situ particle generator (Sea Sweep). The Sea Sweep was deployed alongside RV Ronald H. Brown in the North Atlantic during August of 2012 in two contrasting regions; one in the eutrophic waters on Georges Bank and one in the oligotrophic waters near Bermuda. Bubbles were generated 0.75 m below the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation on board the ship. The measured aerosol properties from the two regions will be compared.

  3. Preliminary Results from the Smoke Aerosol Measurement Experiment - Reflight

    NASA Astrophysics Data System (ADS)

    Urban, D. L.; Ruff, G. A.; Mulholland, G. W.; Yuan, Z.; Cleary, T.; Yang, J.; Meyer, M. E.; Bryg, V. M.

    2012-01-01

    Preliminary results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME- R) which was conducted during Expedition 24 (July- September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. Particle size determinations were made using aerosol instruments and by capturing particles for ground based examination in a Transmission Electron Microscope (TEM). Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the some of the quiescent cases producing substantially larger particles. When combined with particle morphology data from the TEM analysis, these results can be used to guide the design of future smoke detectors.

  4. Novel measurement technologies for ambient and combustion source aerosols

    EPA Science Inventory

    Thie presentaiton examines the chemical properties of atmospheric and combustion source aerosols. It describes the aerosol chemical fractions and the specific chemical constituents in these aerosols. The presentation will cover (i) the limitatins and benefits of hyphenated chroma...

  5. A portable optical particle counter system for measuring dust aerosols.

    PubMed

    Marple, V A; Rubow, K L

    1978-03-01

    A portable battery-operated optical particle counter/multichannel analyzer system has been developed for the numbers size distribution and number concentration measurement of light-absorbing irregular-shaped dust particles. An inertial impactor technique has been used to obtain calibration curves by relating the magnitude of the optical counter's signal to the particle's aerodynamic or Stokes' diameter. These calibrations have been made for aerosols of coal, potash, silica, rock (copper ore), and Arizona road dust particles. PMID:645547

  6. Tethered balloon-based measurements of meteorological variables and aerosols

    NASA Technical Reports Server (NTRS)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  7. Accurate and Precise Zinc Isotope Ratio Measurements in Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Weiss, D.; Gioia, S. M. C. L.; Coles, B.; Arnold, T.; Babinski, M.

    2009-04-01

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of δ66Zn determinations in aerosols is around 0.05 per mil per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in δ66Zn ranging between -0.96 and -0.37 per mil in coarse and between -1.04 and 0.02 per mil in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source.

  8. Mount St. Helens related aerosol properties from solar extinction measurements

    NASA Technical Reports Server (NTRS)

    Michalsky, J. J.; Kleckner, E. W.; Stokes, G. M.

    1982-01-01

    A network of solar radiometers, operated on the North American Continent for an average of 2 years before the first major eruption of Mount St. Helens, Washington, continues to collect direct solar data through the eruptive phase of this volcano. The radiometers collect spectral data through 12 interference filters spanning the sensitivity of the photodiode used as detector. The data are collected every 5 minutes in seven filters and every 15 minutes in five additional filters. A variant of the classical Langley method has been used to measure the optical depth of the aerosols as a function of wavelength. The network, which is the nearest station, is located some 180 kilometers east of the volcano, well within range of noticeable effects during much of the minor as well as major activity. The wavelength dependence of the aerosol-optical depth before and after the 22 July 1980 major eruption, which was well characterized because of favorable meteorological conditions is discussed.

  9. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  10. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  11. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  12. Quantifying aerosol mixing state with entropy and diversity measures

    NASA Astrophysics Data System (ADS)

    Riemer, N.; West, M.

    2013-11-01

    This paper presents the first quantitative metric for aerosol population mixing state, defined as the distribution of per-particle chemical species composition. This new metric, the mixing state index χ, is an affine ratio of the average per-particle species diversity Dα and the bulk population species diversity Dγ, both of which are based on information-theoretic entropy measures. The mixing state index χ enables the first rigorous definition of the spectrum of mixing states from so-called external mixture to internal mixture, which is significant for aerosol climate impacts, including aerosol optical properties and cloud condensation nuclei activity. We illustrate the usefulness of this new mixing state framework with model results from the stochastic particle-resolved model PartMC-MOSAIC. These results demonstrate how the mixing state metrics evolve with time for several archetypal cases, each of which isolates a specific process such as coagulation, emission, or condensation. Further, we present an analysis of the mixing state evolution for a complex urban plume case, for which these processes occur simultaneously. We additionally derive theoretical properties of the mixing state index and present a family of generalized mixing state indexes that vary in the importance assigned to low-mass-fraction species.

  13. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  14. Comparison of LIDAR and Cavity Ring-Down Measurements of Aerosol Extinction and Study of Inferred Aerosol Gradients

    NASA Astrophysics Data System (ADS)

    Eberhard, W. L.; Massoli, P.; McCarty, B. J.; Machol, J. L.; Tucker, S. C.

    2007-12-01

    A LIDAR and a Cavity Ring-Down Aerosol Extinction Spectrometer (CRD) instrument simultaneously measured aerosol extinction at 355-nm wavelength from aboard the Research Vessel Ronald H. Brown during the Texas Air Quality Study II campaign. The CRD measured air sampled from the top of the common mast used by several in situ aerosol optical and chemical instruments. The LIDAR's scan sequence included near-horizontal stares (2° elevation angle) with pointing corrected for ship's roll. Aerosol extinction was retrieved using a variant of the slope method. The LIDAR therefore sampled air over a short vertical extent with midpoint higher above the surface than the CRD intake and at a horizontal distance of as much as a few kilometers. The CRD measured aerosol extinction at dry and at high (near-ambient) relative humidity (RH) levels, which were used to scale the measurements to ambient RH for the comparisons. Data from the two instruments for well-mixed conditions (supported by turbulence and atmospheric stability data) are compared to evaluate the degree of agreement between the two methods and reasons for differences. For instances of larger differences, the aerosol gradient below approximately 100 m altitude is inferred and examined in context of low-level meteorological parameters and LIDAR measurements at higher angles.

  15. Measurements of Atmospheric Aerosol Vertical Distributions above Svalbard, Norway using Unmanned Aerial Systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Johnson, J. E.; Stalin, S.; Telg, H.; Murphy, D. M.; Burkhart, J. F.; Quinn, P.; Storvold, R.

    2015-12-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2015 to investigate the processes controlling aerosol concentrations and radiative effects. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS) on 9 flights totaling 19 flight hours. Measurements were made of particle number concentration and aerosol light absorption at three wavelengths, similar to those conducted in April 2011 (Bates et al., Atmos. Meas. Tech., 6, 2115-2120, 2013). A filter sample was collected on each flight for analyses of trace elements. Additional measurements in the aerosol payload in 2015 included aerosol size distributions obtained using a Printed Optical Particle Spectrometer (POPS) and aerosol optical depth obtained using a four wavelength miniature Scanning Aerosol Sun Photometer (miniSASP). The data show most of the column aerosol mass and resulting optical depth in the boundary layer but frequent aerosol layers aloft with high particle number concentration (2000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Transport of these aerosol layers was assessed using FLEXPART particle dispersion models. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  16. Development and first application of an Aerosol Collection Module (ACM) for quasi online compound specific aerosol measurements

    NASA Astrophysics Data System (ADS)

    Hohaus, Thorsten; Kiendler-Scharr, Astrid; Trimborn, Dagmar; Jayne, John; Wahner, Andreas; Worsnop, Doug

    2010-05-01

    Atmospheric aerosols influence climate and human health on regional and global scales (IPCC, 2007). In many environments organics are a major fraction of the aerosol influencing its properties. Due to the huge variety of organic compounds present in atmospheric aerosol current measurement techniques are far from providing a full speciation of organic aerosol (Hallquist et al., 2009). The development of new techniques for compound specific measurements with high time resolution is a timely issue in organic aerosol research. Here we present first laboratory characterisations of an aerosol collection module (ACM) which was developed to allow for the sampling and transfer of atmospheric PM1 aerosol. The system consists of an aerodynamic lens system focussing particles on a beam. This beam is directed to a 3.4 mm in diameter surface which is cooled to -30 °C with liquid nitrogen. After collection the aerosol sample can be evaporated from the surface by heating it to up to 270 °C. The sample is transferred through a 60cm long line with a carrier gas. In order to test the ACM for linearity and sensitivity we combined it with a GC-MS system. The tests were performed with octadecane aerosol. The octadecane mass as measured with the ACM-GC-MS was compared versus the mass as calculated from SMPS derived total volume. The data correlate well (R2 0.99, slope of linear fit 1.1) indicating 100 % collection efficiency. From 150 °C to 270 °C no effect of desorption temperature on transfer efficiency could be observed. The ACM-GC-MS system was proven to be linear over the mass range 2-100 ng and has a detection limit of ~ 2 ng. First experiments applying the ACM-GC-MS system were conducted at the Jülich Aerosol Chamber. Secondary organic aerosol (SOA) was formed from ozonolysis of 600 ppbv of b-pinene. The major oxidation product nopinone was detected in the aerosol and could be shown to decrease from 2 % of the total aerosol to 0.5 % of the aerosol over the 48 hours of

  17. Measurements of trace gas species and aerosols at three Siberian stations

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Davydov, Denis K.; Kozlov, Artem V.; Ivlev, Georgii A.; Pestunov, Dmitrii A.; Tolmachev, Gennadii N.; Fofonov, Alexander V.

    2014-05-01

    Siberia is of great importance to understand the climate change due to it covers about 10% of Earth's land surface and it has the largest area to be studied under the Pan-Eurasian Experiment (PEEX). In the overview done by Kulmala et al. (2011) authors arrived at a conclusion that continuous and comprehensive measurements of GHGs and aerosols over Siberia are still lacking. Understanding the importance of this problem, in recent years the Institute of Atmospheric Optics SB RAS established several monitoring stations for continuous measurements of aerosol and trace gas species to fill up this gap. In this paper we present some results of continuous measurements of trace gas species and aerosols carried out at three stations located in West Siberia. The first one is a so-called TOR-station located in the scientific campus of Tomsk (56° 28'41"N, 85° 03'15"E), the second one is the Base Experimental Complex (BEC, 56° 28'49"N, 85° 06'08"E) - in the eastern suburbs of Tomsk, and the third one is Fonovaya Observatory (56° 25'07"N, 84° 04'27"E) - in a rural area 60 km west of Tomsk. All equipment of the stations is fully automated and can be monitored via Internet. Gas analyzers are hourly calibrated against standard gas mixtures, micro-flux gas sources, or gas generators, depending on the instrument type and the gas to be detected. Aerosol measurements carried out continuously from March 2010 enabled a frequency and seasonal dependency of the new particle formation (NPF) events to be revealed. NPF events in Siberia are more often observed during spring (from March to May) and early autumn (secondary frequency peak in September). On average, NPF evens took place on 23-28 % of all days. This work was funded by Presidium of RAS (Program No. 4), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5), Interdisciplinary integration projects of Siberian Branch of RAS (No. 35, No. 70, No. 131), Russian Foundation for Basic Research (grants No 14

  18. A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1991-01-01

    An aerosol size distribution model for the stratosphere is inferred based on 5 years of Stratospheric Aerosol and Gas Experiment (SAGE) II measurements of multispectral aerosol and water vapor extinction. The SAGE II aerosol and water vapor extinction data strongly suggest that there is a critical particle radius below which there is a relatively weak dependence of particle number density with size and above which there are few, if any, particles. A segmented power law model, as a simple representation of this dependence, is used in theoretical calculations and intercomparisons with a variety of aerosol measurements including dustsondes, longwave lidar, and wire impactors and shows a consistently good agreement.

  19. A bio-aerosol detection technique based on tryptophan intrinsic fluorescence measurement

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Zhang, Pei; Zhu, Linglin; Zhao, Yongkai; Huang, Huijie

    2011-12-01

    Based on the measurement of intrinsic fluorescence, a set of bio-aerosol including virus aerosols detection instrument is developed, with which a method of calibration is proposed using tryptophan as the target. The experimental results show a good linear relationship between the fluorescence voltage of the instrument and the concentration of the tryptophan aerosol. An excellent correlation (R2>=0.99) with the sensitivity of 4000PPL is obtained. The research demonstrates the reliability of the bio-aerosol detection by measuring the content of tryptophan. Further more the feasibility of prejudgment to the species of bio-aerosol particles with the multi-channel fluorescence detection technology is discussed.

  20. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  1. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  2. Arctic aerosol and cloud measurements performed during IAOOS 2014

    NASA Astrophysics Data System (ADS)

    Mariage, Vincent; Pelon, Jacques; Blouzon, Frédéric; Geyskens, Nicolas; Amarouche, Nadir; Drezen, Christine; Calzas, Michel; Victori, Stéphane; Garracio, Magali; Desautez, Alain; Pascal, Nicolas; Foujols, Thomas; Sarkissian, Alain; Pommereau, Jean-Pierre; Sennechael, Nathalie; Provost, Christine

    2015-04-01

    Better understanding of atmosphere-ice-ocean interactions and in particular of the role of aerosols and clouds in this Earth system is of prime importance in the Arctic. In the frame of the French IAOOS Equipex project, a new observational network is planned to be developed for ocean-ice-atmosphere climate survey over the Arctic, starting in 2015, to complement satellite observations. Eye-safe lidar measurements will allow us to profile aerosols and clouds for the atmospheric part, with the objective to perform regular measurements and characterize the vertical structure and optical properties. Radiation and meteorological parameters will be measured at the surface. A first buoy has been prototyped and deployed in April 2014 at the Barneo site set by the Russian teams at the North Pole. Measurements with the first autonomous backscatter lidar ever deployed in the arctic have been taken from April to end of November 2014 before the buoy was lost. Four profiles a day have been performed allowing a good sampling of cloud variability. Observations have shown that the occurrence of low level clouds was higher than 90% during summer. The project is presented, instrument performance is described and first results are discussed.

  3. Aerosol flux measurements above a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Staebler, R. M.; Liggio, J.; Vlasenko, A.; Li, S.-M.; Hayden, K.

    2011-07-01

    Aerosol fluxes were measured above a mixed forest by Eddy Covariance (EC) with a Fast Mobility Particle Sizer (FMPS) at the Borden Forest Research Station in Ontario, Canada between 13 July and 12 August 2009. Chemically speciated flux measurements were made at a height of 29 m at the same location between 19 July and 2 August, 2006 using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). The Q-AMS measured an average sulphate deposition velocity of 0.3 mm s-1 and an average nitrate deposition velocity of 4.8 mm s-1. The FMPS, mounted at a height of 33 m (approximately 10 m above the canopy top) and housed in a temperature controlled enclosure, measured size-resolved particle concentrations from 3 to 410 nm diameter at a rate of 1 Hz. For the size range 18 < D < 452 nm, 60 % of fluxes were upward. The exchange velocity was between -0.5 and 2.0 mm s-1, with median values near 0.5 mm s-1 for all sizes between 22 and 310 nm. The size distribution of the apparent production rate of particles at 33 m peaked at a diameter of 75 nm. Results indicate a decoupling of the above and below canopy spaces, whereby particles are stored in the canopy space at night, and are then diluted with cleaner air above during the day.

  4. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  5. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  6. Semicontinuous automated measurement of organic carbon in atmospheric aerosol samples.

    PubMed

    Lu, Chao; Rashinkar, Shilpa M; Dasgupta, Purnendu K

    2010-02-15

    A fully automated measurement system for ambient aerosol organic carbon, capable of unattended operation over extended periods, is described. Particles are collected in a cyclone with water as the collection medium. The collected sample is periodically aspirated by a syringe pump into a holding loop and then delivered to a wet oxidation reactor (WOR). Acid is added, and the WOR is purged to measure dissolved CO(2) or inorganic carbonates (IC) as evolved CO(2). The IC background can often be small and sufficiently constant to be corrected for, without separate measurement, by a blank subtraction. The organic material is now oxidized stepwise or in one step to CO(2). The one-step oxidation involves UV-persulfate treatment in the presence of ozone. This treatment converts organic carbon (OC) to CO(2), but elemental carbon is not oxidized. The CO(2) is continuously purged from solution and collected by two sequential miniature diffusion scrubbers (DSs), a short DS preceding a longer one. Each DS consists of a LiOH-filled porous hydrophobic membrane tube with terminal stainless steel tubes that function as conductance-sensing electrodes. As CO(2) is collected by the LiOH-filled DSs, hydroxide is converted into carbonate and the resulting decrease in conductivity is monitored. The simultaneous use of the dual short and long DS units bearing different concentrations of LiOH permits both good sensitivity and a large dynamic range. The limit of detection (LOD, S/N = 3) is approximately 140 ng of C. With a typical sampling period of 30 min at a sampling rate of 30 L/min, this corresponds to an LOD of 160 ng/m(3). The approach also provides information on the ease of oxidation of the carbonaceous aerosol and hence the nature of the carbon contained therein. Ambient aerosol organic carbon data are presented. PMID:20092351

  7. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  8. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  9. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  10. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  11. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Li, Z.; Xu, H.; Chen, X.; Li, K.; Lv, Y.; Li, D.; Zhang, Y.

    2015-12-01

    The chemical composition and mixing status of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurement. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of aerosol or have some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it investigate aerosol information by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduce a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to real measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing states of aerosol particles on aerosol composition retrieval.

  12. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  13. A comparative study of aerosol extinction measurements made by the SAM II and SAGE satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Mccormick, M. P.; Chu, W. P.

    1984-01-01

    SAM II and SAGE are two satellite experiments designed to measure stratospheric aerosol extinction using the technique of solar occultation or limb extinction. Although each sensor is mounted aboard a different satellite, there are occasions when their measurement locations are nearly coincident, thereby providing opportunities for a measurement comparison. In this paper, the aerosol extinction profiles and daily contour plots for some of these events in 1979 are reported. The comparisons shown in this paper demonstrate that SAM II and SAGE are producing similar aerosol extinction profiles within their measurement errors and that since SAM II has been previously validated, these results show the validity of the SAGE aerosol measurements.

  14. Aerosol flux measurements above a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Staebler, R. M.; Liggio, J.; Vlasenko, A.; Li, S.-M.; Hayden, K.

    2010-10-01

    Aerosol fluxes were measured above a mixed forest by Eddy Covariance (EC) with a Fast Mobility Particle Sizer (FMPS) at the Borden Forest Research Station in Ontario, Canada between 13 July and 12 August 2009. The FMPS, mounted at a height of 33 m (approximately 10 m above the canopy top) and housed in a temperature controlled enclosure, measured size-resolved particle concentrations for 3 to 410 nm at a rate of 1 Hz. For the size range 20measurements from a previous study at the same location using a Quadrupole Aerosol Mass Spectrometer (Q-AMS) demonstrate a tendency towards downward fluxes, which may be due to an organic particle component which can not be resolved by the flux mode of the Q-AMS.

  15. Impact of Clouds and Aerosols on Photochemistry During the TexAQS II Radical and Aerosol Measurement Project

    NASA Astrophysics Data System (ADS)

    Flynn, J. H.; Lefer, B. L.; Rappenglueck, B.; Olson, J. R.; Chen, G.

    2007-12-01

    Photochemistry is responsible for the production of tropospheric ozone, the primary component of smog. In 2006, Houston, Texas experienced 20 days with a 1-hour ozone average in excess of 125 ppbv, and 36 days with an 8-hour average over 85 ppbv. Two models were used to assess the impact of clouds and aerosols on the photochemical production and loss of ozone and radicals in a polluted urban environment. The NASA Langley Research Center (LaRC) 0-D photochemical box model was used to assess the changes in the photochemical budgets due to varying cloud and aerosol conditions. The NCAR Tropospheric Ultraviolet and Visible (TUV) radiative transfer model was used to calculate photolysis frequencies for clear sky conditions with a variety of aerosol profiles. These tools were used to analyze the data set collected during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) with respect to ozone and radical budgets. Measurements of trace gasses, aerosols, meteorological parameters, and radiation were collected between mid-August and early October 2006 at the University of Houston. The photochemical model was run using various photolysis rates that reflect a range of atmospheric conditions impacting the actinic flux. Rates from real-time actinic flux measurements include the impact of both the clouds and aerosols that are present. Photolysis rates for clear-sky (cloud-free) conditions, both with and without aerosol profiles were calculated using the TUV radiative transfer model. A comparison of the photochemical ozone and radical budgets resulting from these different rates indicate those sensitivities to the presence of aerosols and clouds. Approximately seven of the 50 days during the campaign were cloud-free and were compared to LaRC-TUV results to show the effects of aerosols. The remaining days show the effects of both aerosols and cloud conditions that varied from partly cloudy to heavy overcast conditions. A cloud camera was used to

  16. Aerosol and Cloud Properties during the Cloud Cheju ABC Plume -Asian Monsoon Experiment (CAPMEX) 2008: Linking between Ground-based and UAV Measurements

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.

    2009-12-01

    Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.

  17. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  18. Retrieval of CO2 Mixing Ratios from CLARS Measurements: Correcting Aerosol Induced Biases

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Natraj, V.; Shia, R. L.; Roehl, C. M.; Yung, Y. L.; Sander, S. P.

    2014-12-01

    A Fourier transform spectrometer at the California Laboratory for Atmospheric Remote Sensing (CLARS) on the top of Mt Wilson, California, measures greenhouse gas concentrations in the Los Angeles basin using reflected sun light. Observations include those with large viewing zenith angles (up to 83.1), making the measurements very sensitive to aerosol scattering. A previous study by the authors shows the ratioing of CO2 and O2 slant column densities (SCDs) can largely cancel the effect of aerosol scattering, but biases still exist due to the wavelength dependence of aerosol scattering.In this study, biases caused by different types of aerosols are analyzed. Preliminary results indicate that the information from CLARS-FTS spectra is not sufficient to constrain all the free parameters, including the aerosol single scattering albedo (SSA), aerosol optical depth, surface albedo, etc. In order to mitigate the influence of aerosol scattering, a few effective aerosol parameters are retrieved simultaneously with absorbing gas abundances. The corrected SCDs show reasonable variabilities from the morning to the afternoon in the presence of aerosols. The column-averaged dry air mole fraction of CO2 (XCO2) products are compared to measurements from the Total Carbon Column Observing Network (TCCON) at Caltech. By retrieving aerosol parameters in the CO2 and O2 absorption bands, biases in XCO2 caused by wavelength dependence of aerosol scattering can be considerably reduced.

  19. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  20. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  1. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  2. Development of eye-safe lidar for aerosol measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Wilderson, Thomas D.

    1990-01-01

    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin.

  3. Technical study of some major parameters influencing the performance of an aerosol delivery equipment suitable for calves.

    PubMed

    Genicot, B; Peckova, M; Close, R; Lindsey, J K; Lambert, P; Lekeux, P

    1994-01-01

    Aerosol delivery equipment, suitable for the treatment of bovine respiratory dysfunctions and including 2 parallelly positioned jet nebulizers, was studied in depth in order to determine the optimal working conditions in the field. Indeed, some factors might reasonably alter the performance of this equipment. Among these factors, the influences of the parallel position of jet nebulizers (in order to accommodate the breathing requirements of the cattle and achieve a rapid treatment), of the long feed pipe delivering compressed air (in order to keep the animal away from the compressor unit), and finally of the ambient temperature were studied, this equipment being essentially used during the winter season. This equipment could accommodate the breathing needs of cattle weighing up to 225 kg if a pressure of 600 kPa was developed upstream to the nebulizers. The rate of atomization was significantly reduced when working at ambient air temperatures (272.25 K < T < 274.65 K) close to those encountered in winter. This was especially true when pressure upstream to the nebulizers did not exceed 500 kPa. The immersion of the feed pipe for compressed air in hot water led to an increase in the rate of atomization without raising evaporative water losses, and reduced the drop in temperature in the nebulizer solution. Finally, the rate of atomization significantly increased when the face mask including the nebulizers was maintained so that the nebulizers were in a vertical position or at an angle not less than 60 degrees with respect to the ground. PMID:7951349

  4. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  5. Vertical profile and aerosol size distribution measurements in Iceland (LOAC)

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas

    2014-05-01

    Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in

  6. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  7. Comparison of Lidar and In-Situ Measurements of Stratospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Northam, G. B.; Rosen, J. M.; Pepin, T. J.; Hofmann, D. H.; McCormick, M. P.

    1973-01-01

    This paper will present the results of a comparative study conducted in Laramie, Wyoming, during the summer and fall of 1972, as part of the Department of Transportation's Climatic Impact Assessment Program (ClAP). The study included independent, and nearly simultaneous, measurements of stratospheric aerosols using a LIDAR system and a balloon-borne in-situ particle counter. The LIDAR provides a remote measurement of volume backscatter (aerosols and molecules) in a narrow wavelength region centered at the ruby wavelength (6943R); whereas the balloon-borne in-situ counter measures aerosol concentration by counting aerosols greater than approx. 0.30 microns in diameter as they are pumped through a chamber and scatter white light forward into photo-detectors. The comparison of measurements that will be discussed using the two techniques involves formulating the LIDAR data so that it is compatible with the counter data. The formulation includes separation of the scattering due to aerosols from the total and displaying this in terms of aerosol scattering function. Aerosol scattering function is proportional to aerosol concentration if the aerosol parameters, such as size distribution and composition, are constant with altitude. In separating the aerosol scattering from the total, the need for real atmospheric number density over the Standard Atmosphere is also discussed.

  8. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  9. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  10. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. I - Theory and instrumentation

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Tracy, D. H.; Eloranta, E. W.; Roesler, F. L.; Weinman, J. A.; Trauger, J. T.; Sroga, J. T.

    1983-01-01

    A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator-amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

  11. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  12. Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  13. Twilight sky brightness measurements as a useful tool for stratospheric aerosol investigations

    NASA Astrophysics Data System (ADS)

    Mateshvili, Nina; Fussen, Didier; Vanhellemont, Filip; Bingen, Christine; KyröLä, Erkki; Mateshvili, Iuri; Mateshvili, Giuli

    2005-05-01

    In this paper we demonstrate how twilight sky brightness measurements can be used to obtain information about stratospheric aerosols. Beside this, the measurements of the distribution and the variability of the twilight sky brightness may help to understand how the stratospheric aerosols affect the radiation field, which is important for correct calculations of photodissociation rates. Multispectral measurements of twilight sky brightness were carried out in Abastumani Observatory (41.8°N, 42.8°E), Georgia, South Caucasus, during the period (1991-1993) when the level of stratospheric aerosols was substantially enhanced after the 1991 Mount Pinatubo eruption. The twilight sky brightness was measured at 9 wavelengths (422, 474, 496, 542, 610, 642, 678, 713, and 820 nm) for solar zenith angles from 89° to 107°. There are clear indications of a growth of the stratospheric aerosol layer after the eruption of Mount Pinatubo that manifests itself by "humps" in twilight sky brightness dependences versus solar zenith angle. Similar features were obtained using a radiative transfer code constrained by the SAGE II aerosol optical thicknesses. It is shown how an enhancement of stratospheric aerosol loading perturbs the twilight sky brightness due to light scattering and absorption in the aerosol layer. The influence of ozone variations and background stratospheric aerosols on twilight sky brightness has also been analyzed. The optical thicknesses of the stratospheric aerosol layer obtained from the twilight measurements of 1990-1993 show a good agreement with SAGE II results. The spectral variations of the stratospheric aerosol extinction for pre-Pinatubo and post-Pinatubo measurements reflect the aerosol growth after the eruption. Finally, the utilization of twilight sky brightness measurements for validation of satellite-based measurements of the stratospheric aerosol is proposed.

  14. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  15. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGESBeta

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  16. Compact Efficient Lidar Receiver for Measuring Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Gili, Christopher; De Young, Russell

    2006-01-01

    A small, light weight, and efficient aerosol lidar receiver was constructed and tested. Weight and space savings were realized by using rigid optic tubes and mounting cubes to package the steering optics and detectors in a compact assembly. The receiver had a 1064nm channel using an APD detector. The 532nm channel was split (90/10) into an analog channel (90%) and a photon counting channel (10%). The efficiency of the 1064nm channel with optical filter was 44.0%. The efficiency of the analog 532nm channel was 61.4% with the optical filter, and the efficiency of the 532nm photon counting channel was 7.6% with the optical filter. The results of the atmospheric tests show that the detectors were able to consistently return accurate results. The lidar receiver was able to detect distinct cloud layers, and the lidar returns also agreed across the different detectors. The use of a light weight fiber-coupled telescope reduced weight and allowed great latitude in detector assembly positioning due to the flexibility enabled by the use of fiber optics. The receiver is now ready to be deployed for aircraft or ground based aerosol lidar measurements.

  17. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  18. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  19. Effects of equipment and technique on peak flow measurements

    PubMed Central

    Bongers, Thomas; O'Driscoll, B Ronan

    2006-01-01

    Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF) results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min). All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique) or a forced maximal expiration to residual volume (FVC technique). Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p < 0.0001). The mean PEF recorded with the turbine spirometer was 5.5% lower than the Wright meter reading. The Fleisch spirometer result was 19.5% lower than the Wright reading. However, adjustment of the Wrights measurements from the traditional Wright's scale to the new EU Peak Flow scale produced results that were only 7.2% higher than the Fleisch pneumotachograph measurements. Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments. PMID:16787543

  20. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  1. Jet and ultrasonic nebuliser output: use of a new method for direct measurement of aerosol output.

    PubMed Central

    Dennis, J H; Stenton, S C; Beach, J R; Avery, A J; Walters, E H; Hendrick, D J

    1990-01-01

    Output from jet nebulisers is calibrated traditionally by weighing them before and after nebulisation, but the assumption that the weight difference is a close measure of aerosol generation could be invalidated by the concomitant process of evaporation. A method has been developed for measuring aerosol output directly by using a solute (fluoride) tracer and aerosol impaction, and this has been compared with the traditional weight loss method for two Wright, six Turbo, and four Micro-Cirrus jet nebulisers and two Microinhaler ultrasonic nebulisers. The weight loss method overestimated true aerosol output for all jet nebulisers. The mean aerosol content, expressed as a percentage of the total weight loss, varied from as little as 15% for the Wright jet nebulisers to 54% (range 45-61%) for the Turbo and Micro-Cirrus jet nebulisers under the operating conditions used. In contrast, there was no discrepancy between weight loss and aerosol output for the ultrasonic nebulisers. These findings, along with evidence of both concentrating and cooling effects from jet nebulisation, confirm that total output from jet nebulisers contains two distinct fractions, vapour and aerosol. The vapour fraction, but not the aerosol fraction, was greatly influenced by reservoir temperature within the nebuliser; so the ratio of aerosol output to total weight loss varied considerably with temperature. It is concluded that weight loss is an inappropriate method of calibrating jet nebuliser aerosol output, and that this should be measured directly. PMID:2247862

  2. Automated Measurements of Ambient Aerosol Chemical Composition and its Dry and Wet Size Distributions at Pittsburgh Supersite

    NASA Astrophysics Data System (ADS)

    Khlystov, A. Y.; Stanier, C.; Chun, W.; Vayenas, D.; Mandiro, M.; Pandis, S. N.

    2001-12-01

    Ambient aerosol particles change size with changes in ambient relative humidity. The magnitude of the size change depends on the hygroscopic properties of the particles, which is determined by their chemical composition. Hygroscopic properties of particles influence many environmentally important aerosol qualities, such as light scattering and partitioning between the gas and particle phases of semivolitile compounds. Studying the hygroscopic growth of ambient particles is thus of paramount importance. The highroscopic growth of ambient particles and their chemical composition are measured continuously within the Pittsburgh Air Quality Study (EPA supersite program). The hygroscopic size changes are measured using an automated system built for this study. The system consists of two Scanning Mobility Particle Sizers (SMPS, TSI Inc.) and an Aerodynamic Particle Sizer (APS, TSI Inc.). The three instruments measure aerosol size distribution between 5 nanometers and 10 micrometers in diameter. The inlets of the instruments and the sheath air lines of the SMPS systems are equipped with computer controlled valves that direct air through Nafion dryers (PermaPure Inc.) or bypass them. The Nafion dryers are drying the air stream below 40% RH at which point ambient particles are expected to lose most or all water and thus be virtually dry. To avoid changes in relative humidity and evaporation of volatile particles due to temperature differences the system is kept at ambient temperature. The system measures alternatively dry (below 40% RH) and wet (actual ambient RH) aerosol size distributions every 6 minutes. The hygroscopic growth observed with the size-spectrometer system is compared with theoretic predictions based on the chemical composition of aerosol particles. A modified semi-continuous Steam-Jet Aerosol Collector provides the total available budget (particles and gas) of water-soluble species, which is used as an input to the thermodynamic model. The model calculates

  3. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  4. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate

  5. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2015-07-01

    A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm. The proposed method was applied to measurements from the SALTRACE experiment in June-July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

  6. Combined measurements of organic aerosol isotopic and chemical composition to investigate day-night differences in carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Holzinger, Rupert; Meijer, Harro A. J.; Röckmann, Thomas

    2014-05-01

    PM2.5 filter samples have been collected during the Pegasos (Mai, 2012) and Actris (June/July 2012) campaigns at the CESAR site near Cabauw, the Netherlands. This site lies in a rural location surrounded by major urban centers and highways and is a good location for measuring the regional aerosol contamination in the Netherlands. High volume filter samples were taken over several days, but the aerosol was collected on separate filters during day and night time periods. We analyzed these filters for carbon isotopes (14C and 13C) and detailed chemical composition of the organic fraction, which can be a powerful tool, for investigating sources and processing of the organic aerosol. Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol. We use a method to measure d13C values of OC desorbed from the filter samples in He at different temperature steps. The chemical composition of the organic fraction at the same temperature steps can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The PTR-MS method is applied to the filter samples as well to aerosol collected in situ by a impaction using a Collection-Thermal-Desorption Cell. First results show that the mass concentration of the carbonaceous aerosol is higher during night time than during day time, dominated by a strong increase of biogenic organic aerosol. This is at least partially caused by a shallow night time boundary layer combined with decreased traffic sources and increased condensation of semi-volatile biogenic gases during night-time. Evidence for the role of semi-volatile compounds in enhancing organic carbon (OC) night time concentrations comes from several observations: (1) semi-volatile OC with desorption temperatures lower than 250 °C increases

  7. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    SciTech Connect

    McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

    2009-03-18

    This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated

  8. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  9. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  10. TIME-OF-FLIGHT AEROSOL BEAM SPECTROMETER FOR PARTICLE SIZE MEASUREMENTS

    EPA Science Inventory

    A time-of-flight aerosol beam spectrometer (TOFABS) is described. The instrument has been designed and constructed to perform in situ real time measurements of the aerodynamic size of individual aerosol particles in the range 0.3 to 10 micrometers diameter. The measurement method...

  11. Near-highway aerosol and gas-phase measurements in a high-diesel environment

    NASA Astrophysics Data System (ADS)

    DeWitt, H. L.; Hellebust, S.; Temime-Roussel, B.; Ravier, S.; Polo, L.; Jacob, V.; Buisson, C.; Charron, A.; André, M.; Pasquier, A.; Besombes, J. L.; Jaffrezo, J. L.; Wortham, H.; Marchand, N.

    2015-04-01

    Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of light duty vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME). As part of the September 2011 joint PM-DRIVE (Particulate Matter - DiRect and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and mOdeling traffic COngestion and POllution) field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the vehicle type, traffic concentration, and traffic speed to be quantified. Six aerosol age and source profiles were resolved using the positive matrix factorization model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA) commonly associated with primary vehicular emissions, a nitrogen-containing aerosol with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA), and biomass burning aerosol. While quantitatively separating the influence of diesel from that of gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. Although the measurement site was located next to a large source of primary emissions, which are typically found to have low oxygen incorporation, OOA was found to comprise the majority of the measured organic aerosol, and isotopic analysis showed that the measured OOA contained mainly modern carbon, not fossil-derived carbon. Thus, even in this heavily vehicular-emission-impacted environment, photochemical processes

  12. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Corless, A.; Brechtel, F. J.; Stalin, S. E.; Meinig, C.; Burkhart, J. F.

    2013-08-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway, in April 2011 during the Cooperative Investigation of Climate-Cryosphere Interactions campaign (CICCI). Measurements were made of the particle number concentration and the aerosol light absorption coefficient at three wavelengths. A filter sample was collected on each flight at the altitude of maximum particle number concentration. The filters were analyzed for major anions and cations. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS). A total of 18 flights were flown during the campaign totaling 38 flight hours. The data show frequent aerosol layers aloft with high particle number concentration (1000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Air mass histories of these aerosol layers were assessed using FLEXPART particle dispersion modeling. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  13. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway using unmanned aerial systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Corless, A.; Brechtel, F. J.; Stalin, S. E.; Meinig, C.; Burkhart, J. F.

    2013-03-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2011 during the Cooperative Investigation of Climate-Cryosphere Interactions campaign (CICCI). Measurements were made of the particle number concentration and the aerosol light absorption coefficient at three wavelengths. A filter sample was collected on each flight at the altitude of maximum particle number concentration. The filters were analyzed for major anions and cations. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS). A total of 18 flights were flown during the campaign totaling 38 flight hours. The data show frequent aerosol layers aloft with high particle number concentration (1000 cm-3 and enhanced aerosol light absorption (1 Mm-1). Air mass histories of these aerosol layers were assessed using FLEXPART particle dispersion modeling. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  14. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  15. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  16. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  17. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  18. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  19. Fast Airborne Size Distribution Measurements of an Aerosol Processes and Aging

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A. D.; Zhou, J.; Brekhovskikh, V.; McNaughton, C. S.; Howell, S.

    2009-12-01

    During MILAGRO/INTEX experiment the Hawaii Group for Environmental Aerosol Research (HIGEAR) deployed a wide range of aerosol instrumentation aboard NSF C-130 and NASA DC-8. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering - f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). We also flew the Fast Mobility Particle Spectrometer (FMPS, TSI Inc.) to measure aerosol size distributions in a range 5.6 - 560 nm. For all our flights around Mexico City, an aerosol number concentration usually was well above the nominal FMPS sensitivity (from ~100 particles/cc @ Dp = 5.6 nm to 1 part/cc @ 560nm), providing us with reliable size distributions even at 1 sec resolution. FMPS measurements revealed small scale structure of an aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved. These 1-Hz measurements during aircraft profiles captured variations in size distributions within shallow layers. Other dynamic processes observed included orography induced aerosol layers and evolution of the nanoparticles formed by nucleation. We put FMPS high resolution size distribution data in a context of aerosol evolution and aging, using a range of established (for MIRAGE/INTEX) chemical, aerosol and transport aging parameters.

  20. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite

  1. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  2. Retrieval of Aerosol information from UV measurement by using optimal estimation method

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Kim, W. V.; Kim, S. K.; Lee, S. D.; Moon, K. J.

    2014-12-01

    An algorithm to retrieve aerosol optical depth (AOD), single scattering albedo (SSA), and aerosol loading height is developed for GEMS (Geostationary Environment Monitoring Spectrometer) measurement. The GEMS is planned to be launched in geostationary orbit in 2018, and employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol information such as AOD and SSA [Torres et al., 2007; Torres et al., 2013; Ahn et al., 2014]. However, the large contribution of atmospheric scattering results in the increase of the sensitivity of the backward radiance to aerosol loading height. Thus, the assumption of aerosol loading height becomes important issue to obtain accurate result. Accordingly, this study focused on the simultaneous retrieval of aerosol loading height with AOD and SSA by utilizing the optimal estimation method. For the RTM simulation, the aerosol optical properties were analyzed from AERONET inversion data (level 2.0) at 46 AERONET sites over ASIA. Also, 2-channel inversion method is applied to estimate a priori value of the aerosol information to solve the Lavenberg Marquardt equation. The GEMS aerosol algorithm is tested with OMI level-1B dataset, a provisional data for GEMS measurement, and the result is compared with OMI standard aerosol product and AERONET values. The retrieved AOD and SSA show reasonable distribution compared with OMI products, and are well correlated with the value measured from AERONET. However, retrieval uncertainty in aerosol loading height is relatively larger than other results.

  3. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; Ferrare, R. A.; Browell, E. V.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  4. A novel method to measure the ambient aerosol phase function based on dual ccd-camera

    NASA Astrophysics Data System (ADS)

    Bian, Yuxuan; Zhao, Chunsheng; Tao, Jiangchuan; Kuang, Ye; Zhao, Gang

    2016-04-01

    Aerosol scattering phase function is a measure of the light intensity scattered from particles as a function of scattering angles. It's important for understanding the aerosol climate effects and remote sensing inversion analysis. In this study, a novel method to measure the ambient aerosol phase function is developed based on a dual charge-coupled device(ccd) camera laser detective system. An integrating nephelometer is used to correct the inversion result. The instrument was validated by both field and laboratory measurements of atmospheric aerosols. A Mie theory model was used with the measurements of particle number size distribution and mass concentration of black carbon to simulate the aerosol phase function for comparison with the values from the instrument. The comparison shows a great consistency.

  5. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  6. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  7. Introduction of New Motion Measurement Equipment into Virtual Walk System

    NASA Astrophysics Data System (ADS)

    Furukawa, Tatsuya; Itoh, Hideaki; Hori, Toshiyuki; Fukumoto, Hisao; Wakuya, Hiroshi; Ohchi, Masashi

    The “Virtual Walk System” has been developed to support rehabilitation therapy in homes. In the system, a user has been able to perform walking-like exercise on a fitness machine called a stepper. In front of the user, a projected image of a vast virtual reality space is generated by 3-dimensional computer graphics (3DCG). The user's movement is measured and the projected image changes just like the user is walking in the virtual space. Viewing the changing image, the user can enjoy the exercise. In this study, we have decomposed the virtual walk system into two modules (the measurement and control module operated by a microcomputer board and the 3DCG module operated by a personal computer) to facilitate rapid development. Then we have introduced two kinds of new equipment, i.e., a bicycle for cycling exercise and a treadmill for walking exercise. We have also developed a treadmill control system by which a user can easily change the walking speed during exercise.

  8. Post-volcanic stratospheric aerosol decay as measured by lidar

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Fuller, W. H., Jr.; Swissler, T. J.

    1978-01-01

    The paper summarizes and discusses results of lidar observations, at Hampton (Virginia), of the stratospheric aerosol vertical distribution for a period of 22 months (October 1974 to July 1976) after the volcanic eruption of the Volcan de Fuego in Guatemala. Data are presented in terms of lidar scattering ratio, vertically integrated aerosol backscattering, layer structure and location, and rawinsonde temperature profiles as a function of time. The results reveal a sudden increase in the stratospheric aerosol content after the volcanic eruption as well as its subsequent decline. There exists a high degree of correlation between the integrated aerosol backscattering and the tropopause height such that as one decreases the other increases and vice versa. Rapid decay of the stratospheric aerosol is found to occur over the late winter to early spring period.

  9. Variation in daytime troposphereic aerosol via LIDAR and sunphotometer measurements in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F. Y.; Hee, W. S.; Hwee, S. L.; Abdullah, K.; Tiem, L. Y.; Matjafri, M. Z.; Lolli, S.; Holben, B.; Welton, E. J.

    2014-03-01

    Aerosol is one of the important factors that will influence the air quality, visibility, clouds, and precipitation processes in the troposphere. In this work, we investigated the variation of aerosol during daytime in Penang, Malaysia in certain days within July 2013. Vertical LIDAR scattering ratio and backscattering profiles, and columnar optical properties (optical depth, Angström exponent) of aerosols were measured using Raymetrics LIDAR and a CIMEL sunphotometer respectively. Specifically, we have determined the daytime variation of intensity and distribution level of aerosol, as well as the planetary boundary layer (PBL) and cloud classification. Subsequently, the data of columnar aerosol optical depth (AOD) and size distribution in the atmospheric were used to quantify the properties of aerosol variation during daytime over Penang, Malaysia.

  10. DESIGN AND PERFORMANCE OF AN AEROSOL MASS DISTRIBUTION MONITOR

    EPA Science Inventory

    An aerosol mass monitor has been built to measure the masses of non-volatile aerosols in the range of 0.05 to 5 micrometers aerodynamic particle diameter. The instrument consists of a newly designed spiral duct aerosol centrifuge equipped with highly sensitive quartz sensors for ...

  11. Aerosol Composition and Variability in the San Joaquin Valley Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Crumeyrolle, S.; Ziemba, L. D.; Pusede, S. E.; Nowak, J. B.; Burton, S. P.; Chen, G.; Cohen, R. C.; Duffey, K.; Ferrare, R. A.; Hostetler, C. A.; Martin, R.; Moore, R.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    The composition of aerosol in the San Joaquin Valley (central California) is unique in comparison to most of the United States; dominated by ammonia nitrate as a result of high gas-phase precursor emissions. Remote sensing aerosol measurements in this region are hindered during the winter by the existence of a very shallow boundary layer (measured at less than 500 ft in many cases) and frequent fog events. The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the San Joaquin Valley was performed during ten flights in January and February 2013. Nearly identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Simultaneous sampling of aerosol properties was also performed at ground sites throughout the valley and from the NASA airborne high spectral-resolution lidar (HSRL-2). Measured aerosol mass was composed primarily of ammonium nitrate (campaign average of 62%) and water-soluble organics (32%). During most of the DISCOVER-AQ flights, the aerosol was primarily constrained to the very shallow boundary layer with a few cases of lofted layers towards the end of the campaign. The first five flights (over a seven day period) were performed during a period of increasing aerosol loading (aerosol optical depths of 0.04 to 0.08) due to an absence of wet scavenging. A concurrent increase in aerosol size during the week suggests an increase in aerosol age. After a period of heavy rainfall, a second set of five flights was flown over eight days. Aerosol loading was again low at the beginning (aerosol optical depths of 0.033) and increased during this period. Differences were measured between the two periods

  12. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.

    1993-01-01

    In situ measurements of stratospheric sulphate aerosol, reactive nitrogen and chlorine concentrations at middle latitudes confirm the importance of aerosol surface reactions that convert active nitrogen to a less active, reservoir form. This makes mid-latitude stratospheric ozone less vulnerable to active nitrogen and more vulnerable to chlorine species. The effect of aerosol reactions on active nitrogen depends on gas phase reaction rates, so that increases in aerosol concentration following volcanic eruptions will have only a limited effect on ozone depletion at these latitudes.

  13. Post-Pinatubo`s aerosols: Comparison between balloon and satellite solar occultation measurements

    SciTech Connect

    Brogniez, C.; Lenoble, J.; Herman, M.

    1995-12-31

    The Stratospheric Aerosol and Gas Experiment II (SAGE II), that was launched in October 1984, has monitored the stratospheric aerosol layer after the Pinatubo`s eruption. Two flights of the balloon-borne experiment RADIBAL (RADIometre BALlon) were performed in June 1992 and May 1993 in coincidence with SAGE II events. Because of the large aerosol loading, the inversion of the balloon measurements (consisting in radiance and polarization diagrams) was impracticable. A code taking into account the multiple scatterings has then been used to calculate theoretical diagrams for an aerosol model deduced from SAGE II data. The obtained diagrams have been compared satisfactorily to the experimental ones.

  14. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  15. New capabilities for space-based cloud and aerosols measurements: The Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.

    2013-12-01

    Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite

  16. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  17. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. PMID:26257345

  18. Aerosol Extinction and Single Scattering Albedo Downwind of the Summer 2008 California Wildfires Measured With Photoacoustic Spectrometers and Sunphotometers From 355 nm to 1047 nm.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M. S.; Arnold, I. J.

    2008-12-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for much of June and July associated with the flaming and smoldering stages of the fires. These fires are consistent with a growing trend towards increasing biomass burning worldwide. Climate impacts from the smoke depend critically on the smoke amount and aerosol optical properties. We report comparison of aerosol optics measurements in Reno Nevada made during the very smoky summer month of July with the relatively clean, average month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption at wavelengths of 355 nm, 405 nm, 532 nm, 870 nm, and 1047 nm. Total aerosol optical depth was measured with a sun photometer operating at 430nm, 470nm, 530nm, 660nm, 870nm and 950nm. A spectrometer based sun photometer with an operating range from 390nm to 880 nm was also used for a few days as well. These measurements document the intensity of the smoke optical impacts downwind. They are processed further to reveal a strong variation of the aerosol light absorption on wavelength, indicating the presence of light absorbing organic material and perhaps wavelength dependent absorption caused by black carbon particles coated with organic and inorganic particulate matter. On the day with most smoke in Reno (July 10, 2008) Angstrom coefficients for absorption as high as 3.6 were found for wavelengths of 405 nm and 870 nm, with the corresponding single scattering albedo near 0.92 at 405 nm. Aerosol optical depths of 3.5 were found for 430 nm on July 10th from the sun photometer measurements. A roughly fourfold increase in aerosol optical quantities was observed between the months of July and August 2008, attesting to the large average effects of biomass aerosols from the California wildfires.

  19. Advanced high quality aerosol data: novel results from the EUSAAR in situ measurement network

    NASA Astrophysics Data System (ADS)

    Laj, P.; Philippin, S.; Putaud, J.-P.; Wiedensohler, A.; de Leeuw, G.; Fjaeraa, A. M.; Platt, U.; Baltensperger, U.; Fiebig, M.

    2009-04-01

    The EU-funded project EUSAAR (EUropean Supersites for Atmospheric Aerosol Research) aims at integrating measurements of atmospheric aerosol properties from a distributed network of 20 high-quality European ground-based stations. The objective is to ensure harmonization, validation and data diffusion of current measurements of particle optical, physical and chemical properties which are critical parameters for quantifying the key processes and the impact of aerosols on climate and air quality. We will present and discuss the results and highlights of the activities and achievements during the first 3 years of the project during which EUSAAR has contributed to improving the comparability of measurements for data users and to adopting best practices in aerosol monitoring procedures, and has started providing high quality aerosol data much needed in the atmospheric research community from the most advanced monitoring stations currently operational in Europe.

  20. SAGE II Measurements of Stratospheric Aerosol Properties at Non-Volcanic Levels

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Burton, Sharon P.; Luo, Bei-Ping; Peter, Thomas

    2008-01-01

    Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, during background periods, the SAD operational product has an uncertainty of at least a factor of 2 during due to the lack of sensitivity to particles with radii less than 100 nm.

  1. Contribution of Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and Measurements

    EPA Science Inventory

    In a region heavily influenced by anthropogenic and biogenic atmospheric emissions, recent field measurements have attributed one third of urban organic aerosol by mass to isoprene epoxydiols (IEPOX). These aerosols arise from the gas phase oxidation of isoprene, the formation of...

  2. Comparison of Predicted and Measured 2 Micron Aerosol Backscatter from the 1998 ACLAIM Flight Tests

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Hannon, Stephen M.; Bogue, Rodney K.

    1999-01-01

    The 1998 Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) flight tests were conducted aboard a well-instrumented research aircraft. This paper presents comparisons of 2 micrometer aerosol backscatter coefficient predictions from aerosol sampling data and mie scattering codes with those produced by the ACLAIM instrument.

  3. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  4. Fungal contribution to size-segregated aerosol measured through biomarkers

    NASA Astrophysics Data System (ADS)

    Di Filippo, Patrizia; Pomata, Donatella; Riccardi, Carmela; Buiarelli, Francesca; Perrino, Cinzia

    2013-01-01

    Fungal spores are the dominant biological component of air. Although ubiquitous in outdoor air, they are scarcely measured due to the inadequacy of measurement methods. The use of biomarkers as tools for the determination of fungal contribution to bioaerosol has often been suggested, and ergosterol, arabitol and mannitol have been associated to fungal spores as tracers. In the present paper, the fungal component of aerosol was studied at suburban/rural and at urban sites. Ergosterol, arabitol, and mannitol contents in airborne particulate matter, even at different sizes, were determined. Literature conversion factors and calculated conversion factors correlating ergosterol, arabitol, and mannitol masses to fungi mass were applied and compared to each other. The obtained fungal spore concentrations were different depending on the marker utilized both with the conversion factors found in literature and the calculated ones. Size-segregated marker distribution suggested different sources for the three tracers indicating ergosterol as the only reliable biomarker at our latitudes. The fungal spore concentrations were higher at the suburban/rural location and respectively inversely and directly proportional to temperature and relative humidity.

  5. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  6. FLUXEN portable equipment for direct X-ray spectra measurements

    NASA Astrophysics Data System (ADS)

    Aiello, S.; Bottigli, U.; Fauci, F.; Golosio, B.; Lo Presti, D.; Masala, G. L.; Oliva, P.; Raso, G.; Stumbo, S.; Tangaro, S.

    2004-02-01

    The proper use of imaging equipment in radiological units is based on an appropriate knowledge of the physical characteristics of the X-ray beam used. The FLUXEN PROJECT is working on a portable apparatus which, together with dedicated software, is able to perform an exact spectral reconstruction of the radiation produced in diagnostic X-ray tubes. The apparatus characterizes the energy spectrum of radiological tubes and also provides a measurement of the emitted flux. The acquisition system is based on a commercial CZT detector (3×3×2 mm 3), produced by AMPTEK, cooled by a Peltier cell, with a high efficiency in the diagnostic X-ray energy range and modified in the shaping electronics so as to obtain a faster response. The acquiring section lies on a NuDAQ I/O card with a sampling frequency of up to 20 MHz. The signal produced by the X-ray tube is wholly acquired and an off-line analysis is made so as to make possible an accurate recognition of pile-up events and a reconstruction of the emitted spectra. The reconstructed spectra of a General Electric Senographe DMR mammographic X-ray tube are shown.

  7. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  8. Cloud-Aerosol Interactions: Retrieving Aerosol Ångström Exponents from Calipso Measurements of Opaque Water Clouds

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark; Liu, Zhaoyan; Hu, Yong-Xiang; Powell, Kathleen; Omar, Ali; Rodier, Sharon; Hunt, William; Kar, Jayanta; Tackett, Jason; Getzewich, Brian; Lee, Kam-Pui

    2016-06-01

    Backscatter and extinction from water clouds are well-understood, both theoretically and experimentally, and thus changes to the expected measurement of layer-integrated attenuated backscatter can be used to infer the optical properties of overlying layers. In this paper we offer a first look at a new retrieval technique that uses CALIPSO measurements of opaque water clouds to derive optical depths and Ångström exponents for overlying aerosol layers.

  9. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  10. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  11. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  12. Aerosol Daytime Variations over North and South America Derived from Multiyear AERONET Measurements

    NASA Technical Reports Server (NTRS)

    Zhang, Yan; Yu, Hongbin; Eck, Tom F.; Smirnov, Alexander; Chin, Mian; Remer, Lorraine A.; Bian, Huisheng; Tan, Qian; Levy, Roberrt; Holben, Brent N.

    2012-01-01

    This study analyzes the daytime variation of aerosol with seasonal distinction by using multi-year measurements from 54 of the Aerosol Robotic Network (AERONET) sites over North America, South America, and islands in surrounding oceans. The analysis shows a wide range of daily variability of aerosol optical depth (AOO) and Angstrom exponent depending on location and season. Possible reasons for daytime variations are given. The largest AOO daytime variation range at 440 nm, up to 75%, occurs in Mexico City, with maximum AOO in the afternoon. Large AOO daily variations are also observed in the polluted mid-Atlantic U.S. and U.S. West Coast with maximum AOO occurring in the afternoon in the mid-Atlantic U.S., but in the morning in the West Coast. In South American sites during the biomass burning season (August to October), maximum AOO generally occurs in the afternoon. But the daytime variation becomes smaller when sites are influenced more by long-range transported smoke than by local burning. Islands show minimum AOO in the morning and maximum AOO in the afternoon. The diverse patterns of aerosol daytime variation suggest that geostationary satellite measurements would be invaluable for characterizing aerosol temporal variations on regional and continental scales. In particular, simultaneous measurements of aerosols and aerosol precursors from a geostationary satellite would greatly aid in understanding the evolution of aerosol as determined by emissions, chemical transformations, and transport processes.

  13. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause. PMID:18357329

  14. Mobile LiDAR Measurement for Aerosol Investigation in South-Central Hebei, China

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; Zheng, Yunhui; Wong Man, Sing; Wang, Runfeng; Hu, Mingyu; Lang, Hongmei; Wang, Luyao; Bai, Yang; Rao, Lanlan

    2016-04-01

    With the rapid industrialization and urbanization in China during the last decades, the increasing anthropogenic pollutant emissions have significantly caused serious air pollution problems which are adversely influencing public health. Hebei is one of the most air polluted provinces in China. In January 2013, an extremely severe and persistent haze episode with record-breaking PM2.5 outbreak affecting hundreds of millions of people occurred over eastern and northern China. During that haze episode, 7 of the top 10 most polluted cities in China were located in the Hebei Province according to the report of China's Ministry of Environmental Protection. To investigate and the spatial difference and to characterize the vertical distribution of aerosol in different regions of south-central Hebei, mobile measurements were carried out using a mini micro pulse LiDAR system (model: MiniMPL) in March 2014. The mobile LiDAR kit consisting of a MiniMPL, a vibration reduction mount, a power inverter, a Windows surface tablet and a GPS receiver were mounted in a car watching though the sunroof opening. For comparison, a fixed measurement using a traditional micro pulse LiDAR system (model: MPL-4B) was conducted simultaneously in Shijiazhuang, the capital of Hebei Province. The equipped car was driven from downtown Shijiazhuang by way of suburban and rural area to downtown Cangzhou, Handan, and Baoding respectively at almost stable speed around 100Km per hour along different routes which counted in total more than 1000Km. The results can be summarized as: 1) the spatial distribution of total aerosol optical depth along the measurement routes in south-central Hebei was controlled by local terrain and population in general, with high values in downtown and suburban in the plain areas, and low values in rural areas along Taihang mountain to the west and Yan mountain to the north; 2) obviously high AODs were obtained at roads crossing points, inside densely populated area and nearby

  15. Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Malinina, Elizaveta; Rozanov, Vladimir; Hommel, Rene; Burrows, John

    2016-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite, from August 2002 to April 2012. A retrieval approach to obtain parameters of the stratospheric aerosol particle size distribution will be reported along with the sensitivity studies and first results.

  16. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone.

    PubMed

    Lidén, Göran; Surakka, Jouni

    2009-03-01

    There is a need for a small personal aerosol sampler for measuring occupational exposure to airborne particles in the breathing zone. Existing aerosol samplers are too large to be mounted inside modern welder's protective equipment without disturbing the worker. A headset-mounted mini sampler has been developed to fill this gap with focus on manganese exposure. This mini sampler is easy to use and can be mounted inside modern, slimline welder's face shield. The mini sampler is based on a commercially available 13-mm filter holder that has been modified to incorporate an inlet nozzle made of aluminium. The nominal flow rate of the mini sampler is 0.75 l min(-1). The mini sampler is to be worn mounted on a headset, modified from professional microphone headsets. Several aspects related to using the mini sampler have been tested by personal and static sampling at five workplaces and in the laboratory. Four headset models were tested for their suitability as a sampler holder, of which three models were accepted by the welders. The sampling bias of the mini sampler versus the IOM sampler and the open-face 25-mm filter holder, respectively, depends on the size distribution of the sampled aerosol. At the lowest encountered mass concentration ratio of the open-face 25-mm filter holder to the IOM sampler (0.65), the sampling bias of the mini sampler versus the IOM sampler is approximately -26% and versus the open-face 25-mm filter holder is approximately +12%. For manganese, the negative root mean square (RMS) sampling bias of the mini sampler versus the IOM sampler is -0.046 and versus the open-face 25-mm filter holder is non-significant. Both these biases are statistically non-significant. The mini sampler can therefore be employed for determining welders' occupational exposure to manganese. The pressure drop across the filter can become excessive due to the small filtration area. Compared to the Casella Apex pump, the SKC AirChek2000 pump was generally found to be able

  17. The assessment of climatology of absorbing aerosol field with integration of aerosol-climate model, and ground-based and satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Jeong, G.; Wang, C.; Mahowald, N. M.; Rigby, M. L.; Martins, J.

    2009-12-01

    Absorbing aerosols play important roles in the Earth’s radiation budget and atmospheric circulation by absorbing sunlight and heating the atmosphere while cooling the surface. The strength of such effects depends on microphysical processes in the lifecycle of absorbing aerosols and their emissions to the atmosphere. Even though the knowledge of aerosol controlling processes and the techniques measuring aerosol properties have been greatly advanced, there are still significant gaps between model results and measurement data. The goal of this study is to minimize the model-observation discrepancy and to assess global 3-D absorbing aerosol fields. To achieve this goal, we investigate the errors related to aerosol models and measurements, and optimize the emissions of anthropogenic absorbing aerosols (BC) used in the models. In this study we first derive the aerosol optical depth (AOD) and absorbing aerosol optical depth (AAOD) of anthropogenic aerosols using the 3-D interactive aerosol-climate model [Kim et al., 2008] developed based on NCAR CAM3, running in an aerosol-transport-model (ATM) driven by NCEP/NCAR reanalysis data (2001~2003). Aerosol transformation in the atmosphere is fully considered in this model. We also derived the AOD and AAOD of dust aerosols based on the climatology from the Model of Atmospheric Transport and Chemistry (MATCH) driven by the NCEP/NCAR reanalysis data [Mahowald et al., 1997; Kistler et al., 2001]. In addition, the climatology (10-year mean) of the CAM3 sea salt model (Mahowald et al., 2006) is used to calculate the AOD of sea salt aerosols. An inverse modeling technique (Kalman filtering) is used to optimize the emissions of BC aerosols by minimizing the model-observation discrepancy of AAOD, and the emissions of anthropogenic organic carbon (OC) aerosols and SO2 by minimizing the model-observation discrepancy of AOD. Initial estimates of carbonaceous aerosol emission due to fossil fuel are taken from the MIT EPPA model and Bond

  18. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  19. The Ny-Alesund aerosol and ozone measurements intercomparison campaign 1997/1998 (NAOMI-1998)

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Beyerle, G.; Beninga, I.; VonderGathen, P.; Rairoux, P.; Schrems, O.; Wahl, P.; Gross, M.; McGee, Th.; Iwasaka, Y.; Fujiwara, M.; Shibata, T.; Klein, U.; Steinbrecht, W.

    1998-01-01

    An intercomparison campaign for Lidar measurements of stratospheric ozone and aerosol has been conducted at the Primary Station of the Network for the Detection of Stratospheric Change (NDSC) in Ny-Alesund/Spitsbergen during January-February 1998. In addition to local instrumentation, the NDSC mobile ozone lidar from NASA/GSFC and the mobile aerosol lidar from Alfred Wegener Institute (AWI) participated. The aim is the validation of stratospheric ozone and aerosol profile measurements according to NDSC guidelines. This paper briefly presents the employed instruments and outlines the campaign. Results of the blind intercomparison of ozone profiles are given in a companion paper and temperature measurements are described in this issue.

  20. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    DOE PAGESBeta

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-10

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1–0.15 and 0.9–1.0, respectively. Themore » derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  1. Improvement on lidar data processing for stratospheric aerosol measurements.

    PubMed

    Likura, Y; Sugimoto, N; Sasano, Y; Shimzu, H

    1987-12-15

    For lidar measurements of stratospheric aerosols; signal-induced noise (SIN) from a photomultiplier (PMT) has been a problem of particular interest. In this paper, we succeed in simulating lidar signals affected by the PMT, after finding a long tail with a decay time of ~200 micros in the PMT's response to an impulselike light exposure. The PMT studied was an RCA 8852. Computer simulation quantitatively revealed that the SIN caused by the delayed response became greater than the real signal at high altitudes. Based on the results of simulation, a proposal was made to find a practical method for identifying and removing the SIN from the actual lidar signals. In addition, an improved method for the lidar signal calibration was proposed by taking into account the systematic noise component, including background light as well as SIN, in formulating the clean air calibration (the matching method). Validity of the proposed methods was demonstrated by using them both with an actual lidar signal and a simulated lidar signal with SIN. PMID:20523520

  2. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  3. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  4. New Satellite Measurements of Aerosol Direct Radiative Forcing from MODIS, MISR, and POLDER

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2000-01-01

    New set of satellites, MODIS and MISR launched on EOS-Terra and POLDER launched on ADEOS-1, and scheduled for ADEOS-II and PARASOL in orbit with EOS-AQUA, open exciting opportunities to measure aerosol and their radiative forcing of climate. Each of these instruments has a different approach to invert remote sensing data to derive the aerosol properties. MODIS is using wide spectral range 0.47-2.1 micron. MISR is using narrower spectral range (0.44 to 0.87 micron) but observing the same spot from 9 different angles along the satellite track. POLDER using similar wavelengths, uses two dimensional view with a wide angle optics and adds polarization to the inversion process. Among these instruments, we expect to measure the global distribution of aerosol, to distinguish small pollution particles from large particles from deserts and ocean spray. We shall try to measure the aerosol absorption of solar radiation, and their refractive index that indicates the effect of liquid water on the aerosol size and interaction with sunlight. The radiation field measured by these instruments in variety of wavelengths and angles, is also used to derive the effect of the aerosol on reflection of sunlight spectral fluxes to space. When combined with flux measurements at the ground, it gives a complete characterization of the effect of aerosol on solar illumination, heating in the atmosphere and reflection to space.

  5. Uncertainty quantification in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-10-01

    The space borne measurements provide global view of atmospheric aerosol distribution. The Ozone Monitoring Instrument (OMI) on board NASAs Earth Observing System (EOS) Aura satellite is a Dutch-Finnish nadir-viewing solar backscatter spectrometer measuring in the ultraviolet and visible wavelengths. OMI measures several trace gases and aerosols that are important in many air quality and climate studies. The OMI aerosol measurements are used, for example, for detecting volcanic ash plumes, wild fires and transportation of desert dust. We present a methodology for improving the uncertainty quantification in the aerosols retrieval algorithm. We have used the OMI measurements in this feasibility study. Our focus is on the uncertainties originating from the pre-calculated aerosol models. These models are never complete descriptions of the reality. This aerosol model uncertainty is estimated using Gaussian processes with computational tools from spatial statistics. Our approach is based on smooth systematic differences between the observed and modelled reflectances. When acknowledging this model inadequacy in the estimation of aerosol optical thickness (AOT), the uncertainty estimates are more realistic. We present here a real world example of applying the methodology.

  6. The Asian Tropopause Aerosol layer through satellite and balloon-borne measurements combined with modelling approaches.

    NASA Astrophysics Data System (ADS)

    Vernier, J. P.; Fairlie, T. D.; Natarajan, M.; Crawford, J. H.; Baker, N. C.; Wegner, T.; Deshler, T.; Gadhavi, H. S.; Kumar, S.; Singh, A. K.; Jayaraman, A.; Raj, A.; Alladi, H.; Ratnam, M. V.; Pandit, A.; Vignelles, D.; Wienhold, F.; Liu, H.; Kumar, S.

    2015-12-01

    The Asian tropopause Aerosol Layer (ATAL) is a seasonal aerosol feature occurring in the Upper Troposphere and Lower Stratosphere (UTLS) above Asia during the Summer Asian Monsoon. Vertically resolved aerosol backscatter profiles from the Cloud-Aerosol Lidar and Infrared Pathfinder satellite Observation (CALIPSO) mission and extinction profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) have been used to infer the spatial and temporal distributions of the ATAL since the late 90's. We found that aerosol optical thickness between 13-18km have increased by a factor of 2-3 over the past 16 years likely related to raising pollution levels in South East Asia occuring during the same period. Modelling studies of the ATAL using WACCAM 3 and GEOS-Chem have provided conflicting information on its origin and a better representation of in-cloud SO2 and aerosol lifetime in GOES-Chem seems to be key to obtain consistent results with the few SO2 measurements available in the UTLS during the Asian Monsoon. In situ measurements of aerosol and trace gases in the UTLS from several balloon campaigns which took place in summer 2014 and 2015 in Asia will be presented and discussed with combined satellite and modelling analysis.

  7. Relationship between aerosol characteristics and altitude based on multi-measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Ohshima, Tsubasa; Fujito, Toshiyuki; Sano, Itaru; Mukai, Sonoyo

    2010-10-01

    The suspending particulate matter (PM2.5) is a typical indicator of small particles in the atmosphere. Accordingly in order to monitor the air quality, sampling of PM2.5 has been widely undertaken over the world, especially in the urban cities. On the other hand, it is known that the sun photometry provides us with the aerosol information, e.g. aerosol optical thickness (AOT), aerosol size information and so on. Simultaneous measurements of PM2.5 and the AOT have been performed at a NASA/AERONET (Aerosol Robotics Network) site in urban city of Higashi-Osaka in Japan since March 2004, and successfully provided a linear correlation between PM2.5 and AOT in separately considering with several cases, e.g. usual, anthropogenic aerosols, dust aerosols and so on. This fact suggests that the vertical distribution also should be taken into account separately for each aerosol type. In this work, vertical profiles of atmospheric aerosols are considered based on combination use of photometric data with AERONET, LIDAR (Light Detection and Ranging) measurements and model simulations.

  8. Middle East measurements of concentration and size distribution of aerosol particles for coastal zones

    NASA Astrophysics Data System (ADS)

    Bendersky, Sergey; Kopeika, Norman S.; Blaunstein, Natan S.

    2005-10-01

    Recently, an extension of the Navy Aerosol Model (NAM) was proposed based on analysis of an extensive series of measurements at the Irish Atlantic Coast and at the French Mediterranean Coast. We confirm the relevance of that work for the distant eastern Meditteranean and extend several coefficients of that coastal model, proposed by Piazzola et al. for the Meditteranean Coast (a form of the Navy Aerosol Model), to midland Middle East coastal environments. This analysis is based on data collected at three different Middle East coastal areas: the Negev Desert (Eilat) Red Sea Coast, the Sea of Galilee (Tiberias) Coast, and the Mediterranean (Haifa) Coast. Aerosol size distributions are compared with those obtained through measurements carried out over the Atlantic, Pacific, and Indian Ocean Coasts, and Mediterranean, and Baltic Seas Coasts. An analysis of these different results allows better understanding of the similarities and differences between different coastal lake, sea, and open ocean zones. It is shown that in the coastal regions in Israel, compared to open ocean and other sea zones, larger differences in aerosol particle concentration are observed. The aerosol particle concentrations and their dependences on wind speed for these coastal zones are analyzed and discussed. We propose to classify the aerosol distribution models to either: 1. a coastal model with marine aerosol domination; 2. a coastal model with continental aerosol domination (referred to as midland coast in this work); or 3. a coastal model with balanced marine and continental conditions.

  9. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  10. [Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS].

    PubMed

    Si, Fu-qi; Xie, Pin-hua; Liu, Jian-guo; Zhang, Yu-jun; Liu, Wen-qing; Hiroaki, Kuze; Nobuo, Takeuchi

    2008-10-01

    Atmospheric aerosol is not only an important factor for the change in global climate, but also a polluting matter. Moreover, aerosol plays a main role in chemical reaction of polluting gases. Determination of aerosol has become an important re- search in the study of atmospheric environment. Differential optical absorption spectroscopy (DOAS) is a very useful technique that allows quantitative measurement of atmospheric trace gas concentrations based on their fingerprint absorption. It also can be used to retrieve aerosol extinction coefficient. In the present work, the method of determination of aerosol size distribution measured by flash DOAS is described, and the arithmetic based on Monte-Carlo is the emphasis. By comparison with the concentration of PM10, visibility and Angstrom wavelength exponent, a good correlation can be found. Application of DOAS in aerosol field not only provides a novel method for aerosol detection, but also extends the field of application of DOAS technology. Especially, aerosol DOAS plays an important role in the study of atmospheric chemistry. PMID:19123420

  11. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2006-02-01

    Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination

  12. Raman Lidar Measurements of Aerosol Optical Properties Performed at CNR- IMAA

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.

    2005-12-01

    The lidar system for tropospheric aerosol study, located at CNR-IMAA in Tito Scalo, Potenza (40 °36'N, 15°44' E, 760 m above sea level), is a Raman/elastic lidar system operational since May 2000 in the framework of EARLINET (European Aerosol Research LIdar NETwork), the first lidar network for tropospheric aerosol study on continental scale. It provides independent measurements of aerosol extinction and backscatter coefficient profiles at 355 nm and aerosol backscatter profiles at 532 nm. Both the IMAA aerosol lidar system and the used algorithms for the retrieval of aerosol optical parameters have been successfully tested with different intercomparison exercises in the frame of the EARLINET quality assurance program. In the frame of EARLINET, regular measurements are performed three times per week, allowing to study the aerosol content typically present in the planetary boundary layer over Potenza. Particular attention is devoted to Saharan dust intrusions in Europe, and Saharan dust forecasts are distributed to all EARLINET stations. The large dataset of Saharan dust optical properties profiles collected at IMAA allowed to study the contribution of dust particles to the aerosol load typically present in our area as well as to investigate transformations of aerosol optical properties during the transport. Several intensive measurement campaigns have been performed at IMAA with this system to study optical properties of different types of aerosol, and how the transport and modification mechanisms and the water content affect these optical properties. In particular, direct transport of volcanic aerosol emitted in 2002 during the Etna eruptions was observed, and in summer 2004, aerosol layers related to forest fires smoke or pollution plume transported from Alaska, Canada and North America were observed at IMAA during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign. Moreover, this system has been used

  13. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  14. Air ion measurements as a source of information about atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Mirme, Aadu; Salm, Jaan; Tamm, Eduard; Tammet, Hannes

    The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.

  15. Aerosol measurements at 60 m during April 1994 remote cloud study intensive operating period (RCS/IOP)

    SciTech Connect

    Leifer, R.; Albert, B.; Lee, N.; Knuth, R.H.

    1996-04-01

    Aerosol measurements were made at the Southern Great Plains Site of the Atmospheric Radiation Measurement (ARM) program. Many types of air masses pass over this area, and on the data acquisition day, extremly low aerosol scattering coefficients were seen. A major effort was placed on providing some characterization of the aerosol size distribution. Data is currently available from the experimental center.

  16. Measurements of volcanic aerosols during the Holuhraun eruption in Iceland

    NASA Astrophysics Data System (ADS)

    María Sigurðardóttir, Guðmunda; von Löwis, Sibylle; Bergson, Baldur; Þorsteinsson, Þröstur; Jóhannsson, Þorsteinn

    2015-04-01

    Measurements of airborne particles have been made with an Optical Particle Counter (OPC) since early September 2014 in the vicinity of the volcanic lava eruption in Holuhraun, N of Vatnajökull, in NE-Iceland. Measurements close to the eruption site were made between 1 - 4 September, 19 September - 1 October, and 3 - 6 October 2014. On 12 September another OPC was installed in Möðrudalur, ~70 km NE of the eruption site, which has measured since, nearly continuously, the aerosol particle number concentration. The data from both locations, Holuhraun and Möðrudalur, show several particle concentration peaks. However, since the eruption site is located in one of Iceland's largest sandy deserts, known for large-scale dust events, it is difficult to distinguish between particles emitted by the eruption or from the sandy area. From the measurements of the SO2 concentrations in Northern and Eastern Iceland, made by the Environmental Agency of Iceland, it can be seen that enhanced particle number concentrations are correlated with high concentrations of SO2. This correlation can help to distinguish between particles originated by dust events and those with volcanic origin. The farm Svartárkot, ~ 60 km NV of the eruption site, is frequently affected by dust re-suspended from the sandy desert N of Vatnajökull. OPC data over a two month period in summer 2013 were collected in Svartárkot and will be used for comparison. Using particle size distribution and total particle number, as a function of wind direction, wind speed and precipitation, and comparing it with Möðrudalur and Holuhraun data, enables the particle origin to be estimated. In addition to the measurements close to the eruption site OPC measurements are on-going in Reykjavík, ~ 260 km SW of Holuhraun, since the 6 October 2014. First comparisons have also shown a strong correlation between increased SO2 concentration and particle number. Therefore, it may be assumed that these particles are build by gas

  17. Global stratospheric aerosol distribution as measured by the OMPS/LP

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.; Rault, D. F.

    2012-12-01

    The Ozone Mapping and Profiler Suite (OMPS) was launched on board NPP/SUOMI in October 2011 to continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. The present paper will be concerned with the stratospheric aerosol product retrieved with the OMPS Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The retrieval algorithm will be described together with early results. The retrieved products will be compared with data of CALIPSO and OSIRIS. The vertical profile of aerosol extinction is retrieved over a range of wavelengths (typically 500-900nm), from which a moment of the size distribution (namely the Angstrom coefficient) is inferred. Results will be shown in the form of (a) curtain profiles of aerosol extinction over an altitude range covering the UTLS region ~ 10-35km (sampling rate of one measurement per km in vertical direction and one measurement per one degree latitude), (b) curtain profiles of Angstrom coefficients, (c) weekly global maps of vertical optical depth (the OMPS/LP revisit time is about 5 days). The global distribution of aerosols retrieved by the OMPS/LP in 2012 shows the presence of stable or slowly time-varying structures of stratospheric aerosol, with four distinct geographical features: - the Northern latitudes exhibit large aerosol loading distributed in 4 layers: large particles near tropopause, smaller particles around 15km, larger particles near 18km and a reservoir of small particles above 20km - the middle latitudes (~30 degrees N,S) are characterized by low aerosol loading - the equatorial region shows large aerosol loading with large particles near the tropopause - the southern region (< -30 degrees) exhibits low aerosol loading and small particles Particle size information inferred from retrieved values of the Angstrom coefficient could provide valuable information on aerosol dynamics. Early results show larger stratospheric particles over land masses than over the oceans

  18. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick

    1987-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  19. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Astrophysics Data System (ADS)

    McCormick, M. Patrick

    1987-02-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  20. Primary Discussion on Standardized Management of Purchasing Large Equipments for Measurement Technology Institution

    NASA Astrophysics Data System (ADS)

    Hu, Chang; Hu, Juanli; Zhou, Qi; Yang, Yue

    In view of current situation and existing problem on purchasing equipment for measurement technology institution, this paper analyzes key factors that affect the standardization of equipment procurement and it proposes a set of scientific and standardized solutions for equipment procurement based on actual work.

  1. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.

    2014-09-01

    A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allows "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic carbon (OC)-elemental carbon (EC) measurements. Optical sensing is calibrated with transfer standards traceable to absolute R and T measurements and adjusted for loading effects to determine spectral light absorption (as absorption optical depth [τa, λ]) using diesel exhaust samples as a reference. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black carbon (BC) and brown carbon (BrC) contributions and their optical properties in the near-IR to the near-UV parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  2. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B. J.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.

    2015-01-01

    A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allowed "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic-carbon (OC)-elemental-carbon (EC) measurements. Optical sensing was calibrated with transfer standards traceable to absolute R and T measurements, adjusted for loading effects to report spectral light absorption (as absorption optical depth (τa, λ)), and verified using diesel exhaust samples. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~ 635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black-carbon (BC) and brown-carbon (BrC) contributions and their optical properties in the near infrared to the near ultraviolet parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  3. Influence Of Relative Humidity On Light Scattering Measurements Of Aerosols Using A Humidifier-Dryer Nephelometer

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2012-12-01

    Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties, as well as the water content and lifetime of clouds. In atmosphere conditions, aerosol particles experience hygroscopic growth due to the relative humidity (RH) influence. Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observation with other optical aerosol measurements techniques such satellite retrieval and photometry as well as for climate forcing calculations. A humidifier-dryer system for a TSI 3563 Nephelometer was designed and built in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Regular measurements at UMBC (University Of Maryland, Baltimore County) with ambient and lab-generated aerosols have been taking place to study the hygroscopic properties of the aerosols in the region. The aerosols have been humidified as high as 95.4% and the measured σsp(λ) were on average more than two times greater than those at low RH. Another important parameter used to evaluate the hygroscopic properties of aerosols is the enhancement factor f(λ,RH) which is defined as the σsp(λ,RH) at any specified RH divided by the dry σsp(λ,DRY). Initial results indicates that the enhancement factor for ambient aerosols in the region is f(550,94%) =1.35. Enhancement

  4. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  5. Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93

    SciTech Connect

    Beyerle, G.; Neuber, R.; Schrems, O. ); Wittrock, F. ); Knudsen, B. )

    1994-01-01

    Using a multiwavelength lidar the authors measured aerosols from the tropopause to altitudes of 30 km in the period December 1992 to March 1993. They analyzed backscatter and depolarization measurements to infer information on aerosol size and phase. During most of this period they saw evidence of a liquid drop aerosol layer in the lower stratosphere which was of a volcanic origin. In January they observed polar stratospheric clouds on numerous occasions, and particle size was found to depend strongly on the cooling rate.

  6. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  7. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-09-01

    Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the

  8. A review of measurement-based assessment of aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2005-08-01

    Aerosols affect the Earth's energy budget ''directly'' by scattering and absorbing radiation and ''indirectly'' by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Here we assess the aerosol optical depth, direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical thickness (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21% is contributed by human activities, as determined by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOT of 0.23 over global land with an uncertainty of ~20% or ± 0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error) over global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and

  9. BIOGENIC CONTRIBUTION TO PM-2.5 AMBIENT AEROSOL FROM RADIOCARBON MEASUREMENTS

    EPA Science Inventory

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (Carbon-14) measurements provide a means to quantify the ...

  10. First measurements of aerosol optical depth and Angstrom exponent number from AERONET's Kuching site

    NASA Astrophysics Data System (ADS)

    Salinas, Santo V.; Chew, Boon N.; Mohamad, M.; Mahmud, M.; Liew, Soo C.

    2013-10-01

    We report our first measurements, over the 2011 dry season period, of aerosol optical depth, Angstrom exponent number and its fine mode counterpart obtained from photometric measurements at AERONET's newest site located at the city of Kuching, Sarawak, East Malaysia. This site was set up as part of the collaborative efforts of the Seven South East Asian Studies (7SEAS) regional aerosol measurements initiative. Located at the converging zone between peninsular Malaysia and the land masses of Sumatra, Borneo, Java and Sulawesi, this site is expected to provide first hand evidence about the physical and optical characteristics of the regional aerosol environment, specially during the biomass burning months. Moreover, given its relative proximity to our Singapore radiation measurement super-site, Kuching is expected to provide further insight on aerosol transport pathways caused by seasonal winds transporting smoke to other parts of the maritime continent and the South Asia region.

  11. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  12. SAM 2 Measurements of the Polar Stratospheric Aerosol, volume 2. April 1979 to October 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Steele, H. M.; Hamill, P.

    1982-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor is abroad the Earth orbiting Nimbus 7 spacecraft proving extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM II measurement (April 29, 1979, to October 27, 1979) is presented. Contours of aerosol extinction as a function of altitude and longitude or time were plotted and weekly aerosol optical depths were calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Typical values of aerosol extinction at the SAM II wavelength of 1.0 micron for the time priod were 1 to 3 x 10 to the -4th power km -1 in the main stratospheric aerosol layer. Optical depths for the stratosphere were about 0.002. Polar stratospheric clouds at altitudes between the tropopause and 20 km were observed during the Antarctic winter at various times and locations. A ready-to-use format containing a representative sample of the second 6 months of data to be used in atmospheric and climatic studies is presented.

  13. Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

    SciTech Connect

    Ghan, Steven J.; Schwartz, Stephen E.

    2007-07-01

    Aerosols exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently there is a need to represent aerosol effects in global climate models, and models have begun to include representations of these effects. However, the treatment of aerosols in current global climate models is presently highly simplified, omitting many important processes and feedbacks. Consequently there is need for substantial improvement. Here we describe the U. S. Department of Energy strategy for improving the treatment of aerosol properties and processes in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules of selected aerosol properties and processes. These modules are then integrated in regional aerosol models, which are evaluated by comparing with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparing with global satellite measurements. Finally, the validated set of modules are applied to global climate models for multi-century simulations. This strategy can be applied to successive generations of global climate models.

  14. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  15. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  16. Evidence for Novel Atmospheric Organic Aerosol Measured in a Bornean Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Hamilton, J. F.; Allan, J. D.; Langford, B.; Oram, D. E.; Chen, Q.; Ward, M. W.; Hewitt, C. N.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2009-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth’s atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Off line analysis of filter samples was performed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GCxGC/ToFMS). This technique provide a more detailed chemical characterisation of the SOA, allowing direct links back to gas phase precursors. The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Proton Transfer Reaction Mass Spectrometry (PTRMS) measurements of VOCs were made at the ground site and from the FAAM aircraft. Novel organic aerosol was measured by both AMSs, and identified by GCxGC/ToFMS analysis. The aerosol component was

  17. Measurement of aerosol profiles using high-spectral-resolution Rayleigh-Mie lidar

    NASA Technical Reports Server (NTRS)

    Krueger, D. A.; Alvarez, R. J., II; Caldwell, L. M.; She, C. Y.

    1992-01-01

    High-spectral-resolution Rayleigh-Mie lidar measurements of vertical profiles (1 to 5 km) of atmospheric pressure and density, as well as aerosol profiles, including backscatter ratio and extinction ratio are reported. These require simultaneous measurement of temperature. Use of the technique does not require any assumptions about the aerosol but does require that the pressure at one altitude is known and that the gas law of the air is known (e.g., an ideal gas).

  18. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  19. Tracking aerosol plumes: lidar, modeling, and in situ measurement

    NASA Astrophysics Data System (ADS)

    Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.

    2004-09-01

    The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.

  20. Measurements of stratospheric ozone and aerosols above Spitsbergen

    NASA Technical Reports Server (NTRS)

    Neuber, Roland; Beyerle, Georg; Schrems, Otto; Fabian, Rolf; Vondergathen, Peter; Krueger, Bernd C.

    1994-01-01

    Stratospheric ozone and aerosol data recorded at Spitsbergen (79 deg N, 12 deg E) from 1988 to 1992 are presented. Strong dynamical influences like seasonal variations and annual cycles in the ozone concentrations are described. Polar Stratospheric Clouds were detected above Spitsbergen in January 1989 and 1990, but not in the next two years. Volcanic aerosols, attributed to the Mt. Pinatubo eruption, appeared as early as August 1991 above Spitsbergen and were a constant feature of the lower Arctic stratosphere in winter 1991/92.

  1. Cassini/CIRS capabilities for aerosol, cloud, and surface measurements

    NASA Technical Reports Server (NTRS)

    Samuelson, Robert E.

    1992-01-01

    Information that should be revealed by the Cassini Composite Infrared Spectrometer (CIRS) about the aerosol, cloud, and surface properties of Titan are addressed. Limb sounding data will be used to determine aerosol abundances, scale heights, and gradients between 80 and 400 km for various latitudes. Stratospheric condensate cloud top altitudes and column abundances will be inferred as functions of latitude. A search for new species will be conducted. Thermal maps between 500 and 550/cm will be used to investigate tropospheric methane clouds and surface topography; time resolution provided by different orbits will be used to distinguish the two.

  2. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  3. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  4. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-05-01

    The high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements were first combined into positive matrix factorization (PMF) analysis to investigate the sources and evolution processes of atmospheric aerosols. The new approach is able to study the mixing of organic aerosols (OA) and inorganic species, the acidity of OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrices resolved 8 factors for the submicron aerosols measured at Queens College in New York City in summer 2009. The hydrocarbon-like OA (HOA) and cooking OA (COA) contain very minor inorganic species, indicating the different sources and mixing characteristics between primary OA and secondary species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized, of which the OA in SO4-OA shows the highest oxidation state (O/C = 0.69) among OA factors. The semi-volatile oxygenated OA comprises two components, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA). The MO-OOA represents a local photochemical product with the diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox (= O3+NO2). The much higher NO+/NO2+ fragment ion ratio in MO-OOA than that from ammonium nitrate alone provides evidence for the formation of organic nitrates. The amine-related nitrogen-enriched OA (NOA) contains ~25% of acidic inorganic salts, elucidating the formation of secondary OA from amines in acidic environments. The size distributions derived from 3-dimensional size-resolved mass spectra show distinct diurnal evolving behaviors for different OA factors, but overall a progressing evolution from smaller to larger particle mode as a function of oxidation states. Our results demonstrate that PMF analysis by incorporating inorganic aerosols is of importance for

  5. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  6. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  7. Urban Aerosol Optical Properties Measurement by Elastic Counter-Look Lidar

    NASA Astrophysics Data System (ADS)

    Wang, X.; Boselli, A.; He, Y.; Sannino, A.; Song, C.; Spinelli, N.

    2016-06-01

    The new developed elastic lidar system utilizes two identical elastic lidars, in counter-look configuration, to measure aerosol backscattering and extinction coefficients without any hypotheses. Compared to elastic-Raman lidar and high spectral resolution lidar, the proposed counter-look elastic lidar can use low power eyesafe laser and all available wavelengths. With this prototype lidar system, urban aerosol optical properties and their spatial distribution have been directly measured, including backscatter coefficient, extinction coefficient and lidar ratio. The preliminary results show that the low cost and eye-safe counter-look configured elastic lidar system can be used to measure the aerosol optical properties distribution and give the hint of aerosol type.

  8. Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements

    NASA Astrophysics Data System (ADS)

    Pahlow, Markus; Müller, Detlef; Tesche, Matthias; Eichler, Heike; Feingold, Graham; Eberhard, Wynn L.; Cheng, Ya-Fang

    2006-10-01

    Simulation studies were carried out with regard to the feasibility of using combined observations from sunphotometer (SPM) and lidar for microphysical characterization of aerosol particles, i.e., the retrieval of effective radius, volume, and surface-area concentrations. It was shown that for single, homogeneous aerosol layers, the aerosol parameters can be retrieved with an average accuracy of 30% for a wide range of particle size distributions. Based on the simulations, an instrument combination consisting of a lidar that measures particle backscattering at 355 and 1574 nm, and a SPM that measures at three to four channels in the range from 340 to 1020 nm is a promising tool for aerosol characterization. The inversion algorithm has been tested for a set of experimental data. The comparison with the particle size distribution parameters, measured with in situ instrumentation at the lidar site, showed good agreement.

  9. Stratospheric aerosol and gas experiment III (SAGE III) aerosol and trace gas measurements for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Zawodny, J. M.; Mauldin, L. E.; Mcmaster, L. R.

    1991-01-01

    The SAGE III instrument, the latest in a series of satellite-based instruments employing the self-calibrating solar occultation technique to monitor aerosols and trace gases in the atmosphere, and potential contributions to monitoring global change and other EOS objectives are described. Uses of these data are illustrated with SAGE I and II long-term ozone, aerosol, and water vapor data. The SAGE III instrument will improve the SAM II and SAGE data products with greater overall accuracy, and will provide the ability to extend these measurements over a greater height range. SAGE III will provide long-term self-calibrating global data sets from the midtroposphere to mesosphere, which will contribute greatly to the quantification and understanding of global change.

  10. The advanced characterization of aerosol properties from measurements of spectral optical thickness of the atmosphere.

    NASA Astrophysics Data System (ADS)

    Torres, Benjamin; Toledano, Carlos; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Fuertes, David; Tanre, Didier; Goloub, Phillipe

    The main purpose of the work is to assess the potential of using spectral optical thickness measurement for characterizing aerosol properties. While the use of these measurements is limited to the characterization of aerosol loading in the atmosphere, several studies demonstrated that these observations could be used for deriving more detailed information about aerosol, such as size distribution (King et al. 1978) and for discriminating between the extinction of fine and coarse modes of aerosol (O’Neill 2003). In this study, we test the possibilities of using AERONET inversion (Dubovik and King 2000) for improving the interpretation of measurements of optical thickness. In addition, we study the potential of synergetic scenarios for inverting optical thickness using GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm (Dubovik et al., 2011). This algorithm uses new multi-pixel retrieval approach. According to this approach, the accuracy of aerosol retrieval can be improved if several sets of observations (e.g. observations of satellite over several pixels) are inverted together under additional a priori constraints on time and spatial variability of the retrieved parameters. The application of this approach appears to be promising for the present study. First, the retrieval stability can be improved by inverting more than a single set of spectral aerosol optical depth at once. Second, the set of spectral aerosol optical depth can be inverted together with the radiances observed in the same day. The preliminary results of using simulated data (for different scenarios and aerosol models), as well as, the applications to real data from several AERONET sites will be presented.

  11. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  12. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  13. A Comparison of Aerosol Optical, Microphysical, and Chemical Measurements between LAX and Long Beach Harbor

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Chen, G.; Winstead, E.; Ziemba, L. D.; Beyersdorf, A. J.; Diskin, G. S.; Nenes, A.; Lathem, T. L.; Arctas Science Team

    2010-12-01

    In the summer of 2008, measurements of aerosols were made on-board the NASA DC-8 over the state of California, as part of the second phase of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) on behalf of the California Air resources Board (CARB). The DC-8 made four flights, between 18 June and 26 June, totaling 33 hours, to examine California’s atmosphere to better understand the chemical dynamics of smog and greenhouse gases over the state. The NASA DC-8 had a suite of aerosol instruments, capable of measuring the number concentrations, optical properties, and size distributions of aerosols between 0.003 and 1500 um. In this presentation, we will compare aerosol observations made at two areas within the Los Angeles Basin, Los Angeles International airport (LAX) and Long Beach Harbor. LAX is in the middle of the second most populated metropolitan area in the United States and is the fifth busiest airport in the world, while Long Beach Harbor (20 miles south of LAX) is the world’s 2nd busiest container port. Initial results suggest a greater aerosol loading and additional presence of ultrafine aerosols during the week due to vehicular emissions. We will also present analysis of aerosol observations as a function of time of day from the four missed approaches at LAX and four over flights of Long Beach Harbor.

  14. Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements

    SciTech Connect

    Chuang, C; Penner, J E; Kawamoto, K

    2002-03-08

    Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

  15. Aerosol load characterization over South East Italy for one year of AERONET sun-photometer measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; Santese, M.; Tafuro, A. M.; Holben, B.; Smirnov, A.

    2005-04-01

    Daily averaged retrievals of AERONET sun photometer measurements from March 2003 to March 2004 are used to provide preliminary results on the characterization of aerosol properties and changes over south-east Italy (40°20'N, 18°6'E). It is shown that aerosol optical and microphysical properties and the dominating aerosol types depend on seasons. Aerosol-parameter frequency distributions reveal the presence of individual modes that lead to the assumption that moderately absorbing urban-industrial and marine-polluted aerosols dominate in spring-summer and autumn-winter, respectively. It is shown that aerosol optical depths (AODs), single scattering albedos (SSAs), and Angstrom coefficients (Å) of urban-industrial (spring-summer) aerosols are characterized by lognormal distributions with peak values of 0.20±0.03, 0.94±0.01, and 1.58±0.03, respectively. On the contrary AOD, SSA and Å values of maritime-polluted (autumn-winter) aerosols are characterized by lognormal distributions with peak values of 0.049±0.008, 0.974±0.003, and 0.7±0.1, respectively. It is also shown that the frequency distribution of real n and imaginary k refractive indices permits inference of the dominant aerosol constituents: sea-salt, water soluble, soot, and mineral particles. Finally, it is shown that dust outbreaks do not significantly affect the seasonal evolution of aerosol parameters, and that sunphotometry retrievals along dust events are in satisfactory accord with experimental findings indicating that moderately-absorbing (0.005≤ k≤0.05) dust particles with a high content of illite are mainly advected over the Mediterranean basin during Sahara dust storms.

  16. Glass transition measurements in mixed organic and organic/inorganic aerosol particles

    NASA Astrophysics Data System (ADS)

    Dette, Hans Peter; Qi, Mian; Schröder, David; Godt, Adelheid; Koop, Thomas

    2014-05-01

    The recent proposal of a semi-solid or glassy state of secondary organic aerosol (SOA) particles has sparked intense research in that area. In particular, potential effects of a glassy aerosol state such as incomplete gas-to-particle partitioning of semi-volatile organics, inhibited chemical reactions and water uptake, and the potential to act as heterogeneous ice nuclei have been identified so far. Many of these studies use well-studied proxies for oxidized organics such as sugars or other polyols. There are, however, few measurements on compounds that do exist in atmospheric aerosol particles. Here, we have performed studies on the phase state of organics that actually occur in natural SOA particles arising from the oxidation of alpha-pinene emitted in boreal forests. We have investigated the two marker compounds pinonic acid and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) and their mixtures. 3-MBCTA was synthesized from methyl isobutyrate and dimethyl maleate in two steps. In order to transfer these substances into a glassy state we have developed a novel aerosol spray drying technique. Dilute solutions of the relevant organics are atomized into aerosol particles which are dried subsequently by diffusion drying. The dried aerosol particles are then recollected in an impactor and studied by means of differential scanning calorimetry (DSC), which provides unambiguous information on the aerosols' phase state, i.e. whether the particles are crystalline or glassy. In the latter case DSC is used to determine the glass transition temperature Tg of the investigated samples. Using the above setup we were able to determine Tg of various mixtures of organic aerosol compounds as a function of their dry mass fraction, thus allowing to infer a relation between Tg and the O:C ratio of the aerosols. Moreover, we also studied the glass transition behavior of mixed organic/inorganic aerosol particles, including the effects of liquid-liquid phase separation upon drying.

  17. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  18. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed. PMID:18071387

  19. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  20. Long-Term Measurements of Carbon Monoxide and Aerosols at the ZOTTO tall tower, Siberia

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Birmili, W.; Chi, X.; Heimann, M.; Heintzenberg, J.; Mikhailov, E.; Panov, A.

    2012-04-01

    The Zotino Tall Tower Observatory (ZOTTO), operated by the Max Planck Institutes for Biogeochemistry and Chemistry and the Institute of Forest (Krasnoyarsk), is located at 89.35°E, 60.80°N, 114 m asl. at a very remote continental site in Siberia, Russia. It centers on a 300-m tower designed for scientific measurements of chemical (trace gases, aerosol) and physical (meteorological) properties. The instrumentation at the observatory includes a CO Monitor, a Particle Soot Absorption Photometer (PSAP) for determining the aerosol absorption coefficient, a nephelometer for the determination of the aerosol scattering coefficient, and a Differential Mobility Particle Sizer (DMPS) to measure the aerosol number size distribution. We present measurements made from October 2006 until March 2011, with some interruptions due to technical reasons. An annual cycle of the background CO mixing rations was observed with summer minima around 90 ppb and winter maxima of about 175 ppb. Amplitude and phase of the annual cycle were generally similar to that reported by NOAA-ESRL for latitude 61°N, but showed an earlier onset of the elevated winter values. Episodes of elevated CO and aerosol concentrations, typically lasting for several days, are superimposed on the background seasonal cycle. During winter, these pollution episodes are usually associated with air masses that have passed over the central Siberian region around Omsk and Novosibirsk - a heavily industrialized area. During spring and summer, elevated levels of CO and aerosols are often caused by agricultural fires in southern Siberia and Kazakhstan or by forest fires in boreal Siberia. The optical properties of the aerosol showed more pronounced seasonal variability than the aerosol mass and number concentrations. Wintertime aerosols were highly absorbing, with single scattering albedos (SSA) around 0.85, consistent with a dominant fossil fuel combustion source. In contrast, summertime aerosols had very low absorption

  1. Aerosol penetration measurements through protective clothing in small scale simulation tests

    SciTech Connect

    Bergman, W.; Garr, J.; Fearon, D.; Gerdner, P.

    1989-06-01

    We have developed a new laboratory apparatus and technique to measure the penetration of aerosols through protective clothing. The unique feature of this apparatus is a cylindrical fabric holder that incorporates the complex aerodynamics of flow around protective clothing. Because of this feature, the test results from small patch samples in this apparatus can be used to predict aerosol penetration in full scale clothing. This apparatus has the potential for large time and cost savings in new suit development and in evaluating protective clothing against biological agents and chemical aerosols. 2 refs., 8 figs.

  2. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-11-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic-enriched seawater, the continuous

  3. Aerosol measurements over the Pacific Ocean in support of the IR aerosol backscatter program

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Savoie, Dennis L.

    1995-01-01

    The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean.

  4. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  5. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosols

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J. R.; Makar, P.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Lu, G.; Gordon, M.; Mihele, C.

    2011-12-01

    The volatility of the organic aerosol (OA) fraction has received a great deal of attention of late in light of new volatility-based modelling approaches and the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol (POA) species and their subsequent oxidation may contribute significantly to SOA downwind of sources. To assess the importance of the temperature dependence of these primary organic aerosol species a temperature controlled inlet capable of heating and cooling was coupled to a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and was deployed in Southern Ontario as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER) 2010 field campaign. The instrument and inlet system were mounted on a mobile platform to measure upwind and downwind of the roadway. Changes in"volatility" were observed when the mobile lab moved from an upwind to a downwind location, clearly demonstrating the impact of the roadway. Measured OA mass changes observed ranged from 0.5 to ~1 %/°C over a range of 15 degrees below to 25 degrees above ambient, depending on the location of the mobile lab and meteorological conditions at the time. Positive Matrix Factorization (PMF) was applied to the complete data set (ambient and temperature controlled data) and yielded a 3 factor solution with factors consistent with hydro carbon like organic aerosol (HOA), aged organic aerosol (OOA-1) and a fresher organic aerosol (OOA-2). Mass changes as a function of temperature were observed for all three factors and were found to be similar over the temperature range studied. The potential use of this data for deriving parameters such as average molecular mass of semi-volatile (SVOC) and intermediate volatility organic (IVOC) gases taken up onto organic aerosol using the parameterization of gas-particle partitioning of Pankow (1994) will be discussed.

  6. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  7. Multiwavelength Comparison of Modeled and Measured Remote Tropospheric Aerosol Backscatter Over Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Pueschel, R. F.; Srivastava, V.; Clarke, A. D.; Rothermel, J.; Spinhirne, J. D.; Menzies, R. T.

    1996-01-01

    Aerosol concentrations and size distributions in the middle and upper troposphere over the remote Pacific Ocean were measured with a forward scattering spectrometer probe (FSSP) on the NASA DC-8 aircraft during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. The FSSP size channels were recalibrated based on refractive index estimates from flight-level aerosol volatility measurements with a collocated laser optical particle counter (LOPC). The recalibrated FSSP size distributions were averaged over 100-s intervals, fitted with lo-normal distributions and used to calculate aerosol backscatter coefficients at selected wavelengths. The FSSP-derived backscatter estimates were averaged over 300-s intervals to reduce large random fluctuations. The smoothed FSSP aerosol backscatter coefficients were then compared with LOPC-derived backscatter values and with backscatter measured at or near flight level from four lidar systems operating at 0.53, 1.06, 9.11, 9.25, and 10.59 micrometers. Agreement between FSSP-derived and lidar-measured backscatter was generally best at flight level in homogeneous aerosol fields and at high backscatter values. FSSP data often underestimated low backscatter values especially at the longer wavelengths due to poor counting statistics for larger particles (greater than 0.8 micrometers diameter) that usually dominate aerosol backscatter at these wavelengths. FSSP data also underestimated backscatter at shorter wavelengths when particles smaller than the FSSP lower cutoff diameter (0.35 micrometers) made significant contributions to the total backscatter.

  8. Effect of volcanic aerosol on stratospheric NO2: Odin-OSIRIS measurements

    NASA Astrophysics Data System (ADS)

    Adams, Cristen; Bourassa, Adam; Degenstein, Doug

    2016-04-01

    Heterogeneous chemistry on the surface of volcanic stratospheric aerosols from large eruptions such as Mt. Pinatubo in 1991 has been shown to cause substantial decreases of stratospheric NO2. Here we present measurements from the Optical Spectrograph and InfraRed Imaging Spectrometer (OSIRIS), which simultaneously observed wide-spread enhancements of stratospheric aerosol following several relatively minor volcanic eruptions between 2002 and 2014, along with coincident depletion of stratospheric NO2. OSIRIS stratospheric NO2 partial columns for ~3-7 km above the tropopause were found to be smaller than baseline levels during these aerosol enhancements by up to ~60%. Correlations with measurements from MIPAS are also used to show that this is consistent with heterogeneous chemistry on the surface of volcanic aerosols.

  9. Quantifying Aerosol Types and Their Impact on Trace Gas Retrievals From Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Natraj, V.; Boesch, H.; Yung, Y. L.

    2005-12-01

    One of the major sources of uncertainty in the retrieval of trace gas abundances from space-borne measurements is the type, amount and vertical distribution of aerosols in the atmosphere. Optical properties were derived for the broad classification of aerosol types investigated by Kahn et al. (2001), taking polarization into account. Examination of the scattering matrix elements resulted in a smaller set of independent aerosol types whose radiative effects were different. Weighting functions were then calculated for each of these types, assuming exponentially tailing aerosol concentration in the troposphere and a Junge distribution for the stratosphere. The different shapes of the weighting functions indicate different amount and distribution of the information content. Implications for trace gas retrievals from satellite-based measurements made by polarization-sensitive instruments (such as those on OMI, GOME, SCIAMACHY and OCO) will be discussed.

  10. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; Omar, A.

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  11. Measurement of internal and external mixtures of test aerosols with a new Single Particle Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Hitzenberger, Regina

    2015-04-01

    The mixing state of atmospheric aerosol particles is a very important property affecting processes such as CCN activation and scattering and absorption of light by the particles, but is challenging to determine. A new Single Particle Aerosol Mass Spectrometer (LAAPTOF, AeroMegt GmbH) was tested with regards to its capability of measuring internal and external mixture of aerosols using laboratory generated particles. To create the external mixture, solutions of three different salts in deionized water, and a suspension of carbon black (Cabot Corporation) in a mixture of isopropanol and water were nebulized and individually dried, before being passed into a small mixing chamber. To create the internal mixture, equal parts of each solution/suspension were mixed, fed into a single nebulizer, nebulized and dried. The LAAPTOF sampled from the mixing chamber and recorded mass spectra of individual particles. The analysis shows a heterogeneous ensemble of single particle spectra for the external mixture, and a homogeneous ensemble of spectra for the internal mixture. The ability of a fuzzy clustering algorithm to resolve the difference between the two mixing states was also tested.

  12. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-11-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  13. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-06-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions can not be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  14. SAGE aerosol measurements. Volume 1: February 21, 1979 to December 31, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1985-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes.

  15. Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Woodley, William L.; Axisa, Duncan; Freud, Eyal; Hudson, James G.; Givati, Amir

    2008-08-01

    Recent publications suggest that anthropogenic aerosols suppress orographic precipitation in California and elsewhere. A field campaign (SUPRECIP: Suppression of Precipitation) was conducted to investigate this hypothesized aerosol effect. The campaign consisted of in situ aircraft measurements of the polluting aerosols, the composition of the clouds ingesting them, and the way the precipitation-forming processes are affected. SUPRECIP was conducted during February and March of 2005 and February and March of 2006. The flights documented the aerosols and orographic clouds flowing into the central Sierra Nevada from the upwind densely populated industrialized/urbanized areas and contrasted them with the aerosols and clouds downwind of the sparsely populated areas in the northern Sierra Nevada. SUPRECIP found that the aerosols transported from the coastal regions are augmented greatly by local sources in the Central Valley resulting in high concentrations of aerosols in the eastern parts of the Central Valley and the Sierra foothills. This pattern is consistent with the detected patterns of suppressed orographic precipitation, occurring primarily in the southern and central Sierra Nevada, but not in the north. The precipitation suppression occurs mainly in the orographic clouds that are triggered from the boundary layer over the foothills and propagate over the mountains. The elevated orographic clouds that form at the crest are minimally affected. The clouds are affected mainly during the second half of the day and the subsequent evening, when solar heating mixes the boundary layer up to cloud bases. Local, yet unidentified nonurban sources are suspected to play a major role.

  16. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  17. Single-particle measurements of phase partitioning between primary and secondary organic aerosols.

    PubMed

    Robinson, Ellis Shipley; Donahue, Neil M; Ahern, Adam T; Ye, Qing; Lipsky, Eric

    2016-07-18

    Organic aerosols provide a measure of complexity in the urban atmosphere. This is because the aerosols start as an external mixture, with many populations from varied local sources, that all interact with each other, with background aerosols, and with condensing vapors from secondary organic aerosol formation. The externally mixed particle populations start to evolve immediately after emission because the organic molecules constituting the particles also form thermodynamic mixtures - solutions - in which a large fraction of the constituents are semi-volatile. The external mixtures are thus well out of thermodynamic equilibrium, with very different activities for many constituents, and yet also have the capacity to relax toward equilibrium via gas-phase exchange of semi-volatile vapors. Here we describe experiments employing quantitative single-particle mass spectrometry designed to explore the extent to which various primary organic aerosol particle populations can interact with each other or with secondary organic aerosols representative of background aerosol populations. These methods allow us to determine when these populations will and when they will not mix with each other, and then to constrain the timescales for that mixing. PMID:27092377

  18. Quantification of model uncertainty in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-09-01

    We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.

  19. Saharan Dust Aerosol Radiative Forcing Measured from Space.

    NASA Astrophysics Data System (ADS)

    Li, F.; Vogelmann, A. M.; Ramanathan, V.

    2004-07-01

    This study uses data collected from the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to determine Saharan dust broadband shortwave aerosol radiative forcing over the Atlantic Ocean near the African coast (15° 25°N, 45° 15°W). The clear-sky aerosol forcing is derived directly from these data, without requiring detailed information about the aerosol properties that are not routinely observed such as chemical composition, microphysical properties, and their height variations. To determine the diurnally averaged Saharan dust radiative forcing efficiency (i.e., broadband shortwave forcing per unit optical depth at 550 nm, W m-2 τ-1a), two extreme seasons are juxtaposed: the high-dust months [June August (JJA)] and the low-dust months [November January (NDJ)]. It is found that the top-of-atmosphere (TOA) diurnal mean forcing efficiency is -35 ± 3 W m-2 τ-1a for JJA, and -26 ± 3 W m-2 τ-1a for NDJ. These efficiencies can be fit by reducing the spectrally varying aerosol single-scattering albedo such that its value at 550 nm is reduced from 0.95 ± 0.04 for JJA to about 0.86 ± 0.04 for NDJ. The lower value for the low-dust months might be influenced by biomass-burning aerosols that were transported into the study region from equatorial Africa. Although the high-dust season has a greater (absolute value of the) TOA forcing efficiency, the low-dust season may have a greater surface forcing efficiency. Extrapolations based on model calculations suggest the surface forcing efficiencies to be about -65 W m-2 τ-1a for the high-dust season versus -81 W m-2 τ-1a for the low-dust season. These observations indicate that the aerosol character within a region can be readily modified, even immediately adjacent to a powerful source region such as the Sahara. This study provides important observational constraints for models of dust radiative forcing.


  20. The East and Southeast Asia Initiatives: Aerosol Column Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, Christina N.; Li, Zhanqing

    2003-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring- time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3,Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth- atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  1. Increasing dust-absorbing equipment operation efficiency using the automatic laser instrument for solid particle concentration measurement

    NASA Astrophysics Data System (ADS)

    Privalov, Vadim V.; Shemanin, Valery G.; Charty, Pavel V.

    2003-06-01

    The technological process of cement production, which side effect is dust generating and its exhausting to atmosphere, is not stopped as a rule when some faults were origin in dust-absorbing equipment (DAE). The analysis in reference one shows that longtime conducting of the technological process at DAE refusal or fault leads to its working efficiency reduction, which reveals itself in significant excess of nominal values of the dust output concentrations. The number of the most typical refusals and damages and algorithms of their searching were analyzed in work in reference 2 for the most wide-spread dust-absorber types: blanch and electrostatic filters. This work goal are the estimation of DAE working efficiency and choosing of the optimum way of its increasing with using of the automatic laser instrument for aerosol particles concentration measuring in the dust-air flows.

  2. The Effects of Digital Measuring Equipment on the Concept of Number.

    ERIC Educational Resources Information Center

    Pickard, Poppy; Alexander, Patricia

    Over the last 20 years, the use of calculators and digital measuring equipment has to some extent replaced mathematical mental/written activity and also the use of analogue measuring equipment. This paper explores some aspects of number concept, reading the number line, and estimation from scales. The students being considered are mainly part of a…

  3. 10 CFR 71.125 - Control of measuring and test equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Control of measuring and test equipment. 71.125 Section 71.125 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.125 Control of measuring and test equipment. The licensee, certificate holder, and applicant for a CoC shall...

  4. 10 CFR 71.125 - Control of measuring and test equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Control of measuring and test equipment. 71.125 Section 71.125 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.125 Control of measuring and test equipment. The licensee, certificate holder, and applicant for a CoC shall...

  5. 10 CFR 71.125 - Control of measuring and test equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Control of measuring and test equipment. 71.125 Section 71.125 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.125 Control of measuring and test equipment. The licensee, certificate holder, and applicant for a CoC shall...

  6. 10 CFR 71.125 - Control of measuring and test equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Control of measuring and test equipment. 71.125 Section 71.125 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.125 Control of measuring and test equipment. The licensee, certificate holder, and applicant for a CoC shall...

  7. 10 CFR 71.125 - Control of measuring and test equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Control of measuring and test equipment. 71.125 Section 71.125 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.125 Control of measuring and test equipment. The licensee, certificate holder, and applicant for a CoC shall...

  8. Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.

    1992-01-01

    The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.

  9. The Effects of Aerosol on Atmospheric UV Radiation: Measurements and Modeling from the MILAGRO Field Campaign

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Hall, S.; Shetter, R.; Slusser, J.; Arnott, P.

    2007-05-01

    The MILAGRO field campaign took place in and near Mexico City 1-30 March 2006. A comprehensive data set was obtained on atmospheric chemical composition (gas and aerosol), aerosol microphysics, spectral radiation, and meteorology from surface-, aircraft-, and satellite-based instruments. For much of this time, the lower atmosphere was laden with large amounts of aerosols originating from urban and industrial sources, biomass fires, and wind-blown dust. Spectral radiation measurements are available from filter radiometers and spectroradiometers, and span ultraviolet (UV) wavelengths important to surface biota and tropospheric photochemistry. By combining the spectral radiation measurements, aerosol composition, optical, and microphysical measurements, and modeling, an assessment is now possible on how aerosols affect surface UV radiation (e.g. DNA damage, erythema, vitamin-D production) and vertical profiles of photolysis frequencies (e.g. JNO2, JO3(O1D), JCH2O, JHONO). Interactions between aerosol-scattered radiation and absorption by gaseous pollutants (esp. O3, SO2, and NO2) can also be evaluated. Implications for human health and photochemical oxidant formation will be discussed.

  10. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  11. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking. PMID:26730457

  12. SAM 2 measurements of the polar stratospheric aerosol. Volume 9: October 1982 - April 1983

    NASA Technical Reports Server (NTRS)

    Mcmaster, L. R.; Powell, K. A.

    1991-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor aboard Nimbus 7 is providing 1.0 micron extinction measurements of Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages including corresponding temperature profiles provided by NOAA for the time and place of each SAM II measurement are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted, and aerosol optical depths are calculated for each week. Typical values of aerosol extinction and stratospheric optical depth in the Arctic are unusually large due to the presence of material from the El Chichon volcano eruption in the Spring of 1982. For example, the optical depth peaked at 0.068, more than 50 times background values. Typical values of aerosol extinction and stratospheric optical depth in the Antarctic varied considerably during this period due to the transport and arrival of the material from the El Chichon eruption. For example, the stratospheric optical depth varied from 0.002 in October 1982, to 0.021 in January 1983. Polar stratospheric clouds were observed during the Arctic winter, as expected. A representative sample is provided of the ninth 6-month period of data to be used in atmospheric and climatic studies.

  13. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  14. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  15. New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure

    NASA Astrophysics Data System (ADS)

    Hariyama, Tatsuo; Takaya, Yasuhiro; Miyoshi, Takashi

    2005-11-01

    Aerosol particles with sub-micro meter size inhaled into respiratory systems cause serious damage to human body. In order to evaluate the health effects of the particles, classification methods of the particles with size and mass are needed. Several measurement methods of the particle size are established. However, conventional mass measurement methods are not enough to measure the particles with sub- pico gram. We propose a new mass measurement method of the aerosol particles based on laser trapping. In this method, an optically trapped silica particle is used as a measuring probe particle. The probe particle is trapped at a beam waist of the focused laser light and is forced to vibrate by deflecting the beam waist using AOD. The vibrating probe particle has a resonance frequency because it is governed by the spring-mass-damper system. When an aerosol particle is attached to the probe particle, the resonance frequency shifts according to the increase of the total mass. The mass of the aerosol particle can be measured from the shift of the resonance frequency. Experimentally, it is confirmed that the probe particle is governed by the spring-mass-damper system and has a resonance frequency. When a silica fine particle of 3pg in mass used as an aerosol particle is attached to the probe particle, the resonance frequency shift occurs as expected in the dynamic system and the fine particle mass can be measured based on the proposed method.

  16. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    PubMed

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  17. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  18. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of

  19. Aircraft Measurements of Aerosol Partitioning and Aging during EUCAARI-LONGREX

    NASA Astrophysics Data System (ADS)

    Morgan, W. T.; Allan, J. D.; Bower, K. N.; Coe, H.; Highwood, E. J.; McMeeking, G. R.; Northway, M. J.; Osborne, S. R.; Trembath, J.; Williams, P. I.

    2009-04-01

    The chemical composition of the atmospheric aerosol burden has significant implications for its climate impacts. Specifically, it determines the scattering or absorbing nature of the aerosol and its affinity for water uptake. Measurements of aerosol chemical composition are presented here from the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft from May 2008. The BAe-146 operated out of Oberpfaffenhofen, Germany during the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI) LONG Range EXperiment (LONGREX). A primary goal of the study was to examine the effects of atmospheric aging on aerosol chemical, physical and optical properties. Science flights were conducted across Northern Europe, during a period of anticyclonic circulation in clear sky conditions. The aircraft employs a suite of aerosol instruments, which measure the chemical composition, microphysical, optical and hygroscopic properties of the in-situ aerosol population. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS) measured the mass of volatile and semi-volatile particulate chemical constituents, as a function of size. These components included organic matter, nitrate, sulphate and ammonium. The spatial distribution and chemical evolution of these components will be presented. The chemical nature of the organic aerosol component is examined via Positive Matrix Factorisation (PMF). The factor analysis of the organic aerosol component revealed the dominance of Oxygenated Organic Aerosol (OOA) over Hydrocarbon-like Organic Aerosol (HOA). OOA is analogous to Secondary Organic Aerosol (SOA), whilst HOA is strongly associated with Primary Organic Aerosol (POA) derived from fossil fuel combustion. Two components were commonly resolved for the OOA component; an aged, more oxidised factor (reflecting the regional organic aerosol background) and a fresher (less aged) component, which exhibited less oxidation than the

  20. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.; Nadeev, Alexander I.

    2016-06-01

    Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  1. Marine and urban influences on summertime PM2.5 aerosol in the Po basin using mobile measurements

    NASA Astrophysics Data System (ADS)

    Wolf, R.; El Haddad, I.; Crippa, M.; Decesari, S.; Slowik, J. G.; Poulain, L.; Gilardoni, S.; Rinaldi, M.; Carbone, S.; Canonaco, F.; Huang, R.-J.; Baltensperger, U.; Prévôt, A. S. H.

    2015-11-01

    We report ambient measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) on a mobile platform in the southeast Po Valley (Italy) in summer 2012. During the PEGASOS southbound campaign measurements of non-refractory aerosol were performed in urban and rural environments as well as near the coast of the Adriatic Sea. Organic source apportionment analysis of the aerosol mass spectrometer data was carried out using positive matrix factorization and multilinear engine (ME-2) receptor modelling. Five major organic aerosol components were identified: hydrocarbon-like organic aerosol (HOA), semi-volatile oxygenated organic aerosol (SVOOA), low volatility oxygenated organic aerosol (LVOOA), cooking organic aerosol (COA) and a regionally influenced highly oxygenated organic aerosol (HOOA). Essential changes in both aerosol composition and concentration were induced by the ventilation and recirculation of air masses in the East-West direction of the valley (land/sea breeze system) and via the Apennine mountain range (mountain/valley wind system). An urban increment of the non-refractory aerosol mass concentration in Bologna of about 1.6-2.3 μg/m3 compared to the surrounding regions was quantified which can be explained by the sum of local contributions from cooking activities and from hydrocarbon-like aerosol related to traffic emissions.

  2. Retrieval of aerosol optical thickness over land from airborne polarized measurements in Tianjin and Tangshan

    NASA Astrophysics Data System (ADS)

    Wang, Han; Sun, Xiaobing; Hou, Weizhen; Chen, Cheng; Hong, Jin

    2015-03-01

    New developed sensor was called Atmosphere Multi-angle Polarization Radiometer (AMPR). It provides airborne multi-spectral, multi-angular and polarized measurements. Based on the measurements, a method to retrieve aerosol optical thickness (AOT) was developed. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained. Initial surface reflectance was estimated from measurements at 1640 nm. With iteration the surface polarized reflectance tends to the real value together with AOT. Retrieved cases were selected from measurements in Tianjin. Validation between AOTs from AMPR and CE318 is encouraging. The AOTs along the track shows reasonable temporal and spatial variation.

  3. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R., Jr.; DeYoung, Russell J.; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2008. While the PM2.5 concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Measurements of the boundary layer height from lidar instruments are necessary to incorporate satellite measurements with air quality measurements.

  4. Airborne Sun Photometer Measurements of Aerosol Optical Depth during SOLVE II: Comparison with SAGE III and POAM III Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.

    2003-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).

  5. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  6. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  7. Comparison of CO2 backscatter using Mie theory from aerosol measurements over Pacific Basin with lidar data

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Porter, John; Jarzembski, Maurice; Bowdle, David

    1991-01-01

    Results of a comparison of aerosol backscatter with measurements over the Pacific Basin obtained from the CW CO2 lidars are presented. Both the Laser Optical Particle Counter (POPC) and CW CO2 lidars performed measurements at the flight level close to the aircraft and measured the same air mass. From the number distributions measured during a flight over Tokyo in June 1990, the backscatter coefficient for each component is calculated by integrating the differential backscatter. Fifteen sets of number distributions measured by the LOPC during the flight are used to predict aerosol backscatter. The backscatter from microphysics of the aerosols obtained from the LOPC and from the lidar measurements are in good agreement. It is concluded that the size distribution and composition of the aerosols can change dramatically as a function of altitude and location. The magnitude of the aerosol backscatter can vary by over three orders of magnitude from clear air to an aerosol layer.

  8. High-latitude stratospheric aerosols measured by the SAM II satellite system in 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Hamill, P.; Steele, H. M.; Swissler, T. J.; Herman, B. M.; Pepin, T. J.; Russell, P. B.

    1981-01-01

    Results of the first year of data collection by the SAM (Stratospheric Aerosol Measurement) II satellite system are presented. Almost 10,000 profiles of stratospheric aerosol extinction in the Arctic and Antarctic regions are used to construct plots of weekly averaged aerosol extinction versus altitude and time and stratospheric optical depth versus time. Corresponding temperature fields are presented. These data show striking similarities in the aerosol behavior for corresponding seasons. Wintertime polar stratospheric clouds that are strongly correlated with temperature are documented. They are much more prevalent in the Antarctic stratosphere during the cold austral winter and increase the stratospheric optical depths by as much as an order of magnitude for a period of about 2 months. These clouds might represent a sink for stratospheric water vapor and must be considered in the radiative budget for this region and time.

  9. Long term measurements of the estimated hygroscopic enhancement of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Sellegri, Karine; Pichon, Jean Marc; Roger, Jean Claude; Laj, Paolo

    2015-04-01

    Water vapour has a major impact on aerosol optical properties, thus on the Radiative Forcing for aerosol-radiation interaction (RFari). However there is few studies measuring this impact over a large period. Optical properties of aerosols were measured at the GAW Puy de Dôme station (1465m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the dry optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the planetary boundary layer height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type and the season. At 90% humidity, the scattering factor enhancement (fsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH= 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type. To our knowledge, these results are one of the first presenting the impact of water vapour on the aerosol optical properties for a long period, and the first for a site at the border between the planetary boundary layer

  10. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Logue, J. M.; Donahue, N. M.; Robinson, A. L.

    2009-02-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) emissions from flaming and smoldering hard- and soft-wood fires under plume-like conditions. This was done by exposing the dilute emissions from a small wood stove to UV light in a smog chamber and measuring the gas- and particle-phase pollutant concentrations with a suite of instruments including a Proton Transfer Reaction Mass Spectrometer (PTR-MS), an Aerosol Mass Spectrometer (AMS) and a thermodenuder. The measurements highlight how atmospheric processing can lead to considerable evolution of the mass and volatility of biomass-burning OA. Photochemical oxidation produced substantial new OA, increasing concentrations by a factor of 1.5 to 2.8 after several hours of exposure to typical summertime hydroxyl radical (OH) concentrations. Less than 20% of this new OA could be explained using a state-of-the-art secondary organic aerosol model and the measured decay of traditional SOA precursors. The thermodenuder data indicate that the primary OA is semivolatile; at 50°C between 50 and 80% of the fresh primary OA evaporated. Aging reduced the volatility of the OA; at 50°C only 20 to 40% of aged OA evaporated. The predictions of a volatility basis-set model that explicitly tracks the partitioning and aging of low-volatility organics was compared to the chamber data. The OA production can be explained by the oxidation of low-volatility organic vapors; the model can also reproduce observed changes in OA volatility and composition. The model was used to investigate the competition between photochemical processing and dilution on OA concentrations in plumes.

  11. Time-of-flight aerosol mass spectrometry: Measuring gaseous iodine species after selective uptake in lab-generated aerosols

    NASA Astrophysics Data System (ADS)

    Kundel, Michael; Ries, Marco; Schott, Mathias; Hoffmann, Thorsten

    2010-05-01

    Reactive iodine species play an important role in the marine atmospheric chemistry. Recent studies show that iodine containing compounds (e.g. I2 and ICl) are involved in the tropospheric ozone depletion, the enrichment of iodine in marine aerosols and the formation of new particles in the marine boundary layer (MBL). Various laboratory and field measurements report that molecular iodine (I2) and organoiodine compounds (e.g. CH3I, CH2I2) are the most important precursors for reactive iodine in the MBL[1],[2]. However, the identification and quantification of reactive iodine containing compounds are still analytical challenges. Here, we present a new application of the time-of-flight aerosol mass spectrometer (ToF-AMS) for the quantification of gaseous I2 and ICl in real-time. Time-of-flight aerosol mass spectrometry enables the real-time analysis of the particle size, the particle mass and the chemical composition of non-refractory aerosols[3]. The aerosol enters the ToF-AMS through a critical orifice of 100 μm inner diameter. An aerodynamic lens system focuses the particles in a size range of 50-600 nm as a narrow beam into the vacuum system. While most of the air is removed by a skimmer, the particle beam is transmitted into the particle-sizing chamber. After passing the particle-sizing chamber, the non-refractory particles are flash-vaporized on a heated tungsten surface (500-600 °C) and then ionized by electron impact. The generated ions are extracted by an orthogonal extractor into the time-of-flight mass spectrometer, where the time resolved particle mass detection is performed. Since gaseous compounds are removed inside the ToF-AMS, a direct measurement of gaseous iodine species is not possible. Therefore gaseous iodine species have to be transferred from the gas phase to the particle phase before entering the ToF-AMS. For this purpose α-cyclodextrin (α-CD) particles were used as selective sampling probes for I2 and 1,3,5-trimethoxybenzene (1,3,5-TMB

  12. Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony

    1997-01-01

    NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.

  13. Hygroscopic Properties of Atmospheric Aerosol Measured with an HTDMA in an Urban Background Site in Madrid

    NASA Astrophysics Data System (ADS)

    Alonso-Blanco, E.; Gómez-Moreno, F. J.; Becerril, M.; Coz, E.; Artíñano, B.

    2015-12-01

    The observation of high aerosol hygroscopic growth in Madrid is mainly limited to specific atmospheric conditions, such as local stagnation episodes, which take place in winter time. One of these episodes was identified in December 2014 and the hygroscopic growth factor (GF) measurements obtained in such episode were analysed in order to know the influence of the meteorological conditions on aerosol hygroscopic properties. The prevailing high atmospheric stability triggered an increase of the particle total concentration during the study period, with several peaks that exceeded 4.0 104 particles cm-3, as well as an increase in the inorganic fraction of the aerosol, the NO3- concentration, which in this case corresponded to 25% of the total PM1 non-refractory composition. The aerosol hygroscopic growth distribution was bimodal during the episode, with an average GF around 1.2 for the five dry particle sizes measured and an average GF spread ≥ 0.15. In addition, it is important to note that when a reduction in the concentrations of NO3- is observed, it coincides with a decrease of the GF and its spread. These data suggest, on the one hand, a high degree of external mixing state of the aerosol during the episode and, on the other hand, a notable association between the GF and the inorganic fraction of the aerosol.

  14. Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Espinoza, C.; Asa-Awuku, A.

    2015-02-01

    This study examines the morphological properties of freshly emitted and atmospherically aged aerosols from biomass burning. The impacts of particle morphology assumptions on hygroscopic predictions are examined. Chamber experiments were conducted at the University of California, Riverside, Center for Environmental Research and Technology (CE-CERT) atmospheric processes lab using two biomass fuel sources: manzanita and chamise. Morphological data was obtained through the use of an aerosol particle mass analyzer (APM), scanning mobility particle sizer (SMPS) system and transmission electron microscope (TEM). Data from these instruments was used to calculate both a dynamic shape factor and a fractal-like dimension for the biomass burning emissions. This data was then used with κ-Köhler theory to adjust the calculated hygroscopicity for experimentally determined morphological characteristics of the aerosol. Laboratory measurement of biomass burning aerosol from two chaparral fuels show that particles are nonspherical with dynamic shape factors greater than 1.15 for aerosol sizes relevant to cloud condensation nuclei (CCN) activation. Accounting for particle morphology can shift the hygroscopicity parameter by 0.15 or more. To our knowledge, this work provides the first laboratory chamber measurements of morphological characteristics for biomass burning cloud condensation nuclei and provides experimental particle shape evidence to support the variation in reported hygroscopicities of the complex aerosol.

  15. MULTI-TECHNIQUE APPROACH TO MEASURE SIZE AND TIME RESOLVED ATMOSPHERIC AND RADIONUCLIDE AEROSOLS

    SciTech Connect

    Shutthanandan, V; Xie, YuLong; Disselkamp, Robert S; Laulainen, Nels S; Smith, Edward A; Thevuthasan, Suntharampillai

    2008-12-01

    Accurate quantifications of aerosol components are crucial to predict global atmospheric transport models. Recently developed International Monitoring System (IMS) network represents an opportunity to enhance comprehensive systematic aerosol observations on a global scale because it provides a global infrastructure. As such, a local pilot study utilizing several state-of-the-art instruments has been conducted at the peak of Rattlesnake Mountain, Washington, USA, during three month periods (June-August) in 2003 to explore this opportunity. In this study, routine aerosol samples were collected using a 3-stage Cascade Impactor Beam Analyzer (0.07 to 2.5 µm) with time resolution about 6 hours on long Teflon strips while radionuclide aerosols were collected using Radionuclide aerosol sampler/analyzer (RASA) developed at Pacific Northwest National Laboratory. The elemental composition and hydrogen concentration were measured using proton induced x-ray emission (PIXE) and proton elastic scattering analysis (PESA), respectively. In addition, short and long-lived radionuclides that exist in nature were measured with same time resolution (6 hours) using RASA. In this method, high-resolution gamma-ray spectra were analyzed for radionuclide concentration. Combination of trace radioactive and non-radioactive element analysis in aerosols makes this investigation unique.

  16. Aerosol Spatial and Temporal Variations Over a Coastal Area: Implications for Geostationary Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Tan, Q.; Hu, Y.; Kondragunta, S.; Ciren, P.; Holben, B. N.

    2009-12-01

    Coastal area is of great interest to the community of air pollution and climate change studies. The dispersion of air pollutants is strongly influenced by complex coastal meteorology, such as land-sea breeze circulations interacting sometimes with mountain-valley circulations. On the other hand, radiatively active air pollutants, like aerosols, could influence the coastal meteorology and hence feed back on the atmospheric dispersion. Coastal area is also an interface for impacts of air pollution on coastal ocean ecosystems. In this study, we look into spatial and temporal variations of aerosol optical depth (AOD) over southern California by examining high-resolution Community Multiscale Air Quality (CMAQ) model simulations, and Aerosol Robotic Network (AERONET) measurements, and the Geostationary Operational Environmental Satellite (GOES) retrievals. Both model simulations and observations show that aerosol has large spatial and temporal variations. Autocorrelation analyses of AOD suggest that these variations can be adequately (r >0.9) captured by satellite observations with time resolution on an order of 1-2 hours and spatial resolution of 4-7 km. Both model and observations show substantial day-to-day variation of aerosols over the region, which is mainly determined by the evolution of land-sea breeze circulations interacting with mountain flows. Modeling the feedbacks of aerosols on coastal meteorology and air quality requires high-resolution measurements from a geostationary orbit as a constraint.

  17. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  18. Comparison between CARIBIC Aerosol Samples Analysed by Accelerator-Based Methods and Optical Particle Counter Measurements

    NASA Astrophysics Data System (ADS)

    Martinsson, B. G.; Friberg, J.; Andersson, S. M.; Weigelt, A.; Hermann, M.; Assmann, D.; Voigtländer, J.; Brenninkmeijer, C. A. M.; van Velthoven, P. J. F.; Zahn, A.

    2014-08-01

    Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on a Instrument Container) passenger aircraft based observatory, operating during intercontinental flights at 9-12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS), the extra-tropical upper troposphere (UT) and the tropical mid troposphere (MT) were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC) is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with the following accelerator-based methods: particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA). Data from 48 flights during 1 year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  19. Comparison between CARIBIC aerosol samples analysed by accelerator-based methods and optical particle counter measurements

    NASA Astrophysics Data System (ADS)

    Martinsson, B. G.; Friberg, J.; Andersson, S. M.; Weigelt, A.; Hermann, M.; Assmann, D.; Voigtländer, J.; Brenninkmeijer, C. A. M.; van Velthoven, P. J. F.; Zahn, A.

    2014-04-01

    Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) passenger aircraft based observatory, operating during intercontinental flights at 9-12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS), the extra-tropical upper troposphere (UT) and the tropical mid troposphere (MT) were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC) is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with accelerator-based methods particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA). Data from 48 flights during one year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  20. Airborne Measurements of Trace Gases and Aerosols in Northern China: EAST-AIRE IOP 2005

    NASA Astrophysics Data System (ADS)

    Li, C.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Marufu, L. T.

    2005-12-01

    To characterize the emission, transport and removal of pollutants and aerosols emitted from East Asia, a US-China joint field campaign was conducted from February to April in China under the EAST-AIRE project. Surface and airborne measurements of trace gases and aerosols were made at different locations in northern China. In early April, eight research flights were conducted around Shenyang, an industrialized city with a population of about 6 million, 600 km northeast of Beijing. Parameters measured include SO2, CO, O3, aerosol size distribution, aerosol scattering and absorption coefficients. During 4 of the 8 flights, the research aircraft made spirals over two suburban locations (~50 km south and north of the downtown area of Shenyang) to determine the detailed vertical distribution of trace gases and aerosols. Various weather patterns were encountered, allowing an examination of the roles of atmospheric circulation in transporting local pollutants to much larger areas. For example, the flights made ahead of the cold front showed fairly high concentrations of pollutants above the planetary boundary layer, probably lifted by the upward motion associated with the approaching cold fronts. On the other hand, much lower pollutant levels were found for the flights made behind the cold front. Also observed in one cold-sector flight is a level (~3000 m) with enhanced aerosol scattering but almost undetectable SO2. Back trajectory analysis using NOAA-HYSPLIT model suggests possible dust transport from source regions.

  1. Intercomparison of Remote and Flight Level Measured Aerosol Backscatter Coefficient During GLOBE 2 Pacific Survey Mission

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhime, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.

  2. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-09-01

    The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are

  3. Modelling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    NASA Astrophysics Data System (ADS)

    Karl, M.; Kukkonen, J.; Keuken, M. P.; Lützenkirchen, S.; Pirjola, L.; Hussein, T.

    2015-12-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of one hour, i.e. on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using an aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of n-alkanes, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. It was not necessary to model the nucleation of gas-phase vapors, as the computations were started with roadside conditions. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The effect of condensation and evaporation of organic vapors emitted by vehicles on particle numbers and on particle size distributions was examined. Under inefficient dispersion conditions, condensational growth contributed significantly to the evolution of PN from roadside to the neighborhood scale. The simplified parameterization of aerosol processes can predict particle number concentrations between roadside and the urban background with an inaccuracy of ∼ 10 %, compared to the fully size-resolved MAFOR model.

  4. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  5. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. II - Calibration and data analysis

    NASA Technical Reports Server (NTRS)

    Sroga, J. T.; Eloranta, E. W.; Roesler, F. L.; Shipley, S. T.; Tryon, P. J.

    1983-01-01

    The high spectral resolution lidar (HSRL) measures optical properties of atmospheric aerosols by interferometically separating the elastic aerosol backscatter from the Doppler broadened molecular contribution. Calibration and data analysis procedures developed for the HSRL are described. Data obtained during flight evaluation testing of the HSRL system are presented with estimates of uncertainties due to instrument calibration. HSRL measurements of the aerosol scattering cross section are compared with in situ integrating nephelometer measurements.

  6. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant. PMID:25811311

  7. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  8. Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering.

    PubMed

    Dolgos, Gergely; Martins, J Vanderlei

    2014-09-01

    Global satellite remote sensing of aerosols requires in situ measurements to enable the calibration and validation of algorithms. In order to improve our understanding of light scattering by aerosol particles, and to enable routine in situ airborne measurements of aerosol light scattering, we have developed an instrument, called the Polarized Imaging Nephelometer (PI-Neph). We designed and built the PI-Neph at the Laboratory for Aerosols, Clouds and Optics (LACO) of the University of Maryland, Baltimore County (UMBC). This portable instrument directly measures the ambient scattering coefficient and phase matrix elements of aerosols, in the field or onboard an aircraft. The measured phase matrix elements are the P(11), phase function, and P(12). Lasers illuminate the sampled ambient air and aerosol, and a wide field of view camera detects scattered light in a scattering angle range of 3° to 176°. The PI-Neph measures an ensemble of particles, supplying the relevant quantity for satellite remote sensing, as opposed to particle-by-particle measurements that have other applications. Comparisons with remote sensing measurements will have to consider aircraft inlet effects. The PI-Neph first measured at a laser wavelength of 532nm, and was first deployed successfully in 2011 aboard the B200 aircraft of NASA Langley during the Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project. In 2013, we upgraded the PI-Neph to measure at 473nm, 532nm, and 671nm nearly simultaneously. LACO has deployed the PI-Neph on a number of airborne field campaigns aboard three different NASA aircraft. This paper describes the PI-Neph measurement approach and validation by comparing measurements of artificial spherical aerosols with Mie theory. We provide estimates of calibration uncertainties, which show agreement with the small residuals between measurements of P(11) and -P(12)/P(11) and Mie theory. We demonstrate the capability of the PI-Neph to measure

  9. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  10. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  11. Is There a Common Correction for Biases in Historic Filter-Based Aerosol Absorption Measurements?

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Jefferson, A.; Dubey, M. K.; Aiken, A. C.; Fast, J. D.; Flynn, C. J.; Kassianov, E.

    2014-12-01

    Improved characterization of aerosol absorption is a pressing need for improving estimates of climate forcing by aerosols. Measurements of aerosol absorption are difficult to make with the accuracy and precision demanded by climate science. While several different approaches have been employed and new techniques have emerged, none can yet be considered a true 'gold standard'. Instruments that use filter-based methods have been the most widely used and are the basis of historic records. However, several studies using direct photoacoustic techniques have shown that filter-based measurements can be biased relative to these direct measurements. It has been demonstrated that this bias depends strongly on aerosol chemical composition, specifically concentration of organic mass. The wealth of information in the extensive set of historical filter-based data demands that this bias be diagnosed and corrected. A correction is critical for proper evaluation and development of chemical transport models, improved retrievals from remote sensing measurements, and integrating aerosol absorption surface and sub-orbital in situ measurements with knowledge gained from these other approaches. We have performed an intercomparison of absorption coefficients from a photoacoustic and two filter-based instruments with co-located organic mass concentrations from continuous, half-hourly averaged measurements over six months at a remote, continental site in the US (ARM SGP). The results show a bias in the filter-based measurements with organic concentration that is consistent with previous studies. Previous results come from controlled lab studies or field campaigns where absorption coefficients and organic concentrations are high and may represent aerosol close to the source. The current study is important in that these quantities are much lower and the aerosol likely more aged, representing a larger portion of the global conditions, yet shows a similar bias. This site provides other measures

  12. Novel measuring equipment for dynamic balancing of motorcycle crankshaft

    NASA Astrophysics Data System (ADS)

    Zhao, Haiwen; Zhang, Yali; Li, Tiejun; Yue, Hong; Cai, Hegao

    2006-11-01

    Motorcycle crankshaft is a special rigid rotor. It is composed of crankshaft, connecting rod and slider. It belongs to unbalanced rotor. Most of traditional methods of measuring unbalance value of crankshaft are not continuous, which need human intervention. So the measurement time is long and measurement accuracy is not high. To solve the above problem, a novel computer-based measurement is developed. The software of the measuring system is developed based on G-language, namely LabVIEW. The hardware system includes accelerate sensors, multi-function Data Acquisition (DAQ) card and industrial control computer. When the crankshaft rotates, its centrifugal forces are generated which result in the supporting structure (also called vibration table) vibrating. Data acquisition, signal processing and analysis can obtain unbalance value including amplitude and phrases. Computer-based measurement is used with software to set up automated test system that can make fast measurements without human intervention. The application of virtual instruments makes date analysis more accurate, and decreases the measuring time significantly; a complete measurement can be finished in 25s. The results show that this new measuring system has the advantages of easy-of-use, high precision, high efficiency and low costs.

  13. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique of estimating aerosol radiative forcing from high resolution spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, Roshan

    2016-04-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive

  14. Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.

    1984-01-01

    Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

  15. Development of PIXE, PESA and Transmission Ion Microscopy Capability to Measure Aerosols by Size and Time

    SciTech Connect

    Shutthanandan, Shuttha ); Thevuthasan, Theva ); Disselkamp, Robert S. ); Stroud, Ashley M.; Cavanagh, Andrew S.; Adams, Evan M.; Baer, Donald R. ); Barrie, Leonard A. ); Cliff, Steven S.; Jimenez-Cruz, M; Cahill, Thomas A.

    2002-01-01

    The elemental analysis of aerosol composition with high time and spatial resolution is crucial in the studies related to environmental issues such as human health, urban smog formation, regional visibility, and climate change. The effects of atmospheric aerosols are closely related to their size distribution, which plays a major role in understanding transport and removal processes and in pinpointing possible aerosol sources. Hence, there is a need for simultaneous measurements of compositions and particle size distribution of aerosols. We have developed a capability that consists of a combination of PIXE, PESA and STIM (same location on the sample) at the accelerator facility in Environmental Molecular Sciences Laboratory (EMSL) to address some of the needs associated with time series and size distribution. Simultaneous measurements of PIXE and PESA can be performed on aerosols collected using 3 stage improved rotating drum impactor by size (3 modes, 2.5 to 0.07 um) and time (2 mm rotation for every 8 hours) on a 20 cm long Teflon strips with a time resolution of 2 hours (using 500 micron size proton beam). Two Teflon strips can be mounted on the manipulator at the same time without breaking the vacuum through a load-lock. Movable and fixed surface barrier detectors are used for PESA and STIM measurements respectively. Preliminary measurements were carried out using the aerosol samples collected at the 62nd floor of Williams Tower in Houston, Texas. These aerosol samples were also analyzed by synchrotron x-ray microprobe (S-XRF) at Advanced Light Source (ALS) and the comparison of XRF and ion beam results along with the details of the capability will be discussed.

  16. Aerosol-Cloud Interactions Evaluated with Aircraft Measurements during the Marine Stratus Experiment (MASE)"

    NASA Astrophysics Data System (ADS)

    Conant, W. C.; Arnott, P.; Bucholtz, A.; Buzorius, G.; Chuang, P. Y.; Jonsson, H. H.; Murphy, S. M.; Rissman, T. A.; Small, J. D.; Sorooshian, A.; Varutbangkul, V.; Flagan, R. C.; Seinfeld, J. H.

    2005-12-01

    In this presentation we explore how aerosols influence the microphysical, dynamical, and radiative properties of marine stratocumulus clouds. We address these aerosol-cloud interactions using data collected by the CIRPAS Twin Otter aircraft during the MASE (Marine Stratus Experiment) campaign, which was conducted off the coast of northern California in July of this year. The otter was instrumented to measure aerosol number concentration, size distribution from 15 nm - 2500 nm, composition (TOF-AMS; PILS), and light absorption. Furthermore, an array of optical probes on the aircraft provided detailed information on the cloud microphysics, including droplet concentration, size distribution, liquid water content and precipitation size distribution. Pyranometers measuring upwelling and downwelling solar irradiance (0.3 μm - 3.5 μm) mounted on a stabilized radiometer platform were used to obtain cloud albedo immediately above the region that was being profiled. Localized (2-20 km wide) regions of high aerosol concentration in the marine boundary layer (MBL) were found and identified as "ship tracks", although no coincident features were immediately apparent in the visible satellite images. Vertical profiles were conducted by the Twin Otter within and on both sides of each ship track to obtain the contrast in aerosol and cloud properties. The ship emissions enhanced aerosol number concentration by factors ranging from 2 to more than 10. They contribute almost entirely to sulfate aerosol -- there was virtually no change in organic aerosol concentration measured by the Aerodyne TOF-AMS or light absorption measured by a photoacoustic instrument within the tracks. The ship emissions are found to have a significant impact on the cloud microphysics, including nearly a doubling of droplet concentration and a reduction in effective radius. The change in droplet dispersion is found to be important in understanding the indirect effect. Cloud albedo tended to be slightly enhanced

  17. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  18. Evaluation of a diffusion charger for measuring aerosols in a workplace.

    PubMed

    Vosburgh, Donna J H; Ku, Bon Ki; Peters, Thomas M

    2014-05-01

    The model DC2000CE diffusion charger from EcoChem Analytics (League City, TX, USA) has the potential to be of considerable use to measure airborne surface area concentrations of nanoparticles in the workplace. The detection efficiency of the DC2000CE to reference instruments was determined with monodispersed spherical particles from 54 to 565.7 nm. Surface area concentrations measured by a DC2000CE were then compared to measured and detection efficiency adjusted reference surface area concentrations for polydispersed aerosols (propylene torch exhaust, incense, diesel exhaust, and Arizona road dust) over a range of particle sizes that may be encountered in a workplace. The ratio of surface area concentrations measured by the DC2000CE to that measured with the reference instruments for unimodal and multimodal aerosols ranged from 0.02 to 0.52. The ratios for detection efficiency adjusted unimodal and multimodal surface area concentrations were closer to unity (0.93-1.19) for aerosols where the majority of the surface area was within the size range of particles used to create the correction. A detection efficiency that includes the entire size range of the DC2000CE is needed before a calibration correction for the DC2000CE can be created. For diesel exhaust, the DC2000CE retained a linear response compared to reference instruments up to 2500 mm(2) m(-3), which was greater than the maximum range stated by the manufacturer (1000 mm(2) m(-3)). Physical limitations with regard to DC2000CE orientation, movement, and vibration were identified. Vibrating the DC2000CE while measuring aerosol concentrations may cause an increase of ~35 mm(2) m(-3), whereas moving the DC2000CE may cause concentrations to be inflated by as much as 400 mm(2) m(-3). Depending on the concentration of the aerosol of interest being measured, moving or vibrating a DC2000CE while measuring the aerosol should be avoided. PMID:24458322

  19. Evaluation of a Diffusion Charger for Measuring Aerosols in a Workplace

    PubMed Central

    Vosburgh, Donna J. H.; Ku, Bon Ki; Peters, Thomas M.

    2014-01-01

    The model DC2000CE diffusion charger from EcoChem Analytics (League City, TX, USA) has the potential to be of considerable use to measure airborne surface area concentrations of nanoparticles in the workplace. The detection efficiency of the DC2000CE to reference instruments was determined with monodispersed spherical particles from 54 to 565.7nm. Surface area concentrations measured by a DC2000CE were then compared to measured and detection efficiency adjusted reference surface area concentrations for polydispersed aerosols (propylene torch exhaust, incense, diesel exhaust, and Arizona road dust) over a range of particle sizes that may be encountered in a workplace. The ratio of surface area concentrations measured by the DC2000CE to that measured with the reference instruments for unimodal and multimodal aerosols ranged from 0.02 to 0.52. The ratios for detection efficiency adjusted unimodal and multimodal surface area concentrations were closer to unity (0.93–1.19) for aerosols where the majority of the surface area was within the size range of particles used to create the correction. A detection efficiency that includes the entire size range of the DC2000CE is needed before a calibration correction for the DC2000CE can be created. For diesel exhaust, the DC2000CE retained a linear response compared to reference instruments up to 2500mm2 m−3, which was greater than the maximum range stated by the manufacturer (1000mm2 m−3). Physical limitations with regard to DC2000CE orientation, movement, and vibration were identified. Vibrating the DC2000CE while measuring aerosol concentrations may cause an increase of ~35mm2 m−3, whereas moving the DC2000CE may cause concentrations to be inflated by as much as 400mm2 m−3. Depending on the concentration of the aerosol of interest being measured, moving or vibrating a DC2000CE while measuring the aerosol should be avoided. PMID:24458322

  20. Measuring the stratospheric aerosol size distribution profile following the next big volcanic eruption. What is required?

    NASA Astrophysics Data System (ADS)

    Deshler, T.

    2015-12-01

    Two of the key missing features of fresh and evolving volcanic plumes are the particle size distribution and its partitioning into non-volatile ash and volatile sulfate particles. Such information would allow more refined estimates of the evolution and dispersal of the aerosol, of the impacts of the aerosol on radiation and on stratospheric chemistry, and of the overall amount of sulfur injected into the stratosphere. To provide this information aerosol measurements must be sensitive to particles in the 0.1 - 10 μm radius range, with concentration detection thresholds > 0.001 cm-3, and to the total aerosol population. An added bonus would be a size resolved measurement of the non-volatile fraction of the aerosol. The measurements must span the lower and mid stratosphere up to about 30 km. There are no remote measurements which can provide this information. In situ measurements using aerosol and condensation nuclei counters are required. Aircraft platforms are available for measurements up to 20 km, but beyond that requires balloon platforms. Measurements above 20 km would be required for a large volcanic eruption. There are balloon-borne instruments capable of fulfilling all of the measurement requirements; however such instruments are reasonably large and not expendable. The difficulty is deploying the instruments, obtaining the flight permissions from air traffic control, and recovering the instruments after flight. Such difficulties are compounded in the tropics. This talk will detail some previous experience in this area and suggest ways forward to be ready for the next big eruption.

  1. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  2. Wireless Fluid-Level Measurement System Equips Boat Owners

    NASA Technical Reports Server (NTRS)

    2008-01-01

    While developing a measurement acquisition system to be used to retrofit aging aircraft with vehicle health monitoring capabilities, Langley Research Center developed an innovative wireless fluid-level measurement system. The NASA technology was of interest to Tidewater Sensors LLC, of Newport News, Virginia, because of its many advantages over conventional fuel management systems, including its ability to provide an accurate measurement of volume while a boat is experiencing any rocking motion due to waves or people moving about on the boat. These advantages led the company to license this novel fluid-level measurement system from NASA for marine applications.

  3. Rapid organic aerosol formation downwind of a highway: Measured and model results from the FEVER study

    NASA Astrophysics Data System (ADS)

    Stroud, Craig A.; Liggio, John; Zhang, Jie; Gordon, Mark; Staebler, Ralf M.; Makar, Paul A.; Zhang, Junhua; Li, Shao-Meng; Mihele, Cristian; Lu, Gang; Wang, Daniel K.; Wentzell, Jeremy; Brook, Jeffrey R.; Evans, Greg J.

    2014-02-01

    The Fast Evolution of Vehicle Emissions from Roadway (FEVER) study was undertaken to strategically measure pollutant gradients perpendicular to a major highway north of Toronto, Canada. A case study period was analyzed when there was an average perpendicular wind direction. Two independent, fast response measurements were used to infer rapid organic aerosol (OA) growth on a spatial scale from 34 m to 285 m at the same time as a decrease was observed in the mixing ratio of primary emitted species, such as CO2 and NOx. An integrated organic gas and particle sampler also showed that near the highway, the aerosol had a larger semivolatile fraction than lower volatile fraction, but over a relatively short distance downwind of the highway, the aerosol transformed to being more low volatile with the change being driven by both evaporation of semivolatile and production of lower volatile organic aerosol. A new 1-D column Lagrangian atmospheric chemistry model was developed to help interpret the measured increase in the ∆OA/∆CO2 curve from 34 m to 285 m downwind of highway, where the ∆ refers to background-corrected concentrations. The model was sensitive to the assumptions for semivolatile organic compounds (SVOCs). Different combinations of SVOC emissions and background mixing ratios were able to yield similar model curves and reproduce the observations. Future measurements of total gas-phase SVOC in equilibrium with aerosol both upwind and downwind of the highway would be helpful to constrain the model.

  4. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  5. 47 CFR 73.1590 - Equipment performance measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... measurements. (a) The licensee of each AM, FM, TV and Class A TV station, except licensees of Class D non... rules or the station license. (b) Measurements for spurious and harmonic emissions must be made to show... encountered by the station whether transmitting monophonic or stereophonic programs and providing...

  6. 47 CFR 73.1590 - Equipment performance measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... measurements. (a) The licensee of each AM, FM, TV and Class A TV station, except licensees of Class D non... rules or the station license. (b) Measurements for spurious and harmonic emissions must be made to show... encountered by the station whether transmitting monophonic or stereophonic programs and providing...

  7. 47 CFR 73.1590 - Equipment performance measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... measurements. (a) The licensee of each AM, FM, TV and Class A TV station, except licensees of Class D non... rules or the station license. (b) Measurements for spurious and harmonic emissions must be made to show... encountered by the station whether transmitting monophonic or stereophonic programs and providing...

  8. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  9. Climatological Aspects of Aerosol Physical Characteristics in Tunisia Deduced from Sun Photometric Measurements

    PubMed Central

    Chaâbane, Mabrouk; Azri, Chafai; Medhioub, Khaled

    2012-01-01

    Atmospheric and climatic data measured at Thala site (Tunisia) for a long-time period (1977–2001) are used to analyse the monthly, seasonal, and annual variations of the aerosol optical depth at 1 μm wavelength. We have shown that aerosol and microphysical properties and the dominating aerosol types depend on seasons. A comparison of the seasonal cycle of aerosol optical characteristics at Thala site showed that the contribution of long-range transported particles is expected to be larger in summer as a consequence of the weather stability typical of this season. Also, the winter decrease in atmospheric turbidity may result from increases in relative humidity and decreases in temperature, leading to increased particle size and mass and increased fall and deposition velocities. The spring and autumn weather patterns usually carry fine dust and sand particles for the desert area to Thala region. The annual behaviour of the aerosol optical depth recorded a period of stead increase started in 1986 until 2001. Trends in atmospheric turbidity after 1988 could be explained other ways by the contribution of the eruption of Mount Pinatubo in 1991 and by local or regional changes in climate or in aerosol emissions. PMID:22629150

  10. Climatological aspects of aerosol physical characteristics in Tunisia deduced from sun photometric measurements.

    PubMed

    Chaâbane, Mabrouk; Azri, Chafai; Medhioub, Khaled

    2012-01-01

    Atmospheric and climatic data measured at Thala site (Tunisia) for a long-time period (1977-2001) are used to analyse the monthly, seasonal, and annual variations of the aerosol optical depth at 1 μm wavelength. We have shown that aerosol and microphysical properties and the dominating aerosol types depend on seasons. A comparison of the seasonal cycle of aerosol optical characteristics at Thala site showed that the contribution of long-range transported particles is expected to be larger in summer as a consequence of the weather stability typical of this season. Also, the winter decrease in atmospheric turbidity may result from increases in relative humidity and decreases in temperature, leading to increased particle size and mass and increased fall and deposition velocities. The spring and autumn weather patterns usually carry fine dust and sand particles for the desert area to Thala region. The annual behaviour of the aerosol optical depth recorded a period of stead increase started in 1986 until 2001. Trends in atmospheric turbidity after 1988 could be explained other ways by the contribution of the eruption of Mount Pinatubo in 1991 and by local or regional changes in climate or in aerosol emissions. PMID:22629150

  11. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  12. Columnar characteristics of aerosols by spectroradiometer measurements in the maritime area of the Cadiz Gulf (Spain)

    NASA Astrophysics Data System (ADS)

    Vergaz, Ricardo; Cachorro, Victoria E.; de Frutos, Ángel M.; Vilaplana, José M.; de La Morena, Benito A.

    2005-11-01

    Atmospheric aerosol characteristics represented by the spectral aerosol optical depth AOD) and the Ångström turbidity parameter were determined in the coastal area of the Gulf of Cádiz, (southwest of Spain). The columnar aerosol properties presented here correspond to the 1996-1999 period, and were obtained by solar direct irradiance measurements carried out by a Licor1800 spectroradiometer. The performance of this type of medium-spectral resolution radiometric system is analysed over the measured period. The detailed spectral information of these irradiance measurements enabled the use of selected non-absorption gases spectral windows to determine the columnar spectral AOD that was modelled by Ångström formula to obtain the coefficient. Temporal evolutions of instantaneous values together with a general statistical analysis represented by seasonal values, frequency distributions and some representative correlations for the AOD and the derived Ångström coefficient gave us the first insight of aerosol characteristics in this coastal area. Special attention was paid to the analysis of these aerosol properties at the nominal wavelengths of 440 nm, 670 nm, 870 nm and 1020 nm for the near-future comparisons with the Cimel sun-photometer data. However, taking the most representative aerosol wavelength of 500 nm, the variability of the AOD ranges from 0.005 to 0.53, with a mean of 0.12 (s.d = 0.07) and that of the parameter is given by a mean value of 0.93 (s.d. = 0.58) falling inside the range of marine aerosols. A quantitative discrimination of aerosol types was conducted on the basis of the spectral aerosol properties and air mass back trajectory analysis, which resulted in a mixed type because of the specificity of this area, given by very frequent desert dust episodes, continental and polluted local influences. This study represents the first extended data characterization about columnar properties of aerosols in Spain which has been continued by Cimel

  13. Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California

    SciTech Connect

    Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

    2013-10-29

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements

  14. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  15. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    PubMed

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements. PMID:15074425

  16. Estimation of the direct aerosol radiative effect over China based on satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sundström, A.-M.; Huttunen, J.; Arola, A.; Kolmonen, P.; Sogacheva, L.; de Leeuw, G.

    2012-04-01

    Aerosols influence the radiative budget of the Earth-atmosphere system directly by scattering and absorbing solar and thermal infrared radiation, and indirectly by modifying the microphysical, and hence the radiative properties and lifetimes of clouds. However, the quantification of aerosol radiative effects is complex and large uncertainties still exist, mainly due to the high spatial and temporal variation of the aerosol concentration and mass, as well as their relatively short lifetime in the atmosphere. The clear-sky direct aerosol radiative effect at the top of the atmosphere (TOA) is defined as the difference between the net solar flux ΔFTOA (difference between downward and upward fluxes) defined with (F) and without (F0) aerosols. The negative values of ΔFTOA correspond to planetary cooling, whereas positive values correspond to increased atmospheric warming. Satellites offer an opportunity to observe the spatial distribution of aerosol properties with adequate resolution and coverage from regional to global scales. In this work multisensor satellite observations are used to estimate the direct aerosol radiative effect at the top of the atmosphere over China within the shortwave (SW, 0.3-5 microns) region. The Moderate Imaging Spectroradiometer onboard (MODIS) NASA's Terra and Aqua platforms offer global observations of aerosol and cloud optical properties nearly on a daily basis, whereas the Clouds and the Earth's Radian Energy System (CERES) instruments measure simultaneously TOA broadband fluxes e.g. in the shortwave region. Hence, the instantaneous aerosol direct radiative effect for a month at TOA can be estimated using the MODIS aerosol optical depth (AOD) and coincident broadband flux from the CERES instrument. The values for F and F0 are obtained by performing a linear regression between MODIS AOD at 0.55 microns wavelength and CERES SW flux. The instantaneous values are converted to monthly means by using a radiative transfer code. Preliminary

  17. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  18. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  19. RADIOCARBON MEASUREMENTS ON PM 2.5 AMBIENT AEROSOL FROM NASHVILLE, TN

    EPA Science Inventory

    Radiocarbon (Carbon-14) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. The methodology has been extensively used in past wintertime studies to quantify the contribution of wood smoke to ambient aerosol. In summertime such measurements...

  20. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  1. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  2. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  3. Aerosol Absorption Above Clouds from Combined OMI and MODIS Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Tilstra, L. G.; Stammes, P.

    2015-06-01

    The aerosol direct effect (DRE) over clouds from combined OMI and MODIS hyperspectral measurements is presented. The radiative effect of UV-absorbing aerosols can be retrieved with high accuracy, using hyperspectral measurements and simulated clean cloud spectra. Since SCIAMACHY was lost in 2012, we use new measurements from OMI and MODIS to continue the observation of aerosol absorption over clouds from space. Each instrument by itself does not provide enough information on both aerosols and clouds, but OMI gives detailed information of UV aerosol absorption, while MODIS’ broadband channels provide cloud information from the SWIR range of the spectrum. OMI and MODIS are flying in formation in the A-Train constellation, providing observations about 8-15 minutes after one another. This creates uncertainties in the observed scene, especially in scenes where convection is strong and cloud parameters change rapidly. However, OMI and MODIS overlap at MODIS’ smallest wavelength band, 469 nm, which can be used to test the matching of the spectra. Furthermore, MODIS provides cloud products at 1 Å~ 1 km resolution, and better, which can be used to test and improve the cloud retrieval algorithmthat was developed for the much larger SCIAMACHY and OMI pixels. Application of this unique method to OMI andMODIS is used to prepare for TROPOMI, which will provide information on both the UV and the SWIR with an unprecedented accuracy and unprecedented spatial resolution.

  4. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in

  5. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  6. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Kassianov, E. I.; Barnard, J.; Flynn, C.; Ackerman, T. P.

    2009-07-01

    The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility (AMF) was deployed to Niamey, Niger, during 2006. Niamey, which is located in sub-Saharan Africa, is affected by both dust and biomass burning emissions. Column aerosol optical properties were derived from multifilter rotating shadowband radiometer, measurements and the vertical distribution of aerosol extinction was derived from a micropulse lidar during the two observed dry seasons (January-April and October-December). Mean aerosol optical depth (AOD) and single scattering albedo (SSA) at 500 nm during January-April were 0.53 ± 0.4 and 0.94 ± 0.05, while during October-December mean AOD and SSA were 0.33 ± 0.25 and 0.99 ± 0.01. Aerosol extinction profiles peaked near 500 m during the January-April period and near 100 m during the October-December period. Broadband shortwave surface fluxes and heating rate profiles were calculated using retrieved aerosol properties. Comparisons for noncloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the aerosol optical properties, with mean differences between calculated and observed fluxes of less than 5 W m-2 and RMS differences less than 25 W m-2. Sensitivity tests showed that the observed fluxes could be matched with variations of <10% in the inputs to the radiative transfer model. The calculated 24-h averaged SW instantaneous surface aerosol radiative forcing (ARF) was -21.1 ± 14.3 W m-2 and was estimated to account for 80% of the total radiative forcing at the surface. The ARF was larger during January-April (-28.5 ± 13.5 W m-2) than October-December (-11.9 ± 8.9 W m-2).

  7. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A.-C.; Depiesse, C.; Gillotay, D.; Kochenova, S.; Montmessin, F.

    2012-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. We will show that such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), is a practical tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we will start with studying their opacity and its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties and their wavelength dependencies, using EPF data. The method will be illustrated by investigating SPICAM

  8. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Yannick; Carine Vandaele, Ann; Depiesse, Cedric; Gillotay, Didier; Kochenova, Svetlana; Montmessin, Franck

    2013-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. Part of such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), can be a tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we started studying their opacity and the influence of its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties using EPF data from SPICAM.

  9. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends