Science.gov

Sample records for aerosol microphysical model

  1. Condensing Organic Aerosols in a Microphysical Model

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  2. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nmmicrophysics can be represented explicitly with aerosol microphysical processes or can be parameterized to obtain the growth and survival of nuclei to the model's lower size boundary. This study investigates how the representation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 h

  3. Evaluation of cloud microphysical schemes on aerosol indirect effects from different scale models

    NASA Astrophysics Data System (ADS)

    Shiu, C. J.; Chen, Y. H.; Hashino, T.; Tsai, I. C.; Chen, W. T.; Chen, J. P.; Hsu, H. H.

    2014-12-01

    Quantification of aerosol indirect effects in climate modeling remain unresolved and of large uncertainties. The complicated aerosol-cloud-precipitation interactions in climate model are suggested to be quite sensitive to some tunable microphysical parameters such as the threshold radius associated with autoconversion of cloud droplets to rain droplets. More fundamental studies regarding to different microphysical processes used in various cloud microphysical schemes should be devoted, evaluated and investigated. In this study, we apply a synergy of different scale models with the same cloud and aerosol microphysical schemes (Chen and Liu, 2004; Cheng et al., 2007; and Chen et al., 2013) to understand and evaluate how cloud microphysical processes can be influenced by different microphysical schemes and their interaction with aerosols and radiation. These models include Kinematic Driver (KiD), Single Column Model of Community Atmosphere Model (SCAM), Large Eddy Simulation (LES), and NCAR CESM model. Simulation results from these models will be further validated and compared to either field campaign or satellite observations depending on the scale of the models. Off-line satellite simulator approach (i.e. Joint-Simulator) will also be applied for evaluating cloud microphysics against CloudSat and CALIPSO. Such type of synergy of models can be very useful for improvement, development and evaluation of physical parameterizations for global climate prediction and weather forecast in the near future especially for processes related to cloud macrophysics and microphysics.

  4. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  5. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  6. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  7. Modeling of microphysics and optics of aerosol particles in the marine environments

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady

    2013-05-01

    We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0 - 25 m, U = 3 - 18 km s-1, X ≤ 120 km and RH = 40 - 98%. The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied for the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ = 0.2-12 μm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory. The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results. Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.

  8. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

  9. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  10. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, K.; Ghan, S. J.; Easter, R. C.; Liu, X.; Stier, P.; Lee, Y. H; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S. E.; Tsigaridis, K.; van Noije, T. P. C.; Strunk, A.; Vignati, E.; Bellouin, N.

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  11. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  12. A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Lee, Yunha; Adams, P. J.

    2012-01-01

    This study develops more computationally efficient versions of the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithms, collectively called Fast TOMAS. Several methods for speeding up the algorithm were attempted, but only reducing the number of size sections was adopted. Fast TOMAS models, coupled to the GISS GCM II-prime, require a new coagulation algorithm with less restrictive size resolution assumptions but only minor changes in other processes. Fast TOMAS models have been evaluated in a box model against analytical solutions of coagulation and condensation and in a 3-D model against the original TOMAS (TOMAS-30) model. Condensation and coagulation in the Fast TOMAS models agree well with the analytical solution but show slightly more bias than the TOMAS-30 box model. In the 3-D model, errors resulting from decreased size resolution in each process (i.e., emissions, cloud processing wet deposition, microphysics) are quantified in a series of model sensitivity simulations. Errors resulting from lower size resolution in condensation and coagulation, defined as the microphysics error, affect number and mass concentrations by only a few percent. The microphysics error in CN70CN100 (number concentrations of particles larger than 70100 nm diameter), proxies for cloud condensation nuclei, range from 5 to 5 in most regions. The largest errors are associated with decreasing the size resolution in the cloud processing wet deposition calculations, defined as cloud-processing error, and range from 20 to 15 in most regions for CN70CN100 concentrations. Overall, the Fast TOMAS models increase the computational speed by 2 to 3 times with only small numerical errors stemming from condensation and coagulation calculations when compared to TOMAS-30. The faster versions of the TOMAS model allow for the longer, multi-year simulations required to assess aerosol effects on cloud lifetime and precipitation.

  13. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  14. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant

  15. Simulation of the recent evolution of stratospheric aerosols by the MOSTRA Simulation of the recent evolution of stratospheric aerosols by the MOSTRA microphysical/transport model

    NASA Astrophysics Data System (ADS)

    Bingen, Christine; Errera, Quentin; Vanhellemont, Filip; Fussen, Didier; Mateshvili, Nina; Dekemper, Emmanuel; Loodts, Nicolas

    2010-05-01

    We present recent advances in the development of a microphysical/transport model for stratospheric aerosols, called MOdel for STRatospheric Aerosols (MOSTRA). MOSTRA is a 3D model describing the evolution in time and space of the stratospheric aerosol distribution described using a set of discrete size bins. The microphysical module used in this model makes use of the PSCBOX model developed by Larsen (2000). The transport module is based on the flux-form semi-Lagragian scheme by Lin and Rood (1996). The model structure will be presented with simulations of the evolution of the volcanic aerosol plume after recent volcanic eruptions. References: N. Larsen, Polar Stratospheric Clouds, Microphysical and optical models, Scientific Report 00-06, Danish Meteorological Institute, 2000 Lin, S.-J. Rood, R.B., Multidimensional Flux-Form Semi-Lagrangian Transport Schemes, Monthly Weather Review, 124, 2046-2070, 1996.

  16. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.

    2009-09-01

    The Aerosol Optical Depth (AOD) and Angstrom Coefficient (AC) predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two) over polluted continental (or high sulfate), dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation). For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening in high latitude make it difficult to evaluate the model AOD at high latitudes with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a problem also seen in other global aerosol models but more severely in this work. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC and EC concentrations in the model are found to be underpredicted severely during the dry season, suggesting the low AOD in the model is due to underpredictions in OM and EC mass. These, in turn, result from unrealistically short wet deposition lifetimes during the dry season in the GCM.

  17. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.

    2010-03-01

    The Aerosol Optical Depth (AOD) and Angstrom Coefficient (AC) predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two) over polluted continental (or high sulfate), dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation). For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening at high latitudes make it difficult to evaluate the model AOD there with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a tendency found in other global models but more severely here. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC concentration in the model are found to be underpredicted severely during the dry season while much less severely for EC concentration, suggesting the low AOD in the model is due to underpredictions in OM mass. The potential for errors in emissions and wet deposition to contribute to this bias is discussed.

  18. Development of a Detailed Microphysics Cirrus Model Tracking Aerosol Particles’ Histories for Interpretation of the Recent INCA Campaign.

    NASA Astrophysics Data System (ADS)

    Monier, Marie; Wobrock, Wolfram; Gayet, Jean-François; Flossmann, Andrea

    2006-02-01

    Cirrus clouds play an important role in the earth’s energy balance. To quantify their impact, information is needed on their microstructure and more precisely on the number and size of the ice crystals. With the anthropogenic activity, more and more aerosol particles and water vapor are released even at the altitude where cirrus clouds are formed. Cirrus clouds formed in a polluted air mass may have different microphysical properties and, therefore, a different impact on the climate system via the changed radiative properties compared to background cirrus clouds. To study this aspect, the European project called the Interhemispheric Differences in Cirrus Properties due to Anthropogenic Emissions (INCA) measured the microphysical properties of cirrus clouds together with the physical and chemicals properties of aerosol particles in clean air (at Punta Arenas, Chile) and polluted air (at Prestwick, Scotland). The goal of the present work was to develop a detailed microphysics model for cirrus clouds for the interpretation and the generalization of the INCA observations. This model considers moist aerosol particles through the Externally Mixed (EXMIX) model, so that the chemical composition of solution droplets can be followed. Ice crystal formation is described through homogeneous or heterogeneous nucleation. The crystals then grow by deposition. With this model, the interactions between the microphysical processes, simulated ice crystal concentrations, and dimensional distributions of the INCA observations were studied, and explanations were provided for the observed differences between background and polluted cirrus clouds.


  19. Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: numerical experiments with a spectral microphysics cloud ensemble model

    NASA Astrophysics Data System (ADS)

    Khain, A.; Pokrovsky, A.; Sednev, I.

    A spectral microphysics Hebrew University Cloud Model (HUCM) is used to evaluate some effects of cloud-aerosol interaction on mixed-phase cloud microphysics and aerosol particle size distribution in the region of the Eastern Mediterranean coastal circulation. In case of a high concentration of aerosol particles (APs), the rate of warm rain formation is several times lower, a significant fraction of droplets ascends above the freezing level. These drops produce a large amount of comparably small graupel particles and ice crystals. The warm rain from these clouds is less intense as compared to clouds with low drop concentration. At the same time, melted rain from clouds with high droplet concentration is more intense than from low drop concentration clouds. Melted rain can take place downwind at a distance of several tens of kilometers from the convective zone. It is shown that APs entering clouds above the cloud base influence the evolution of the drop size spectrum and the rate of rain formation. The chemical composition of APs influences the concentration of nucleated droplets and, therefore, changes accumulated rain significantly (in our experiments these changes are of 25-30%). Clouds in a coastal circulation influence significantly the concentration and size distribution of APs. First, they decrease the concentration of largest APs by nucleation scavenging. In our experiments, about 40% of APs were nucleated within clouds. The remaining APs are transported to middle levels by cloud updrafts and then enter the land at the levels of 3 to 7 km. In our experiments, the concentration of small APs increased several times at these levels. The cut off APs spectrum with an increased concentration of small APs remains downwind of the convective zone for several of tens and even hundreds of kilometers. The schemes of drop nucleation (based on the dependence of nucleated drop concentration on supersaturation in a certain power) and autoconversion (based on the Kessler

  20. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, K.; Ghan, S. J.; Easter, R. C.; Liu, X.; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S. E.; Tsigaridis, K.; van Noije, T. P. C.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; von Salzen, K.; Yu, F.; Luo, G.; Petzold, A.; Heintzenberg, J.; Clarke, A.; Ogren, J. A.; Gras, J.; Baltensperger, U.; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C. S.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, N.; Zdimal, V.; Fiebig, M.; Hansson, H.-C.; Swietlicki, E.; Henzing, J. S.

    2014-05-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  1. Intercomparison and evaluation of aerosol microphysical properties among AeroCom global models of a range of complexity

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, K.; Ghan, S. J.; Easter, R. C.; Liu, X.; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S. E.; Tsigaridis, K.; van Noije, T. P. C.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; von Salzen, K.; Yu, F.; Luo, G.; Petzold, A.; Heintzenberg, J.; Clarke, A.; Ogren, J. A.; Gras, J.; Baltensperger, U.; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C. S.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, N.; Zdimal, V.; Fiebig, M.; Hansson, H.-C.; Swietlicki, E.; Henzig, J. S.

    2013-11-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by twelve global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean dataset simulates the global variation of the particle size distribution with a good degree of skill

  2. Intercomparison and Evaluation of Global Aerosol Microphysical Properties among AeroCom Models of a Range of Complexity

    SciTech Connect

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, Kai; Ghan, Steven J.; Easter, Richard C.; Liu, Xiaohong; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S.; Tsigaridis, Kostas; van Noije, T.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; Von Salzen, Knut; Yu, Fangqun; Luo, Gan; Petzold, A.; Heintzenberg, J.; Clarke, A. D.; Ogren, J. A.; Gras, J.; Baltensperger, Urs; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, Nikos; Zdimal, V.; Fiebig, M.; Hansson, H. C.; Swietlicki, E.; Henzing, J. S.

    2014-05-13

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by twelve global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the results suggest that most global aerosol microphysics models simulate the global variation of the particle size distribution

  3. Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

    NASA Astrophysics Data System (ADS)

    Andersson, Emma; Kahnert, Michael

    2016-05-01

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between -28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from -50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  4. Modeling Aerosol Microphysical and Radiative Effects on Clouds and Implications for the Effects of Black and Brown Carbon on Clouds

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, J. E.; Jacobson, M. Z.

    2010-12-01

    Satellite observational studies have found an increase in cloud fraction (CF) and cloud optical depth (COD) with increasing aerosol optical depth (AOD) followed by a decreasing CF/COD with increasing AOD at higher AODs over the Amazon Basin. The shape of this curve is similar to that of a boomerang, and thus the effect has been dubbed the "boomerang effect.” The increase in CF/COD with increasing AOD at low AODs is ascribed to the first and second indirect effects and is referred to as a microphysical effect of aerosols on clouds. The decrease in CF/COD at higher AODs is ascribed to enhanced warming of clouds due to absorbing aerosols, either as inclusions in drops or interstitially between drops. This is referred to as a radiative effect. To date, the interaction of the microphysical and radiative effects has not been simulated with a regional or global computer model. Here, we simulate the boomerang effect with the nested global-through-urban climate, air pollution, weather forecast model, GATOR-GCMOM, for the Amazon biomass burning season of 2006. We also compare the model with an extensive set of data, including satellite data from MODIS, TRMM, and CALIPSO, in situ surface observations, upper-air data, and AERONET data. Biomass burning emissions are obtained from the Global Fire Emissions Database (GFEDv2), and are combined with MODIS land cover data along with biomass burning emission factors. A high-resolution domain, nested within three increasingly coarser domains, is employed over the heaviest biomass burning region within the arc of deforestation. Modeled trends in cloud properties with aerosol loading compare well with MODIS observed trends, allowing causation of these observed correlations, including of the boomerang effect, to be determined by model results. The impact of aerosols on various cloud parameters, such as cloud optical thickness, cloud fraction, cloud liquid water/ice content, and precipitation, are shown through differences between

  5. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    PubMed

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  6. A New Approach to Modeling Aerosol Effects on East Asian Climate: Parametric Uncertainties Associated with Emissions, Cloud Microphysics and their Interactions

    SciTech Connect

    Yan, Huiping; Qian, Yun; Zhao, Chun; Wang, Hailong; Wang, Minghuai; Yang, Ben; Liu, Xiaohong; Fu, Qiang

    2015-09-16

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. The relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.

  7. Aerosols-Cloud-Microphysics Interactions in Tropical Cyclone Earl

    NASA Astrophysics Data System (ADS)

    Luna-Cruz, Yaitza

    Aerosols-cloud-microphysical processes are largely unknown in their influence on tropical cyclone evolution and intensification; aerosols possess the largest uncertainty. For example: What is the link between aerosols and cloud microphysics quantities? How efficient are the aerosols (i.e. dust from the Saharan Air Layer -SAL) as cloud condensation nuclei (CCN) and ice nuclei (IN)? Does aerosols affect the vertical velocity, precipitation rates, cloud structure and lifetime? What are the dominant factors and in which sectors of the tropical cyclone? To address some of the questions in-situ microphysics measurements from the NASA DC-8 aircraft were obtained during the Genesis and Rapid Intensification Processes (GRIP) 2010 field campaign. A total of four named storms (Earl, Gaston, Karl and Mathew) were sampled. Earl presented the excellent opportunity to study aerosols-cloud-microphysics interactions because Saharan dust was present and it underwent rapid intensification. This thesis seeks to explore hurricane Earl to develop a better understanding of the relationship between the SAL aerosols and cloud microphysics evolution. To assist in the interpretation of the microphysics observations, high resolution numerical simulations of hurricane Earl were performed using the Weather Research and Forecasting (WRF-ARW) model with the new Aerosol-Aware bulk microphysics scheme. This new version of Thompson scheme includes explicit activation of cloud condensation nuclei (CCN) from a major CCN source (i.e. sulfates and sea salt) and explicit ice nucleation (IN) from mineral dust. Three simulations are performed: (1) the Control case with the old Thompson scheme and initial conditions from GFS model, (2) the Aerosol-Aware first baseline case with GOCART aerosol module as an input conditions, and (3) the Aerosol-Aware increase case in which the GOCART aerosols concentrations were increased significantly. Overall, results of model simulations along with aircraft observations

  8. A modeling study of the aerosol effects on ice microphysics in convective cloud and precipitation development under different thermodynamic conditions

    NASA Astrophysics Data System (ADS)

    Lee, Hannah; Yum, Seong Soo; Lee, Seoung-Soo

    2014-08-01

    An improved approach for cloud droplet activation process parameterization is proposed that can utilize the empirically determined hygroscopicity information and practically limit the sizes of newly activated droplets. With the implementation of the improved approach in a cloud model, the aerosol effects on ice microphysics in convective cloud and precipitation development under different thermodynamic conditions is investigated. The model is run for four different thermodynamic soundings and three different aerosol types, maritime (M), continental (C) and polluted (P). Warm rain suppression by increased aerosol (i.e., CCN) is clearly demonstrated when weakly convective warm clouds are generated but the results are mixed when relatively stronger convective warm clouds are generated. For one of the two soundings that generate strong convective cold clouds, the accumulated precipitation amount is larger for C and P than for M, demonstrating the precipitation enhancement by increased CCN. For the maritime cloud, precipitation is initiated by the warm rain processes but ice hydrometeor particles form fast, which leads to early but weak cloud invigoration. Another stronger cloud invigoration occurs later for M but it is still weaker than that for C and P. It is the delayed accumulation of more water drops and ice particles for a burst of riming process and the latent heat release during the depositional growth of rimed ice particles that invigorate the cloud strongly for C and P. For the other sounding where freezing level is low, ice particles form fast for all three aerosol types and therefore warm rain suppression is not clearly shown. However, there still is more precipitation for C and P than for M until the accumulated precipitation amount becomes larger for M than for C near to the end of the model run. The results demonstrate that the precipitation response to aerosols indeed depends on the environmental conditions.

  9. MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation

    NASA Astrophysics Data System (ADS)

    Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; Kokkola, H.

    2015-02-01

    We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The modeled PNC size distribution peak occurs at the same or smaller particle size as the observed peak at four measurement sites spread across Europe. Total PNC is underestimated at northern and central European sites and accumulation-mode PNC is underestimated at all investigated sites. The low nucleation rate coefficient used in this study is an important reason for the underestimation. On the other hand, the model performs well for particle mass (including secondary inorganic aerosol components), while elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, in terms of biogenic emissions and chemical transformation. Updating the biogenic secondary organic aerosol (SOA) scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation.

  10. Tropospheric aerosol size distributions simulated by three online global aerosol models using the M7 microphysics module

    SciTech Connect

    Zhang, Kai; Wan, Hui; Wang, Bin; Zhang, Meigen; Feichter, J.; Liu, Xiaohong

    2010-07-14

    Tropospheric aerosol size distributions are simulated by three online global models that employ exactly the same modal approach but differ in many aspects such as model meteorology, natural aerosol emissions, sulfur chemistry, and the parameterization of deposition processes. The main purpose of this study is to identify where the largest inter-model discrepancies occur and what the main reasons are. The number concentrations of different aerosol size ranges are compared among the three models and against observations. Overall all the three models can capture the basic features of the observed aerosol number spatial distributions. The magnitude of the number concentration of each mode is consistent among the three models. Quantitative differences are also clearly detectable. For the soluble and insoluble coarse mode and accumulation mode, inter-model discrepancies mainly result from differences in the sea salt and dust emissions, as well as the different strengths of the convective transport in the meteorological models. For the nucleation mode and the soluble Aitken mode, the spread of the model results is largest in the tropics and in the middle and upper troposphere. Diagnostics and sensitivity experiments suggest that this large spread is closely related to the sulfur cycle in the models, which is strongly affected by the choice of sulfur chemistry scheme, its coupling with the convective transport and wet deposition calculation, and the related meteorological fields such as cloud cover, cloud water content, and precipitation. The aerosol size distributions simulated by the three models are compared to observations in the boundary layer. The characteristic shape and magnitude of the distribution functions are reasonably reproduced in typical conditions (i.e., clean, polluted and transition areas). Biases in the mode parameters over the remote oceans and the China adjacent seas are probably caused by the fixed mode variance in the mathematical formulations used

  11. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  12. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  13. MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation

    NASA Astrophysics Data System (ADS)

    Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; Kokkola, H.

    2014-05-01

    We have implemented the sectional aerosol dynamics model SALSA in the European scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The model PNC size distribution peak occurs at the same or smaller particle size as the observed peak at five measurement sites spread across Europe. Total PNC is underestimated at Northern and Central European sites and accumulation mode PNC is underestimated at all investigated sites. On the other hand the model performs well for particle mass, including secondary inorganic aerosol components. Elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, both in terms of biogenic emissions and chemical transformation, and for nitrogen gas-particle partitioning. Updating the biogenic SOA scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation. An improved nitrogen partitioning model may also improve the description of condensational growth.

  14. Retrieval of Aerosol Microphysical Properties Using Surface MultiFilter Rotating Shadowband Radiometer (MFRSR) Data: Modeling and Observations

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Ackerman, Thomas P.

    2005-05-06

    Multi-filter Rotating Shadowband Radiometers (MFRSRs) are widely deployed over the world. These radiometers measure the total, direct, and diffuse components of shortwave, narrowband irradiance at 6 wavelengths. For 5 of these wavelengths, aerosol optical depths and single scattering albedos can be retrieved. We describe here a simple retrieval technique that can significantly extend the capability of the MFRSR to study atmospheric aerosols and can provide a means for simultaneous retrieval of the aerosol size distribution (for an assumed shape) and the imaginary refractive index. This technique is based on measurements of the direct irradiances at two wavelengths (0.415 μm and 0.870 μm) and the diffuse irradiance at 0.415 μm. Our technique requires assumptions regarding the shape of the aerosol size distribution, and the real part of the refractive index, as well as an estimate of the surface albedo at 0.415 μm. Given plausible values of these quantities, sensitivity tests show that successful retrievals of aerosol characteristics can be achieved. The technique has been applied to derive time series of aerosol microphysical properties from MFRSR measurements taken during a single day, April 27, 2003, of the Mexico City Metropolitan Area field campaign. Additionally, MFRSR-derived aerosol properties are in good agreement with AERONET retrievals made also in Mexico City.

  15. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 μm is determined as a more

  16. Intercomparison of Pulsed Lidar Data with Flight Level CW Lidar Data and Modeled Backscatter from Measured Aerosol Microphysics Near Japan and Hawaii

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.

  17. Greater Influence of Aerosol on Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Jha, V.; Hudson, J. G.; Noble, S.

    2009-12-01

    concentrations does not necessarily mean less aerosol influence. Realization of this suggests even greater influence of the preexisting aerosol on cloud microphysics and thus on global climate. A) Correlation coefficients (R) for 1% CCN concentrations with droplet concentrations larger than various threshold diameters. B) Average differential droplet distributions. (From Hudson and Noble (2009) GRL).

  18. Aerosol Microphysical and Macrophysical Effects on Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Li, Z.; Wilcox, E. M.; Oreopoulos, L.; Remer, L. A.; Yu, H.; Platnick, S. E.; Posselt, D. J.; Zhang, Z.; Martins, J. V.

    2014-12-01

    We illustrate a conceptual model of hydrometeor vertical development inside a convective cloud and its utility in studying of aerosol-DCC interactions. Both case studies and ensemble means are used to investigate aerosol-DCC interactions. We identify a few scenarios where possible signal of aerosol effect on DCC may be extracted. The results show a consistent and physically sound picture of aerosols affecting DCC microphysics as well as macrophysical properties. Specifically, pollutions and smokes are shown to consistently decrease ice particle size. On the contrary, dust particles close to source regions are shown to make cloud ice particle size more maritime like. We postulate that dust may achieve this by acting as either heterogeneous ice nuclei or giant cloud condensation nuclei. This contrast between smoke or pollution and dust also exists for their effects on cloud glaciation temperature. Smoke and pollution aerosols are shown to decrease glaciation temperature while dust particles do the opposite. Possible Implications of our results for studying aerosol indirect forcing, cirrus cloud properties, troposphere-stratosphere water vapor exchange and cloud latent heating are discussed.

  19. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  20. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  1. Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina

    2016-06-01

    In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.

  2. Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-01

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a three-dimensional cloud-resolving model, the System for Atmospheric Modeling (SAM), coupled with an explicit bin microphysics scheme and a radar simulator. By implementing an aerosol-dependent and a temperature- and supersaturation-dependent ice nucleation scheme and treating IN size distribution prognostically, the link between ice crystal and aerosol properties is established to study aerosol indirect effects. Two possible ice enhancement mechanisms, activation of droplet evaporation residues by condensation followed by freezing and droplet evaporation freezing by contact freezing inside out, are scrutinized by extensive comparisons with the in situ and remote sensing measurements. Simulations with either mechanism agree well with the in situ and remote sensing measurements of ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give similar cloud properties, although ice nucleation occurs at very different rates and locations. Ice nucleation from activation of evaporation nuclei occurs mostly near cloud top areas, while ice nucleation from the drop freezing during evaporation has no significant location preference. Both ice enhancement mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. Ice nuclei (IN) recycling from ice sublimation contributes significantly to maintaining concentrations of IN and ice particles in this case, implying an important role to maintain the observed long-term existence of mixed-phase clouds. Cloud can be very sensitive to IN initially but become much less sensitive as cloud evolves to a steady mixed-phase condition.

  3. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  4. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0

  5. Study of the Microphysical and Optical Properties of Ice Clouds and Dust Aerosols using observations made by active and passive satellite sensors in conjunction with modeling capabilities

    NASA Astrophysics Data System (ADS)

    Yang, P.; Dessler, A. E.

    2011-12-01

    Ice clouds and airborne dust aerosols are two unique and important components of atmospheric constituents. The passive sensors (e.g., MODIS, POLDER, and MISR) and active senor (CALIPSO-CALIOP) from the A-train constellation provide an unprecedented opportunity to investigate the microphysical and optical properties of ice clouds and dust aerosols. In this talk, we will demonstrate how to use the CALIPSO-CALIOP observations in conjunction with modeling capabilities to quantify the percentage of horizontally oriented ice crystals in ice clouds. At present, in remote sensing applications and radiative parameterizations involving ice clouds, ice crystals are assumed to be randomly oriented. Because the optical properties of horizontally and randomly oriented ice crystals are quite different, it is necessary to estimate the percentage of horizontally oriented ice crystals for a better understanding of the radiative properties of ice clouds. To infer the percentage of horizontally oriented particles, we have developed new modeling capabilities to simulate the single-scattering and multiple scattering (i.e., radiative transfer) processes involving these particles. Furthermore, we will demonstrate how to use the polarization measurements by CALIOP and POLDER to infer the morphologies of ice crystals and dust aerosols. Specifically, by minimizing the differences between radiative transfer simulations and observations, an optimal mixture of various ice crystal habits and the mean aspect ratio of dust aerosols are inferred. The outcomes of this effort may be potentially useful for more accurate parameterizations of the bulk radiative properties of ice clouds and dust aerosols for applications to radiative transfer simulations involved in climate models.

  6. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    , 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops

  7. Evolution of stratospheric sulfate aerosol from the 1991 Pinatubo eruption: Roles of aerosol microphysical processes

    NASA Astrophysics Data System (ADS)

    Sekiya, T.; Sudo, K.; Nagai, T.

    2016-03-01

    This study investigates the role of aerosol microphysics in stratospheric sulfate aerosol changes after the 1991 Mount Pinatubo eruption using an atmospheric general circulation model that is coupled interactively with a chemistry module and a modal aerosol microphysical module with three modes. Our model can reproduce the global mean stratospheric aerosol optical depth (SAOD) observed by the Stratospheric Aerosol and Gas Experiment (SAGE) II during June 1991 to January 1993. The model underestimates the observed SAOD before the eruption and after January 1993. The model also underestimates the integrated backscatter coefficient observed by ground-based lidar at Tsukuba, Naha, and Lauder. The modeled effective radius becomes larger (about 0.5 μm) and agrees with the balloon-borne measurements at Laramie, Wyoming (41°N, 105°W). We further investigate effects of the inclusion of evaporation along with the condensation processes and the inclusion of van der Waals and viscous forces in the coagulation processes. The inclusion of evaporation along with the condensation processes reduces the global mean effective radius by up to 0.04 μm and increases the global burden of stratospheric sulfate aerosols (about 15% in late 1993). The inclusion of van der Waals and viscous forces in the coagulation processes increases the global mean effective radius by up to 0.06-0.07 μm and decreases the global burden (15-30% in late 1993). The effects of van der Waals and viscous forces differ between two schemes. However, we do not conclude which simulation is superior because all simulations fall within error bars.

  8. Separating dynamical and microphysical impacts of aerosols on deep convection applying piggybacking methodology

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech W.

    2016-04-01

    Formation and growth of cloud and precipitation particles ("cloud microphysics") affect cloud dynamics and such macroscopic cloud field properties as the mean surface rainfall, cloud cover, and liquid/ice water paths. Traditional approaches to investigate the impacts involve parallel simulations with different microphysical schemes or with different scheme parameters (such as the assumed droplet/ice concentration for single-moment bulk schemes or the assumed CCN/IN concentration for double-moment schemes). Such methodologies are not reliable because of the natural variability of a cloud field that is affected by the feedback between cloud microphysics and cloud dynamics. In a nutshell, changing the cloud microphysics leads to a different realization of the cloud-scale flow, and separating dynamical and microphysical impacts is cumbersome. A novel modeling methodology, referred to as the microphysical piggybacking, was recently developed to separate purely microphysical effects from the impact on the dynamics. The main idea is to use two sets of thermodynamic variables driven by two microphysical schemes or by the same scheme with different scheme parameters. One set is coupled to the dynamics and drives the simulation, and the other set piggybacks the simulated flow, that is, it responds to the simulated flow but does not affect it. By switching the sets (i.e., the set driving the simulation becomes the piggybacking one, and vice versa), the impact on the cloud dynamics can be isolated from purely microphysical effects. Application of this methodology to the daytime deep convection development over land based on the observations during the Large-scale Biosphere-Atmosphere (LBA) field project in Amazonia will be discussed applying single-moment and double-moment bulk microphysics schemes. We show that the new methodology documents a small indirect aerosol impact on convective dynamics, and a strong microphysical effect. These results question the postulated strong

  9. Advancements in the Representation of Cloud-Aerosol Microphysics in the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Lee, D.; Oreopoulos, L.; Sud, Y.; Barahona, D.; Nemes, A.; Bhattacharjee, P.

    2011-01-01

    Despite numerous challenges, the physical parameterization of cloud-aerosol interactions in atmospheric GCMs has become a top priority for advancement because of our need to simulate and understand past, current, and future indirect effects of aerosols on clouds. The challenges stem from the involvement of wide range of cloud-scale dynamics and aerosol activation physical processes. Cloud dynamics modulate cloud areal extent and condensate, while aerosol activation depends on aerosol mass load, size distribution, internal mixing state, and nucleating properties, and ultimately determines cloud optical properties via particle sizes. Both macro- and micro-scale processes are obviously important for cloud-radiation interactions. We will present the main features of cloud microphysical properties in the GEOS- 5 Atmospheric GCM (AGCM) as simulated by the McRAS-AC (Microphysics of Clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction) scheme. McRAS-AC uses Fountoukis and Nenes (2005) aerosol activation for liquid clouds, and has an option for either Liu and Penner (2005) or Barahona and Nenes (2008, 2009) aerosol activation for ice clouds. Aerosol loading (on-line or climatological) comes from GOCART, with an assumed log-normal size distribution. Other features of McRAS-AC are level-by-level cloud-scale thermodynamics, and Seifert-Beheng (2001)-type precipitation microphysics, particularly from moist convection. Results from Single-Column Model simulations will be shown to demonstrate how cloud radiative properties, lifetimes, and precipitation are influenced by different parameterization assumptions. Corresponding fields from year-long simulations of the full AGCM will also be presented with geographical distributions of cloud effective particle sizes compared to satellite retrievals. While the primary emphasis will be on current climate, simulation results with perturbed aerosol loadings will also be shown to expose the radiative sensitivity of the

  10. Optical-Microphysical Cirrus Model

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Lin, R.-F.; Hess, M.; McGee, T. J.; Starr, D. O.

    2008-01-01

    A model is presented that permits the simulation of the optical properties of cirrus clouds as measured with depolarization Raman lidars. It comprises a one-dimensional cirrus model with explicit microphysics and an optical module that transforms the microphysical model output to cloud and particle optical properties. The optical model takes into account scattering by randomly oriented or horizontally aligned planar and columnar monocrystals and polycrystals. Key cloud properties such as the fraction of plate-like particles and the number of basic crystals per polycrystal are parameterized in terms of the ambient temperature, the nucleation temperature, or the mass of the particles. The optical-microphysical model is used to simulate the lidar measurement of a synoptically forced cirrostratus in a first case study. It turns out that a cirrus cloud consisting of only monocrystals in random orientation is too simple a model scenario to explain the observations. However, good agreement between simulation and observation is reached when the formation of polycrystals or the horizontal alignment of monocrystals is permitted. Moreover, the model results show that plate fraction and morphological complexity are best parameterized in terms of particle mass, or ambient temperature which indicates that the ambient conditions affect cirrus optical properties more than those during particle formation. Furthermore, the modeled profiles of particle shape and size are in excellent agreement with in situ and laboratory studies, i.e., (partly oriented) polycrystalline particles with mainly planar basic crystals in the cloud bottom layer, and monocrystals above, with the fraction of columns increasing and the shape and size of the particles changing from large thin plates and long columns to small, more isometric crystals from cloud center to top. The findings of this case study corroborate the microphysical interpretation of cirrus measurements with lidar as suggested previously.

  11. Microphysical and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Brooks, S. D.; Moon, S.; Littleton, R.; Auvermann, B.

    2005-12-01

    Due to significant atmospheric loadings of agricultural dust aerosols, the aerosol's ability to contribute significantly to climate forcing on a regional to global level has been a topic of recent interest. Efforts have been made to quantify both the aerosol extinction of the total aerosol population and the hygroscopic and chemical properties of individual particles at a cattle feedyard near Canyon, Texas. Measurements of aerosol extinction are made using open-path transmissometry. Our results show that extinction varies significantly with relative humidity. To further explore the hygroscopic nature of the particles, size-resolved aerosol samples are collected using a cascade impactor system (7 stages ranging from 0.6 micron to 16 micron diameter) and hygroscopicity measurements are conducted on these using an Environmental Scanning Electron Microscope (ESEM). Complimentary determination of the elemental composition of individual particles is performed using Energy Dispersive X-ray Spectroscopy. Results of the optical properties, hygroscopicity and chemical composition of aerosols will be presented and atmospheric implications discussed.

  12. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds

    SciTech Connect

    Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

  13. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  14. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  15. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  16. Aerosols, cloud microphysics, and fractional cloudiness.

    PubMed

    Albrecht, B A

    1989-09-15

    Increases in aerosol concentrations over the oceans may increase the amount of low-level cloudiness through a reduction in drizzle-a process that regulates the liquid-water content and the energetics of shallow marine clouds. The resulting increase in the global albedo would be in addition to the increase due to enhancement in reflectivity associated with a decrease in droplet size and would contribute to a cooling of the earth's surface.

  17. Retrieval of Aerosol Microphysical Properties from MFRSR Observations

    SciTech Connect

    Kassianov, Evgueni I; Barnard, James C; Ackerman, Thomas P

    2006-05-01

    Aerosols can have significant impact on the radiative and heat balance of the Earth-atmosphere system by absorbing and scattering solar radiation (direct aerosol effect) and altering cloud optical properties and suppressing precipitation (indirect aerosol effect). However, both the sign and magnitude of the aerosol impact has proven difficult to determine due to incomplete knowledge of aerosol properties and their strong temporal and spatial variations. Reduction of these uncertainties requires an accurate global inventory of aerosol microphysical properties, such as size distribution and the refractive index. Multi-filter Rotating Shadowband Radiometers (MFRSRs) are widely deployed over the world (e.g., the surface radiation budget network). These radiometers provide measurements of the direct and the diffuse solar irradiances at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 ). Currently, the direct irradiance observations are used to derive routinely spectral values of the aerosol optical depth only. We propose a simple retrieval technique that significantly extends the capability of the MFRSR to study atmospheric aerosols. In our retrieval, we assume the shape of aerosol size distribution (e.g., combination of three lognormal distributions) and the value of the real refractive index. The technique consists of three steps that compose an iterative scheme. The first step obtains the aerosol size distribution from the spectral measurements of the direct irradiance (for a given complex refractive index). To reduce the effect of ozone and water vapor contamination, we use wavelengths where ozone and water vapor weakly affect the direct irradiance (0.415 mu and 0.870 mu). The second step determines the effective value of the imaginary refractive index from the diffuse irradiance (for the aerosol size distribution determined during the first step). To reduce the effect of the surface albedo on the retrievals, we select a wavelength where the surface albedo

  18. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  19. Microphysical Model Studies of Venus Clouds

    NASA Astrophysics Data System (ADS)

    Meade, P. E.; Bullock, M. A.; Grinspoon, D. H.

    2004-11-01

    We have adapted a standard cloud microphysics model to construct a self-consistent microphysical model of Venus' cloud layer which reproduces and extends previous studies (e.g. James et al. 1997). Our model is based on the Community Aerosol and Radiation Model Atmosphere (CARMA), which is a widely used computer code for terrestrial cloud microphysics, derived from the work of Toon et al. (1988). The standard code has been adapted to treat H2O and H2SO4 as co-condensing vapor species onto aqueous H2SO4 cloud droplets, as well as the nucleation of condensation nuclei to droplets. Vapor condensation and evaporation follows the method of James et al. (1997). Microphysical processes included in this model include nucleation of condensation nuclei, condensation and evaporation of H2O and H2SO4 vapor, and droplet coagulation. Vertical transport occurs though advection, eddy diffusion, sedimentation for both droplets and condensation nuclei. The cloud model is used to explore the sensitivity of Venus' cloud layer to environmental changes. Observations of the Venus' lower cloud from the Pioneer Venus, Venera, and Galileo spacecraft have suggested that the properties of the lower cloud may be time-variable, and at times may be entirely absent (Carlson et al. 1993, Grinspoon et al. 1993, Esposito et al. 1997). Our model explores the dependence of such behavior on environment factors such as variations in water or SO2 abundance. We have also calculated the optical properties of the model atmosphere using both the conventional optical constants for H2SO4 (Palmer and Williams, 1975), and the new data of Tisdale et al. (1998). This work has been supported by NASA's Exobiology Program. References Carlson, R.W., et al., 1993. Planetary and Space Science, 41, 477-486. Esposito, L.W., et al., 1997. In Venus II, eds. S.W. Bougher et al., pp. 415-458, University of Arizona Press, Tucson. Grinspoon, D.H., et al., 1993. Planetary and Space Science, 41 (July 1993), 515-542. James, E. P

  20. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-08-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  1. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-12-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  2. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model

  3. Aerosol-Cloud microphysical closure in warm tropical cumulus during CRYSTAL-FACE

    NASA Astrophysics Data System (ADS)

    Conant, W. C.; Lu, M.; Vanreken, T.; Rissman, T.; Varutbangkul, V.; Jonsson, H. H.; Nenes, A.; Jimenez, J. L.; Delia, A. E.; Bahreini, R.; Roberts, G. C.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    We present a closure study between aerosol and warm-cloud microphysics using field data collected during the NASA CRYSTAL-FACE campaign. CRYSTAL-FACE was conducted in continental and marine environments near southern Florida in July, 2002. Detailed profiles of thirteen cumulus clouds were made by the CIRPAS Twin Otter aircraft, which was equipped with four aerosol sizing systems, two CCN counters operated at 0.4% and 0.7% supersaturation, an Aerodyne aerosol mass spectrometer, a MOUDI filter sampler system, two cloud drop sizing probes, and two turbulence probes. A wide range of CCN (300 to >3500 cm-3) and cloud drop concentrations (200 to >1600 cm-3) provides an ideal case study for aerosol-cloud interactions and the first and second indirect effects. Vertical characterization of the young and mature cumulus clouds are obtained from multiple horizontal passes from below cloud base to cloud top. A detailed adiabatic cloud activation model accurately predicts the cloud drop concentration 100 m above cloud base. The model is constrained by observed updraft velocity and below-cloud aerosol properties (i.e. concentration, size distribution, composition, and supersaturation spectrum). Each cloud contains a core often exceeding 500 m in height in which the equivalent potential temperature follows a moist-adiabatic vertical profile. Effective radius most often follows an adiabatic profile, even in regions where liquid water content and/or equivalent potential temperature are sub-adiabatic. Large cloud-to-cloud variations in the vertical profile of effective radius are primarily driven by below-cloud aerosol concentration and to a lesser degree by cloud dynamics (i.e. vertical velocity). Six of the thirteen clouds are simulated using the RAMS large-eddy-simulation model. RAMS is integrated with bulk and bin microphysical models and is coupled to an offline 3-D radiative transfer model to study the aerosol effects on cloud microphysics and radiative properties. More

  4. SeReNA Project: studying aerosol interactions with cloud microphysics in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Correia, A. L.; Catandi, P. B.; Frigeri, F. F.; Ferreira, W. C.; Martins, J.; Artaxo, P.

    2012-12-01

    Cloud microphysics and its interaction with aerosols is a key atmospheric process for weather and climate. Interactions between clouds and aerosols can impact Earth's radiative balance, its hydrological and energetic cycles, and are responsible for a large fraction of the uncertainty in climatic models. On a planetary scale, the Amazon Basin is one of the most significant land sources of moisture and latent heat energy. Moreover, every year this region undergoes mearked seasonal shifts in its atmospheric state, transitioning from clean to heavily polluted conditions due to the occurrence of seasonal biomass burning fires, that emit large amounts of smoke to the atmosphere. These conditions make the Amazon Basin a special place to study aerosol-cloud interactions. The SeReNA Project ("Remote sensing of clouds and their interaction with aerosols", from the acronym in Portuguese, @SerenaProject on Twitter) is an ongoing effort to experimentally investigate the impact of aerosols upon cloud microphysics in Amazonia. Vertical profiles of droplet effective radius of water and ice particles, in single convective clouds, can be derived from measurements of the emerging radiation on cloud sides. Aerosol optical depth, cloud top properties, and meteorological parameters retrieved from satellites will be correlated with microphysical properties derived for single clouds. Maps of cloud brightness temperature will allow building temperature vs. effective radius profiles for hydrometeors in single clouds. Figure 1 shows an example extracted from Martins et al. (2011), illustrating a proof-of-concept for the kind of result expected within the framework for the SeReNA Project. The results to be obtained will help foster the quantitative knowledge about interactions between aerosols and clouds in a microphysical level. These interactions are a fundamental process in the context of global climatic changes, they are key to understanding basic processes within clouds and how aerosols

  5. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    The objectives of this project are to: define the chemical and physical processes leading to stratospheric ozone change that involve polar stratospheric clouds (PSCS) and the reactions occurring on the surfaces of PSC particles; study the formation processes, and the physical and chemical properties of PSCS, that are relevant to atmospheric chemistry and to the interpretation of field measurements taken during polar stratosphere missions; develop quantitative models describing PSC microphysics and heterogeneous chemical processes; assimilate laboratory and field data into these models; and calculate the extent of chemical processing on PSCs and the impact of specific microphysical processes on polar composition and ozone depletion. During the course of the project, a new coupled microphysics/physical-chemistry/ photochemistry model for stratospheric sulfate aerosols and nitric acid and ice PSCs was developed and applied to analyze data collected during NASA's Arctic Airborne Stratospheric Expedition-II (AASE-II) and other missions. In this model, detailed treatments of multicomponent sulfate aerosol physical chemistry, sulfate aerosol microphysics, polar stratospheric cloud microphysics, PSC ice surface chemistry, as well as homogeneous gas-phase chemistry were included for the first time. In recent studies focusing on AASE measurements, the PSC model was used to analyze specific measurements from an aircraft deployment of an aerosol impactor, FSSP, and NO(y) detector. The calculated results are in excellent agreement with observations for particle volumes as well as NO(y) concentrations, thus confirming the importance of supercooled sulfate/nitrate droplets in PSC formation. The same model has been applied to perform a statistical study of PSC properties in the Northern Hemisphere using several hundred high-latitude air parcel trajectories obtained from Goddard. The rates of ozone depletion along trajectories with different meteorological histories are presently

  6. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  7. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  8. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  9. Aerosol impacts in continental shallow cumuli using bin and bulk microphysical schemes

    NASA Astrophysics Data System (ADS)

    Igel, Adele L.; van den Heever, Susan C.

    2014-05-01

    Much attention has been given to the impacts of aerosol on maritime cumulus clouds, which are often in a state of near equilibrium with the environment. However, less work has been done to confirm that the results of these maritime studies hold in continental cumuli where the diurnal cycle of the boundary layer is much more pronounced and where aerosol concentrations can reach much higher levels. A second issue is that differences in cloud and rain properties that arise due to the choice of microphysical scheme can be greater than differences that arise through changes in the aerosol number concentration. The sensitivity to the choice of scheme contributes uncertainty to the aerosol results. In the current study continental cumulus clouds have been simulated at high resolution (50m horizontal spacing, 25m vertical spacing) using both the Hebrew University bin scheme and the standard bulk microphysics scheme in RAMS under clean and polluted conditions. The influence of aerosol on cloud morphology and microphysical characteristics will be presented for each microphysical scheme and the results compared to those from previous studies of maritime cumuli. Individual microphysical process rates from each scheme will also be compared to understand differences in the response to aerosol. Comparing the process rates in this way will allow for a better understanding of the causes of spread between microphysical schemes.

  10. Aerosol Impacts on Clouds and Precipitation in Eastern China: Results from Bin and Bulk Microphysics

    SciTech Connect

    Fan, Jiwen; Leung, Lai-Yung R.; Li, Zhanqing; Morrison, H.; Chen, Hongbin; Zhou, Yuquan; Qian, Yun; Wang, Yuan

    2012-01-19

    Using the Weather Research and Forecasting (WRF) model coupled with a 3 spectral-bin microphysics ('SBM') and measurements from the Atmospheric Radiation 4 Measurement (ARM) Mobile Facility field campaign in China (AMF-China), the authors 5 examine aerosol indirect effects (AIE) in the typical cloud regimes of the warm and cold 6 seasons in Southeast China: deep convective clouds (DCC) and stratus clouds (SC), 7 respectively. Comparisons with a two-moment bulk microphysics ('Bulk') are performed 8 to gain insights for improving bulk schemes in estimating AIE in weather and climate 9 simulations. For the first time, measurements of aerosol and cloud properties acquired in 10 China are used to evaluate model simulations to better understand AIE in China. It is 11 found that changes in cloud condensation nuclei (CCN) concentration significantly 12 change the timing of storms, the spatial and temporal distributions of precipitation, the 13 frequency distribution of precipitation rate, as well as cloud base and top heights for the 14 DCC, but not for the SC. CCN increase cloud droplet number (Nc) and mass 15 concentrations, decrease raindrop number concentration (Nr), and delay the onset of 16 precipitation. It is indicated much higher Nc and the opposite CCN effects on convection 17 and heavy rain with Bulk compared to SBM stem from the fixed CCN prescribed in Bulk. 18 CCN have a significant effect on ice microphysical properties with SBM but not Bulk 19 and different condensation/deposition freezing parameterizations employed could be the 20 main reason. This study provided insights to further improve the bulk scheme to better 21 account for aerosol-cloud interactions in regional and global climate simulations, which 22 will be the focus for a follow-on paper.

  11. Improving satellite-retrieved aerosol microphysical properties using GOCART data

    NASA Astrophysics Data System (ADS)

    Li, S.; Kahn, R.; Chin, M.; Garay, M. J.; Liu, Y.

    2015-03-01

    The Multi-angle Imaging SpectroRadiometer (MISR) aboard the NASA Earth Observing System's Terra satellite can provide more reliable aerosol optical depth (AOD) and better constraints on particle size (Ångström exponent, or ANG), sphericity, and single-scattering albedo (SSA) than many other satellite instruments. However, many aerosol mixtures pass the algorithm acceptance criteria, yielding a poor constraint, when the particle-type information in the MISR radiances is low, typically at low AOD. We investigate adding value to the MISR aerosol product under these conditions by filtering the list of MISR-retrieved mixtures based on agreement between the mixture ANG and absorbing AOD (AAOD) values, and simulated aerosol properties from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. MISR-GOCART ANG difference and AAOD ratio thresholds for applying GOCART constraints were determined based on coincident AOD, ANG, and AAOD measurements from the AErosol RObotic NETwork (AERONET). The results were validated by comparing the adjusted MISR aerosol optical properties over the contiguous USA between 2006 and 2009 with additional AERONET data. The correlation coefficient (r) between the adjusted MISR ANG derived from this study and AERONET improves to 0.45, compared to 0.29 for the MISR Version 22 standard product. The ratio of the adjusted MISR AAOD to AERONET increases to 0.74, compared to 0.5 for the MISR operational retrieval. These improvements occur primarily when AOD < 0.2 for ANG and AOD < 0.5 for AAOD. Spatial and temporal differences among the aerosol optical properties of MISR V22, GOCART, and the adjusted MISR are traced to (1) GOCART underestimation of AOD and ANG in polluted regions; (2) aerosol mixtures lacking in the MISR Version 22 algorithm climatology; (3) low MISR sensitivity to particle type under some conditions; and (4) parameters and thresholds used in our method.

  12. Improving satellite retrieved aerosol microphysical properties using GOCART data

    NASA Astrophysics Data System (ADS)

    Li, S.; Kahn, R.; Chin, M.; Garay, M. J.; Chen, L.; Liu, Y.

    2014-09-01

    The Multi-Angle Imaging Spectro-Radiometer (MISR) instrument on NASA's Terra satellite can provide more reliable Aerosol Optical Depth (AOD, τ) and more particle information, such as constraints on particle size (Angström exponent or ANG, α), particle shape, and single-scattering albedo (SSA, ω), than many other satellite instruments. However, MISR's ability to retrieve aerosol properties is weakened at low AOD levels. When aerosol-type information content is low, many candidate aerosol mixtures can match the observed radiances. We propose an algorithm to improve MISR aerosol retrievals by constraining MISR mixtures' ANG and absorbing AOD (AAOD) with Goddard Chemistry Aerosol Radiation and Transport (GOCART) model-simulated aerosol properties. To demonstrate this approach, we calculated MISR aerosol optical properties over the contiguous US from 2006 to 2009. Sensitivities associated with the thresholds of MISR-GOCART differences were analyzed according to the agreement between our results (AOD, ANG, and AAOD) and AErosol RObotic NETwork (AERONET) observations. Overall, our AOD has a good agreement with AERONET because the MISR AOD retrieval is not sensitive to different mixtures under many retrieval conditions. The correlation coefficient (r) between our ANG and AERONET improves to 0.45 from 0.29 for the MISR Version 22 standard product and 0.43 for GOCART when all data points are included. However, when only cases having AOD > 0.2, the MISR product itself has r ~ 0.40, and when only AOD > 0.2 and the best-fitting mixture are considered, r ~ 0.49. So as expected, the ANG improvement occurs primarily when the model constraint is applied in cases where the particle type information content of the MISR radiances is low. Regression analysis for AAOD shows that MISR Version 22 and GOCART misestimate AERONET by a ratio (mean retrieved AAOD to mean AERONET AAOD) of 0.5; our method improves this ratio to 0.74. Large discrepancies are found through an inter

  13. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  14. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  15. An algorithm for retrieving fine and coarse aerosol microphysical properties from AERONET-type photopolarimetric measurements

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Zeng, J.; Spurr, R. J. D.; Liu, X.; Dubovik, O.; Li, Z.; Li, L.; Holben, B. N.; Mishchenko, M. I.

    2014-12-01

    A new retrieval algorithm has been developed to retrieve both fine and coarse modal aerosol properties from multi-spectral and multi-angular solar polarimetric radiation fields such as those measured by the AErosol RObotic NETwork (AERONET) but with additional channels of polarization observations (hereafter AEROENT-type measurements). Most AERONET sites lack the capability to measure light polarization, though a few measure polarization only at 870 nm. From both theory and real cases, we show that adding multi-spectral polarization data can allow a mode-resolved inversion of aerosol microphysical parameters. In brief, the retrieval algorithm incorporates AERONET-type measurements in conjunction with advanced vector radiative transfer model specifically designed for studying the inversion problems in aerosol remote sensing. It retrieves aerosol parameters associated to a bi-lognormal particle size distribution (PSD) including aerosol volume concentrations, effective radius and variance, and complex indices of aerosol refraction. Our algorithm differs from the current AERONET inversion algorithm in two major aspects. First, it retrieves effective radius and variance and total volume by assuming a bi-modal lognormal PSD, while AERONET one retrieves aerosol volumes of 22 size bins. Second, our algorithm retrieves spectral refractive indices for both fine and coarse modes. Mode-resolved refractive indices can improve the estimate of single scattering albedo (SSA) for each mode, which also benefits the evaluation for satellite products and chemistry transport models. While bi-lognormal PSD can well represent aerosol size spectrum in most cases, future research efforts will include implementation for tri-modal aerosol mixtures in situations of cloud-formation or volcanic aerosols. Applying the algorithm to a suite of real cases over Beijing_RADI site, we found that our retrievals are overall consistent with AERONET inversion products, but can offer mode

  16. Imaginary refractive index and other microphysical properties of volcanic ash, Sarahan dust, and other mineral aerosols

    NASA Astrophysics Data System (ADS)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Artaxo, P.; Todd, M.; Ben Ami, Y.; Dolgos, G.; Espinosa, R.

    2013-12-01

    Aerosol properties are essential to support remote sensing measurements, atmospheric circulation and climate models. This research aims to improve the understanding of the optical and microphysical properties of different types of aerosols particles. Samples of volcanic ash, Saharan dust and other mineral aerosols particles were analyzed by different techniques. Ground samples were sieved down to 45um, de-agglomerated and resuspended in the laboratory using a Fluidized Bed Aerosol Generator (FBAG). Particles were collected on Nuclepore filters into PM10, PM2.5, or PM1.0. and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index from the UV to the short wave infrared (SWIR) wavelength was derived empirically from the measurements of the spectral mass absorption coefficient, size distribution and density of the material. Some selected samples were also analyzed with the Polarized Imaging Nephelometer (PI-Neph) instrument for the characterization of the aerosol polarized phase function. This work compares results of the spectral refractive index of different materials obtained by our methodology with those available in the literature. In some cases there are significant differences both in magnitude and spectral dependence of the imaginary refractive index. These differences are evaluated and discussed in this work.

  17. Aerosols-cloud microphysics-thermodynamics-turbulence: evaluating supersaturation in a marine stratocumulus cloud

    NASA Astrophysics Data System (ADS)

    Ditas, F.; Shaw, R. A.; Siebert, H.; Simmel, M.; Wehner, B.; Wiedensohler, A.

    2011-11-01

    This work presents a unique combination of aerosol, cloud microphysical, thermodynamic and turbulence parameters to characterize supersaturation fluctuations in a turbulent marine stratocumulus (SC) layer. The analysis is based on observations with the helicopter-borne measurement platform ACTOS and a spectral cloud microphysical parcel model following three different approaches: (1) From the comparison of aerosol number size distributions inside and below the SC layer, the number of activated particles is calculated to 435±87 cm-3 and compares well with the observed median droplet number concentration of Nd=456 cm-3. Furthermore, a 50% activation diameter of Dp50 ≈ 115 nm was derived, which was linked to a critical supersaturation Scrit of 0.16% via Köhler theory. From the shape of the fraction of activated particles, we estimated a standard deviation of supersaturation fluctuations of σS' =0.09%. (2) These estimates are compared to more direct thermodynamic observations at cloud base. Therefore, supersaturation fluctuations (S') are calculated based on highly-resolved thermodynamic data showing a standard deviation of S' ranging within 0.1% ≤ σS' ≤ .3%. (3) The sensitivity of the supersaturation on observed vertical wind velocity fluctuations is investigated with the help of a spectral cloud microphysical model. These results show highest fluctuations of S' with σS' =0.1% at cloud base and a decreasing σS' with increasing liquid water content and droplet number concentration. All three approaches are independent of each other and vary only within a factor of about two.

  18. Aerosols-cloud microphysics-thermodynamics-turbulence: evaluating supersaturation in a marine stratocumulus cloud

    NASA Astrophysics Data System (ADS)

    Ditas, F.; Shaw, R. A.; Siebert, H.; Simmel, M.; Wehner, B.; Wiedensohler, A.

    2012-03-01

    This work presents a unique combination of aerosol, cloud microphysical, thermodynamic and turbulence variables to characterize supersaturation fluctuations in a turbulent marine stratocumulus (SC) layer. The analysis is based on observations with the helicopter-borne measurement platform ACTOS and a detailed cloud microphysical parcel model following three different approaches: (1) From the comparison of aerosol number size distributions inside and below the SC layer, the number of activated particles is calculated as 435±87 cm-3 and compares well with the observed median droplet number concentration of Nd = 464 cm-3. Furthermore, a 50% activation diameter of Dp50≈115 nm was derived, which was linked to a critical supersaturation Scrit of 0.16% via Köhler theory. From the shape of the fraction of activated particles, we estimated a standard deviation of supersaturation fluctuations of σS' = 0.09%. (2) These estimates are compared to more direct thermodynamic observations at cloud base. Therefore, supersaturation fluctuations (S') are calculated based on highly-resolved thermodynamic data showing a standard deviation of S' ranging within 0.1%≤σS'≤0.3 %. (3) The sensitivity of the supersaturation on observed vertical wind velocity fluctuations is investigated with the help of a detailed cloud microphysical model. These results show highest fluctuations of S' with σS'=0.1% at cloud base and a decreasing σS' with increasing liquid water content and droplet number concentration. All three approaches are independent of each other and vary only within a factor of about two.

  19. Global microphysical simulation of stratospheric sulfate aerosol after the Mt. Pinatubo eruption

    NASA Astrophysics Data System (ADS)

    Sekiya, T.; Sudo, K.

    2014-12-01

    An explosive volcanic eruption can inject a large amount of SO2 into the stratosphere, which is oxidized to form sulfate aerosol. Such aerosol has an impact on the Earth's radiative budget by enhancing back-scattering of the solar radiation. Changes in the size distribution of the aerosol were observed after large volcanic eruptions. Representing the changes in size distribution is important for climate simulation, because the changes affect climate responses to large volcanic eruptions. This study newly developed an aerosol microphysics module and investigated changes in stratospheric sulfate aerosol after the Mt. Pinatubo eruption in the framework of a chemistry-aerosol coupled climate model MIROC-CHASER/SPRINTARS. The module represents aerosol size distribution with three lognormal modes (nucleation, Aitken, and accumulation modes) and includes nucleation, condensation growth/evaporation, and coagulation processes. As a model evaluation, we tested reproducibility of the impacts of the Mt. Pinatubo eruption. We carried out a simulation, in which 20 Mt of SO2 and 100 Mt of volcanic ash were injected respectively into 25 km and 16—22 km altitudes over Mt. Pinatubo (120.4°E, 15.1°N) on June 15th 1991. We compared the model results with space-borne and balloon-borne observations. Although our model overestimated a near-global mean (60°N—60°S) of stratospheric aerosol optical depth (SAOD) observed by SAGE II instrument until one year after the eruption, it reproduced the observed SAOD in the subsequent period. The model well captured the observed increase of effective radius at 20 km altitude in the northern midlatitudes. In addition, we analyzed the pathway of volcanic sulfur from SO2 to sulfate aerosol. The most amount of the volcanic sulfur was converted from SO2 to accumulation mode aerosol by 100 days after the eruption. The conversion into the accumulation mode aerosol is attributable to coagulation until the first 14 days and to condensation growth

  20. Cloud microphysics modification with an online coupled COSMO-MUSCAT regional model

    NASA Astrophysics Data System (ADS)

    Sudhakar, D.; Quaas, J.; Wolke, R.; Stoll, J.; Muehlbauer, A. D.; Tegen, I.

    2015-12-01

    Abstract: The quantification of clouds, aerosols, and aerosol-cloud interactions in models, continues to be a challenge (IPCC, 2013). In this scenario two-moment bulk microphysical scheme is used to understand the aerosol-cloud interactions in the regional model COSMO (Consortium for Small Scale Modeling). The two-moment scheme in COSMO has been especially designed to represent aerosol effects on the microphysics of mixed-phase clouds (Seifert et al., 2006). To improve the model predictability, the radiation scheme has been coupled with two-moment microphysical scheme. Further, the cloud microphysics parameterization has been modified via coupling COSMO with MUSCAT (MultiScale Chemistry Aerosol Transport model, Wolke et al., 2004). In this study, we will be discussing the initial result from the online-coupled COSMO-MUSCAT model system with modified two-moment parameterization scheme along with COSP (CFMIP Observational Simulator Package) satellite simulator. This online coupled model system aims to improve the sub-grid scale process in the regional weather prediction scenario. The constant aerosol concentration used in the Seifert and Beheng, (2006) parameterizations in COSMO model has been replaced by aerosol concentration derived from MUSCAT model. The cloud microphysical process from the modified two-moment scheme is compared with stand-alone COSMO model. To validate the robustness of the model simulation, the coupled model system is integrated with COSP satellite simulator (Muhlbauer et al., 2012). Further, the simulations are compared with MODIS (Moderate Resolution Imaging Spectroradiometer) and ISCCP (International Satellite Cloud Climatology Project) satellite products.

  1. Applying super-droplets as a compact representation of warm-rain microphysics for aerosol-cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.

    2012-12-01

    Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).

  2. Microphysical aerosol parameters of spheroidal particles via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine

    2015-04-01

    One of the main topics in understanding the aerosol impact on climate requires the investigation of the spatial and temporal variability of microphysical properties of particles, e.g., the complex refractive index, the effective radius, the volume and surface-area concentration, and the single-scattering albedo. Remote sensing is a technique used to monitor aerosols in global coverage and fill in the observational gap. This research topic involves using multi-wavelength Raman lidar systems to extract the microphysical properties of aerosol particles, along with depolarization signals to account for the non-sphericity of the latter. Given, the optical parameters (measured by a lidar), the kernel functions, which summarize the size, shape and composition of particles, we solve for the size distribution of the particles modeled by a Fredholm integral system and further calculate the refractive index. This model works well for spherical particles (e.g. smoke); the kernel functions are derived from relatively simplified formulas (Mie scattering theory) and research has led to successful retrievals for particles which at least resemble a spherical geometry (small depolarization ratio). Obviously, more complicated atmospheric structures (e.g dust) require employment of non-spherical kernels and/or more complicated models which are investigated in this paper. The new model is now a two-dimensional one including the aspect ratio of spheroidal particles. The spheroidal kernel functions are able to be calculated via T-Matrix; a technique used for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped particles. In order to speed up the process and massively perform simulation tests, we created a software interface using different regularization methods and parameter choice rules. The following methods have been used: Truncated singular value decomposition and Pade iteration with the discrepancy principle, and Tikhonov regularization with the L

  3. High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes

    NASA Astrophysics Data System (ADS)

    Khain, A.; Lynn, B.; Shpund, J.

    2016-01-01

    Recent studies have pointed to the possible sensitivity of hurricanes to aerosols via aerosol effects on microphysical and thermodynamic processes in clouds. Hurricane Irene, occurring in August 2011, is an excellent case study for investigating aerosol effects on tropical cyclone (TC) structure and intensity: it moved northward along the eastern coast of the United States, and weakened much faster than was predicted by the National Hurricane Center. Moreover, the minimum pressure in Irene occurred, atypically, about 40 h later than the time of maximum wind speed. In this study, we simulate Hurricane Irene with 1-km grid spacing using Spectral Bin Microphysics (SBM) and various bulk microphysical schemes in WRF. Simulations with SBM showed that aerosols penetrating the eyewall of Irene from the Saharan Air Layer (SAL) led to an intensification of convection at Irene's eyewall and to a deepening of the hurricane. When Irene moved along the eastern coast of the United States, continental aerosols led to an intensification of convection at Irene's periphery, which interfered with the re-forming of the inner eyewall and to Irene weakening. Sensitivity tests using different "bulk" microphysics schemes indicated a large dispersion of simulated minimum pressure and maximum wind between different simulations. This showed that the simulated hurricane intensity was very sensitive to microphysical processes. Moreover, in consequence, forecast hurricane intensity was highly dependent on the choice of microphysical scheme. New bulk-parameterization schemes simulated the tropical storm intensity of Irene reasonably well. Most bulk schemes that used saturation adjustment indicate the weak sensitivity to aerosols that prevents them from precisely predicting the time evolution of TC intensity and structure.

  4. Numerical studies of microphysical modulations of stratospheric aerosol within ROMIC-ROSA

    NASA Astrophysics Data System (ADS)

    Hommel, René; von Savigny, Christian; Rozanov, Alexei; Burrows, John; Zalach, Jakob

    2016-04-01

    The stratospheric aerosol layer (so-called Junge layer) is an inherent part of the Brewer-Dobson circulation (BDC). Stratospheric aerosols play a large role in the Earth's climate system because they interact with catalytic cycles depleting ozone, directly alter the atmosphere's radiative balance and modulate the strength of polar vortices, in particular when this system is perturbed. In terms of mass the layer is predominantly composed of liquid sulphate-water droplets and is fed from the oxidation of gaseous precursors reaching the stratosphere either by direct volcanic injections (mainly supplying SO2) or troposphere-stratosphere exchange processes. In volcanically quiescent periods, latter processes predominantly maintain the so-called background state of aerosol layer through oxidation of OCS above 22 km, and SO2 below. The Junge layer begins to develop 2-3 km above the tropopause and reaches a height of about 35 km, with a largest vertical extent in the tropics and spring-time polar regions. Above the TTL, the layer's vertical extent varies between 2 km and 8 km (about 35% of its mean vertical expansion), depending on the phase of the QBO. The QBO-induced meridional circulation, overlying the BDC, and accompanied signatures in the stratospheric temperature directly affect the life cycle of stratospheric aerosol. Mainly by modulating the equilibrium between microphysical processes which maintain the layer. Effects caused by QBO modulations of the advective transport in the upwelling region of the BDC are smaller and difficult to quantify, because the overlying sedimentation of aerosol is also being modulated and counteract the aerosol lofting. Here we show results from numerical studies performed within the project ROMIC-ROSA (Role of Stratospheric Aerosol in Climate and Atmospheric Science). We further explored relationships between QBO forcing and aerosol processes in the lower stratosphere. We examined whether similar process interferences can be caused by

  5. Implementation of an Aerosol-Cloud Microphysics-Radiation Coupling into the NASA Unified WRF: Simulation Results for the 6-7 August 2006 AMMA Special Observing Period

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Matsui, T.; Tao, W.-K.; Tan, Q.; Peters-Lidard, C.; Chin, M.; Pickering, K.; Guy, N.; Lang, S.; Kemp, E. M.

    2014-01-01

    Aerosols affect the Earth's radiation balance directly and cloud microphysical processes indirectly via the activation of cloud condensation and ice nuclei. These two effects have often been considered separately and independently, hence the need to assess their combined impact given the differing nature of their effects on convective clouds. To study both effects, an aerosol-microphysics-radiation coupling, including Goddard microphysics and radiation schemes, was implemented into the NASA Unified Weather Research and Forecasting model (NU-WRF). Fully coupled NU-WRF simulations were conducted for a mesoscale convective system (MCS) that passed through the Niamey, Niger area on 6-7 August 2006 during an African Monsoon Multidisciplinary Analysis (AMMA) special observing period. The results suggest that rainfall is reduced when aerosol indirect effects are included, regardless of the aerosol direct effect. Daily mean radiation heating profiles in the area traversed by the MCS showed the aerosol (mainly mineral dust) direct effect had the largest impact near cloud tops just above 200 hectopascals where short-wave heating increased by about 0.8 Kelvin per day; the weakest long-wave cooling was at around 250 hectopascals. It was also found that more condensation and ice nuclei as a result of higher aerosol/dust concentrations led to increased amounts of all cloud hydrometeors because of the microphysical indirect effect, and the radiation direct effect acts to reduce precipitating cloud particles (rain, snow and graupel) in the middle and lower cloud layers while increasing the non-precipitating particles (ice) in the cirrus anvil. However, when the aerosol direct effect was activated, regardless of the indirect effect, the onset of MCS precipitation was delayed about 2 hours, in conjunction with the delay in the activation of cloud condensation and ice nuclei. Overall, for this particular environment, model set-up and physics configuration, the effect of aerosol

  6. Aerosol Impacts on Microphysical and Radiative Properties of Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Toohey, D. W.; Andrejczuk, M.; Anderson, J. R.; Adams, A.; Lytle, M.; George, R.; Wood, R.; Zuidema, P.; Leon, D.

    2011-12-01

    particle sizes, down to at least 55 nm in size, act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show this can occur without invoking differences in chemical composition. Aerosol number concentration in the >0.05 and >0.1 μm size ranges was correlated with droplet number concentration, and anti-correlated with droplet effective radius, and the effect is statistically significant. The impact of aerosol pollutants was to increase droplet number and decrease droplet size within a region extending about 1000 km offshore. Cloud droplets were more numerous and smaller near shore, and there was less drizzle. However, MODIS satellite measurements were used to show that despite the smaller droplets near shore, cloud albedo is not higher near shore than offshore. This is due to the generally thinner clouds and lower liquid water path near shore.

  7. Benefit of depolarization ratio at λ = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements

    NASA Astrophysics Data System (ADS)

    Gasteiger, J.; Freudenthaler, V.

    2014-11-01

    A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the aerosol optical properties that is sufficient for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of aeroplanes, was retrieved from measurements of such lidar systems in southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on those of MULIS and POLIS of the Ludwig-Maximilians-Universität in Munich (Germany) which measure the linear depolarization ratio at 355 and 532 nm with high accuracy. The improvements are determined by comparing uncertainties from retrievals applied to simulated measurements of this lidar setup with uncertainties obtained when the depolarization at 1064 nm is added to this setup. The simulated measurements are based on real lidar measurements of transported Eyjafjallajökull volcano ash. It is found that additional 1064 nm depolarization measurements significantly reduce the uncertainty of the retrieved mass concentration and effective particle size. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. The size dependence of the depolarization does not vary strongly with refractive index, thus we expect similar benefits for the retrieval in case of measurements of other volcanic ash compositions and

  8. Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 1. Information content analysis

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoguang; Wang, Jun

    2015-07-01

    This paper is the first part of a two-part study that aims to retrieve aerosol particle size distribution (PSD) and refractive index from the multispectral and multiangular polarimetric measurements taken by the new-generation Sun photometer as part of the Aerosol Robotic Network (AERONET). It provides theoretical analysis and guidance to the companion study in which we have developed an inversion algorithm for retrieving 22 aerosol microphysical parameters associated with a bimodal PSD function from real AERONET measurements. Our theoretical analysis starts with generating the synthetic measurements at four spectral bands (440, 675, 870, and 1020 nm) with a Unified Linearized Vector Radiative Transfer Model for various types of spherical aerosol particles. Subsequently, the quantitative information content for retrieving aerosol parameters is investigated in four observation scenarios, i.e., I1, I2, P1, and P2. Measurements in the scenario (I1) comprise the solar direct radiances and almucantar radiances that are used in the current AERONET operational inversion algorithm. The other three scenarios include different additional measurements: (I2) the solar principal plane radiances, (P1) the solar principal plane radiances and polarization, and (P2) the solar almucantar polarization. Results indicate that adding polarization measurements can increase the degree of freedom for signal by 2-5 in the scenario P1, while not as much of an increase is found in the scenarios I2 and P2. Correspondingly, smallest retrieval errors are found in the scenario P1: 2.3% (2.9%) for the fine-mode (coarse-mode) aerosol volume concentration, 1.3% (3.5%) for the effective radius, 7.2% (12%) for the effective variance, 0.005 (0.035) for the real-part refractive index, and 0.019 (0.068) for the single-scattering albedo. These errors represent a reduction from their counterparts in scenario I1 of 79% (57%), 76% (49%), 69% (52%), 66% (46%), and 49% (20%), respectively. We further

  9. The Effects of Aerosols on Cloud Microphysics in Caribbean Islands and Implications for Rain Production

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. E.; Comarazamy, D.

    2011-12-01

    A cloud-resolving regional atmospheric model driven with atmospheric particle (AP) observations performed at the Arecibo Observatory was used to investigate the possible effects of different AP concentrations on cloud formation and rain development over the Caribbean Island of Puerto Rico. The cloud microphysics module of the atmospheric model includes cloud condensation nuclei activation (CCN), and two aerosol modes (CCN/GCCN) and cloud drop categories. First, the modeling system was tested to satisfactorily simulate precipitation in the region of study. Then, a set of idealized simulations showed that cloud droplet production is significantly larger in polluted air than in clear skies and that rainwater in polluted air is less than that in clear air. This occurs because more droplets are competing for the available atmospheric water vapor, they will not reach the necessary radius to fall within the cloud, and therefore growth by collision and coalescence is subdued. Following these results, the modeling system (regional atmospheric model + CCN/GCCN activation + in-situ aerosol observations) was then used to investigate the role of aerosols in originating and controlling the Caribbean mid-summer drought (MSD). The annual precipitation pattern in the Caribbean basin shows a distinct bimodal behavior, where the first mode is called the Early Rainfall Season (ERS, April-July), and the second mode the Late Rainfall Season (LRS, August-November). The brief, relatively low-precipitation, period in July is usually referred to as the MSD. It has been hypothesized that increases in aerosols due to the passing of Saharan Dust across the Caribbean in the summer months may result in the observed precipitation pattern. Multiple regression analysis was carried-out to determine if the ITCZ, NAO index, vertical wind shear (VWS), and different AP concentrations correlate with the Caribbean MSD. It is shown that VWS and AP have an important contribution to rainfall variability

  10. Microphysical Properties of Aerosols Encountered During the 2012 TCAP Campaign Using the Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Liu, X.; Cairns, B.

    2015-12-01

    The Two-Column Aerosol Project (TCAP) campaign was conducted during the summer of 2012, off the East coast of the United States by Cape Cod. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft over a period of several weeks and over a distance of several hundred kilometers. A new algorithm based on optimal estimation that can retrieve aerosol microphysical properties using highly accurate radiative transfer and Mie calculations is presented. First, results for synthetic simulated data are discussed. The algorithm is then applied to real data collected during TCAP to retrieve the aerosol microphysical state vector and corresponding uncertainty for the aerosols that were encountered. Simultaneous measurements were also made by the NASA Langley airborne High Spectral Resolution Lidar (HSRL2), which provided extinction and backscatter profiles. The RSP-retrieved microphysical properties are compared to the extinction and backscatter products, and to the HSRL2-retrieved microphysical products.

  11. Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Remer, L. A.; Yu, H.

    2011-07-01

    Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-term degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount, is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.

  12. Microphysical, Macrophysical and Radiative Signatures of Volcanic Aerosols in Trade Wind Cumulus Observed by the A-Train

    NASA Technical Reports Server (NTRS)

    Yuan, T.; Remer, L. A.; Yu, H.

    2011-01-01

    Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.

  13. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  14. Retrieval of optical and microphysical properties of aerosols from a hybrid multiwavelength lidar dataset

    NASA Astrophysics Data System (ADS)

    Sawamura, Patricia

    Over the past decade the development of inversion techniques for the retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations) and aerosol optical properties (e.g. complex index of refraction and single scattering albedo) from multiwavelength lidar systems brought a new perspective in the study of the vertical distribution of aerosols. In this study retrievals of such parameters were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL) measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study to our knowledge in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for eleven cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.

  15. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    SciTech Connect

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna; Pokhrel, S.; Chaudhari, H. S.; Salunke, K.; Mukhopadhyay, P.; Rao, S. A.

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  16. Effects of aerosols on microphysics and on urban warm season precipitation

    NASA Astrophysics Data System (ADS)

    Hosannah, Nathan

    Precipitation anomalies in and around major urban centers have been attributed to dynamic processes such as warm air updrafts induced by urban heat island events, and to microphysical processes affected by the release of natural and anthropogenic aerosols that affect atmospheric water balance. Both factors must be analyzed in order to fully understand the role that urban environments may have on precipitation. The research presented here is directed towards improving understanding of how aerosol particle size distribution (PSD) and land cover land use (LCLU) affect cloud processes and precipitation over a complex urban environment such as New York City (NYC). While aerosols are intrinsically necessary for rainfall formation, and urban environments also influence precipitation via convection enhancement, the partial contributions of each are not yet known. The Regional Atmospheric Modeling System (RAMS) was used to simulate several NYC summer precipitation scenarios. PSD data from NASA's Aerosol Robotic Network (AERONET) complemented with National Land Cover Database (NLCD) 2006 land surface data for NYC and northern New Jersey (NJ) were processed and assimilated directly into RAMS to determine the effect of varying PSD and LCLU on simulated precipitation amounts. An ensemble of 17 numerical simulations were configured and run. The first two runs were month long runs for July 2007, the first with constant PSD values, and the second with PSD updates. The third and fourth runs mirrored the first two simulations for a "No-City" case. A fifth month long simulation was run with average Cloud Condensation Nuclei (CCN) and Giant CCN values. Next, twelve 24 hour simulations driven with high volumes of fine mode particles and with high volumes of coarse mode particles each under "City" and "No City" conditions were compared for 1-day localized and mesoscale events. Results suggest that RAMS precipitation results are sensitive to both PSD variation and land use variations.

  17. Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter

    2010-05-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the

  18. Effect of Long-Range Aerosol Transport on the Microphysical Properties of Low-Level Clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Coopman, Q.; Garrett, T. J.; Riedi, J.; Finch, D.

    2015-12-01

    The Arctic region is influenced by elevated concentration of aerosols from mid-latitudes. By acting as Cloud Condensation Nuclei (CCN) and/or Ice Nuclei (IN), these aerosols influence cloud presence and formation, and in turn cloud radiative properties and forcing. We analyze the impact of pollution plumes on cloud microphysical properties, including droplet effective radius and cloud optical depth, by calculating an indirect effect (IE) parameter. This IE parameter is defined by the ratio of relative change in cloud microphysical properties to relative variations in pollution concentrations. We also study the impact of aerosols on the cloud thermodynamic phase. In our study we used three sets of data: (i) A combination of POLDER-3/PARASOL and MODIS/AQUA satellite measurements to retrieve cloud properties, (ii) an atmospheric chemistry transport model GEOS-Chem carbon monoxide tracer for concentrations of biomass burning and anthropogenic pollution plumes, (iii) and reanalysis data from ECMWF for the meteorological state. The pollution plumes from biomass burning sources appear to be good IN, whereas pollution from anthropogenic sources appears to act as better CCN. We extend the analysis to different specific humidity and stability regimes to find that the specific humidity and lower tropospheric stability increase the cloud microphysical sensitivity to pollution loading. For example, for low specific humidity situations the IE parameter is close to zero whereas for the highest values of specific humidity - greater than 5 g kg-1 - the impact of aerosols is a maximum: The IE parameter is up to 0.1 and 0.2 for the effective radius and the optical depth respectively. When the lower tropospheric stability is greater than 25˚K, the IE parameter is approximately 0.3 for the optical depth. We hypothesize that the observed correlation between IE and stability is because cloud formation in the Arctic region is dominated by radiative cooling.

  19. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  20. A Cloud-Resolving Modeling Intercomparison Study on Properties of Cloud Microphysics, Convection, and Precipitation for a Squall Line Cas

    NASA Astrophysics Data System (ADS)

    Fan, J.; Han, B.; Morrison, H.; Varble, A.; Mansell, E.; Milbrandt, J.; Wang, Y.; Lin, Y.; Dong, X.; Giangrande, S. E.; Jensen, M. P.; Collis, S. M.; North, K.; Kollias, P.

    2015-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult (1) to further our understanding of deep convection and (2) to define "benchmarks" and recommendations for their use in parameterization developments. Past model intercomparison studies used different models with different complexities of dynamic-microphysics interactions, making it hard to isolate the causes of differences between simulations. In this intercomparison study, we employed a much more constrained approach - with the same model and same experiment setups for simulations with different cloud microphysics schemes (one-moment, two-moment, and bin models). Both the piggybacking and interactive approaches are employed to explore the major microphysical processes that control the model differences and the significance of their feedback to dynamics through latent heating/cooling and cold pool characteristics. Real-case simulations are conducted for the squall line case 20 May 2011 from the MC3E field campaign. Results from the piggybacking approach show substantially different responses of the microphysics schemes to the same dynamical fields. Although the interactive microphysics-dynamics simulations buffer some differences compared with those from the piggyback runs, large differences still exist and are mainly contributed by ice microphysical processes parameterizations. The presentation will include in-depth analyses of the major microphysical processes for the squall line case, the significance of the feedback of the processes to dynamics, and how those results differ in different cloud microphysics schemes.

  1. Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick

    2008-01-01

    A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.

  2. Trajectory and Microphysical Modeling of TTL Water

    NASA Astrophysics Data System (ADS)

    Ueyama, R.; Jensen, E. J.; Pfister, L.

    2014-12-01

    Processes that influence H2O concentrations in the Tropical Tropopause Layer (TTL) and consequently regulate stratospheric humidity are investigated in simulations of clouds along backward trajectories of TTL parcels initialized with H2O measurements from Microwave Limb Sounder (MLS). Trajectories are calculated using offline calculations of seasonal mean radiative heating rates in the tropics merged with MERRA extratropical heating rates and ERA-Interim temperature and wind data that have been modified to enhance wave-driven variability in the TTL. We also examine the impact of convective influence along parcel trajectories on cloud formation and dehydration. The distribution of 100 hPa H2O mixing ratios simulated on the final day of the trajectories in boreal winter 2006-07 resembles that of MLS with distinct minima over the western and eastern tropical Pacific, but exhibits an overall dry bias of approximately 20%. Averaged over the tropics, subgrid-scale waves dehydrate the 100 hPa level by ~0.5 ppmv, while convection and cloud microphysical processes moisten by ~0.5 and ~0.7 ppmv, respectively. These three processes combined increase the tropical mean H2O estimate by roughly 20% compared to that based solely on the Lagrangian Dry Point of the trajectories. Possible causes of the model dry bias and TTL cirrus statistics in comparison to those of recent aircraft campaigns will also be discussed.

  3. Detailed microphysics modelling of cirrus clouds observed during the european flight campaign INCA.

    NASA Astrophysics Data System (ADS)

    Monier, M.; Wobrock, W. W.; Flossmann, A. I.

    2004-05-01

    Cirrus clouds play an important role in the Earth energy balance. To quantify their impact, we need the information on their microstructure and more precisely on the number and the size of the ice crystal. With the increase of air traffic, more and more aerosol particles and water vapour are released at the altitude where cirrus clouds are formed. So we should understand the formation mechanisms of these clouds, to foresee if a cirrus cloud formed in a polluted air mass will have different microphysics properties and therefore a different impact on the climate system compared to a natural cirrus cloud. In order to study this aspect, the European project INCA measured the microphysics properties of cirrus clouds together with the physical and chemicals properties of aerosol particles in clean air (at Punta Arenas, Chile) and polluted air (at Prestwick, Scotland). The goal of this thesis was to develop a detailed microphysics model for cirrus clouds for the interpretation and the generalisation of the INCA observations. This model considers the moist aerosol particles through the ExMix model (Externally MIXed, Wobrock 1986), so that the chemical composition of these solution droplets can be followed. The ice crystals formation is described through homogeneous or heterogeneous nucleation, the crystals, then, grow by deposition or riming processes. With this model, we studied the interactions between all these microphysics processes and simulated ice crystal concentrations and dimensional distributions of the INCA observations. We were able to provide explanations for the observed differences between natural and polluted cirrus clouds. We reproduced the role of aerosol particles in the initiation of ice phase by considering the nucleation as heterogeneous.

  4. A characterization of cloud base aerosol and associated microphysics in southeast Queensland

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Arnold, C.; Bruintjes, R. T.; Axisa, D.; Peter, J.; Wilson, L.; Siems, S.; Manton, M.; May, P. T.; Stone, R.

    2009-12-01

    In response to a severe drought experienced over the past few years, the Queensland government subsequently sponsored a Cloud Seeding Research Program (CSRP) in southeast Queensland. The Queensland CSRP is a cloud seeding feasibility study conducted in the Brisbane, Australia region of southeast Queensland for the past two austral summers. In the CSRP, two Doppler radars (one with dual-polarization capabilities) and an aircraft with microphysical instrumentation and seeding capabilities were employed. The overall goal of the Queensland CSRP is to assess the impact of hygroscopic seeding on convective clouds in the region. Assessing the variety of aerosol regimes, as well as the frequency of occurrence for each regime in the CSRP domain, and studying the effectiveness of warm rain processes under each aerosol regime is crucial to assess the effectiveness of hygroscopic seeding, as well as to gain a better understanding of the nature of precipitation processes across the varying aerosol conditions in the region. The aircraft observations collected included fine through coarse mode aerosol measurements (utilizing DMA, PCASP, and FSSP instrumentation) and aerosol filter sampling to assess the composition and deliquescence of the measured aerosol. Cloud microphysical measurements included a cloud condensation nuclei (CCN) counter, and cloud droplet spectrometers and imaging probes. On each flight in the field program, the aircraft took standard measurements of cloud base aerosol and CCN, as well as the initial drop size distribution (DSD) in the cloud above cloud base. These basic measurements allowed us to build a climatology of cloud base aerosol conditions and relate them to the initial DSDs in the clouds. Our observations indicate that the domain of the southeast Queensland CSRP experienced great variations in sub-cloud aerosol conditions, even over the course of a few days, from more continental to more maritime in nature. We have run HYSPLIT back trajectories for

  5. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; Holben, Brent N.

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  6. Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 2. A new research algorithm and case demonstration

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; Holben, Brent N.

    2015-07-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach. While the new algorithm has heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithm retrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarse modes, while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  7. Probing the impact of different aerosol sources on cloud microphysics and precipitation through in-situ measurements of chemical mixing state

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Suski, K.; Cazorla, A.; Cahill, J. F.; Creamean, J.; Collins, D. B.; Heymsfield, A.; Roberts, G. C.; DeMott, P. J.; Sullivan, R. C.; Rosenfeld, D.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosol particles play a crucial role in affecting cloud processes by serving as cloud nuclei. However, our understanding of which particles actually form cloud and ice nuclei limits our ability to treat aerosols properly in climate models. In recent years, it has become possible to measure the chemical composition of individual cloud nuclei within the clouds using on-line mass spectrometry. In-situ high time resolution chemistry can now be compared with cloud physics measurements to directly probe the impact of aerosol chemistry on cloud microphysics. This presentation will describe results from two recent field campaigns, CalWater in northern California and ICE-T in the western Caribbean region. Ground-based and aircraft measurements will be presented of aerosol mixing state, cloud microphysics, and meteorology. Results from single particle mass spectrometry will show the sources of the cloud seeds, including dust, biomass burning, sea spray, and biological particles. Details will be provided on how we are now able to probe the sources and cycling of atmospheric aerosols by measuring individual aerosols, cloud nuclei, and precipitation chemistry. The important role of dust, both Asian and African, and bioparticles in forming ice nuclei will be discussed. Finally, a summary will be provided discussing how these new in-situ measurements are being used to advance our understanding of complex atmospheric processes, and improve our understanding of aerosol impacts on climate.

  8. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    SciTech Connect

    Schwartz, S.E.; Wagener, R.; Nemesure, S.

    1995-02-01

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation iincident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about {minus}1 W M{sup {minus}2}, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to indentify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter ({approximately}0.5 {mu}m) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols.

  9. An investigation of the effect of sulfate on cloud microphysics using a chemistry/transport model

    SciTech Connect

    Wei, H.D.; Green, R.; Schwartz, S.E.; Benkovitz, C.M.

    2001-01-14

    Here the authors have used the output of a chemistry/transport model to identify a situation in which sulfate aerosol from industrial sources may be expected to exert a strong influence on cloud microphysical and radiative properties in an oceanic area that is well displaced from source regions. Pertinent cloud microphysical properties (optical depth and cloud drop radius) are inferred from radiance data obtained from satellite remote sensing. Comparison of these quantities in situations where the model indicates the presence or absence of industrial sulfate has allowed identification of the expected signature of one aerosol indirect effect--an increase in droplet number concentration and concomitant decrease in droplet radii, on a synoptic scale. Although the information obtained on changes in cloud optical depth is too meager to draw conclusions regarding radiative forcing, there is no doubt that the cloud microphysical properties are influenced by the incursion of continental sulfate aerosol in a way that is consistent with that expected by the Twomey indirect forcing mechanism.

  10. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    SciTech Connect

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  11. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of

  12. The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Hazra, Anupam; Padmakumari, B.; Maheskumar, R. S.; Chen, Jen-Ping

    2016-05-01

    This study investigates the influence of different ice nuclei (IN) species and their number concentrations on cloud ice production. The numerical simulation with different species of ice nuclei is investigated using an explicit bulk-water microphysical scheme in a Mesoscale Meteorological Model version 5 (MM5). The species dependent ice nucleation parameterization that is based on the classical nucleation theory has been implemented into the model. The IN species considered include dust and soot with two different concentrations (Low and High). The simulated cloud microphysical properties like droplet number concentration and droplet effective radii as well as macro-properties (equivalent potential temperature and relative humidity) are comparable with aircraft observations. When higher dust IN concentrations are considered, the simulation results showed good agreement with the cloud ice and cloud water mixing ratio from aircraft measurements during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. Relative importance of IN species is shown as compared to the homogeneous freezing nucleation process. The tendency of cloud ice production rates is also analyzed and found that dust IN is more efficient in producing cloud ice when compared to soot IN. The dust IN with high concentration can produce more surface precipitation than soot IN at the same concentration. This study highlights the need to improve the ice nucleation parameterization in numerical models.

  13. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  14. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-02-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature and light intensity on the VOC emissions of Mediterranean Holm Oak have been studied in the Jülich plant aerosol atmosphere chamber, as well as the optical and microphysical properties of the resulting SOA. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and temperature increase enhanced the emission strength under variation of the emission pattern. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 5.7±1%, independent of the detailed emission pattern. The particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor was 1.13±0.03 at 90% RH with a critical diameter of droplet activation of 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). Increasing mean temperature in Mediterranean areas therefore may have a stronger impact on VOC emissions and SOA formation than in areas with Boreal forests.

  15. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Bohne, A.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-08-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.

  16. Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Coopman, Quentin; Garrett, Timothy J.; Riedi, Jérôme; Eckhardt, Sabine; Stohl, Andreas

    2016-04-01

    The properties of low-level liquid clouds in the Arctic can be altered by long-range pollution transport to the region. Satellite, tracer transport model, and meteorological data sets are used here to determine a net aerosol-cloud interaction (ACInet) parameter that expresses the ratio of relative changes in cloud microphysical properties to relative variations in pollution concentrations while accounting for dry or wet scavenging of aerosols en route to the Arctic. For a period between 2008 and 2010, ACInet is calculated as a function of the cloud liquid water path, temperature, altitude, specific humidity, and lower tropospheric stability. For all data, ACInet averages 0.12 ± 0.02 for cloud-droplet effective radius and 0.16 ± 0.02 for cloud optical depth. It increases with specific humidity and lower tropospheric stability and is highest when pollution concentrations are low. Carefully controlling for meteorological conditions we find that the liquid water path of arctic clouds does not respond strongly to aerosols within pollution plumes. Or, not stratifying the data according to meteorological state can lead to artificially exaggerated calculations of the magnitude of the impacts of pollution on arctic clouds.

  17. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  18. Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2015-08-01

    Monitoring upper tropospheric-lower stratospheric (UTLS) secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile

  19. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  20. Simulation of the Upper Clouds and Hazes of Venus Using a Microphysical Cloud Model

    NASA Astrophysics Data System (ADS)

    McGouldrick, K.

    2012-12-01

    Several different microphysical and chemical models of the clouds of Venus have been developed in attempts to reproduce the in situ observations of the Venus clouds made by Pioneer Venus, Venera, and Vega descent probes (Turco et al., 1983 (Icarus 53:18-25), James et al, 1997 (Icarus 129:147-171), Imamura and Hashimoto, 2001 (J. Atm. Sci. 58:3597-3612), and McGouldrick and Toon, 2007 (Icarus 191:1-24)). The model of McGouldrick and Toon has successfully reproduced observations within the condensational middle and lower cloud decks of Venus (between about 48 and 57 km altitude, experiencing conditions similar to Earth's troposphere) and it now being extended to also simulate the microphysics occurring in the upper cloud deck (between altitudes of about 57 km and 70 km, experiencing conditions similar to Earth's stratosphere). In the upper clouds, aerosols composed of a solution of sulfuric acid in water are generated from the reservoir of available water vapor and sulfuric acid vapor that is photochemically produced. The manner of particle creation (e.g., activation of cloud condensation nuclei, or homogeneous or heterogeneous nucleation) is still incompletely understood, and the atmospheric environment has been measured to be not inconsistent with frozen aerosol particles (either sulfuric acid monohydrate or water ice). The material phase, viscosity, and surface tension of the aerosols (which are strongly dependent up on the local temperature and water vapor concentration) can affect the coagulation efficiencies of the aerosol, leading to variations in the size distributions, and other microphysical and radiative properties. Here, I present recent work exploring the effects of nucleation rates and coalescence efficiencies on the simulated Venus upper clouds.

  1. Soot microphysical effects on liquid clouds, a multi-model investigation

    SciTech Connect

    Koch, D; Balkanski, Y; Bauer, S; Easter, Richard C; Ferrachat, S; Ghan, Steven J; Hoose, C; Iversen, T; Kirkevag, A; Kristjansson, J E; Liu, Xiaohong; Lohmann, U; Menon, Surabi; Quaas, J; Schulz, M; Seland, O; Takemura, T; Yan, N

    2011-02-10

    We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five Correspondence to: D. Koch (dorothy.koch@science.doe.gov) of the models <±0.06Wm-2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experimen

  2. Summer-winter differences in the relationships among background southeastern U.S. aerosol optical, micro-physical, and chemical properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Relationships among aerosol optical, micro-physical, and chemical properties are useful for evaluating regional climate models, developing satellite-based aerosol retrievals, and understanding aerosol sources and processes. Since aerosol loading and optical properties vary primarily on seasonal scales in the southeastern U.S., it is important that such studies be carried out over multiple seasons but few (if any) such multi-season studies have been conducted in the region. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1080m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were also made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. Some of the major findings will be presented. Higher values of lower tropospheric aerosol light scattering coefficient at 550nm (a proxy for aerosol loading) are associated with higher single-scattering albedo (SSA) and lower hemispheric backscatter fraction (b) during both summer and winter. Absorption Angstrom exponent (AAE) is typically well under 1 during summer and near 1.3-1.4 during winter. Lowest summer AAE values coincide with large, highly-reflective particles and higher aerosol light scattering coefficient but summer AAE is only weakly anti-correlated with organic and sulfate mass concentrations. Winter AAE is consistent with a mixture of elemental carbon and light-absorbing organic carbon, possibly influenced by regional residential wood-burning during winter. The hygroscopic dependence of visible light scattering is sensitive to sulfate and organic aerosol mass fractions during both summer and winter

  3. Microphysical sensitivities of cloud-resolving model simulations of KWAJEX

    NASA Astrophysics Data System (ADS)

    Blossey, P. N.; Bretherton, C. S.

    2005-05-01

    Cloud-resolving model simulations of the conditions around Kwajalein Island during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX), July 24--September 15, 1999, are performed to understand the sensitivities of the results to changes in the model's microphysics and radiation parameterizations. An extensive set of observations were collected during KWAJEX, including high quality estimates of precipitation by an S-band ground validation radar. Large-scale forcings for the simulations --- which use cyclic boundary conditions --- have been derived from the observations by Minghua Zhang. The cloud-resolving model used here is the System for Atmospheric Modeling (SAM), developed by Marat Khairoutdinov at Colorado State University, to which the authors have added a second microphysical package (Fu et al 1995) and radiation scheme (from CAM3.0). While the alternate microphysics represents all hydrometeor interactions and has prognostic equations for water vapor, rain, snow, graupel, cloud water and cloud ice, SAM's default microphysics uses temperature to partition the condensate and precipitate among the phases and has prognostic equations only for total water (vapor+cloud) and precipitating water. The simulations are able to track the observed conditions over the full 52 day period without nudging. The different versions of the model generally reproduce the observed precipitation rate, temperature and relative humidity profiles, with mean temperature biases of less than 2K below the tropopause. However, detailed comparisons of simulated ISCCP cloud amounts and radar reflectivities with observations from ISCCP and the ground validation radar reveal important differences that are also reflected in the top-of-atmosphere radiative fluxes. Such discrepancies are strongest in the suppressed periods during KWAJEX, and these are explored in detail to reveal factors that contribute to model biases. The different microphysical and radiation

  4. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    there. Thus, larger scale forcings that impact cloud macrophysical properties, as well as enhanced aerosol particles, are important in determining cloud droplet size and cloud albedo. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, some of which may initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles.

  5. Arctic stratospheric dehydration - Unprecedented observations and microphysical modeling study

    NASA Astrophysics Data System (ADS)

    Engel, Ines; Luo, Beiping P.; Khaykin, Sergey; Wienhold, Frank G.; Vömel, Holger; Kivi, Rigel; Pitts, Michael C.; Poole, Lamont R.; Santee, Michelle L.; Grooß, Jens-Uwe; Peter, Thomas

    2013-04-01

    Polar stratospheric clouds (PSCs) may form in the lower stratosphere above the winter poles at sufficiently low temperatures. Ice PSCs require the coldest conditions, with temperatures some degrees below the frost point to nucleate ice particles. When the particles grow to sizes large enough to sediment, they may result in dehydration, i.e. irreversible redistribution of water vapor, as it frequently occurs above the Antarctic. Conversely, there are no observations above the Arctic that would have provided clear evidence for vertical redistribution of water vapor. Here we report on unequivocal in situ observations in January 2010 above Sodankylä, Finland, which mesh with vortex-wide satellite measurements. Within the LABPIAT-II field campaign, a series of balloon-borne aerosol backscatter and water vapor measurements has been performed. The balloon payload comprised the backscatter sonde COBALD in combination with the cryogenic frost point hygrometer CFH and the fluorescent Lyman-Alpha stratospheric hygrometer FLASH-B. Together with satellite measurements from the Aura microwave limb sounder MLS and the cloud-aerosol lidar CALIOP, a unique and coherent picture of de- and rehydration in the Arctic vortex will be presented within this paper. An extensive coverage of synoptic scale ice PSCs has been observed by CALIOP and COBALD by mid-January due to exceptionally low temperatures in the Arctic vortex. This observation goes along with a simultaneously measured strong reduction in water vapor by 1.6 ppmv relative to background conditions. Subsequent sedimentation and sublimation of ice particles led to a vertical redistribution of water inside the vortex, which was tracked remotely and could be quantified again by in situ measurements some five days later. By means of a microphysical column model, we are able to connect the individual balloon soundings by trajectories and simulate the formation, evolution and sedimentation of the ice particles. Simulated water vapor

  6. HETEAC: The Aerosol Classification Model for EarthCARE

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Engelmann, Ronny; Hünerbein, Anja; Horn, Stefan; Kanitz, Thomas; Donovan, David; van Zadelhoff, Gerd-Jan; Daou, David; Fischer, Jürgen; von Bismarck, Jonas; Filipitsch, Florian; Docter, Nicole; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2016-06-01

    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties.

  7. Optical and microphysical properties of column-integrated aerosols at a SKYNET site downwind of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, J. S.; Ghim, Y. S.

    2014-12-01

    A skyradiometer (POM-02, Prede Co. Ltd.) has been operated to investigate aerosol properties at a SKYNET (SKYradiometer NETwork) site, YGN (Yongin) for six years starting from November 2008. The site is at the rooftop of a five-story building on the hill, about 35 km southeast of downtown Seoul (37.34 °N, 127.27 °E and 167 m above sea level). POM-02 measures the diffuse radiation at six minute intervals at 11 wavelengths. Using version 5 of the skyrad.pack, aerosol optical (aerosol optical depth and single scattering albedo) and microphysical (volume size distribution) properties were retrieved from the measurements at five wavelengths such as 400, 500, 675, 870 and 1020 nm. In comparison with CIMEL sun photometers used in AERONET (AErosol RObotic NETwork), another worldwide ground-based network, skyradiometers have an advantage that they can provide larger number of aerosol property data at shorter time intervals. However, standard procedures for instrument operation and data retrieval have not been established. In this study, we first showed how we calibrated the instrument and how we obtained cloud screened and quality assured data. Next, we presented variations in aerosol optical and microphysical properties, depending on air masses and/or meteorological conditions, and examined the characteristic of high aerosol loading episodes including Asian dust storm and smog.

  8. Polarimetric remote sensing of aerosol and cloud microphysics from the NASA Glory Aerosol Polarimetry Sensor (APS)

    NASA Astrophysics Data System (ADS)

    Cairns, B.; Chowdhary, J.; Knobelspiesse, K.; Sato, M.; Mishchenko, M.; Travis, L.

    2005-12-01

    Tropospheric aerosols play a crucial role in climate and can cause a climate forcing directly by absorbing and reflecting sunlight, thereby cooling or heating the atmosphere, and indirectly by modifying cloud properties. The indirect aerosol effect may include increased cloud brightness, as aerosols lead to a larger number of smaller cloud droplets (the so-called Twomey effect), and increased cloud cover, as smaller droplets inhibit rainfall and increase cloud lifetime. Both forcings are poorly understood and may represent the largest source of uncertainty about future climate change. In this paper we present results from various field experiments demonstrating the contribution that the multi-angle multi-spectral photopolarimetric remote sensing measurements of the NASA Glory APS will make to the determination of the direct and indirect radiative effects of aerosols. Remote sensing of aerosols from satellites is plagued by the need to make prior assumptions about the composition and size of the aerosols that are present, whether this is to calculate the phase functions of the aerosols for passive remote sensing, or the extinction to backscatter ratio for elastic backscatter lidar measurements. Measurements made by the Research Scanning Polarimeter (RSP) have demonstrated that many of these assumptions can be eliminated using polarimetric remote sensing and that it is possible to retrieve the optical depth, single scattering albedo, refractive index and the location and width of a bimodal size distribution. Moreover, polarimetric remote sensing provides this capability over both land and water surfaces. Measurements from the CLAMS and IHOP field experiments and over smoke from fires in Southern California have been used to demonstrate these capabilities and the ability to estimate the height of the aerosol layer if sufficient aerosol is present. In passive remote sensing of clouds it is generally the case that for water clouds the effective variance of the droplet

  9. Microphysical Modelling of Polar Stratospheric Clouds During the 1999-2000 Winter

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Schoeberl, Mark; Rosenfield, Joan; Gore, Warren J. (Technical Monitor)

    2000-01-01

    The evolution of the 1999-2000 Arctic winter has been examined using a microphysical/photochemical model run along diabatic trajectories. A large number of trajectories have been generated, filling the vortex throughout the region of polar stratospheric cloud (PSC) formation, and extending from November until the vortex breakup, in order to provide representative sampling of the evolution of PSCs and their effect on stratospheric chemistry. The 1999-2000 winter was particularly cold, allowing extensive PSC formation. Many trajectories have ten-day periods continuously below the Type I PSC threshold; significant periods of Type II PSCs are also indicated. The model has been used to test the extent and severity of denitrification and dehydration predicted using a range of different microphysical schemes. Scenarios in which freezing only occurs below the ice frost point (causing explicit coupling of denitrification and dehydration) have been tested, as well as scenarios with partial freezing at warmer temperatures (in which denitrification can occur independently of dehydration). The sensitivity to parameters such as aerosol freezing rates and heterogeneous freezing have been explored. Several scenarios cause sufficient denitrification to affect chlorine partitioning, and in turn, model-predicted ozone depletion, demonstrating that an improved understanding of the microphysics responsible for denitrification is necessary for understanding ozone loss rates.

  10. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2012-08-01

    distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles.

  11. Raman-lidar technique for tropospheric and stratospheric sensing of aerosol optical and microphysical properties

    SciTech Connect

    Wandinger, U.

    1995-01-01

    Tropospheric and stratospheric aerosols and clouds are known to influence the earth`s radiation budget as well as chemical processes of the atmosphere. Thus, remote sensing of optical and microphysical properties of atmospheric particles has important applications in weather and climate research, pollution monitoring, and atmospheric chemistry. During the last few years Raman lidars have become very important tools in this field of research. The development of powerful light sources such as Nd:YAG and excimer lasers, of interference filters with narrow bandwidth and high transmission, and of low-noise photomultiplier tubes and counting systems has improved the Raman-lidar technique during the past decade significantly. The technique is based on the detection of two signals resulting from elastic backscattering by air molecules and particles and inelastic (Raman) backscattering by a gas of known number density, i.e., nitrogen or oxygen. The technique has been successfully applied to cirrus-cloud studies. In this presentation, the capability of the Raman-lidar technique for tropospheric and stratospheric profiling of aerosol and cloud properties will be discussed on the basis of measurement examples.

  12. Characterization of Microphysical Properties of Saharan Dust Aerosols During Trans-Atlantic Transport

    NASA Astrophysics Data System (ADS)

    Roldan, L.; Morris, V. R.

    2005-12-01

    The NOAA Center in Atmospheric Sciences (NCAS) Trans-Atlantic Saharan Dust AERosol and Ocean Science Expedition (AEROSE) 2004 was a 27 day mission aboard the NOAA Ship Ronald H. Brown (RHB). The AEROSE mission took place during February 29th thru March 26th, departing from Barbados to the Canary Islands and ending in Puerto Rico. The cruise tracks for AEROSE 2004 coincided with one of the biggest dust storms to date for this season. One of the goals of the mission was to provide a set of critical measurements to characterize the impacts and microphysical evolution of Saharan dust aerosol during Trans-Atlantic transport. A Laser Particle Counter (LPC) was used to retrieve in-situ number density distribution. A Quartz Crystal Microbalance Cascade Impactor (QCM) was used to retrieve in-situ mass density distributions. The QCM also provides a sampling platform for post analysis to determine morphological properties and elemental chemical composition. The morphological properties were determined with the use of a Scanning Electron Microscope (SEM). The combination of the SEM with an Energy Dispersive X-Ray Microanalysis system provides the elemental composition details. I will present the evolution of the chemical elements as a function of size as they are transported. The elemental analysis has identified elements such as Fe, Al, Si, Zn, Ti, Co, S, and C all which are characteristics of Saharan dust origin.

  13. Whole-atmosphere aerosol microphysics simulations of the Mt Pinatubo eruption: Part 2: Quantifying the direct and indirect (dynamical) radiative forcings

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Dhomse, Sandip; Carslaw, Ken; Chipperfield, Martyn; Lee, Lindsay; Emmerson, Kathryn; Abraham, Luke; Telford, Paul; Pyle, John; Braesicke, Peter; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin

    2016-04-01

    The Mt Pinatubo volcanic eruption in June 1991 injected between 10 and 20 Tg of sulphur dioxide into the tropical lower stratosphere. Following chemical conversion to sulphuric acid, the stratospheric aerosol layer thickened substantially causing a strong radiative, dynamical and chemical perturbation to the Earth's atmosphere with effects lasting several years. In this presentation we show results from model experiments to isolate the different ways the enhanced stratospheric aerosol from Pinatubo influenced the Earth's climate. The simulations are carried out in the UK Chemistry and Aerosol composition-climate model (UKCA) which extends the high-top (to 80km) version of the UK Met Office Unified Model (UM). The UM-UKCA model uses the GLOMAP-mode aerosol microphysics module coupled with a stratosphere-troposphere chemistry scheme including sulphur chemistry. By running no-feedback and standard integrations, we separate the main radiative forcings due to aerosol-radiation interactions (i.e. the direct forcings) from those induced by dynamical changes which alter meridional heat transport and distributions of aerosol, ozone and water vapour.

  14. The Chemical and Microphysical Properties of Secondary Organic Aerosols from Holm Oak Emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, Naama; Rudich, Yinon; Thomas, Mentel; Angela, Buchholz; Astrid, Kiendler-Scharr; Einhard, Kleist; Christian, Spindler; Ralf, Tillmann; Jürgen, Wildt

    2010-05-01

    Plant-emitted volatile organic compounds (VOC) undergo atmospheric oxidation, which leads to the formation of secondary organic aerosols (SOA). Large uncertainties exist about possible climatic effects on SOA formation from biogenic sources. Therefore it is important to investigate the impact of environmental conditions on the plants' emissions, on the formation of biogenic SOA, and on SOA properties in order to understand possible climatic impacts. The Mediterranean region is expected to experience substantial climatic change in the next 50 years and the possible effects on biogenic emissions are yet unexplored. To address such issues, the effects of temperature and light intensity on Mediterranean Holm Oak VOC emissions, as well as on microphysical properties and chemical composition of the resulting SOA have been studied in the Jülich plant aerosol atmosphere chamber. We studied SOA formation from Holm Oak under conditions possibly simulating future climate warming. Monoterpenes dominate the VOC emissions from Holm Oak (97.5%) and temperature increase enhanced the emission strength and changed the emission pattern. Enhanced emissions lead to linearly enhanced SOA formation with a fractional mass yield of SOA (5.7±1%) independent of the detailed emission pattern. The particles are highly scattering with no absorption abilities. Their average hygroscopic growth factor was 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties were not dependent on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA as derived from high resolution aerosol mass spectrometry. The temperature increase for the plants essentially led to stronger VOC emissions with the SOA mass being linearly related to the VOC concentrations. However, the increase of Holm oak emissions with temperature (≈ 20 % per degree) was stronger than for Boreal tree species

  15. A Microphysics-Based Black Carbon Aging Scheme in a Global Chemical Transport Model: Constraints from HIPPO Observations

    NASA Astrophysics Data System (ADS)

    He, C.; Li, Q.; Liou, K. N.; Qi, L.; Tao, S.; Schwarz, J. P.

    2015-12-01

    Black carbon (BC) aging significantly affects its distributions and radiative properties, which is an important uncertainty source in estimating BC climatic effects. Global models often use a fixed aging timescale for the hydrophobic-to-hydrophilic BC conversion or a simple parameterization. We have developed and implemented a microphysics-based BC aging scheme that accounts for condensation and coagulation processes into a global 3-D chemical transport model (GEOS-Chem). Model results are systematically evaluated by comparing with the HIPPO observations across the Pacific (67°S-85°N) during 2009-2011. We find that the microphysics-based scheme substantially increases the BC aging rate over source regions as compared with the fixed aging timescale (1.2 days), due to the condensation of sulfate and secondary organic aerosols (SOA) and coagulation with pre-existing hydrophilic aerosols. However, the microphysics-based scheme slows down BC aging over Polar regions where condensation and coagulation are rather weak. We find that BC aging is primarily dominated by condensation process that accounts for ~75% of global BC aging, while the coagulation process is important over source regions where a large amount of pre-existing aerosols are available. Model results show that the fixed aging scheme tends to overestimate BC concentrations over the Pacific throughout the troposphere by a factor of 2-5 at different latitudes, while the microphysics-based scheme reduces the discrepancies by up to a factor of 2, particularly in the middle troposphere. The microphysics-based scheme developed in this work decreases BC column total concentrations at all latitudes and seasons, especially over tropical regions, leading to large improvement in model simulations. We are presently analyzing the impact of this scheme on global BC budget and lifetime, quantifying its uncertainty associated with key parameters, and investigating the effects of heterogeneous chemical oxidation on BC aging.

  16. Simulations of Hurricane Nadine (2012) during HS3 Using the NASA Unified WRF with Aerosol-Cloud Microphysics-Radiation Coupling

    NASA Astrophysics Data System (ADS)

    Shi, J. J.; Braun, S. A.; Sippel, J. A.; Tao, W. K.; Tao, Z.

    2014-12-01

    The impact of the SAL on the development and intensification of hurricanes has garnered significant attention in recent years. Many past studies have shown that synoptic outbreaks of Saharan dust, which usually occur from late spring to early fall and can extend from western Africa across the Atlantic Ocean into the Caribbean, can have impacts on hurricane genesis and subsequent intensity change. The Hurricane and Severe Storm Sentinel (HS3) mission is a multiyear NASA field campaign with the goal of improving understanding of hurricane formation and intensity change. One of HS3's primary science goals is to obtain measurements to help determine the extent to which the Saharan air layer impacts storm intensification. HS3 uses two of NASA's unmanned Global Hawk aircrafts equipped with three instruments each to measure characteristics of the storm environment and inner core. The Goddard microphysics and longwave/shortwave schemes in the NASA Unified Weather Research and Forecasting (NU-WRF) model have been coupled in real-time with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model in WRF-Chem to account for the direct (radiation) and indirect (microphysics) impact. NU-WRF with interactive aerosol-cloud-radiation physics is used to generate 30-member ensemble simulations of Nadine (2012) with and without the aerosol interactions. Preliminary conclusions related to the impact of the SAL on the evolution of Nadine from the HS3 observations and model output will be described.

  17. [Microphysics of atmospheric aerosols during winter haze/fog events in Nanjing].

    PubMed

    Yang, Jun; Niu, Zhong-qing; Shi, Chun-e; Liu, Duan-yang; Li, Zi-hua

    2010-07-01

    Intensive field observations of fog/haze events, including simultaneous measurements of aerosol particle and fog droplet size distributions, were conducted in Nanjing in November, 2007. Four weather conditions (fog, mist, wet haze and haze) were distinguished based on visibility and liquid water content firstly. Then, the microphysical characteristics of coarse and fine particles in each condition were investigated. The results showed the dominant sequence of the four weather conditions was haze<-->mist-->wet haze-->fog-->, wet haze-->mist<-->haze. The lasting time of pre-fog wet haze was longer than that of post-fog wet haze. The number, surface area and volume concentration of coarse particles with diameter larger than 2.0 micron in fog were much higher than those in the other three conditions, and the smallest concentrations were observed in haze. The size distributions of surface area and volume concentration exhibited multi-peak in fog droplets, while it showed single peak for coarse particles in haze, mist and wet haze. For the fine particles with diameter larger than 0.010 microm, the spectral shapes of surface area concentration are similar in fog (mist) and wet haze (haze) condition. The dominant size ranges of fine particle number concentration were in 0.04-0.13 microm and 0.02-0.14 microm for fog and wet haze, separately. The same dominant size ranges located in 0.02-0.06 microm for both mist and haze. During the transition processes from haze, mist and wet haze to fog, the concentration of smaller particles (less than 0.060-0.090 microm) reduced and vice versa for the corresponding larger particles. Temporal variation of aerosol number concentration correlated well with the root mean diameters negatively during the observation period. The number concentration of aerosol was the lowest and the mean diameter was the largest in fog periods.

  18. Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation

    NASA Astrophysics Data System (ADS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2013-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction scheme (McRAS-AC) including, among others, a new ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-yr-long integration of the AGCM with McRAS-AC are compared with their counterparts from an integration of the baseline GEOS-5 AGCM, as well as satellite observations. Generally McRAS-AC simulations have smaller biases in cloud fields and cloud radiative effects over most of the regions of the Earth than the baseline GEOS-5 AGCM. Two systematic biases are identified in the McRAS-AC runs: one is underestimation of cloud particle numbers around 40° S-60° S, and one is overestimate of cloud water path during the Northern Hemisphere summer over the Gulf Stream and North Pacific. Sensitivity tests show that these biases potentially originate from biases in the aerosol input. The first bias is largely eliminated in a test run using 50% smaller radius of sea-salt aerosol particles, while the second bias is substantially reduced when interactive aerosol chemistry is turned on. The main weakness of McRAS-AC is the dearth of low-level marine stratus clouds, a probable outcome of lack of explicit dry-convection in the cloud scheme. Nevertheless, McRAS-AC largely simulates realistic clouds and their optical properties that can be improved further with better aerosol input. An assessment using the COSP simulator in a 1-yr integration provides additional perspectives for understanding cloud optical property differences between the baseline and McRAS-AC simulations and biases against satellite data. Overall, McRAS-AC physically couples aerosols, the microphysics and macrophysics of clouds, and their radiative effects and thereby has better potential to be a valuable tool for climate modeling research.

  19. Impacts of PSC Microphysics on Modelled Ozone Loss

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Winter-long simulations of the 1999-2000 winter using a coupled microphysical/chemical model have been carried out to explore how PSC microphysics affects ozone loss. Although many models assures that water ice formation leads to denitrification, these simulations show that observed characteristics of the 1999-2000 winter can not be reproduced by such a denitrification mechanism. Instead, denitrification observations are best reproduced by a small number of particles freezing at temperatures near the nitric acid trihydration condensation point. Implications of such a mechanism for assessments of future ozone loss will be discussed. The simulations have also revealed that ozone loss during the 1999-2000 winter was sensitive to chlorine reactivation that occurred during February. Uncertainties in PSC microphysics and heterogeneous reaction rates both influence the modelled chlorine reactivation. For the 1999-2000 winter, these uncertainties have a larger effect on model ozone loss than denitrification. The role of denitrification would have increased if the Arctic vortex had persisted for a longer period.

  20. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  1. What do we need to know to model the microphysical evolution of volcanic clouds and how can we make these measurements?

    NASA Astrophysics Data System (ADS)

    English, J. M.; Toon, O. B.; Mills, M. J.

    2015-12-01

    Large volcanic eruptions can inject millions of tons of ash, sulfate and gaseous precursors into the stratosphere. The magnitude and duration of the volcanic cloud on Earth's temperatures, circulation, clouds, and stratospheric ozone is strongly affected by the microphysical properties of the aerosol size distribution, which can evolve in complex ways. This presentation will cover the impacts and uncertainties associated with microphysical aerosol measurements and modeling of the 1991 Mount Pinatubo eruption, and valuable future measurements after the next large volcanic eruption. These additional measurements can help improve our understanding of stratospheric processes as well as possible consequences of large volcanic eruptions and hypothetical geoengineering scenarios on radiative forcing and chemistry.

  2. Possible nitric acid coating formation over Pinatubo aerosols inferred with a microphysical code: A case study during EASOE

    SciTech Connect

    Rizi, V. Univ. degli Studi, L'Aquila ); Redaelli, G.; Verdecchia, M.; Visconti, G. ); Stefanutti, L. ); Wolf, J.P. )

    1994-06-22

    The authors present a case study of observations made with ground based lidar from Sodankyla, Finland, of stratospheric particles. Their interest was in using lidar to distinguish ice particles from polar stratospheric clouds, but the large density of volcanic aerosols present from the Mt. Pinatubo eruption, made this task more difficult during the 1991-92 winter. The authors observed a major difference in the reflected signals coming from one region over a two day period in January 1992, and argue here the origin of this may have been due to condensation of nitric acid on the surface of volcanic aerosols present in this stratospheric layer. They support this argument with microphysical calculations.

  3. Aerosol effects on deep convection in a multi-scale aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ghan, S. J.; Morrison, H.

    2012-12-01

    Aerosols have been demonstrated to affect convective clouds and precipitation in observations, process models, and regional climate models. However, examining aerosol effects on convective clouds and precipitation in global climate models has been extremely challenging, as until recently the treatments in the few global climate models that include aerosol effects on convective clouds have used conventional cumulus parameterizations and hence have been quite crude. We have recently built a multi-scale aerosol-climate model, PNNL-MMF, which is an extension of a multi-scale modeling framework (MMF) model. The extended model explicitly treats aerosol effects on deep convection using a two-moment cloud microphysics scheme in the cloud-resolving model component of the MMF. In this presentation, we examine aerosol effects on convective clouds at the global scale using the PNNL-MMF model. Our results show that the frequency of precipitation occurrence at a given liquid water path increases with increasing aerosol loading for deep clouds with surface precipitation rate larger than 10 mm/day. This relationship is particularly evident during the summer time, when convection activity is strong, and may indicate invigoration of deep convection by aerosols. The modeled relationship of aerosols, clouds and precipitation is further compared with observations from the ARM long-term sites (e.g., SGP). The causes of the modeled relationship of aerosols, clouds and precipitations are examined by using a pair of 5-year MMF simulations with and without anthropogenic aerosols.

  4. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  5. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  6. Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB)

    NASA Astrophysics Data System (ADS)

    Mishra, Amit Kumar; Shibata, Takashi

    2012-09-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). The present study deals with the spatial variability including the vertical structure of optical and microphysical properties of aerosols, during the crop residue burning season (October and November) of 2009 over the IGB. Increased number of fire counts observed by MODIS (MODerate resolution Imaging Spectroradiometer) that is associated with high aerosol optical depth (MODIS-AOD > 0.7) and enhanced tropospheric columnar NO2 concentrations observed by OMI (Ozone Monitoring Instrument), suggests agriculture crop residue burning as a main source of aerosol loading over the IGB during October and November. PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) observations show an increase in fine mode AOD (at 865 nm) from October (0.1-0.2) to November (0.2-0.3) over the IGB, which is well corroborated with MODIS observations. CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) data shows the elevated aerosol plume (4.0-4.5 km) over the north-west IGB (associated with burning activities) that could have been caused by positive buoyancy through pyro-convection. However, large concentrations of aerosol were found below 1.0 km altitude. The averaged vertical structure of crop residue burning aerosols shows an exponential decrease with altitude (mean scale height ˜1.44 ± 0.20 km). Aerosol optical and microphysical properties coupled with backward air trajectories analyses at Kanpur indicated regional transport of biomass burning aerosols in a downwind direction from north-west IGB to south-east IGB. Aerosol classification, using AERONET (AErosol RObotic NETwork)-derived absorption properties coupled with size parameter (2006-2010) showed clear seasonal dependency of aerosol types which revealed the presence of biomass burning aerosols only during the crop

  7. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  8. Influence of the micro-physical properties of the aerosol on the atmospheric correction of OLI data acquired over desert area

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana

    2016-04-01

    This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected

  9. Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhang, Yang; Glotfelty, Tim; He, Ruoying; Bennartz, Ralf; Rausch, John; Sartelet, Karine

    2015-03-01

    Earth system models have been used for climate predictions in recent years due to their capabilities to include biogeochemical cycles, human impacts, as well as coupled and interactive representations of Earth system components (e.g., atmosphere, ocean, land, and sea ice). In this work, the Community Earth System Model (CESM) with advanced chemistry and aerosol treatments, referred to as CESM-NCSU, is applied for decadal (2001-2010) global climate predictions. A comprehensive evaluation is performed focusing on the atmospheric component—the Community Atmosphere Model version 5.1 (CAM5.1) by comparing simulation results with observations/reanalysis data and CESM ensemble simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5). The improved model can predict most meteorological and radiative variables relatively well with normalized mean biases (NMBs) of -14.1 to -9.7% and 0.7-10.8%, respectively, although temperature at 2 m (T2) is slightly underpredicted. Cloud variables such as cloud fraction (CF) and precipitating water vapor (PWV) are well predicted, with NMBs of -10.5 to 0.4%, whereas cloud condensation nuclei (CCN), cloud liquid water path (LWP), and cloud optical thickness (COT) are moderately-to-largely underpredicted, with NMBs of -82.2 to -31.2%, and cloud droplet number concentration (CDNC) is overpredictd by 26.7%. These biases indicate the limitations and uncertainties associated with cloud microphysics (e.g., resolved clouds and subgrid-scale cumulus clouds). Chemical concentrations over the continental U.S. (CONUS) (e.g., SO42-, Cl-, OC, and PM2.5) are reasonably well predicted with NMBs of -12.8 to -1.18%. Concentrations of SO2, SO42-, and PM10 are also reasonably well predicted over Europe with NMBs of -20.8 to -5.2%, so are predictions of SO2 concentrations over the East Asia with an NMB of -18.2%, and the tropospheric ozone residual (TOR) over the globe with an NMB of -3.5%. Most meteorological and radiative variables

  10. Role of model resolution and microphysical properties in simulating flash flood induce storms

    NASA Astrophysics Data System (ADS)

    Bartsotas, Nikolaos; Solomos, Stavros; Nikolopoulos, Efthymios I.; Anagnostou, Emmanouil; Kallos, George

    2013-04-01

    Flash flood induce storms are mainly of convective nature and develop at small space and short time scales making their predictability a particularly challenging task. The tremendous societal and economical impact of this hazard necessitates the development of accurate forecasting systems in order to advance warnings and mitigate the risk. To be able to develop a forecasting system that can accurately represent flash flood storms, we need to understand the key elements that control the generation and evolution of this type of events. This study examines the effect of topographic representation, model grid resolution and cloud microphysical properties in simulating three major flash flood storms that occurred in Northern Italy. To simulate those heavy precipitation events, the high-resolution integrated atmospheric model RAMS / ICLAMS was used with grid resolutions of 250 m, in order to properly resolve the complex physical processes and convective activity. In addition, a high resolution topography dataset of 3 arcsec from the NASA SRTM mission was implemented in the model. The sensitivity of microphysical properties and aerosol cloud interactions towards convection and precipitation over the area were examined through various model setups and simulations. The specific properties proved to play a significant role in the correct estimation of spatial distribution and quantity of precipitation, as indicated from the comparison of the model outputs with bias adjusted radar data.

  11. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  12. How robust are models of precipitation response to aerosols?

    NASA Astrophysics Data System (ADS)

    Carslaw, Ken; Johnson, Jill; Cui, Zhiqiang

    2016-04-01

    Models of cloud-aerosol interaction and effects on precipitation are complex and therefore slow to run, so our understanding mostly relies on case studies and a very limited exploration of model uncertainties. Here we address the concept of cloud model robustness. A robust model is one that is reliable under different conditions in spite of uncertainties in the underlying processes. To assess model robustness, we quantify how the accumulated precipitation from a mixed-phase convective cloud responds to changes in aerosol accounting for the combined uncertainties in ten microphysical processes. Sampling across the full uncertainty space is achieved using statistical emulators, which essentially enable tens of thousands of cloud-resolving model simulations to be performed. Overall, precipitation increases with aerosol when aerosol concentrations are low and decreases when aerosol concentrations are high. However, when we account for uncertainties across the ten-dimensional parameter space of microphysical processes, the direction of response can no longer be defined with confidence except under some rather narrow aerosol conditions. To assess robustness of the modelled precipitation response to aerosols, we select a set of model "variants" that display a particular response in one aerosol environment and use this subset of models to predict precipitation response in other aerosol environments. Despite essentially tight model tuning, the model has very little reliability in predicting precipitation responses in different aerosol environments. Based on these results, we argue that the neglect of model uncertainty and a narrow case-study approach using highly complex cloud models may lead to false confidence in our understanding of aerosol-cloud-precipitation interactions.

  13. On the Influence of a Simple Microphysics Parametrization on Radiation Fog Modelling: A Case Study During ParisFog

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojing; Musson-Genon, Luc; Dupont, Eric; Milliez, Maya; Carissimo, Bertrand

    2014-05-01

    A detailed numerical simulation of a radiation fog event with a single column model is presented, which takes into account recent developments in microphysical parametrizations. One-dimensional simulations are performed using the computational fluid dynamics model Code_Saturne and the results are compared to a very detailed in situ dataset collected during the ParisFog campaign, which took place near Paris, France, during the winter 2006-2007. Special attention is given to the detailed and complete diurnal simulations and to the role of microphysics in the fog life cycle. The comparison between the simulated and the observed visibility, in the single-column model case study, shows that the evolution of radiation fog is correctly simulated. Sensitivity simulations show that fog development and dissipation are sensitive to the droplet-size distribution through sedimentation/deposition processes but the aerosol number concentration in the coarse mode has a low impact on the time of fog formation.

  14. Analysis of the sensitivity of thermal infrared nadir satellite observations to the chemical and micro-physical properties of upper tropospheric-lower stratospheric sulphate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Sèze, Geneviève; Legras, Bernard

    2015-04-01

    Secondary sulphate aerosols are the predominant typology of aerosols in the upper troposphere/lower stratosphere (UTLS), and can have an important impact on radiative transfer and climate, cirrus formation and chemistry in the UTLS. Despite their importance, the satellite observation at the regional scale of sulphate aerosols in the UTLS is limited. In this work, we address the sensitivity of the thermal infrared satellite observations to secondary sulphate aerosols in the UTLS. The absorption properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The absorption coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques : Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the absorption of idealized aerosol layers, at typical UTLS conditions, on the radiance spectra observed by these simulated satellite instruments. We found a marked spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with absorption peaks at 1170 and 905 cm-1. Micro-windows with a sensitivity to chemical and micro-physical properties of the sulphate aerosol layer are identified, and the role of interfering species, and temperature and water vapour profile is discussed.

  15. Microphysical fundamentals governing cirrus cloud growth: Modeling studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Dodd, Gregory C.; Starr, David

    1990-01-01

    For application to Global Climate Models, large scale numerical models of cirrus cloud formation and maintenance need to be refined to more reliably simulate the effects and feedbacks of high level clouds. A key aspect is how ice crystal growth is initiated in cirrus, which has started a cloud microphysical controversy between camps either believing that heterogeneous or homogeneous drop freezing is predominantly responsible for cold cirrus ice crystal nucleation. In view of convincing evidence for the existence of highly supercooled cloud droplets in the middle and upper troposphere, however, it is concluded that active ice nuclei are rather scarce at cirrus cloud altitudes, and so a new understanding of cirrus cloud formation is needed. This understanding is sought through an examination of cirrus cloud growth models.

  16. The impact of hydrometeors on the microphysical parameterization in the WRF modelling system over southern peninsular India

    NASA Astrophysics Data System (ADS)

    Ragi, A. R.; Sharan, Maithili; Haddad, Z. S.

    2016-05-01

    This study examines the influence of Purdue-Lin microphysical parameterization scheme (Lin et al.,1983) on quantitative precipitation for pre-monsoon/monsoon conditions over southern peninsular India in the Weather Research and Forecasting (WRF) model. An ideal microphysical scheme has to describe the formation, growth of cloud droplets and ice crystals and fall out as precipitation. Microphysics schemes can be broadly categorized into two types: bin and bulk particle size distribution (Morrison, 2010). Bulk schemes predict one or more bulk quantities and assume some functional form for the particle size distribution. For better parameterization, proper interpretation of these hydrometeors (Cloud Droplets, Raindrops, Ice Crystals and Aggregates, Rimed Ice Particles, Graupel, Hail) and non-hydrometeors (Aerosols vs. Condensation Nuclei vs. Cloud Condensation Nuclei vs. Ice Nuclei) is very important. The Purdue-Lin scheme is a commonly used microphysics scheme in WRF model utilizing the "bulk" particle size distribution, meaning that a particle size distribution is assumed. The intercept parameter (N0) is, in fact, turns out to be independent of the density. However, in situ observations suggest (Haddad et al., 1996, 1997) that the mass weighted mean diameter is correlated with water content per unit volume (q), leading to the fact that N0 depends on it. Here, in order to analyze the correlation of droplet size distribution with the convection, we have carried out simulations by implementing a consistent methodology to enforce a correlation between N0 and q in the Purdue-Lin microphysics scheme in WRF model. The effect of particles in Indian Summer Monsoon has been examined using frequency distribution of rainfall at surface, daily rainfall over the domain and convective available potential energy and convective inhibition. The simulations are conducted by analyzing the maximum rainfall days in the pre-monsoon/monsoon seasons using Tropical Rainfall Measuring Mission

  17. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Stark, David; Yuter, Sandra; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is 0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were 0.25 meters per second too

  18. Evaluation of Model Microphysics within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is approx 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were approx 0.25 m/s too slow, while the

  19. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  20. Performance of McRAS-AC in the GEOS-5 AGCM: Part 1, Aerosol-Activated Cloud Microphysics, Precipitation, Radiative Effects, and Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2012-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.

  1. Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current

    NASA Astrophysics Data System (ADS)

    Koike, M.; Takegawa, N.; Moteki, N.; Kondo, Y.; Nakamura, H.; Kita, K.; Matsui, H.; Oshima, N.; Kajino, M.; Nakajima, T. Y.

    2012-09-01

    Cloud microphysical properties and aerosol concentrations were measured aboard an aircraft over the East China Sea and Yellow Sea in April 2009 during the Aerosol Radiative Forcing in East Asia (A-FORCE) experiment. We sampled stratocumulus and shallow cumulus clouds over the ocean in 9 cases during 7 flights 500-900 km off the east coast of Mainland China. In this study we report aerosol impacts on cloud microphysical properties by focusing on regional characteristics of two key parameters, namely updraft velocity and aerosol size distribution. First, we show that the cloud droplet number concentration (highest 5%, Nc_max) correlates well with the accumulation-mode aerosol number concentration (Na) below the clouds. We then show that Nc_maxcorrelates partly with near-surface stratification evaluated as the difference between the sea surface temperature (SST) and 950-hPa temperature (SST - T950). Cold air advection from China to the East China Sea was found to bring not only a large number of aerosols but also a dry and cold air mass that destabilized the atmospheric boundary layer, especially over the warm Kuroshio ocean current. Over this high-SST region, greater updraft velocities and hence greater Nc_maxlikely resulted. We hypothesize that the low-level static stability determined by SST and regional-scale airflow modulates both the cloud microphysics (aerosol impact on clouds) and macro-structure of clouds (cloud base and top altitudes, hence cloud liquid water path). Second, we show that not only higher aerosol loading in terms of total aerosol number concentration (NCN, D > 10 nm) but also larger aerosol mode diameters likely contributed to high Ncduring A-FORCE. The mean Nc of 650 ± 240 cm-3was more than a factor of 2 larger than the global average for clouds influenced by continental sources. A crude estimate of the aerosol-induced cloud albedo radiative forcing is also given.

  2. A Cloud Microphysics Model for the Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303–326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141–156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  3. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  4. A microphysical model explains rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Spiers, Christopher J.

    2015-04-01

    The rate-and-state friction (RSF) laws were originally developed as a phenomenological description of the frictional behavior observed in lab experiments. In previous studies, the empirical RSF laws have been extensively and quite successfully applied to fault mechanisms. However, these laws can not readily be envisioned in terms of the underlying physics. There are several critical discrepancies between seismological constraints on RSF behavior associated with earthquakes and lab-derived RSF parameters, in particular regarding the static stress drop and characteristic slip distance associated with seismic events. Moreover, lab friction studies can address only limited fault topographies, displacements, experimental durations and P-T conditions, which means that scale issues, and especially processes like dilatation and fluid-rock interaction, cannot be fully taken into account. Without a physical basis accounting for such effects, extrapolation of lab-derived RSF data to nature involves significant, often unknown uncertainties. In order to more reliably apply experimental results to natural fault zones, and notably to extrapolate lab data beyond laboratory pressure, temperature and velocity conditions, an understanding of the microphysical mechanisms governing fault frictional behavior is required. Here, following some pioneering efforts (e.g. Niemeijer and Spiers, 2007; Den Hartog and Spiers, 2014), a mechanism-based microphysical model is developed for describing the frictional behavior of carbonate fault gouge, assuming that the frictional behavior seen in lab experiments is controlled by competing processes of intergranular slip versus contact creep by pressure solution. The model basically consists of two governing equations derived from energy/entropy balance considerations and the kinematic relations that apply to a granular fault gouge undergoing shear and dilation/compaction. These two equations can be written as ˙τ/K = Vimp- Lt[λ˙γsbps +(1-

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  6. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, r d a U production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembe1 (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and platelike), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  7. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2005-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.

  8. Arrange and average algorithm for the retrieval of aerosol microphysical parameters from HSRL-2. Comparison with in-situ measurements during DISCOVER-AQ California and Texas (2013)

    NASA Astrophysics Data System (ADS)

    Chemyakin, E.; Sawamura, P.; Mueller, D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Scarino, A. J.; Hair, J. W.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Seaman, S. T.

    2015-12-01

    Although aerosols are only a fairly minor constituent of Earth's atmosphere they are able to affect its radiative energy balance significantly. Light detection and ranging (lidar) instruments have the potential to play a crucial role in atmospheric research as only these instruments provide information about aerosol properties at a high vertical resolution. We are exploring different algorithmic approaches to retrieve microphysical properties of aerosols using lidar. Almost two decades ago we started with inversion techniques based on Tikhonov's regularization that became a reference point for the improvement of retrieval capabilities of inversion algorithms. Recently we began examining the potential of the "arrange and average" scheme, which relies on a look-up table of optical and microphysical aerosol properties. The future combination of these two different inversion schemes may help us to improve the accuracy of the microphysical data products.The novel arrange and average algorithm was applied to retrieve aerosol optical and microphysical parameters using NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL-2) data. HSRL-2 is the first airborne HSRL system that is able to provide advanced datasets consisting of backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm as input information for aerosol microphysical retrievals. HSRL-2 was deployed on-board NASA LaRC's King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns over the California Central Valley and Houston. Vertical profiles of aerosol optical properties and size distributions were obtained from in-situ instruments on-board the NASA's P-3B aircraft. As HSRL-2 flew along the same flight track of the P-3B, synergistic measurements and retrievals were obtained by these two independent platforms. We will present an

  9. Numerical sensitivity studies on the impact of aerosol properties and drop freezing modes on the glaciation, microphysics, and dynamics of clouds

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Simmel, M.; Wurzler, S.

    2006-04-01

    Numerical simulations were performed to investigate the effects of drop freezing in immersion and contact modes for a convective situation. For the description of heterogeneous drop freezing, new approaches were used considering the significantly different ice nucleating efficiencies of various ice nuclei. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed. Sensitivity studies were undertaken by varying the insoluble particle types as well as the soluble fraction of the aerosol particles showing the effects of these parameters on drop freezing and their possible impact on the vertical cloud dynamics. The soluble fraction ɛ decides whether immersion or contact freezing will be the major process. For high ɛ values, immersion freezing is the dominant process. In such cases the freezing process is strongly temperature-dependent, and the ice nucleation efficiency of the insoluble particle types becomes important for efficient freezing. The freezing point depression can be neglected because of the preferential freezing of large drops. Contact freezing is the major process in cases of lower ɛ values. In these cases the freezing process is less dependent on temperature and aerosol particle type. For conditions of efficient freezing, cold, high-altitude, completely glaciated clouds could form. The presented approaches for immersion and contact freezing can be incorporated further into mesoscale and global models to estimate the effects of specific ice nuclei on ice formation.

  10. Stratospheric ion and aerosol chemistry and possible links with cirrus cloud microphysics - A critical assessment

    NASA Technical Reports Server (NTRS)

    Mohnen, Volker A.

    1990-01-01

    Aspects of stratospheric ion chemistry and physics are assessed as they relate to aerosol formation and the transport of aerosols to upper tropospheric regions to create conditions favorable for cirrus cloud formation. It is found that ion-induced nucleation and other known phase transitions involving ions and sulfuric acid vapor are probably not efficient processes for stratospheric aerosol formation, and cannot compete with condensation of sulfuric acid on preexisting particles of volcanic or meteoritic origin which are larger than about 0.15 micron in radius. Thus, galactic cosmic rays cannot have a significant impact on stratospheric aerosol population. Changes in the stratospheric aerosol burden due to volcanos are up to two orders of magnitude larger than changes in ion densities. Thus, volcanic activity may modulate the radiative properties of cirrus clouds.

  11. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  12. Advancing Models and Evaluation of Cumulus, Climate and Aerosol Interactions

    SciTech Connect

    Gettelman, Andrew

    2015-10-27

    This project was successfully able to meet its’ goals, but faced some serious challenges due to personnel issues. Nonetheless, it was largely successful. The Project Objectives were as follows: 1. Develop a unified representation of stratifom and cumulus cloud microphysics for NCAR/DOE global community models. 2. Examine the effects of aerosols on clouds and their impact on precipitation in stratiform and cumulus clouds. We will also explore the effects of clouds and precipitation on aerosols. 3. Test these new formulations using advanced evaluation techniques and observations and release

  13. Modelling aerosol-cloud-meteorology interaction: A case study with a fully coupled air quality model (GEM-MACH)

    NASA Astrophysics Data System (ADS)

    Gong, W.; Makar, P. A.; Zhang, J.; Milbrandt, J.; Gravel, S.; Hayden, K. L.; Macdonald, A. M.; Leaitch, W. R.

    2015-08-01

    A fully coupled on-line air quality forecast model, GEM-MACH, was used to study aerosol-cloud interactions for a case of an urban-industrial plume impacting stratocumulus. The aerosol effect on the cloud microphysics was achieved by the use of parameterization of cloud droplet nucleation predicted from the on-line size- and composition-resolved aerosols and coupled with a double-moment cloud microphysics parameterization. The model simulations with and without the on-line aerosol effect on cloud microphysics were compared and evaluated against in-situ aerosol and cloud observations from ICARTT 2004. Inclusion of the on-line aerosol interaction with cloud resulted in an increase in modelled cloud amount and cloud liquid water content (LWC) due to increased cloud droplet number concentration (Nd), a decrease in cloud droplet size and a reduction in warm precipitation. The modelled LWC and Nd agreed more closely with the observations when the on-line aerosol was allowed to affect the cloud than when aerosol effects on cloud were not explicitly simulated. The increased cloud amount due to the aerosol effects reduced the modelled downward shortwave radiative flux and air temperature at the surface, contributing to a decrease in ozone over the region of enhanced cloud and an increase in particle sulphate from an increased capacity for aqueous-phase production. Aerosol activation is shown to have a significant influence on the cloud microphysics and cloud processing of trace gases and aerosols. The importance of reasonable parameterization of cloud updraft speed is demonstrated.

  14. A Comparison of Aerosol Optical, Microphysical, and Chemical Measurements between LAX and Long Beach Harbor

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Chen, G.; Winstead, E.; Ziemba, L. D.; Beyersdorf, A. J.; Diskin, G. S.; Nenes, A.; Lathem, T. L.; Arctas Science Team

    2010-12-01

    In the summer of 2008, measurements of aerosols were made on-board the NASA DC-8 over the state of California, as part of the second phase of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) on behalf of the California Air resources Board (CARB). The DC-8 made four flights, between 18 June and 26 June, totaling 33 hours, to examine California’s atmosphere to better understand the chemical dynamics of smog and greenhouse gases over the state. The NASA DC-8 had a suite of aerosol instruments, capable of measuring the number concentrations, optical properties, and size distributions of aerosols between 0.003 and 1500 um. In this presentation, we will compare aerosol observations made at two areas within the Los Angeles Basin, Los Angeles International airport (LAX) and Long Beach Harbor. LAX is in the middle of the second most populated metropolitan area in the United States and is the fifth busiest airport in the world, while Long Beach Harbor (20 miles south of LAX) is the world’s 2nd busiest container port. Initial results suggest a greater aerosol loading and additional presence of ultrafine aerosols during the week due to vehicular emissions. We will also present analysis of aerosol observations as a function of time of day from the four missed approaches at LAX and four over flights of Long Beach Harbor.

  15. Comparison of LES model produced and in-situ measured stratocumulus cloud microphysics

    NASA Astrophysics Data System (ADS)

    Choi, K.; Yeom, J. M.; Yum, S. S.

    2015-12-01

    Large Eddy Simulation (LES) models are known to be a valuable tool that can be used to study microphysical, dynamical and radiative properties and their complex interactions in stratocumulus clouds since they can generate stratocumulus clouds realistically. These model generated properties were often compared with observations usually focusing on macroscopic features such as cloud depth and LWP. In this study we try to examine how good LES models are in re-producing cloud microphysical characteristics of stratocumulus clouds. After all if microphysics is not right, macroscopic, dynamic and radiative characteristics represented by the model cannot be fully trusted. The observation data are obtained from the G-1 aircraft measurements of marine stratocumulus clouds over the southeast Pacific near the coast of Chile during the Variability of the American Monsoon Systems Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). Two LES models are used to simulate these clouds: one is CIMMS (Cooperative Institute for Mesoscale Meteorological Studies) LES and the other is WRF (Weather Research and Forecasting Model) LES. Both models are run in 3-D setting and employ bin microphysics to be appropriate for detailed cloud microphysics calculation. Comparison between observation and LES models could reveal intrinsic problems of the LES models in representing entrainment and mixing processes. The difference between the two LES models may reveal the intrinsic differences between the two models in representing large eddies and microphysical processes. Some preliminary results indicate that the CIMMS LES model tends to produce cloud microphysical relationships that are expected to occur when homogeneous mixing is dominant. More detail will be presented at the conference.

  16. Role of Clouds, Aerosols, and Aerosol-Cloud Interaction in 20th Century Simulations with GISS ModelE2

    NASA Technical Reports Server (NTRS)

    Nazarenko, Larissa; Rind, David; Bauer, Susanne; Del Genio, Anthony

    2015-01-01

    We use the new version of NASA Goddard Institute for Space Studies (GISS) climate model, modelE2 with 2º by 2.5º horizontal resolution and 40 vertical layers, with the model top at 0.1 hPa [Schmidt et al., 2014]. We use two different treatments of the atmospheric composition and aerosol indirect effect: (1) TCAD(I) version has fully interactive Tracers of Aerosols and Chemistry in both the troposphere and stratosphere. This model predicts total aerosol number and mass concentrations [Shindell et al., 2013]; (2) TCAM is the aerosol microphysics and chemistry model based on the quadrature methods of moments [Bauer et al., 2008]. Both TCADI and TCAM models include the first indirect effect of aerosols on clouds [Menon et al., 2010]; the TCAD model includes only the direct aerosol effect. We consider the results of the TCAD, TCADI and TCAM models coupled to "Russell ocean model" [Russell et al., 1995], E2-R. We examine the climate response for the "historical period" that include the natural and anthropogenic forcings for 1850 to 2012. The effect of clouds, their feedbacks, as well as the aerosol-cloud interactions are assessed for the transient climate change.

  17. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; van Zyl, Pieter G.; Müller, Detlef; Balis, Dimitris; Komppula, Mika

    2016-07-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type are available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single-scattering albedo, were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr, 41 ± 13 sr, 0.9 ± 0.4 % and 2.3 ± 0.5, respectively, for urban/industrial aerosols, while these values were 92 ± 10 sr, 75 ± 14 sr, 3.2 ± 1.3 % and 1.7 ± 0.3, respectively, for biomass burning aerosol layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 µm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single-scattering albedo at 532 nm was 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532

  18. Stratospheric aerosol forcing for climate modeling: 1850-1978

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Luo, Beiping; Thomason, Larry; Vernier, Jean-Paul; Peter, Thomas

    2016-04-01

    We present here a stratospheric aerosol dataset produced using the available aerosol optical depth observations from the pre-satellite period. The scarce atmospheric observations are supplemented by additional information from an aerosol microphysical model, initialized by ice-core derived sulfur emissions. The model is used to derive extinctions at all altitudes, latitudes and times when sulfur injections are known for specific volcanic eruptions. The simulated extinction coefficients are then scaled to match the observed optical depths. In order to produce the complete optical properties at all wavelengths (and the aerosol surface area and volume densities) needed by climate models, we assume a lognormal size distribution of the aerosols. Correlations between the extinctions in the visible and the effective radius and distribution width parameters are taken from the better constrained SAGE II period. The aerosol number densities are then fitted to match the derived extinctions in the 1850-1978 period. From these aerosol size distributions, we then calculate extinction coefficients, single scattering albedos and asymmetry factors at all wavelengths using the Mie theory. The aerosol surface area densities and volume densities are also provided.

  19. A Model Simulation of Pinatubo Volcanic Aerosols in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao , Jing-xia; Turco, Richard P.; Toon, Owen B.

    1995-01-01

    A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. Our model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H2SO4/H2O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO2 emissions. The large amounts of SO2 (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H2SO4/H2O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reach their stabilized sizes with effective radii in a range between 0.3 and 0.5 micron approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion.

  20. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  1. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  2. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2014-01-01

    It is hypothesized microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixed phased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterizations. The WRF realistically simulated the warm frontal snowband at relatively short lead times (1014 h). The snowband structire is sensitive to the microphysical parameterization used in WRF. The Goddard and SBUYLin most realistically predicted the band structure, but overpredicted snow content. The double moment Morrison scheme best produced the slope of the snow distribution, but it underpredicted the intercept. All schemes and the radar derived (which used dry snow ZR) underpredicted the surface precipitation amount, likely because there was more cloud water than expected. The Morrison had the most cloud water and the best precipitation prediction of all schemes.

  3. Modeling aerosol growth by aqueous chemistry in nonprecipitating stratiform cloud

    SciTech Connect

    Ovchinnikov, Mikhail; Easter, Richard C.

    2010-07-29

    A new microphysics module based on a two-dimensional (2D) joint size distribution function representing both interstitial and cloud particles is developed and applied to studying aerosol processing in non-precipitating stratocumulus clouds. The module is implemented in a three-dimensional dynamical framework of a large-eddy simulation (LES) model and in a trajectory ensemble model (TEM). Both models are used to study the modification of sulfate aerosol by the activation - aqueous chemistry - resuspension cycle in shallow marine stratocumulus clouds. The effect of particle mixing and different size-distribution representations on modeled aerosol processing are studied in a comparison of the LES and TEM simulations with the identical microphysics treatment exposes and a comparison of TEM simulations with a 2D fixed and moving bin microphysics. Particle mixing which is represented in LES and neglected in the TEM leads to the mean relative per particle dry mass change in the TEM simulations being about 30% lower than in analogous subsample of LES domain. Particles in the final LES spectrum are mixed in from different “parcels”, some of which have experienced longer in-cloud residence times than the TEM parcels, all of which originated in the subcloud layer, have. The mean relative per particle dry mass change differs by 14% between TEM simulations with fixed and moving bin microphysics. Finally, the TEM model with the moving bin microphysics is used to evaluate assumptions about liquid water mass partitioning among activated cloud condensation nuclei (CCN) of different dry sizes. These assumptions are used in large-scale models to map the bulk aqueous chemistry sulfate production, which is largely proportional to the liquid water mass, to the changes in aerosol size distribution. It is shown that the commonly used assumptions that the droplet mass is independent of CCN size or that the droplet mass is proportional to the CCN size to the third power do not perform

  4. Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    Measurements carried out in Paris Magenta railway station in April-May 2006 underlined a repeatable diurnal cycle of aerosol concentrations and optical properties. The average daytime PM 10 and PM 2.5 concentrations in such a confined space were approximately 5-30 times higher than those measured in Paris streets. Particles are mainly constituted of dust, with high concentrations of iron and other metals, but are also composed of black and organic carbon. Aerosol levels are linked to the rate at which rain and people pass through the station. Concentrations are also influenced by ambient air from the nearby streets through tunnel ventilation. During daytime approximately 70% of aerosol mass concentrations are governed by coarse absorbing particles with a low Angström exponent (˜0.8) and a low single-scattering albedo (˜0.7). The corresponding aerosol density is about 2 g cm -3 and their complex refractive index at 355 nm is close to 1.56-0.035 i. The high absorption properties are linked to the significant proportion of iron oxides together with black carbon in braking systems. During the night, particles are mostly submicronic, thus presenting a greater Angström exponent (˜2). The aerosol density is lower (1.8 g cm -3) and their complex refractive index presents a lower imaginary part (1.58-0.013 i), associated to a stronger single-scattering albedo (˜0.85-0.90), mostly influenced by the ambient air. For the first time we have assessed the emission (deposition) rates in an underground station for PM 10, PM 2.5 and black carbon concentrations to be 3314 ± 781(-1164 ± 160), 1186 ± 358(-401 ± 66) and 167 ± 46(-25 ± 9) μg m -2 h -1, respectively.

  5. A comparison of cloud microphysical quantities with forecasts from cloud prediction models

    SciTech Connect

    Dunn, M.; Jensen, M.; Hogan, R.; O’Connor, E.; Huang, D.

    2010-03-15

    Numerical weather prediction models (ECMWF, NCEP) are evaluated using ARM observational data collected at the Southern Great Plains (SGP) site. Cloud forecasts generated by the models are compared with cloud microphysical quantities, retrieved using a variety of parameterizations. Information gained from this comparison will be utilized during the FASTER project, as models are evaluated for their ability to reproduce fast physical processes detected in the observations. Here the model performance is quantified against the observations through a statistical analysis. Observations from remote sensing instruments (radar, lidar, radiometer and radiosonde) are used to derive the cloud microphysical quantities: ice water content, liquid water content, ice effective radius and liquid effective radius. Unfortunately, discrepancies in the derived quantities arise when different retrieval schemes are applied to the observations. The uncertainty inherent in retrieving the microphysical quantities using various retrievals is estimated from the range of output microphysical values. ARM microphysical retrieval schemes (Microbase, Mace) are examined along with the CloudNet retrieval processing of data from the ARM sites for this purpose. Through the interfacing of CloudNet and “ARM” processing schemes an ARMNET product is produced and employed as accepted observations in the assessment of cloud model predictions.

  6. Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Tsekeri, A.; Gkikas, A.; Amiridis, V.

    2014-09-01

    In order to exploit the full-earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from the MODerate resolution Imaging Spectro-radiometer (MODIS) and the Ozone Measuring Instrument (OMI) Level 3 data sets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AErosol RObotic NETwork (AERONET) Level 2.0 (Version 2) retrieved parameters as outputs. Daily averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A neural network (NN), trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 550 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo - with moderate precision: correlation coefficients in the

  7. Light absorption, optical and microphysical properties of trajectory-clustered aerosols at two AERONET sites in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, O. G.; Cai, X.; MacKenzie, A. R.

    2015-12-01

    Aerosol remote sensing techniques and back-trajectory modeling can be combined to identify aerosol types. We have clustered 7 years of AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at two AERONET sites in West Africa: Ilorin (4.34 oE, 8.32 oN) and Djougou (1.60 oE, 9.76 oN). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area, of Nigeria, en-route the AERONET sites. 7-day back trajectories were calculated using the UK UGAMP trajectory model driven by ECMWF wind analyses data. Dominant sources identified, using literature classifications, are desert dust (DD), Biomass burning (BB) and Urban-Industrial (UI). Below, we use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source: that due to gas flaring. Gas flaring, (GF) the disposal of gas through stack in an open-air flame, is believed to be a prominent source of black carbon (BC) and greenhouse gases. For these different aerosol source signatures, single scattering albedo (SSA), refractive index , extinction Angstrom exponent (EEA) and absorption Angstrom exponent (AAE) were used to classify the light absorption characteristics of the aerosols for λ = 440, 675, 870 and1020 nm. A total of 1625 daily averages of aerosol data were collected for the two sites. Of which 245 make up the GF cluster for both sites. For GF cluster, the range of fine-mode fraction is 0.4 - 0.7. Average values SSA(λ), for the total and GF clusters are 0.90(440), 0.93(675), 0.95(870) and 0.96(1020), and 0.93(440), 0.92(675), 0.9(870) and 0.9(1020), respectively. Values of for the GF clusters for both sites are 0.62 - 1.11, compared to 1.28 - 1.66 for the remainder of the clusters, which strongly indicates the dominance of carbonaceous particles (BC), typical of a highly industrial area. An average value of 1.58 for the real part of the refractive index at low SSA for aerosol in the GF cluster is also

  8. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    NASA Astrophysics Data System (ADS)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-08-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  9. Evaluation of Cloud Microphysical Parameterizations in Cloud Resolving Model Simulations using the ARM observations

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Muhlbauer, A.; Ackerman, T. P.

    2011-12-01

    Clouds modulate the distribution of energy and water within the atmosphere and regulate the hydrological cycle. Cloud microphysical parameterizations are critical for the representation of cloud microphysical properties in both cloud-resolving and climate models. In this study, we analyze the capabilities of a cloud-resolving model (CRM) with advanced bulk microphysics schemes to simulate the microphysical properties and evolution of convective clouds and anvil cirrus over the Southern Great Plains (SGP) site in the mid-latitudes and Kwajalein Atoll in the tropics. For evaluating simulated cloud properties, we use observations from the Atmospheric Radiation Measurement (ARM) Program 1997 summer Intensive Observations Period at the SGP site and the Kwajalein Experiment (KWAJEX) field campaign. The CRM simulations are evaluated with the ARM and KWAJEX observations, in particular using precipitation records, radiative fluxes, and radar reflectivity values observed by the ARM millimeter wavelength cloud radar (MMCR) and the Kwajalein precipitation radar. Preliminary analysis of the ARM SGP case shows that although the precipitation events during this period are well captured by the model, the outgoing longwave radiation (OLR) is considerably underestimated and the model generates too much high cloud, which is inconsistent with the MMCR observations. In our study we especially focus on the causes of the overproduction of ice and high clouds in the CRM simulations. Improvements of the ice microphysics scheme and resulting impacts on the simulation are presented.

  10. Modeling Radiative Forcing by Aerosols: How Good is Good Enough?

    NASA Astrophysics Data System (ADS)

    Schwartz, S. E.

    2003-12-01

    Radiative forcing of climate change by anthropogenic aerosols is now recognized as the largest uncertainty in climate forcing F over the industrial period. This uncertainty limits inference of Earth's climate sensitivity λ either empirically or by comparison of observed temperature change over the industrial period Δ T with modeled temperature change obtained by imposing a time-dependent forcing in a climate model. Either way, for a desired uncertainty in λ of, say, 30% (e.g., temperature increase resulting from doubling atmospheric CO2 Δ T2x = 3 +/- 1 K), the required uncertainty in F is about 20%. The resultant required uncertainty in aerosol forcing depends on the magnitude of this for cing. If total aerosol forcing is small, the requisite uncertainty can be quite large, e.g., a factor of 2 for aerosol forcing -0.4 W m-2. However as aerosol forcing magnitude increases the requirement is much more stringent, e.g., for aerosol for c ing -1.2 W m-2, 10%, comparable to present uncertainty in greenhouse gas forcing. This talk examines quantifiable uncertainties in aerosol forcing and apportions them between contributions from atmospheric chemistry, atmospheric radiation, and c l ou d microphysics. Unless and until present uncertainties are greatly reduced it will not be possible to place confident limits on Earth's climate sensitivity, limiting society's ability to confidently plan to adapt to or mitigate future climate chang e arising from increasing atmospheric concentrations of greenhouse gases. n

  11. Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL)

    SciTech Connect

    Shi, Xiangjun; Wang, Bin; Liu, Xiaohong; Wang, Minghuai

    2013-05-01

    A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model capability for studying aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in-situ observations. The longwave and shortwave cloud forcing are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous freezing formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.

  12. Final Report on the Development of an Improved Cloud Microphysical Product for Model and Remote Sensing Evaluation using RACORO Observations

    SciTech Connect

    McFarquhar, Greg

    2012-09-19

    We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds bw, effective radius of water drops re, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database and have submitted it to ARM for consideration of its inclusion on the ARM database as a PI product. This report describes the development of this database, and also describes research that has been conducted on cloud-aerosol interactions using the data obtained during RACORO. A list of conference proceedings and publications is also included.

  13. Aerosols and clouds in chemical transport models and climate models.

    SciTech Connect

    Lohmann,U.; Schwartz, S. E.

    2008-03-02

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  14. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  15. Comparison of Aerosol Optical and Microphysical Retrievals from HSRL-2, AERONET, and In-situ Measurements During DISCOVER-AQ 2013 (California and Texas)

    NASA Astrophysics Data System (ADS)

    Sawamura, P.; Mueller, D.; Chemyakin, E.; Ferrare, R. A.; Hostetler, C. A.; Scarino, A. J.; Burton, S. P.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Seaman, S. T.

    2014-12-01

    The second-generation NASA airborne High Spectral Resolution Lidar (HSRL-2) is the first airborne multiwavelength HSRL system to provide 3β + 2α datasets (i.e. backscatter coefficient at 355, 532, and 1064 nm and extinction coefficient at 355 and 532 nm) which are used in an unsupervised and automated inversion algorithm to retrieve optical and microphysical properties of aerosols. HSRL-2 was deployed onboard NASA Langley King Air on the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality) field mission over San Joaquin Valley, California between January and February 2013 and over Houston, Texas in September 2013. Vertical profiles of aerosol optical properties, hygroscopicity, and size distributions were obtained from in-situ instruments onboard the NASA Langley P-3B over a number of DRAGON (Distributed Regional Aerosol Gridded Observation Network) AERONET ground stations. As HSRL-2 flew over those same ground stations, measurements and retrievals of optical depth, and microphysical aerosol properties were obtained by all three platforms. We will present the results of this intercomparison and discuss the challenges inherent to such comparisons.

  16. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    NASA Technical Reports Server (NTRS)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  17. Uncertainty of Microphysics Schemes in CRMs

    NASA Astrophysics Data System (ADS)

    Tao, W. K.; van den Heever, S. C.; Wu, D.; Saleeby, S. M.; Lang, S. E.

    2015-12-01

    Microphysics is the framework through which to understand the links between interactive aerosol, cloud and precipitation processes. These processes play a critical role in the water and energy cycle. CRMs with advanced microphysics schemes have been used to study the interaction between aerosol, cloud and precipitation processes at high resolution. But, there are still many uncertainties associated with these microphysics schemes. This has arisen, in part, from the fact microphysical processes cannot be measured directly; instead, cloud properties, which can be measured, are and have been used to validate model results. The utilization of current and future global high-resolution models is rapidly increasing and are at what has been traditional CRM resolutions and are using microphysics schemes that were developed in traditional CRMs. A potential NASA satellite mission called the Cloud and Precipitation Processes Mission (CaPPM) is currently being planned for submission to the NASA Earth Science Decadal Survey. This mission could provide the necessary global estimates of cloud and precipitation properties with which to evaluate and improve dynamical and microphysical parameterizations and the feedbacks. In order to facilitate the development of this mission, CRM simulations have been conducted to identify microphysical processes responsible for the greatest uncertainties in CRMs. In this talk, we will present results from numerical simulations conducted using two CRMs (NU-WRF and RAMS) with different dynamics, radiation, land surface and microphysics schemes. Specifically, we will conduct sensitivity tests to examine the uncertainty of the some of the key ice processes (i.e. riming, melting, freezing and shedding) in these two-microphysics schemes. The idea is to quantify how these two different models' respond (surface rainfall and its intensity, strength of cloud drafts, LWP/IWP, convective-stratiform-anvil area distribution) to changes of these key ice

  18. Aerosol dynamics in the equatorial Pacific Marine boundary layer: Microphysics, diurnal cycles and entertainment

    SciTech Connect

    Clarke, A D; Litchy, M; Li, Z

    1996-04-01

    During July-August of 1994 the authors measured the size resolved physiochemical properties of aerosol particles at Christmas Island in the equatorial Pacific. In spite of rapid diurnal conversion of dimethylsulfide (DMS) to sulfur dioxide (SO{sub 2}) the authors found no evidence for new particle production in the marine boundary layer (MBL) and more than 95% of all particles were consistently larger than 0.02{mu}m diameter, indicating an aged aerosol number (size-distribution) was bimodal with peaks near 0.05{mu}m and 0.2{mu}m particle diameter (D{sub p}) and had a cloud-processed intermode minimum at about 0.09{mu}m that varied in phase with diurnal changes in ozone concentration. This suggests that the number distribution for condensation nuclei (CN) and cloud condensation (CCN) was maintained by a quasiequilibrium between entrainment (estimated to be 0.6{+-}0.2 cm s{sup {minus}1}) from sources aloft and processes in the MBL. This implies a replenishment timescale for nuclei of about 2 and 4 days for this region. The stability of the distribution and the 0.09{mu}m cloud processed minima suggests trade winds cumulus supersaturations near 0.35% and updrafts near 1 m s{sup {minus}1}. 17 refs., 4 fig., 1 tab.

  19. Microphysics, Meteorology, Microwave and Modeling of Mediterranean Storms: The M(sup 5) Problem

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven; Mugnai, Alberto; Panegrossi, Giulia; Tripoli, Gregory; Starr, David (Technical Monitor)

    2001-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms requires a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, particularly from synoptic scale down to mesoscale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. Insofar as hazardous Mediterranean storms, highlighted by the September 25-28/1992 Genova flood event, the October 5-7/1998 Friuli flood event, and the October 13-15/2000 Piemonte flood event (all taking place in northern Italy), developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within the storm domains. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting proc esses. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size distributions, and fall rates of the various modes of hydrometeors found within the storm environments. This paper presents detailed 4-dimensional analyses of the microphysical elements of the three severe Mediterranean storms identified above, investigated with the aid of SSM/I and TRMM satellite measurements (and other remote sensing measurements). The analyses are guided by nonhydrostatic mesoscale model simulations at high resolution of the intense rain producing portions of the storm environments. The results emphasize how meteorological controls taking place at the large scale, coupled with localized terrain controls, ultimately determine the most salient features of the bulk microphysical

  20. Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Zhu, Yannian; Rosenfeld, Daniel; Yu, Xing; Li, Zhanqing

    2015-08-01

    The high resolution (375 m) of the Visible Infrared Imaging Radiometer Suite on board the Suomi National Polar-Orbiting Partnership satellite allows retrieving relatively accurately the vertical evolution of convective cloud drop effective radius (re) with height or temperature. A tight relationship is found over SE Asia and the adjacent seas during summer between the cloud-free aerosol optical depth (AOD) and the cloud thickness required for the initiation of warm rain, as represented by the satellite-retrieved cloud droplet re of 14 µm, for a subset of conditions that minimize measurement artifacts. This cloud depth (ΔT14) is parameterized as the difference between the cloud base temperature and the temperature at the height where re exceeds 14 µm (T14). For a unit increase of AOD, the height of rain initiation is increased by about 5.5 km. The concern of data artifacts due to the increase in AOD near clouds was mitigated by selecting only scenes with cloud fraction (CF) < 0.1. For CF > 0.1 and ΔT14 > ~20°C, the increase of ΔT14 gradually levels off with further increase of AOD, possibly because the AOD is enhanced by aerosol upward transport and detrainment through the clouds below the T14 isotherm. The bias in the retrieved re due to the different geometries of solar illumination was also quantified. It was shown that the retrievals are valid only for backscatter views or when avoiding scenes with significant amount of cloud self-shadowing. These artifacts might have contributed to past reported relationships between cloud properties and AOD.

  1. Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne

    2007-01-01

    Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.

  2. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  3. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  4. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2004-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.

  5. A physical model of Titan's aerosols.

    PubMed

    Toon, O B; McKay, C P; Griffith, C A; Turco, R P

    1992-01-01

    Microphysical simulations of Titan's stratospheric haze show that aerosol microphysics is linked to organized dynamical processes. The detached haze layer may be a manifestation of 1 cm sec-1 vertical velocities at altitudes above 300 km. The hemispherical asymmetry in the visible albedo may be caused by 0.05 cm sec-1 vertical velocities at altitudes of 150 to 200 km, we predict contrast reversal beyond 0.6 micrometer. Tomasko and Smith's (1982, Icarus 51, 65-95) model, in which a layer of large particles above 220 km altitude is responsible for the high forward scattering observed by Rages and Pollack (1983, Icarus 55, 50-62), is a natural outcome of the detached haze layer being produced by rising motions if aerosol mass production occurs primarily below the detached haze layer. The aerosol's electrical charge is critical for the particle size and optical depth of the haze. The geometric albedo, particularly in the ultraviolet and near infrared, requires that the particle size be near 0.15 micrometer down to altitudes below 100 km, which is consistent with polarization observations (Tomasko and Smith 1982, West and Smith 1991, Icarus 90, 330-333). Above about 400 km and below about 150 km Yung et al.'s (1984, Astrophys. J. Suppl. Ser. 55, 465-506) diffusion coefficients are too small. Dynamical processes control the haze particles below about 150 km. The relatively large eddy diffusion coefficients in the lower stratosphere result in a vertically extensive region with nonuniform mixing ratios of condensable gases, so that most hydrocarbons may condense very near the tropopause rather than tens of kilometers above it. The optical depths of hydrocarbon clouds are probably less than one, requiring that abundant gases such as ethane condense on a subset of the haze particles to create relatively large, rapidly removed particles. The wavelength dependence of the optical radius is calculated for use in analyzing observations of the geometric albedo. The lower

  6. Study on optical and microphysical properties of mixed aerosols from lidar during the EMEP 2012 summer campaign at 45oN 26oE

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Nicolae, Doina; Belegante, Livio; Marmureanu, Luminita

    2013-04-01

    Aerosols optical and chemical properties in the upper layers of the atmosphere and near ground are variable, as function of the different mixtures of aerosol components resulting from their origin and transport over polluted areas. Due to a complex dynamics of air masses, the Romanian atmosphere has strong influences from dust and biomass-burning transported from South, West or East Europe. The dominant transport, and consequently the dominant aerosol type, depends on the season. As a result of the transport distance from the source and depending on the chemical and physical characteristics of the particles, tropospheric aerosols detected at Magurele, Romania, show different optical and microphysical properties than at the originating source. The differences are caused by the mixing with local particles, and also by the ageing processes and hygroscopic growth during the transport. This paper presents a statistical analysis of tropospheric aerosol optical properties during the EMEP (European Monitoring and Evaluation Programme) summer campaign (08 June - 17 July 2012), as retrieved from multiwavelength Raman and depolarization lidar data. Three elastic (1064, 532 and 355 nm), two Raman (607 and 387 nm) and one depolarization channel (532 nm parallel / 532 nm cross) are used to independently retrieve the backscatter coefficient, extinction coefficient and linear particle depolarization ratio of aerosols between 0.8 and 10 km altitude. Intensive optical parameters (Angstrom exponent, color ratios and color indexes) and microphysical parameters (effective radius, complex refractive index) from multiwavelength optical data inversion of the layer mean values are obtained. During the campaign, aerosol profiles were measured daily around sunset, following EARLINET standards. An intensive 3-days continuous measurements exercise was also performed. Layers were generally present above 2 km and bellow 6 km altitude, but descent of air masses from the free troposphere to the

  7. Chemical, microphysical and optical properties of the aerosols during foggy and nonfoggy day over a typical location in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Tripathi, S. N.; Gupta, T.

    2012-04-01

    An extensive experimental measurement was carried out from January 16, 2010 to February 20, 2010 at Kanpur to study the chemical, microphysical and optical properties of the aerosols. A Micro-Pulse Lidar Network (MPLNET), a part of National Aeronautic Space Administration (NASA), was used for identification of fog duration. PM1 samples and fogwater were collected to examine the organic and inorganic species of aerosol and fogwater. Organic Carbon (OC), Elemental Carbon (EC) and water soluble organic carbon analysis were carried out by an EC-OC analyzer and a TOC analyzer, respectively. Trace gases and solar flux measurement were carried out by gas analyzers and a pyranometer (a part of NASA Aeronet), respectively, to identify the photo-chemical activity. Meteorological data were measured by atmospheric weather station. The microphysical properties such as aerosol size distribution were measured using a scanning mobility particle sizer (SMPS). Optical properties were measured by a photo-acoustic soot spectrometer (PASS). Organic and inorganic species are processed by fog droplets such as production of secondary organic aerosol through aqueous mechanism (Kaul et al., 2011) and scavenging of various water soluble species. The concentrations of almost all the ionic species and organic carbon were higher in aerosols during foggy day. Presence of numerous ionic species and organic carbon in the fogwater indicates their wet scavenging and removal from the atmosphere by the fog droplets. Most of the aerosol is composed of inorganic component, ~80% during foggy day and ~85.5 % during clear day. Biomass burning contribution to PM1 mass concentration was considerably higher during clear days and lower during foggy days; lower concentration during foggy day could be due to wet scavenging of biomass generated aerosols. The study average higher number concentration of aerosol during foggy day during late evening and overnight was due to lower boundary layer height and subsequent

  8. Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes

    NASA Astrophysics Data System (ADS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L. F.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-03-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  9. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Li, J. L. F.; Mohr, K. I.

    2015-12-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products, CloudSat/CALIPSO cloud fractions, and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow/graupel as functions of temperature and mixing ratio. Despite the cloud microphysics improvements, systematic errors associated with sub-grid processes and cyclic lateral boundaries in the embedded CRMs remain and will require future improvement.

  10. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-01-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  11. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    José Granados-Muñoz, María; Bravo-Aranda, Juan Antonio; Baumgardner, Darrel; Guerrero-Rascado, Juan Luis; Pérez-Ramírez, Daniel; Navas-Guzmán, Francisco; Veselovskii, Igor; Lyamani, Hassan; Valenzuela, Antonio; José Olmo, Francisco; Titos, Gloria; Andrey, Javier; Chaikovsky, Anatoli; Dubovik, Oleg; Gil-Ojeda, Manuel; Alados-Arboledas, Lucas

    2016-03-01

    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within

  12. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  13. Tropospheric Vertical Profiles of Aerosol Optical, Microphysical and Concentration Properties in the Frame of the Hygra-CD Campaign (Athens, Greece 2014): A Case Study of Long-Range Transport of Mixed Aerosols

    NASA Astrophysics Data System (ADS)

    Papayannis, Alexandros; Argyrouli, Athina; Müller, Detlef; Tsaknakis, Georgios; Kokkalis, Panayotis; Binietoglou, Ioannis; Kazadzis, Stelios; Solomos, Stavros; Amiridis, Vassilis

    2016-06-01

    Combined multi-wavelength aerosol Raman lidar and sun photometry measurements were performed during the HYGRA-CD campaign over Athens, Greece during May-June 2014. The retrieved aerosol optical properties (3 aerosol backscatter at 355-532-1064 nm and 2 aerosol extinction profiles at 355-532 nm) were used as input to an inversion code to retrieve the aerosol microphysical properties (effective radius reff and number concentration N) using regularization techniques. Additionally, the volume concentration profile was derived for fine particles using the LIRIC code. In this paper we selected a complex case study of long-range transport of mixed aerosols (biomass burning particles mixed with dust) arriving over Athens between 10-12 June 2014 in the 1.5-4 km height. Between 2-3 km height we measured mean lidar ratios (LR) ranging from 45 to 58 sr (at 355 and 532 nm), while the Ångström exponent (AE) aerosol extinction-related values (355nm/532nm) ranged between 0.8-1.3. The retrieved values of reff and N ranged from 0.19±0.07 to 0.22±0.07 μm and 460±230 to 2200±2800 cm-3, respectively. The aerosol linear depolarization ratio (δ) at 532 nm was lower than 5-7% (except for the Saharan dust cases, where δ~10-15%).

  14. Evaluation of Aerosol-Cloud Interactions in GISS ModelE Using ASR Observations

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Menon, S.; Bauer, S. E.; Toto, T.; Bennartz, R.; Cribb, M.

    2011-12-01

    The impacts of aerosol particles on clouds continue to rank among the largest uncertainties in global climate simulation. In this work we assess the capability of the NASA GISS ModelE, coupled to MATRIX aerosol microphysics, in correctly representing warm-phase aerosol-cloud interactions. This evaluation is completed through the analysis of a nudged, multi-year global simulation using measurements from various US Department of Energy sponsored measurement campaigns and satellite-based observations. Campaign observations include the Aerosol Intensive Operations Period (Aerosol IOP) and Routine ARM Arial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) at the Southern Great Plains site in Oklahoma, the Marine Stratus Radiation, Aerosol, and Drizzle (MASRAD) campaign at Pt. Reyes, California, and the ARM mobile facility's 2008 deployment to China. This combination of datasets provides a variety of aerosol and atmospheric conditions under which to test ModelE parameterizations. In addition to these localized comparisons, we provide the results of global evaluations completed using measurements derived from satellite remote sensors. We will provide a basic overview of simulation performance, as well as a detailed analysis of parameterizations relevant to aerosol indirect effects.

  15. Multicomponent aerosol dynamics model UHMA: model development and validation

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Lehtinen, K. E. J.; Kulmala, M.

    2004-05-01

    A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model) was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosized clusters by organic vapours (Nano-Köhler theory), as well as recent parameterizations for binary H2SO4-H2O and ternary H2SO4-NH3-H2O homogeneous nucleation and dry deposition. The representation of particle size distribution can be chosen from three sectional methods: the hybrid method, the moving center method, and the retracking method in which moving sections are retracked to a fixed grid after a certain time interval. All these methods can treat particle emissions and atmospheric transport consistently, and are therefore suitable for use in large scale atmospheric models. In a test simulation against an accurate high resolution solution, all the methods showed reasonable treatment of new particle formation with 20 size sections although the hybrid and the retracking methods suffered from artificial widening of the distribution. The moving center approach, on the other hand, showed extra dents in the particle size distribution and failed to predict the onset of detectable particle formation. In a separate test simulation of an observed nucleation event, the model captured the key qualitative behaviour of the system well. Furthermore, its prediction of the organic volume fraction in newly formed particles, suggesting values as high as 0.5 for 3-4 nm particles and approximately 0.8 for 10 nm particles, agrees with recent indirect composition measurements.

  16. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  17. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  18. Comparison of Aerosol Optical and Microphysical Retrievals from HSRL-2 and in-Situ Measurements During DISCOVER-AQ 2013 (California and Texas)

    NASA Astrophysics Data System (ADS)

    Sawamura, Patricia; Müller, Detlef; Burton, Sharon; Chemyakin, Eduard; Hostetler, Chris; Ferrare, Richard; Kolgotin, Alexei; Ziemba, Luke; Beyersdorf, Andreas; Anderson, Bruce

    2016-06-01

    The combination of backscatter coefficients measured at 355, 532 and 1064 nm and extinction coefficients at 355 and 532 nm (i.e. 3β+2α) can be used to retrieve profiles of optical and microphysical properties of aerosols, such as effective radius, total volume concentration and total number concentration. NASA LaRC HSRL-2 is an airborne multi-wavelength high spectral resolution lidar in operation that provides the full 3β+2α dataset. HSRL-2 was deployed during DISCOVER-AQ along with other airborne and ground-based instruments that also measured many aerosol parameters in close proximity to the HSRL-2 system, allowing us to evaluate the performance of an automated and unsupervised retrieval algorithm that has been recently developed. We present the results from California (Jan/Feb 2013) and Texas (Sep 2013) DISCOVER-AQ.

  19. Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece

    NASA Astrophysics Data System (ADS)

    Papayannis, Alexandros; Argyrouli, Athina; Kokkalis, Panayotis; Tsaknakis, Georgios; Binietoglou, Ioannis; Solomos, Stavros; Kazadzis, Stylianos; Samaras, Stefanos; Böckmann, Christine; Raptis, Panagiotis; Amiridis, Vassilis

    2016-06-01

    Multi-wavelength aerosol Raman lidar measurements with elastic depolarization at 532 nm were combined with sun photometry during the HYGRA-CD campaign over Athens, Greece, on May-June 2014. We retrieved the aerosol optical [3 aerosol backscatter profiles (baer) at 355-532-1064 nm, 2 aerosol extinction (aaer) profiles at 355-532 nm and the aerosol linear depolarization ratio (δ) at 532 nm] and microphysical properties [effective radius (reff), complex refractive index (m), single scattering albedo (ω)]. We present a case study of a long distance transport (~3.500-4.000 km) of biomass burning particles mixed with dust from the Russian Federation-Kazakhstan regions arriving over Athens on 21-23 May 2014 (1.7-3.5 km height). On 23 May, between 2-2.75 km we measured mean lidar ratios (LR) of 35 sr (355 nm) and 42 sr (532 nm), while the mean Ångström exponent (AE) aerosol backscatter-related values (355nm/532nm and 532nm/1064nm) were 2.05 and 1.22, respectively; the mean value of δ at 532 nm was measured to be 9%. For that day the retrieved mean aerosol microphysical properties at 2-2.75 km height were: reff=0.26 μm (fine mode), reff=2.15 μm (coarse mode), m=1.36+0.00024i, ω=0.999 (355 nm, fine mode), ω=0.992(355 nm, coarse mode), ω=0.997 (532 nm, fine mode), and ω=0.980 (532 nm, coarse mode).

  20. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect

    Kollias, P.; Luke, E.; Szyrmer, W.; Rémillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  1. Representing Cloud Processing of Aerosol in Numerical Models

    SciTech Connect

    Mechem, D.B.; Kogan, Y.L.

    2005-03-18

    The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

  2. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2014-07-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5) which include factors such as insoluble aerosol adsorption and giant cloud condensation nuclei (CCN) activation kinetics to understand their individual impacts on global-scale cloud droplet number concentration (CDNC). Compared to the existing activation scheme in CESM/CAM5, this series of activation schemes increase the computation time by ~10% but leads to predicted CDNC in better agreement with satellite-derived/in situ values in many regions with high CDNC but in worse agreement for some regions with low CDNC. Large percentage changes in predicted CDNC occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reduced activation of sea spray aerosol after accounting for giant CCN activation kinetics. Comparison of CESM/CAM5 predictions against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes generally improve the low biases. Globally, the incorporation of all updated schemes leads to an average increase in column CDNC of 150% and an increase (more negative) in shortwave cloud forcing of 12%. With the improvement of model-predicted CDNCs and better agreement with most satellite-derived cloud properties in many regions, the inclusion of these aerosol activation

  3. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  4. Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions

    NASA Astrophysics Data System (ADS)

    Gallagher, M. W.; Connolly, P. J.; Crawford, I.; Heymsfield, A.; Bower, K. N.; Choularton, T. W.; Allen, G.; Flynn, M. J.; Vaughan, G.; Hacker, J.

    2012-07-01

    Aircraft measurements of the microphysics of a tropical convective anvil (at temperatures ~-60 °C) forming above the Hector storm, over the Tiwi Islands, Northern Australia, have been conducted with a view to determining ice crystal aggregation efficiencies from in situ measurements. The observed microphysics have been compared to an explicit bin-microphysical model of the anvil region, which includes crystal growth by vapour diffusion and aggregation and the process of differential sedimentation. It has been found in flights made using straight and level runs perpendicular to the storm that the number of ice crystals initially decreased with distance from the storm as aggregation took place resulting in larger crystals, followed by their loss from the cloud layer due to sedimentation. The net result was that the mass (i.e. Ice Water Content) in the anvil Ci cloud decreased, but also that the average particle size (weighted by number) remained relatively constant along the length of the anvil outflow. Comparisons with the explicit microphysics model showed that the changes in the shapes of the ice crystal spectra as a function of distance from the storm could be explained by the model if the aggregation efficiency was set to values of Eagg~0.5 and higher. This result is supported by recent literature on aggregation efficiencies for complex ice particles and suggests that either the mechanism of particle interlocking is important to the aggregation process, or that other effects are occuring, such as enhancement of ice-aggregation by high electric fields that arise as a consequence of charge separation within the storm. It is noteworthy that this value of the ice crystal aggregation efficiency is much larger than values used in cloud resolving models at these temperatures, which typically use E~0.0016. These results are important to understanding how cold clouds evolve in time and for the treatment of the evolution of tropical Ci in numerical models.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    ]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  6. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2016-04-01

    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  7. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2012-01-01

    Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  8. Insights on TTL dehydration mechanisms from microphysical modelling of aircraft observations

    NASA Astrophysics Data System (ADS)

    Ueyama, R.; Pfister, L.; Jensen, E. J.

    2013-12-01

    The dynamical and microphysical processes that influence water vapor concentrations in the Tropical Tropopause Layer (TTL) are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the tropics and elucidate the dominant processes in the winter and summer seasons. Implications of the TTL dehydration processes for the regulation of global stratospheric humidity will be discussed.

  9. Insights on TTL Dehydration Mechanisms from Microphysical Modelling of Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Ueyama, R.; Pfister, L.; Jensen, E.

    2014-01-01

    The Tropical Tropopause Layer (TTL), a transition layer between the upper troposphere and lower stratosphere in the tropics, serves as the entryway of various trace gases into the stratosphere. Of particular interest is the transport of water vapor through the TTL, as WV is an important greenhouse gas and also plays a significant role in stratospheric chemistry by affecting polar stratospheric cloud formation and the ozone budget. While the dominant control of stratospheric water vapor by tropical cold point temperatures via the "freeze-drying" process is generally well understood, the details of the TTL dehydration mechanisms, including the relative roles of deep convection, atmospheric waves and cloud microphysical processes, remain an active area of research. The dynamical and microphysical processes that influence TTL water vapor concentrations are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We first confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific in Oct-Nov 2011 and Jan-Feb 2013. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the 30ºS-30ºN latitudinal belt and elucidate the dominant processes

  10. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  11. Assessment of aerosol optical and micro-physical features retrieved from direct and diffuse solar irradiance measurements from Skyradiometer at a high altitude station at Merak: Assessment of aerosol optical features from Merak.

    PubMed

    Ningombam, Shantikumar S; Srivastava, A K; Bagare, S P; Singh, R B; Kanawade, V P; Dorjey, Namgyal

    2015-11-01

    Optical and micro-physical features of aerosol are reported using Skyradiometer (POM-01L, Prede, Japan) observations taken from a high-altitude station Merak, located in north-eastern Ladakh of the western trans-Himalayas region during January 2011 to December 2013. The observed daily mean aerosol optical depth (AOD, at 500 nm) at the site varied from 0.01 to 0.14. However, 75 % of the observed AOD lies below 0.05 during the study period. Seasonal peaks of AOD occurred in spring as 0.06 and minimum in winter as 0.03 which represents the aged background aerosols at the site. Yearly mean AOD at 500 nm is found to be around 0.04 and inter-annual variations of AOD is very small (nearly ±0.01). Angstrom exponent (a) varied seasonally from 0.73 in spring to 1.5 in autumn. About 30 % of the observed a lies below 0.8 which are the indicative for the presence of coarse-mode aerosols at the site. The station exhibits absorbing aerosol features which prominently occurred during spring and that may be attributed by the transported anthropogenic aerosol from Indo-Gangatic Plain (IGP). Results were well substantiated with the air mass back-trajectory analysis. Furthermore, seasonal mean of single scattering albedo (SSA at 500 nm) varied from of 0.94 to 0.98 and a general increasing trend is noticed from 400 to 870 nm wavelengths. These features are apparently regional characteristics of the site. Aerosol asymmetry factor (AS) decreases gradually from 400 to 870 nm and varied from 0.66 to 0.69 at 500 nm across the seasons. Dominance of desert-dust aerosols, associated by coarse mode, is indicated by tri-modal features of aerosol volume size distribution over the station during the entire seasons. PMID:26081773

  12. Sensitivity of a Cloud-Resolving Model to the Bulk and Explicit Bin Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Wen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne

    2004-01-01

    A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the traditional bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-1 1,1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. Furthermore, the observations and the well-proven bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that the bulk and bin simulations have distinct differences, most notably in the stratiform region of the squall line system. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region simulated in the bulk scheme model are remnants of the stronger convections previously at the leading edge of the system, sustained by horizontal vorticity generated by its own cool pool near the surface. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in the convective zone simulated in the bulk microphysical scheme, which is unrealistic because of the assumptions made in raindrop size distribution. Further sensitivity tests that reduce the evaporation rate in bulk scheme artificially produce more upright convective core and less weak cores in stratiform region. However, they produce weaker upper level outflow and consequently less stratiform rain area. The addition of a more realistic raindrop breakup scheme in the bin scheme results more

  13. Propagation of global model uncertainties in aerosol forecasting: A field practitioner's opinion

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Benedetti, A.; Bozzo, A.; Brooks, I. M.; Brooks, M.; Colarco, P. R.; daSilva, A.; Flatau, M. K.; Kuehn, R.; Hansen, J.; Holz, R.; Kaku, K.; Lynch, P.; Remy, S.; Rubin, J. I.; Sekiyama, T. T.; Tanaka, T. Y.; Zhang, J.

    2015-12-01

    While aerosol forecasting has its own host of aerosol source, sink and microphysical challenges to overcome, ultimately any numerical weather prediction based aerosol model can be no better than its underlying meteorology. However, the scorecard elements that drive NWP model development have varying relationships to the key uncertainties and biases that are of greatest concern to aerosol forecasting. Here we provide opinions from member developers of the International Cooperative for Aerosol Prediction (ICAP) on NWP deficiencies related to multi-specie aerosol forecasting, as well as relevance of current NWP scorecard elements to aerosol forecasting. Comparisons to field mission data to simulations are used to demonstrate these opinions and show how shortcomings in individual processes in the global models cascade into aerosol prediction. While a number of sensitivities will be outlined, as one would expect, the most important processes relate to aerosol sources, sinks and, in the context of data assimilation, aerosol hygroscopicity. Thus, the pressing needs in the global models relate to boundary layer and convective processes in the context of large scale waves. Examples will be derived from tropical to polar field measurements, from simpler to more complex including a) network data on dust emissions and transport from Saharan Africa, b) boundary layer development, instability, and deep convection in the United States during Studies of Emissions and Atmospheric, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS); and c) 7 Southeast Asian Studies (7SEAS) data on aerosol influences by maritime convection up-scaled through tropical waves. While the focus of this talk is how improved meteorological model processes are important to aerosol modeling, we conclude with recent findings of the Arctic Summer Cloud Ocean Study (ASCOS) which demonstrate how aerosol processes may be important to global model simulations of polar cloud, surface energy and subsequently

  14. Combined aerosol in-situ measurements during the SALTRACE field experiment for the investigation of Saharan mineral dust microphysical and CCN properties and their spatial-temporal evolution during trans-Atlantic long-range transport

    NASA Astrophysics Data System (ADS)

    Walser, Adrian; Dollner, Maximilian; Sauer, Daniel; Weinzierl, Bernadett

    2015-04-01

    The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was a field experiment conducted in June/July 2013, which aimed to investigate the transport and modification of Saharan mineral dust from the Sahara across the Atlantic Ocean to the Caribbean. In addition to ground-based measurements and satellite remote sensing, the DLR Falcon research aircraft was equipped with a number of aerosol in-situ instruments to gain direct information on the properties of airborne aerosol such as size distributions, microphysical, optical and cloud-condensation nuclei (CCN) properties. For the first time, several outbreaks of Saharan dust were probed with the same airborne instrumentation on both sides of the Atlantic. During transport, various processes may take place that modify the aerosol composition. Dry and wet deposition lead to a size-dependent aerosol removal. In case of wet deposition, the removal additionally depends on the particle's ability to act as CCN. Processes in the aqueous phase in subsequently re-evaporating cloud droplets can further alter microphysical and CCN properties of re-released particles. All resulting changes in the size distribution and particle properties impact the radiative feedback and CCN activity of the aged aerosol. This study aims to use combined airborne in-situ measurements to retrieve and compare vertically resolved aerosol size distributions, microphysical and CCN properties for both, short-range transported Saharan dust in the Cape Verde region and long-range transported dust in the Caribbean. We use this data to investigate the influence of long-range transport and associated processes on those properties. We will present vertical profiles of size-resolved aerosol concentrations and volatile fractions as well as CCN activated fractions and draw conclusions for aerosol mixing state, CCN activation diameters and particle hygroscopicities. We will discuss differences in vertical profiles and

  15. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of

  16. Inter-comparison of CALIPSO and CloudSat retrieved profiles of aerosol and cloud microphysical parameters with aircraft profiles over a tropical region

    NASA Astrophysics Data System (ADS)

    Padmakumari, B.; Harikishan, G.; Maheskumar, R. S.

    2016-05-01

    Satellites play a major role in understanding the spatial and vertical distribution of aerosols and cloud microphysical parameters over a large area. However, the inherent limitations in satellite retrievals can be improved through inter-comparisons with airborne platforms. Over the Indian sub-continent, the vertical profiles retrieved from space-borne lidar such as CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) on board the satellite CALIPSO and Cloud Profiling Radar (CPR) on board the satellite CloudSat were inter- compared with the aircraft observations conducted during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX). In the absence of high clouds, both aircraft and CALIOP showed similar features of aerosol layering and water-ice cloud signatures. As CALIOP could not penetrate the thick clouds, the aerosol information below the cloud is missed. While the aircraft could measure high concentrations below the cloud base and above the low clouds in the presence of high clouds. The aircraft derived liquid water content (LWC) and droplet effective radii (Re) showed steady increase from cloud base to cloud top with a variable cloud droplet number concentration (CDNC). While the CloudSat derived LWC, CDNC and Re showed increase from the cloud top to cloud base in contradiction to the aircraft measurements. The CloudSat profiles are underestimated as compared to the corresponding aircraft profiles. Validation of satellite retrieved vertical profiles with aircraft measurements is very much essential over the tropics to improve the retrieval algorithms and to constrain the uncertainties in the regional cloud parameterization schemes.

  17. Numerical Modelling of Gelating Aerosols

    SciTech Connect

    Babovsky, Hans

    2008-09-01

    The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.

  18. Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation

    NASA Astrophysics Data System (ADS)

    Sheng, Jian-Xiong; Weisenstein, Debra K.; Luo, Bei-Ping; Rozanov, Eugene; Stenke, Andrea; Anet, Julien; Bingemer, Heinz; Peter, Thomas

    2015-01-01

    The global atmospheric sulfur budget and its emission dependence have been investigated using the coupled aerosol-chemistry-climate model SOCOL-AER. The aerosol module comprises gaseous and aqueous sulfur chemistry and comprehensive microphysics. The particle distribution is resolved by 40 size bins spanning radii from 0.39 nm to 3.2 μm, including size-dependent particle composition. Aerosol radiative properties required by the climate model are calculated online from the aerosol module. The model successfully reproduces main features of stratospheric aerosols under nonvolcanic conditions, including aerosol extinctions compared to Stratospheric Aerosol and Gas Experiment II (SAGE II) and Halogen Occultation Experiment, and size distributions compared to in situ measurements. The calculated stratospheric aerosol burden is 109 Gg of sulfur, matching the SAGE II-based estimate (112 Gg). In terms of fluxes through the tropopause, the stratospheric aerosol layer is due to about 43% primary tropospheric aerosol, 28% SO2, 23% carbonyl sulfide (OCS), 4% H2S, and 2% dimethyl sulfide (DMS). Turning off emissions of the short-lived species SO2, H2S, and DMS shows that OCS alone still establishes about 56% of the original stratospheric aerosol burden. Further sensitivity simulations reveal that anticipated increases in anthropogenic SO2 emissions in China and India have a larger influence on stratospheric aerosols than the same increase in Western Europe or the U.S., due to deep convection in the western Pacific region. However, even a doubling of Chinese and Indian emissions is predicted to increase the stratospheric background aerosol burden only by 9%. In contrast, small to moderate volcanic eruptions, such as that of Nabro in 2011, may easily double the stratospheric aerosol loading.

  19. A modeling study of the effects of aerosols on clouds and precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Xie, Xiaoning; Yin, Zhi-Yong; Liu, Changhai; Gettelman, Andrew

    2011-12-01

    The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison-Gettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year 2000) and the other the pre-industrial conditions (year 1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol's second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol's radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.

  20. All-human microphysical model of metastasis therapy.

    PubMed

    Wheeler, Sarah E; Borenstein, Jeffrey T; Clark, Amanda M; Ebrahimkhani, Mohammad R; Fox, Ira J; Griffith, Linda; Inman, Walker; Lauffenburger, Douglas; Nguyen, Transon; Pillai, Venkateswaran C; Prantil-Baun, Rachelle; Stolz, Donna B; Taylor, Donald; Ulrich, Theresa; Venkataramanan, Raman; Wells, Alan; Young, Carissa

    2013-01-01

    The vast majority of cancer mortalities result from distant metastases. The metastatic microenvironment provides unique protection to ectopic tumors as the primary tumors often respond to specific agents. Although significant interventional progress has been made on primary tumors, the lack of relevant accessible model in vitro systems in which to study metastases has plagued metastatic therapeutic development--particularly among micrometastases. A real-time, all-human model of metastatic seeding and cancer cells that recapitulate metastatic growth and can be probed in real time by a variety of measures and challenges would provide a critical window into the pathophysiology of metastasis and pharmacology of metastatic tumor resistance. To achieve this we are advancing our microscale bioreactor that incorporates human hepatocytes, human nonparenchymal liver cells, and human breast cancer cells to mimic the hepatic niche in three dimensions with functional tissue. This bioreactor is instrumented with oxygen sensors, micropumps capable of generating diurnally varying profiles of nutrients and hormones, while enabling real-time sampling. Since the liver is a major metastatic site for a wide variety of carcinomas and other tumors, this bioreactor uniquely allows us to more accurately recreate the human metastatic microenvironment and probe the paracrine effects between the liver parenchyma and metastatic cells. Further, as the liver is the principal site of xenobiotic metabolism, this reactor will help us investigate the chemotherapeutic response within a metabolically challenged liver microenvironment. This model is anticipated to yield markers of metastatic behavior and pharmacologic metabolism that will enable better clinical monitoring, and will guide the design of clinical studies to understand drug efficacy and safety in cancer therapeutics. This highly instrumented bioreactor format, hosting a growing tumor within a microenvironment and monitoring its responses

  1. A new single-moment microphysics scheme for cloud-resolving models using observed dependence of ice concentration on temperature.

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M.

    2015-12-01

    The representation of microphysics, especially ice microphysics, remains one of the major uncertainties in cloud-resolving models (CRMs). Most of the cloud schemes use the so-called bulk microphysics approach, in which a few moments of such distributions are used as the prognostic variables. The System for Atmospheric Modeling (SAM) is the CRM that employs two such schemes. The single-moment scheme, which uses only mass for each of the water phases, and the two-moment scheme, which adds the particle concentration for each of the hydrometeor category. Of the two, the single-moment scheme is much more computationally efficient as it uses only two prognostic microphysics variables compared to ten variables used by the two-moment scheme. The efficiency comes from a rather considerable oversimplification of the microphysical processes. For instance, only a sum of the liquid and icy cloud water is predicted with the temperature used to diagnose the mixing ratios of different hydrometeors. The main motivation for using such simplified microphysics has been computational efficiency, especially in the applications of SAM as the super-parameterization in global climate models. Recently, we have extended the single-moment microphysics by adding only one additional prognostic variable, which has, nevertheless, allowed us to separate the cloud ice from liquid water. We made use of some of the recent observations of ice microphysics collected at various parts of the world to parameterize several aspects of ice microphysics that have not been explicitly represented before in our sing-moment scheme. For example, we use the observed broad dependence of ice concentration on temperature to diagnose the ice concentration in addition to prognostic mass. Also, there is no artificial separation between the pristine ice and snow, often used by bulk models. Instead we prescribed the ice size spectrum as the gamma distribution, with the distribution shape parameter controlled by the

  2. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    SciTech Connect

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.

  3. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    DOE PAGES

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less

  4. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    NASA Technical Reports Server (NTRS)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  5. Aerosol variability, synoptic-scale processes, and their link to the cloud microphysics over the northeast Pacific during MAGIC

    NASA Astrophysics Data System (ADS)

    Painemal, David; Minnis, Patrick; Nordeen, Michele

    2015-05-01

    Shipborne aerosol measurements collected from October 2012 to September 2013 along 36 transects between the port of Los Angeles, California (33.7°N, 118.2°), and Honolulu, Hawaii (21.3°N, 157.8°W), during the Marine ARM GPCI (Global Energy and Water Cycle Experiment (GEWEX)-Cloud System Study (GCSS)-Pacific Cross-section Intercomparison) Investigation of Clouds campaign are analyzed to determine the circulation patterns that modulate the synoptic and monthly variability of cloud condensation nuclei (CCN) in the boundary layer. Seasonal changes in CCN are evident, with low magnitudes during autumn/winter, and high CCN during spring/summer accompanied with a characteristic westward decrease. CCN monthly evolution is consistent with satellite-derived cloud droplet number concentration Nd from the Moderate Resolution Imaging Spectroradiometer. One-point correlation (r) analysis between the 1000 hPa zonal wind time series over a region between 125°W and 135°W, 35°N and 45°N, and the Nd field yields a negative r (up to -0.55) over a domain that covers a zonal extent of at least 20° from the California shoreline, indicating that Nd decreases when the zonal wind intensifies. The negative r expands southwestward as the zonal wind precedes Nd by up to 3 days, suggesting a transport mechanism from the coast of North America mediated by the California low-coastal jet, which intensifies in summer when the aerosol concentration and Nd reach a maximum. A first assessment of aerosol-cloud interaction (ACI) is performed by combining CCN and satellite Nd values from the Fifteenth Geostationary Operational Environmental Satellite. The CCN-Nd correlation is 0.66-0.69, and the ACI metric defined as ACI = ∂ln(Nd)/∂ln(CCN) is high at 0.9, similar to other aircraft-based studies and substantially greater than those inferred from satellites and climate models.

  6. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.

    2001-01-01

    The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.

  7. Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part 2; Cloud Microphysics and Storm Dynamics Interactions

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2009-01-01

    Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.

  8. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  9. A Hierarchical Modeling Study of the Interactions Among Turbulence, Cloud Microphysics, and Radiative Transfer in the Evolution of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Curry, Judith; Khvorostyanov, V. I.

    2005-01-01

    This project used a hierarchy of cloud resolving models to address the following science issues of relevance to CRYSTAL-FACE: What ice crystal nucleation mechanisms are active in the different types of cirrus clouds in the Florida area and how do these different nucleation processes influence the evolution of the cloud system and the upper tropospheric humidity? How does the feedback between supersaturation and nucleation impact the evolution of the cloud? What is the relative importance of the large-scale vertical motion and the turbulent motions in the evolution of the crystal size spectra? How does the size spectra impact the life-cycle of the cloud, stratospheric dehydration, and cloud radiative forcing? What is the nature of the turbulence and waves in the upper troposphere generated by precipitating deep convective cloud systems? How do cirrus microphysical and optical properties vary with the small-scale dynamics? How do turbulence and waves in the upper troposphere influence the cross-tropopause mixing and stratospheric and upper tropospheric humidity? The models used in this study were: 2-D hydrostatic model with explicit microphysics that can account for 30 size bins for both the droplet and crystal size spectra. Notably, a new ice crystal nucleation scheme has been incorporated into the model. Parcel model with explicit microphysics, for developing and evaluating microphysical parameterizations. Single column model for testing bulk microphysics parameterizations

  10. Simulation of hailstorm event using Mesoscale Model MM5 with modified cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Chatterjee, P.; Pradhan, D.; de, U. K.

    2008-11-01

    Mesoscale model MM5 (Version 3.5) with some modifications in the cloud microphysics scheme of Schultz (1995), has been used to simulate two hailstorm events over Gangetic Plain of West Bengal, India. While the first event occurred on 12 March 2003 and the hails covered four districts of the state of West Bengal, India, the second hailstorm event struck Srinikatan (22.65° N, 87.7° E) on 10 April 2006 at 11:32 UT and it lasted for 2 3 min. Both these events can be simulated, if the same modifications are introduced in the cloud microphysics scheme of Schultz. However, the original scheme of Schultz cannot simulate any hail. The results of simulation were compared with the necessary products of Doppler Weather Radar (DWR) located at Kolkata (22.57° N, 88.35° E). Model products like reflectivity, graupel and horizontal wind are compared with the corresponding products of DWR. The pattern of hail development bears good similarity between model output and observation from DWR, if necessary modifications are introduced in the model. The model output of 24 h accumulated rain from 03:00 UT to next day 03:00 UT has also been compared with the corresponding product of the satellite TRMM.

  11. Crack healing in rocksalt via diffusion in adsorbed aqueous films: Microphysical modelling versus experiments

    NASA Astrophysics Data System (ADS)

    Houben, M. E.; ten Hove, A.; Peach, C. J.; Spiers, C. J.

    Microcracks within the excavation damaged or disturbed zone (EDZ) in a salt-based radioactive waste repository (or an energy storage facility) can heal/seal by mechanical closure driven by compaction creep, by surface-energy-driven processes like diffusive mass transfer, and by recrystallization. It follows that permeability evolution in the excavation damaged zone around a backfilled or plugged cavity will in the short term be dominated by mechanical closure of the cracks, while in the longer term diffusive mass transfer effects are expected to become more important. This paper describes a contribution to assessing the integrity of radioactive waste repositories sited in rocksalt formations by developing a microphysical model for single crack healing in rocksalt. More specifically, single crack healing models for cracks containing a thin adsorbed water film are developed. These microphysical models are compared with single crack healing experiments, which conclusively demonstrate diffusion controlled healing. Calibration of unknown model parameters, related to crack surface diffusivity, against the experimental data enable crack healing rates under repository conditions to be estimated. The results show that after the stress re-equilibration that follows repository sealing, crack disconnection can be expected on a timescale of a few years at laboratory humidity levels. However, much longer times are needed under very dry conditions where adsorbed aqueous films are very thin.

  12. A microphysically-based approach to modeling emissivity and albedo of the martian seasonal caps

    USGS Publications Warehouse

    Eluszkiewicz, J.; Moncet, J.-L.; Titus, T.N.; Hansen, G.B.

    2005-01-01

    A new model of albedo and emissivity of the martian seasonal caps represented as porous CO2 slabs containing spherical voids and dust particles is described. In the model, a radiative transfer model is coupled with a microphysical model in order to link changes in albedo and emissivity to changes in porosity caused by ice metamorphism. The coupled model is capable of reproducing temporal changes in the spectra of the caps taken by the Thermal Emission Spectrometer onboard the Mars Global Surveyor and it can be used as the forward model in the retrievals of the caps' physical properties (porosity, dust abundance, void and dust grain size) from the spectra. Preliminary results from such inversion studies are presented. ?? 2004 Elsevier Inc. All rights reserved.

  13. Review of models applicable to accident aerosols

    SciTech Connect

    Glissmeyer, J.A.

    1983-07-01

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  14. Final Report fir DE-SC0005507 (A1618): The Development of an Improved Cloud Microphysical Product for Model and Remote Sensing Evaluation using RACORO Observations

    SciTech Connect

    McFarquhar, Greg M.

    2012-09-21

    We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds, effective radius of water drops, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database. we investigated the differences in the size distributions measured by the Cloud and Aerosol Spectrometer (CAS) and the Forward Scattering Probe (FSSP), between the one dimensional cloud imaging probe (1DC) and the two-dimensional cloud imaging probe (2DC), and between the bulk LWCs measured by the Gerber probe against those derived from the size resolved probes.

  15. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Starr, David (Technical Monitor)

    2002-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1

  16. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  17. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    SciTech Connect

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-28

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power law relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.

  18. Diversity of Aerosol Optical Thickness in analysis and forecasting modes of the models from the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Lynch, P.

    2014-12-01

    With the emergence of global aerosol models intended for operational forecasting use at global numerical weather prediction (NWP) centers, the International Cooperative for Aerosol Prediction (ICAP) was founded in 2010. One of the objectives of ICAP is to develop a global multi-model aerosol forecasting ensemble (ICAP-MME) for operational and basic research use. To increase the accuracy of aerosol forecasts, several of the NWP centers have incorporated assimilation of satellite and/or ground-based observations of aerosol optical thickness (AOT), the most widely available and evaluated aerosol parameter. The ICAP models are independent in their underlying meteorology, as well as aerosol sources, sinks, microphysics and chemistry. The diversity of aerosol representations in the aerosol forecast models results in differences in AOT. In addition, for models that include AOT assimilations, the diversity in assimilation methodology, the observed AOT data to be assimilated, and the pre-assimilation treatments of input data also leads to differences in the AOT analyses. Drawing from members of the ICAP latest generation of quasi-operational aerosol models, five day AOT forecasts and AOT analyses are analyzed from four multi-species models which have AOT assimilations: ECMWF, JMA, NASA GSFC/GMAO, and NRL/FNMOC. For forecast mode only, we also include the dust products from NOAA NGAC, BSC, and UK Met office in our analysis leading to a total of 7 dust models. AOT at 550nm from all models are validated at regionally representative Aerosol Robotic Network (AERONET) sites and a data assimilation grade multi-satellite aerosol analysis. These analyses are also compared with the recently developed AOT reanalysis at NRL. Here we will present the basic verification characteristics of the ICAP-MME, and identify regions of diversity between model analyses and forecasts. Notably, as in many other ensemble environments, the multi model ensemble consensus mean outperforms all of the

  19. MISR UAE2 Aerosol Versioning

    Atmospheric Science Data Center

    2013-03-21

    ... the MISR aerosol microphysical properties are "Beta." Uncertainty envelopes for the aerosol optical depths are given in  Kahn et ... particle microphysical property validation is in progress, uncertainty envelopes on particle size distribution, shape, and ...

  20. Development of a detailed microphysical model for Martian dust and ice clouds

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Verhoeven, C.; Larsen, N.; Mateshvili, N.; Fussen, D.; Akingunola, D.; McConell, J. C.; Kaminski, J. W.

    2007-08-01

    Although water vapor is a minor constituent in the composition of the Martian atmosphere, water ice clouds have been observed for more than thirty years. They seem to play an important role in the atmospheric transport of water and dust. A careful and detailed modeling study of these clouds is therefore important to better understand the Martian climate. Marsbox is a new microphysical boxmodel for the dust and water ice clouds on Mars. This model has been adapted from PSCbox, a detailed model for polar stratospheric clouds in the Earth's atmosphere which has been developed at the Danish Meteorological Institute [1, 2]. Marsbox takes into account the following processes: • heterogeneous nucleation of ice particles by water vapor deposition on dust particles, • condensation and evaporation of water vapor to and from the ice particles, causing growth and shrinking of the particles, • gravitational sedimentation of the cloud particles, • eddy diffusion, which describes the vertical mixing of the cloud particles and the water vapor. Each particle type is described by a binned size distribution for the number density and composition. The model calculates the evolution in time of these size distributions, of the mixing ratio of water vapor, and of the mass of condensed water. The model uses the ambient air temperature and pressure and the partial pressure of water vapor as input. The initial size distribution of the cloud particles is assumed to follow a lognormal distribution. The model has a variable internal timestep because the microphysical processes may require computational timescales much smaller than the driver's timestep. We present the first simulations with this new model using input fields from GEMMars (or GM3), a recently developed global circulations model (GCM) for the Martian atmosphere which has been developed at York University, Toronto, Canada [3]. These first results will be compared to cloud retrievals from the SPICAM instrument on Mars

  1. Aerosol Behavior Log-Normal Distribution Model.

    2001-10-22

    HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure,more » and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.« less

  2. The Impact of Microphysics and Model Resolution on Precipitation Associated with Typhoon Morakot 2009

    NASA Technical Reports Server (NTRS)

    Lin, Pay-Liam; Chen, D.; Tao, Wei-Kuo; Shi, Jainn J.; Chang, Mei-Yu

    2010-01-01

    In recent years, the heavy rainfall that was associated with severe weather events (e.g., typhoons, local heavy precipitation events) has caused significant damages in the economy and loss of human life throughout Taiwan. Especially, the extreme heavy rainfall (over 2500 mm over 24 hours) associated with Typhoon Morakot 2009 caused more than 600 human beings lost and more than $100 million US dollar damage. In this paper, we are using WRF to simulate the precipitation processes associated Typhoon Morakot 2009. The preliminary results indicated that the wrf model with using 2 km grid size and with utilizing the 310E scheme (cloud ice, snow and hail) can simulate more than 2500 mm rainfall over 24 hour integration. In this talk, we will evaluate the performance of the microphysical schemes for the Typhoon Morakot case. In addition, we will examine the impact of model resolution (in both horizontal and vertical) on the Typhoon Morakot case.

  3. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2013-12-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical link between aerosols and clouds; parameterizations of this process realistically link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5), which include factors such as insoluble aerosol adsorption, giant cloud condensation nuclei (CCN) activation kinetics, and entrainment to understand their individual impacts on global scale cloud droplet number concentrations (CDNCs). Compared to the existing simple activation scheme in CESM/CAM5, this series of schemes predict CDNCs that are typically in better agreement with satellite-derived and observed values. The largest changes in predicted CDNCs occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reductions in cloud supersaturation from the intense absorption of water vapor in regions of strong giant CCN emissions (e.g., sea-salt). Comparison of CESM/CAM5 against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes improve the low biases in their predictions. Globally, the incorporation of all updated schemes leads to an average increase in column CDNCs of 155%, an increase in shortwave cloud forcing of 13%, and a decrease in surface shortwave radiation of 4%. In terms of meteorological impacts, these updated aerosol activation schemes result in a slight decrease in near-surface temperature of 0.9 °C and precipitation of 0.04 mm day-1

  4. A Comprehensive Two-moment Warm Microphysical Bulk Scheme :

    NASA Astrophysics Data System (ADS)

    Caro, D.; Wobrock, W.; Flossmann, A.; Chaumerliac, N.

    The microphysic properties of gaz, aerosol particles, and hydrometeors have impli- cations at local scale (precipitations, pollution peak,..), at regional scale (inundation, acid rains,...), and also, at global scale (radiative forcing,...). So, a multi-scale study is necessary to understand and forecast in a good way meteorological phenomena con- cerning clouds. However, it cannot be carried with detailed microphysic model, on account of computers limitations. So, microphysical bulk schemes have to estimate the n´ large scale z properties of clouds due to smaller scale processes and charac- teristics. So, the development of such bulk scheme is rather important to go further in the knowledge of earth climate and in the forecasting of intense meteorological phenomena. Here, a quasi-spectral microphysic warm scheme has been developed to predict the concentrations and mixing ratios of aerosols, cloud droplets and raindrops. It considers, explicitely and analytically, the nucleation of droplets (Abdul-Razzak et al., 2000), condensation/evaporation (Chaumerliac et al., 1987), the breakup and collision-coalescence processes with the Long (1974) Ss kernels and the Berry and ´ Reinhardt (1974) Ss autoconversion parameterization, but also, the aerosols and gaz ´ scavenging. First, the parameterization has been estimated in the simplest dynamic framework of an air parcel model, with the results of the detailed scavenging model, DESCAM (Flossmann et al., 1985). Then, it has been tested, in the dynamic frame- work of a kinematic model (Szumowski et al., 1998) dedicated to the HaRP cam- paign (Hawaiian Rainband Project, 1990), with the observations and with the results of the two dimensional detailed microphysic scheme, DESCAM 2-D (Flossmann et al., 1988), implement in the CLARK model (Clark and Farley, 1984).

  5. Impact of Aerosols on Tropical Cyclones: An Investigation Using Convection-permitting Model Simulation

    SciTech Connect

    Hazra, Anupam; Mukhopadhyay, P.; Taraphdar, Sourav; Chen, J. P.; Cotton, William R.

    2013-07-16

    The role of aerosols effect on two tropical cyclones over Bay of Bengal are investigated using a convection permitting model with two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the TCs are hardly affected by the changing aerosol types, but the intensity exhibits significant sensitivity due to the change in aerosol contribution. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level which, in turn, forces the lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to other two perturbations of aerosol. All these studies show the robustness of the concept of TC weakening by storm ingestion of high concentrations of CCN. The consistency of these model results gives us confidence in stating there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian sub-continent, this study suggests pollution may be weakening TCs over the Bay of Bengal.

  6. Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation

    NASA Astrophysics Data System (ADS)

    Hazra, Anupam; Mukhopadhyay, P.; Taraphdar, S.; Chen, J.-P.; Cotton, William R.

    2013-07-01

    role of aerosols' effect on two tropical cyclones over the Bay of Bengal is investigated using a convection-permitting model with a two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of the cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the tropical cyclones (TCs) are hardly affected by the changing aerosol concentrations, but the intensity exhibits significant sensitivity due to the change in aerosol concentration. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level, which, in turn, forces lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to the other two aerosol perturbations. This study, along with previous simulations, shows the robustness of the concept of TC weakening by storm ingestion of high concentrations of cloud condensation nuclei (CCN). The consistency of these model results gives us confidence in stating that there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian subcontinent, this study suggests that pollution may be weakening TCs over the Bay of Bengal.

  7. Global modeling of tropospheric iodine aerosol

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás. M.; Evans, Mat J.; Spracklen, Dominick V.; Carpenter, Lucy J.; Chance, Rosie; Baker, Alex R.; Schmidt, Johan A.; Breider, Thomas J.

    2016-09-01

    Natural aerosols play a central role in the Earth system. The conversion of dimethyl sulfide to sulfuric acid is the dominant source of oceanic secondary aerosol. Ocean emitted iodine can also produce aerosol. Using a GEOS-Chem model, we present a simulation of iodine aerosol. The simulation compares well with the limited observational data set. Iodine aerosol concentrations are highest in the tropical marine boundary layer (MBL) averaging 5.2 ng (I) m-3 with monthly maximum concentrations of 90 ng (I) m-3. These masses are small compared to sulfate (0.75% of MBL burden, up to 11% regionally) but are more significant compared to dimethyl sulfide sourced sulfate (3% of the MBL burden, up to 101% regionally). In the preindustrial, iodine aerosol makes up 0.88% of the MBL burden sulfate mass and regionally up to 21%. Iodine aerosol may be an important regional mechanism for ocean-atmosphere interaction.

  8. ISDAC Microphysics

    SciTech Connect

    McFarquhar, Greg

    2011-07-25

    Best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the National Research Council (NRC) of Canada Convair-580 during ISDAC. These files contain phase, liquid and ice crystal size distributions (Nw(D) and Ni(D) respectively), liquid water content (LWC), ice water content (IWC), extinction of liquid drops (bw), extinction of ice crystals (bi), effective radius of water drops (rew) and of ice crystals (rei) and median mass diameter of liquid drops (Dmml) and of ice crystals (Dmmi) at 30 second resolution.

  9. Investigations of aerosol impacts on MCSs convection and precipitation: a modeling study

    NASA Astrophysics Data System (ADS)

    Clavner, M.; Cotton, W. R.

    2014-12-01

    Mesoscale Convective Systems (MCSs) are important contributors to rainfall in the High Plains of the United States. It is therefore of interest to understand how different vertical distributions and concentrations of aerosols serving as cloud condensation nuclei (CCN) may impact the amount, intensity, and spatial distribution of precipitation produced by MCSs. Unlike ordinary cumulonimbi, MCSs are organized convection systems composed of convective upright updrafts and downdrafts, as well as slowly ascending and descending slantwise motions. These motions can supply moisture to the stratiform-anvil of the MCS without passing through the convective cores. Moreover, the slantwise ascending motions originate some 3-5km above ground level thereby consisting of air with different properties than upright convective updrafts. In order to study the impact of enhanced potential CCN concentrations on MCS precipitation, it is important to understand aerosol microphysical impacts on the dynamics of the different modes of convection within the MCS. In this study, different aerosol concentrations and their effects on the dynamics of the different modes of MCS convection are examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). Four simulations were conducted, where each simulation differed in the initial aerosol concentrations as well as their vertical distributions. Previous studies have shown that enhanced aerosols invigorate upright convective updrafts, however, the microphysical effects of increased aerosols and their impact on the dynamics of the slow ascending slantwise motion within an MCS, as of yet, have not been studied. In this presentation, the effects of aerosols on the upright convection, slantwise convection and the resulting impacts on precipitation will be discussed.

  10. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  11. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    SciTech Connect

    SCHWARTZ, S.E.; MCGRAW, R.; BENKOVITZ, C.M.; WRIGHT, D.L.

    2001-04-01

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  12. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  13. Long-term measurements of microphysical properties of marine stratocumulus and aerosols in a new ground-based station located at Tenerife Island (Friolera Peak Lab, 28.6°N, 16.2°W). First results.

    NASA Astrophysics Data System (ADS)

    Taima-Hernández, D.; Diaz, J. P.; Exposito, F. J.; González, A.; Pérez, J. C.

    2012-04-01

    Clouds are one of the most important regulators of climate because they cover a great percentage of the Earth surface at any time and they interact with solar and infrared radiation. Nowadays one of the most important uncertainties affecting the climate models are the processes related with cloud-aerosols interactions. The aerosols act as cloud condensation and ice nuclei, so they can modify the clouds in many ways. In order to check the different parameterizations implemented to resolve these sub-grid processes, it is essential to account with an accurate database of microphysics cloud and aerosols properties. The Canary Islands are located in one of the most important marine stratocumulus regions in the world. The orography of some of these islands allows us to locate a suitable station to establish long-term programs to measure microphysical cloud and aerosols properties. With these aims, a new ground-based station has been installed in the North-East part of the Tenerife Island, Friolera Peak Lab. (28°33'1.16"N, 16°12'1.79"W, 720 masl), where the trade winds regime and the quasi-permanent thermal inversion layer configure a situation where the probability to find marine stratocumulus is high along the year. In a first step two instruments have been installed: a FM100 DMT and an UFP 3031 from TSI, Inc. The FM100 is a robust cloud-particle spectrometer, and allows for computation and real-time display of particle concentration, median volume diameter, equivalent diameter, and liquid water content. The UFP 3031 provides continuous size distribution and number concentration of particles between 20 and 800 nm, with six channels of size resolution: 20-30 nm, 30-50 nm, 50-70 nm, 70-100, 100-200 nm and 200-800 nm. It is an instrument specially designed for long-term monitoring with minimum maintenance. The first results obtained are presented showing that this station is situated in a very clean environment, with values for the number of ultrafine particles lower

  14. Aerosol-cloud-precipitation interactions in warm clouds in the PNNL-MMF multi-scale aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ghan, S.; Liu, X.; Ovchinnikov, M.; Chand, D.; Qian, Y.; Easter, R. C.; Morrison, H.; Marchand, R.

    2011-12-01

    Aerosol-cloud-precipitation interactions in warm clouds are examined in the multi-scale aerosol-climate model PNNL-MMF, which is an extension of a multi-scale modeling framework (MMF) model. The extended model treats aerosol-cloud-precipitation interactions using a two-moment cloud microphysics scheme in the cloud-resolving model component of the MMF at much finer spatial and temporal scales than in conventional global climate models. The dependence of the probability of precipitation (POP) on liquid water path (LWP) and aerosol loading in the MMF model is in reasonable agreement with the satellite observations. In contrast, the dependence of POP on aerosol loading in a global model with a conventional cloud parameterization (Community Atmosphere Model Version 5, or CAM5) is much stronger than in the MMF and in the satellite observations. The stronger dependence of POP on aerosol loading in CAM5 is consistent with the much larger role played by autoconversion in rain production in CAM5 (48%) than that in the MMF model (3.2%). The better agreement in the dependence of POP on aerosol loading between the MMF model and the satellite observations suggests that the smaller indirect forcing in the MMF is more realistic. Rain susceptibility is further examined to explore how surface rain rate may depend on cloud droplet number concentration (CDNC) and aerosol loading. It is found that the rain susceptibility strongly depends on the relative contribution of autoconversion and accretion in rain production. In tropical marine clouds, surface rain rate is positively correlated with cloud-top droplet effective radius, consistent with satellite observations. However, surface rain rate and column-mean CDNC are not strongly correlated, as the relative contribution of autoconversion is small in these clouds. In mid-latitude marine clouds, autoconversion plays a more important role in rain production in the MMF model, especially at the intermediate LWPs (200-400 g m-2), which

  15. Photochemistry of Model Organic Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Mang, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Nizkorodov, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Up to 90 percent of urban aerosol particles have been shown to contain organic molecules. Reactions of these particles with atmospheric oxidants and/or sunlight result in large changes in their composition, toxicity, and ability to act as cloud condensation nuclei. For this reason, chemistry of model organic aerosol particles initiated by oxidation and direct photolysis is of great interest to atmospheric, climate, and health scientists. Most studies in this area have focused on identifying the products of oxidation of the organic aerosols, while the products of direct photolysis of the resulting molecules remaining in the aerosol particle have been left mostly unexplored. We have explored direct photolytic processes occurring in selected organic aerosol systems using infrared cavity ringdown spectroscopy to identify small gas phase products of photolysis, and mass-spectrometric and photometric techniques to study the condensed phase products. The first model system was secondary organic aerosol formed from the oxidation of several monoterpenes by ozone in the presence and absence of NOx, under different humidities. The second system modeled after oxidatively aged primary organic aerosol particles was a thin film of either alkanes or saturated fatty acids oxidized in several different ways, with the oxidation initiated by ozone, chlorine atom, or OH. In every case, the general conclusion was that the photochemical processing of model organic aerosols is significant. Such direct photolysis processes are believed to age organic aerosol particles on time scales that are short compared to the particles' atmospheric lifetimes.

  16. Evaluating Microphysics in Cloud-Resolving Models using TRMM and Ground-based Precipitation Radar Observations

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Zulauf, M. A.; Li, Y.; Zipser, E. J.

    2005-05-01

    Global satellite datasets such as those produced by ISCCP, ERBE, and CERES provide strong observational constraints on cloud radiative properties. Such observations have been widely used for model evaluation, tuning, and improvement. Cloud radiative properties depend primarily on small, non-precipitating cloud droplets and ice crystals, yet the dynamical, microphysical and radiative processes which produce these small particles often involve large, precipitating hydrometeors. There now exists a global dataset of tropical cloud system precipitation feature (PF) properties, collected by TRMM and produced by Steve Nesbitt, that provides additional observational constraints on cloud system properties. We are using the TRMM PF dataset to evaluate the precipitation microphysics of two simulations of deep, precipitating, convective cloud systems: one is a 29-day summertime, continental case (ARM Summer 1997 SCM IOP, at the Southern Great Plains site); the second is a tropical maritime case: the Kwajalein MCS of 11-12 August 1999 (part of a 52-day simulation). Both simulations employed the same bulk, three-ice category microphysical parameterization (Krueger et al. 1995). The ARM simulation was executed using the UCLA/Utah 2D CRM, while the KWAJEX simulation was produced using the 3D CSU CRM (SAM). The KWAJEX simulation described above is compared with both the actual radar data and the TRMM statistics. For the Kwajalein MCS of 11 to 12 August 1999, there are research radar data available for the lifetime of the system. This particular MCS was large in size and rained heavily, but it was weak to average in measures of convective intensity, against the 5-year TRMM sample of 108. For the Kwajalein MCS simulation, the 20 dBZ contour is at 15.7 km and the 40 dBZ contour at 14.5 km! Of all 108 MCSs observed by TRMM, the highest value for the 40 dBZ contour is 8 km. Clearly, the high reflectivity cores are off scale compared with observed cloud systems in this area. A similar

  17. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to

  18. Diagnosis of Differences in Hydrometeor Production between Multiple Parameterizations of Microphysics Using a Single-Column Model

    NASA Astrophysics Data System (ADS)

    Michelson, Sara A.; Grell, Evelyn D.; Huang, Wei; Chen, Baode; Bao, Jian-Wen

    2014-05-01

    This presentation is about a comparison study of four bulk microphysics schemes using the single-column version of the Weather Research and Forecasting (WRF) model in a tropical convection testing case. The schemes compared, ranging from a single-moment simple 3-category scheme to a more complex double-moment 6-category scheme, produce different average vertical hydrometeor distributions, as well as different accumulated precipitation. Diagnosis of differences in the source and sink terms of all the hydrometeor budget equations reveals that the major differences in the production of hydrometeors of these schemes are more in the spectral definition of individual hydrometeor categories and spectral-dependent microphysical processes such as accretion growth and sedimentation, than the differences between the single- and double-moment formulations. Differences in the assumed pathways to the production of frozen hydrometeors also significantly contribute to the differences in the hydrometeor and latent heat distributions output from these schemes. The comparison results presented serve as a reference for other WRF users to compare with their microphysics schemes and facilitate future microphysics parameterization development and improvement.

  19. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Tao, W.; Li, X.; Khain, A.; Simpson, J.

    2004-12-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two

  20. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case

  1. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low

  2. Modeling aerosol processes at the local scale

    SciTech Connect

    Lazaridis, M.; Isukapalli, S.S.; Georgopoulos, P.G.

    1998-12-31

    This work presents an approach for modeling photochemical gaseous and aerosol phase processes in subgrid plumes from major localized (e.g. point) sources (plume-in-grid modeling), thus improving the ability to quantify the relationship between emission source activity and ambient air quality. This approach employs the Reactive Plume Model (RPM-AERO) which extends the regulatory model RPM-IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, sodium, chloride and crustal material of aerosols are treated and attributed to the PM size distribution. A modified version of the Carbon Bond IV chemical mechanism is included to model the formation of organic aerosol, and the inorganic multicomponent atmospheric aerosol equilibrium model, SEQUILIB is used for calculating the amounts of inorganic species in particulate matter. Aerosol dynamics modeled include mechanisms of nucleation, condensation and gas/particle partitioning of organic matter. An integrated trajectory-in-grid modeling system, UAM/RPM-AERO, is under continuing development for extracting boundary and initial conditions from the mesoscale photochemical/aerosol model UAM-AERO. The RPM-AERO is applied here to case studies involving emissions from point sources to study sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions.

  3. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  4. Rheology of model aerosol suspensions.

    PubMed

    Sidhu, B K; Washington, C; Davis, S S; Purewal, T S

    1993-07-01

    The rheological properties of model aerosol suspensions at phase fractions of less than 5% w/v (phase ratio of 0.05) were investigated. The rheological profiles of lactose in chloroform, lactose in trichlorofluoromethane (Propellent 11, P11), and salbutamol sulphate in P11 have been investigated in the presence and absence of lecithin, a phospholipid surface-active agent. The relative viscosities of these disperse systems correlated with the increasing disperse phase fractions and the addition of surfactant was found to reduce these viscosities to a relative viscosity of approximately 1.0. The results suggest that the relative viscosity is a useful indicator of flocculation in these systems, and may be valuable in formulation development. PMID:8105051

  5. MIRAGE: Model Description and Evaluation of Aerosols and Trace Gases

    SciTech Connect

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, Lai-Yung R.; Bian, Xindi; Zaveri, Rahul A.

    2004-10-27

    The MIRAGE (Model for Integrated Research on Atmospheric Global Exchanges) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled on line with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass [sulfate, MSA, organic matter, black carbon (BC), sea salt, mineral dust] for four aerosol modes (Aitken, accumulation, coarse sea salt, coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on the CCM2, has physically-based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in N. American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in N. American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur in Ghan et al. [2001c] are probably too high. Surface-level DMS is {approx}40% higher than observed

  6. Impacts of alternative fuels in aviation on microphysical aerosol properties and predicted ice nuclei concentration at aircraft cruise altitude

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; D'Ascoli, E.; Sauer, D. N.; Kim, J.; Scheibe, M.; Schlager, H.; Moore, R.; Anderson, B. E.; Ullrich, R.; Mohler, O.; Hoose, C.

    2015-12-01

    In the past decades air traffic has been substantially growing affecting air quality and climate. According to the International Civil Aviation Authority (ICAO), in the next few years world passenger and freight traffic is expected to increase annually by 6-7% and 4-5%, respectively. One possibility to reduce aviation impacts on the atmosphere and climate might be the replacement of fossil fuels by alternative fuels. However, so far the effects of alternative fuels on particle emissions from aircraft engines and their ability to form contrails remain uncertain. To study the effects of alternative fuels on particle emissions and the formation of contrails, the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) field experiment was conducted in California. In May 2014, the DLR Falcon 20 and the NASA HU-25 jet aircraft were instrumented with an extended aerosol and trace gas payload probing different types of fuels including JP-8 and JP-8 blended with HEFA (Hydroprocessed Esters and Fatty Acids) while the NASA DC8 aircraft acted as the source aircraft for ACCESS-2. Emission measurements were taken in the DC8 exhaust plumes at aircraft cruise level between 9-12 km altitude and at distances between 50 m and 20 km behind the DC8 engines. Here, we will present results from the ACCESS-2 aerosol measurements which show a 30-60% reduction of the non-volatile (mainly black carbon) particle number concentration in the aircraft exhaust for the HEFA-blend compared to conventional JP-8 fuel. Size-resolved particle emission indices show the largest reductions for larger particle sizes suggesting that the HEFA blend contains fewer and smaller black carbon particles. We will combine the airborne measurements with a parameterization of deposition nucleation developed during a number of ice nucleation experiments at the AIDA chamber in Karlsruhe and discuss the impact of alternative fuels on the abundance of potential ice nuclei at cruise conditions.

  7. Introducing Subgrid-scale Convective Cloud and Aerosol Interactions to the WRF-CMAQ Integrated Modeling System

    NASA Astrophysics Data System (ADS)

    Alapaty, K. V.; Yu, S.; Nolte, C. G.; Zhang, G. J.; Song, X.; Pleim, J.; Mathur, R.; Wong, D.

    2013-12-01

    Many regional and global climate models include aerosol indirect effects (AIE) on grid-scale/resolved clouds. However, the interaction between aerosols and convective clouds remains highly uncertain, as noted in the IPCC AR4 report. The objective of this work is to help fill in this scientific gap by including aerosol indirect effects on parameterized deep convection in the WRF-CMAQ integrated regional modeling system. This is accomplished by first incorporating a convective cloud microphysical scheme directly into a deep convection parameterization, and linking that microphysical scheme with aerosols predicted by the air quality model, CMAQ. To study the relative magnitudes of aerosol indirect forcing by grid- and subgrid-scale clouds, three numerical simulations (one with AIE on resolved clouds only, one with AIE on subgrid-scale clouds only, and one with AIE on both resolved and subgrid-scale clouds) are performed for the summer months (June, July, and August) of 2006 covering the continental US using 12 km grids. These results along with the comparisons of the simulated cloud micro- and macro-physical and radiation parameters as well as other meteorological parameters with observations and reanalysis products will be presented.

  8. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  9. An investigation of ice production mechanisms using a three-dimensional cloud model with explicit microphysics

    NASA Astrophysics Data System (ADS)

    Ovtchinnikov, Mikhail

    1997-08-01

    Ice formation in midlevel clouds is studied using a newly developed cloud-scale model that combines three- dimensional dynamics with an explicit ice and liquid- phase microphysics and a detailed treatment of ice origination processes. One of the most important novel features of the model is that the effect of the Hallett- Mossop ice multiplication process is explicitly calculated in a dynamically evolving framework. Two case studies have been conducted: (1) the cloud formed over the Magdalena Mountains, New Mexico, on 9 August 1987; and (2) the midlevel stratiform cloud layer over the northern Oklahoma on 7 April 1997. The model reproduces well the observed clouds in terms of cloud geometry, liquid water content, and concentrations of cloud drops and ice particles. Ice formation mechanisms are found to operate differently in the two environments. The difference is attributed to the changes in the liquid-phase microstructure. In the case of the New Mexico cumulus cloud, when raindrops are produced through the warm-rain process, the Hallett-Mossop mechanism then generates ice particles in concentrations of order 100 L-1 in about 10 minutes. The secondary ice crystal production is confirmed to be a likely explanation for the large ice particle concentrations found in New Mexican summertime cumulus. Sensitivity tests show that when the conditions for the Hallett-Mossop process are met, high concentrations of ice splinters can be produced even when the concentration of primary ice crystals is very low. The efficacy of the rime-splintering mechanism depends strongly on the liquid-phase microphysics, and the presence of drizzle- size drops and their freezing by capture of ice splinters are essential to accelerate the Hallett-Mossop process. In the case of the stratiform cloud deck, liquid water content is lower, and the production of large drops is inhibited. Consequently, the Hallett-Mossop process is relatively inefficient in this case. Thus, when there are few or no

  10. On the Use of an Explicit Microphysical Model to Investigate the Temporal and Spatial Evolution of Rainfall Microphysics in Different Storm Environments

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Barros, A. P.

    2012-12-01

    Two Micro Rain Radars (MRRs) were deployed in the Southern Appalachians during the summer and fall seasons of 2012, in ridge and valley locations in the French Broad River Basin. The radars were collocated with Hydrological Services tipping bucket rain gauges at 0.1 mm resolution, Vaisala automated weather stations and Parsivel optical disdrometers. This study augments others conducted in previous years during the months May - September in ridge and valley locations in the Pigeon River Basin, and ridge-ridge studies across both basins. Observations from the vertically pointing radar are used to provide boundary conditions for an explicit raindrop population dynamics model, which solves the stochastic collection-breakup equation, in order to model the evolution of microphysical properties (drop size distribution, rain intensity and hydrometeor type) through time and space and gain insight into the processes (autoconversion, overarching synoptic conditions, terrain contributions) that drive this evolution. Surface observations from the disdrometers and rain gauges are used to investigate the model results. Observations from a spatially dense, high elevation rain gauge network are also used to further define storm structure. Results show significant variability in precipitation intensities and accumulations along the ridge line as well as suggest the localized importance of persistent fog interacting with low level cloud to intensify or trigger precipitation events that are often experienced only at high elevations and contribute significantly to the yearly water budget of the region. A period of cross calibration with both MRRs, Parsivel disdrometer models 1 and 2, automated weather stations and tipping bucket rain gauges (during May/early June 2012) is used to examine questions of uncertainty with regard to measurement scale. Last, the results from using this model at other locations during ground validation campaigns (TWP-ICE, MC3E) are compared with the findings

  11. Direct and indirect effects of anthropogenic aerosols as simulated by SP-CAM global climate model with superparameterization of clouds

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M.; Grabowski, W.; Morrison, H.

    2010-12-01

    Direct and indirect effects of aerosols on radiative forcing are among major uncertainties of the climate change simulated by global climate models (GCMs). Traditional GCMs have grid spacing that is too coarse to resolve individual clouds; instead, clouds are represented using cloud parameterizations. Accordingly, the interactions between parameterized clouds and aerosols need also to be parameterized. Recently, it became practical to apply a new kind of GCM, a Multiscale Modeling Framework (MMF) to the aerosol-cloud-radiation problem. In SP-CAM MMF, the cloud and convection parameterizations are replaced with a small-domain coarse-resolution cloud-system-resolving model (CRM), often called in this context a "superparameterization". The CRM subcycles within the GCM's time step, explicitly simulating evolution of clouds in each GCM's grid cell in response to large-scale (GCM) dynamics. The CRM computes the precipitation rates, cloud statistics, large-scale tendencies due to cloud processes, and radiative heating rates. Recently, the single-moment bulk microphysics scheme used by the CRM in SP-CAM has been upgraded to a more sophisticated two-moment bulk microphysics scheme. The new bulk scheme's prognostic variables include not only water content, but also number concentration for all liquid and solid water species such as cloud liquid and ice water, rain, snow and graupel. The effect of aerosols on simulated clouds can be modeled through specified globally and monthly varying fields of cloud-condensation nuclei (CCN) derived from several species of prescribed aerosol climatology. The cloud drop concentration is modeled using the local CCN count and updraft vertical velocity at cloud bases. In this study, the results of global climate simulations using current and pre-industrial aerosol distributions are contrasted. The presence of anthropogenic sulfate aerosols tends to increase the strength of the meridional circulation such as the Hadley cell, redistributing

  12. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  13. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  14. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE PAGES

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm−3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  15. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  16. Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, John E.; Jacobson, Mark Z.; Remer, Lorraine A.

    2012-04-01

    Biomass burning (BB) aerosol particles affect clouds through competing microphysical and radiative (semi-direct and cloud absorption) effects, each of which dominates at different degrees of aerosol loading. Here, we analyze the influence of competing aerosol effects on mixed-phase clouds, precipitation, and radiative fields over the Amazon with a climate-air pollution-weather forecast model that treats aerosol-cloud-radiative interactions physically. Extensive comparisons with remotely sensed observations and in situ measurements are performed. Both observations and model results suggest an increase in cloud optical depth (COD) with increasing aerosol optical depth (AOD) at low AODs, and a decrease in COD with increasing AOD at higher AODs in accord with previous observational and modeling studies. The increase is attributed to a combination of microphysical and dynamical effects, whereas the decrease is attributed to a dominance of radiative effects that thin and darken clouds. An analogous relationship is shown for other modeled cloud variables as well. The similarity between the remotely sensed observations and model results suggests that these correlations are physically based and are not dominated by satellite retrieval artifacts. Cloud brightening due to BB is found to dominate in the early morning, whereas cloud inhibition is found to dominate in the afternoon and at night. BB decreased the net top of the atmosphere solar+IR irradiance modestly, but with large diurnal variation. We conclude that models that exclude treatment of aerosol radiative effects are likely to over-predict the microphysical effects of aerosols and underestimate the warming due to aerosols containing black and brown carbon.

  17. Transport and Microphysics of Aerosols Released by Collapse and Fire of the World Trade Center on September 11, 2001 as Observed by AERONET and MISR

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Diner, D.; Kahn, R.; Smirnov, A.; Holben, B.

    2005-12-01

    Atmospheric pollution has been studied intensively during the last several decades for its impact on climate, visibility, atmospheric chemistry, and public health. Here we consider the aftermath of the catastrophic aerosol release produced by the collapse of the World Trade Center (WTC) in New York City (NYC) on September 11, 2001. The north and south WTC buildings were attacked at 0846 EDT and 0903 EDT, respectively, on September 11, 2001. The collapse of the WTC South Tower at 0959 EDT followed by the crash of the North Tower at 1029 EDT instantaneously pulverized a vast amount of building material, that was reduced to dust and smoke in nearby streets and the atmosphere above. The remains of the WTC complex covered a 16-acre area known as Ground Zero. Intensive combustion continued until September 14, with temperatures occasionally exceeding 1000 C, producing a steady, elevated source of hazardous gases and aerosols. A detailed spatial and temporal description of the pollution fields' evolution is needed to fully understand their environmental and health impact, but many existing in situ aerosol monitoring stations in the vicinity of the WTC were completely plugged with dust immediately after the collapse. However, the aerosol plume was remotely sensed from the ground and from space. Here we combine numerical modeling of micrometeorological fields and pollution transport using the RAMS/HYPACT modeling system with AERONET and MISR retrievals, to realistically reconstruct plume evolution. AERONET collected plume data in NYC from the roof of the Goddard Institute for Space Studies (GISS) in Upper Manhattan. In NYC, aerosol optical depth was rather low until 1800 UTC on September 12; then it increased to ~0.3 (at 440 nm) by 2130 UTC. On September 13, the optical depth was slightly elevated in the morning and increased further beginning at 1700 UTC, reaching ~0.30 by 2000-2200 UTC. The angstrom exponent increased from 1.8 on September 12 to 2.2 in the late afternoon

  18. The simulation of a convective cloud in a 3D model with explicit microphysics. Part II: Dynamical and microphysical aspects of cloud merger

    SciTech Connect

    Kogan, Y.L.; Shapiro, A.

    1996-09-01

    The development and merger of pairs of convective clouds in a shear-free environment were simulated in an explicit microphysical cloud model. The occurrence or nonoccurrence of updraft merger and the timing of merger depended critically on the initial spacing of the thermal perturbations imposed in the model`s initialization. In the unmerged cases the presence of a neighbor cloud was detrimental to cloud development at all times. In the merged cases this negative interaction was still operating but only until the onset of updraft merger. Based on the visual form of the updraft merger, it was hypothesized that low-level merger was a consequence of mutual advection, that is, that each cloud caught its neighbor in its radial inflow and advected it inward. This low-level advection hypothesis was quantified by considering a potential flow induced by two line sinks whose strengths were set equal to the low-level mass flux into the numerically simulated clouds. The merger times obtained from the advection hypothesis were in good agreement with the merger times observed in the simulations. Moreover, if merger did not occur, the advection hypothesis suggested that merger should not have occurred. The merger process was accompanied by the presence of trimodal drop spectra at the upper levels of the cloud. It was shown that the drop size distribution depends not only on the autoconversion and accretion rates, but also on the nonlinear interaction between various source and sink terms affecting rain formation, particularly on the rates of condensation-evaporation, sedimentation, and breakup processes. The analysis of raindrop trajectories showed the details of rain formation in different cloud regions and the effect of dynamical conditions on the growth of rain particles. 41 refs., 17 figs., 1 tab.

  19. Studyng the Influence of Aerosols in the Evolution of Cloud Microphysics Procesess Associated with Tropical Cyclone Earl Using Airborne Measurements from the NASA Grip Field Campaing 2010

    NASA Astrophysics Data System (ADS)

    Luna-Cruz, Y.; Heymsfield, A.; Jenkins, G. S.; Bansemer, A.

    2011-12-01

    Cloud microphysics processes are strongly related to tropical cyclones evolution. Although there have been three decades of research dedicated to understand the role of cloud microphysics in tropical cyclogenesis, there are still questions unanswered. With the intention of fulfill the gaps and to better understand the processes involves in tropical storms formation the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign was conducted during the months of August and September of 2010. In-situ microphysical measurements, including particle size distributions, shapes, liquid/ice water content and supercooled liquid water were obtained from the DC-8 aircraft. A total of 139 hrs of flying science modules were performed including sampling of four named storms (Earl, Gaston, Karl and Matthew). One tropical cyclone, Earl, was one of the major hurricanes of the season reaching a category 4 in the Saffir-Simpson scale. Earl emerged from the West Africa on August 22 as an easterly wave, moved westward and became a tropical storm on August 25 before undergoing rapid intensification. This project seeks to explore the lifecycle of hurricane Earl including the genesis and rapid intensification from a microphysics perspective; to develop a better understanding of the relationship between dust from the Saharan Air Layer and cloud microphysics evolution and to develop a better understanding of how cloud microphysics processes interacts and serve as precursor for thermodynamics processes. An overview of the microphysics measurements as well as preliminary results will be presented.

  20. Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.

  1. Consistency among microphysics-convection-radiation processes in a numerical forecasting model

    NASA Astrophysics Data System (ADS)

    Bae, Soo Ya; Park, Raeseol; Hong, Song-You

    2016-04-01

    Radiative fluxes are mainly affected by the cloud optical properties calculated with effective radius, water path of hydrometeors, and cloud fraction. A prognostic cloud fraction scheme, which considers the cloud fraction with increments as a result of each physics process, is implemented in the Global/Regional Integrated Model system (GRIMs) (Park et al., 2016). However, the original RRTMG scheme does not consider the hydrometeor information from convection processes, resulting in inconsistency between cloud process and radiation activity. To ensure consistency among physics processes, the amount of hydrometeors from both the cumulus parameterization scheme (CPS) and microphysics schemes is explicitly taken into account in computing radiative fluxes. The effects of this modification are tested for a heavy rainfall over Korea to identify the feedback between the precipitation and radiation processes. It is found that the information of hydrometeors from CPS tends to increase water path, which leads to larger cloud optical depth and cooling. Skill scores of the simulated precipitation in a medium-range forecast testbed confirm benefits of the consistent treatment of hydrometeors in both CPS and radiation processes.

  2. Remote sensing of aerosol in the terrestrial atmosphere from space: "AEROSOL-UA" mission

    NASA Astrophysics Data System (ADS)

    Yatskiv, Yaroslav; Milinevsky, Gennadi; Degtyarev, Alexander

    2016-07-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project AEROSOL-UA that will obtain the data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The mission is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  3. ISA-MIP: A co-ordinated intercomparison of Interactive Stratospheric Aerosol models

    NASA Astrophysics Data System (ADS)

    Timmreck, Claudia; Mann, Graham; Aquila, Valentina; Bruehl, Christoph; Chin, Mian; Dohmse, Sandip; English, Jason; Lee, Lindsay; Mills, Michael; Hommel, Rene; Neely, Ryan; Schmidt, Anja; Sheng, Jianxiong; Toohey, Matthew; Weisenstein, Debra

    2016-04-01

    The SPARC activity, "Stratospheric Sulfur and its Role in Climate" (SSiRC) was initiated to coordinate international research activities on modelling and observation of stratospheric sulphate aerosols (and precursor gases) in order to assess its climate forcing and feedback. With several international activities to extend and improve observational stratospheric aerosol capabilities and data sets, and a growing number of global models treating stratospheric aerosol interactively, a new model intercomparison activity "ISA-MIP" has been established in the frame of SSIRC. ISA-MIP will compare interactive stratospheric aerosol (ISA) models using a range of observations to constrain and improve the models and to provide a sound scientific basis for future work. Four ISA-MIP experiments have been designed to assess different periods of the obervational stratospheric aerosol record, and to explore key processes which influence the formation and temporal development of stratospheric aerosol. The "Background" experiment will focus on the role of microphysical and transport processes under volcanically quiescent conditions, where the stratospheric aerosol size distribution is only modulated by seasonal circulations. The "Model intercomparison of Transient Aerosol Record" (MiTAR) experiment will focus on addressing the role of small- to moderate-magnitude volcanic eruptions and transport processes in the upper troposphere - lower stratosphere (UTLS) aerosols loading over the period 1998-2011. Background and MiTAR simulations will be compared to recent in-situ and satellite observations to evaluate the performances of the model and understand their strengths and weaknesses. Two further experiments investigate the radiative forcing from historical major eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) will involve models carrying out mini-ensembles of the stratospheric aerosol perturbations from each of the 1963 Agung, 1982 El Chichon and 1991 Pinatubo

  4. Photoacoustic study of airborne and model aerosols

    NASA Astrophysics Data System (ADS)

    Alebić-Juretić, A.; Zetzsch, C.; Dóka, O.; Bicanic, D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere with the physicochemical properties of the aerosols determining the lifetime of these organic compounds. As an example, the resistance of some PAHs against the photolysis is explained by the effect of the aerosol's "inner filter" that reduces the intensity of incident light reaching the mineral particles. On the other hand, some constituents of the aerosols can act as catalytic and/or stoichiometric reagents in atmospheric reactions on the solid surfaces. In the study described here the photoacoustic (PA) spectroscopy in the UV-Vis was used to investigate natural and model aerosols. The PA spectra obtained from coal and wood ashes and of Saharan sand, all three representatives of airborne aerosols, provide the evidence for the existence of the "inner filter." Furthermore, valuable information about the different nature of the interaction between the model aerosols and adsorbed organics (e.g., PAH-pyranthrene and silica, alumina, and MgO) has been obtained. Finally, the outcome of the study conducted with powdered mixtures of chalk and black carbon suggests that the PA method is a candidate method for determination of carbon content in stack ashes.

  5. A Model for Particle Microphysics,Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gate conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less

  6. A Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less

  7. An intercomparison of radar-based liquid cloud microphysics retrievals and implication for model evaluation studies

    NASA Astrophysics Data System (ADS)

    Huang, D.; Zhao, C.; Dunn, M.; Dong, X.; Mace, G. G.; Jensen, M. P.; Xie, S.; Liu, Y.

    2011-12-01

    To assess if current radar-based liquid cloud microphysical retrievals of the Atmospheric Radiation Measurement (ARM) program can provide useful constraints for modeling studies, this paper presents intercomparison results of three cloud products at the Southern Great Plains (SGP) site: the ARM MICROBASE, University of Utah (UU), and University of North Dakota (UND) products over the nine-year period from 1998 to 2006. The probability density and spatial autocorrelation functions of the three cloud Liquid Water Content (LWC) retrievals appear to be consistent with each other, while large differences are found in the droplet effective radius retrievals. The differences in the vertical distribution of both cloud LWC and droplet effective radius retrievals are found to be alarmingly large, with the relative difference between nine-year mean cloud LWC retrievals ranging from 20% at low altitudes to 100% at high altitudes. Nevertheless, the spread in LWC retrievals is much smaller than that in cloud simulations by climate and cloud resolving models. The MICROBASE effective radius ranges from 2.0 at high altitudes to 6.0 μm at low altitudes and the UU and UND droplet effective radius is 6 μm larger. Further analysis through a suite of retrieval experiments shows that the difference between MICROBASE and UU LWC retrievals stems primarily from the partition total Liquid Water path (LWP) into supercooled and warm liquid, and from the input cloud boundaries and LWP. The large differences between MICROBASE and UU droplet effective radius retrievals are mainly due to rain/drizzle contamination and the assumptions of cloud droplet concentration used in the retrieval algorithms. The large discrepancy between different products suggests caution in model evaluation with these observational products, and calls for improved retrievals in general.

  8. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented

  9. Mesoscale modeling of lake effect snow over Lake Erie - sensitivity to convection, microphysics and the water temperature

    NASA Astrophysics Data System (ADS)

    Theeuwes, N. E.; Steeneveld, G. J.; Krikken, F.; Holtslag, A. A. M.

    2010-03-01

    Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and 10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme. Furthermore, we find a large difference in the maximum precipitation between the different nested domains: Reisner-Graupel produces larger differences in precipitation between the domains than "simple ice". In WRF, the sophisticated Thompson microphysics scheme simulates less precipitation than the simple WSM3 scheme. Increased temperature of Lake Erie results in an exponential growth in the 24-h precipitation. Regarding the convection scheme, the updated Kain-Fritsch scheme (especially designed for shallow convection during lake effect snow), gives only slight differences in precipitation between the updated and the original scheme.

  10. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  11. Evaluation of aerosol mixing state classes in the GISS modelE-MATRIX climate model using single-particle mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-09-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 µm, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 µm contain large fractions of organic material, internally mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  12. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  13. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  14. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-10-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7) between accumulation mode and coarse mode emission fluxes of aerosol number concentration. This

  15. Anthropogenic Aerosols and Tropical Precipitation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Kim, D.; Ekman, A. M. L.; Barth, M. C.; Rasch, P. J.

    2009-04-01

    Anthropogenic aerosols can affect the radiative balance of the Earth-atmosphere system and precipitation by acting as cloud condensation nuclei (CCN) or ice nuclei (IN) and thus modifying the optical and microphysical properties as well as lifetimes of clouds. Recent studies have also suggested that the direct radiative effect of anthropogenic aerosols, particularly absorbing aerosols, can perturb the large-scale circulation and cause a significant change in both quantity and distribution of critical tropical precipitation systems ranging from Pacific and Indian to Atlantic Oceans. This effect of aerosols on precipitation often appears in places away from aerosol-concentrated regions and current results suggest that the precipitation changes caused by it could be much more substantial than that by the microphysics-based aerosol effect. To understand the detailed mechanisms and strengths of such a "remote impact" and the climate response/feedback to anthropogenic aerosols in general, an interactive aerosol-climate model has been developed based on the Community Climate System Model (CCSM) of NCAR. Its aerosol module describes size, chemical composition, and mixing states of various sulfate and carbonaceous aerosols. Several model processes are derived based on 3D cloud-resolving model simulations. We have conducted a set of long integrations using the model driven by radiative effects of different combinations of various carbonaceous and sulfate aerosols and their mixtures. The responses of tropical precipitation systems to the forcing of these aerosols are analyzed using both model and observational data. Detailed analyses on the aerosol-precipitation causal relations of two systems: i.e., the Indian summer monsoon and Pacific ITCZ will be specifically presented.

  16. Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Hoose, C.

    2014-07-01

    While recent laboratory experiments have thoroughly quantified the ice nucleation efficiency of different aerosol species, the resulting ice nucleation parameterizations have not yet been extensively evaluated in models on different scales. Here the implementation of an immersion freezing parameterization based on laboratory measurements of the ice nucleation active surface site density of mineral dust and ice nucleation active bacteria, accounting for nucleation scavenging of ice nuclei, into a cloud-resolving model with two-moment cloud microphysics is presented. We simulated an Arctic mixed-phase stratocumulus cloud observed during Flight 31 of the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Through different feedback cycles, the persistence of the cloud strongly depends on the ice number concentration. It is attempted to bring the observed cloud properties, assumptions on aerosol concentration, and composition and ice formation parameterized as a function of these aerosol properties into agreement. Depending on the aerosol concentration and on the ice crystal properties, the simulated clouds are classified as growing, dissipating, and quasi-stable. In comparison to the default ice nucleation scheme, the new scheme requires higher aerosol concentrations to maintain a quasi-stable cloud. The simulations suggest that in the temperature range of this specific case, mineral dust can only contribute to a minor part of the ice formation. The importance of ice nucleation active bacteria and possibly other ice formation modes than immersion freezing remains poorly constrained in the considered case, since knowledge on local variations in the emissions of ice nucleation active organic aerosols in the Arctic is scarce.

  17. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.

    PubMed

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J; Morrison, Hugh; Solomon, Amy B

    2014-12-28

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects.

  18. Arctic Mixed-phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Luo, Yali; Morrison, Hugh; Mcfarquhar, G.M.

    2008-01-01

    Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program Mixed-Phase Arctic Cloud Experiment (M-PACE), are simulated with a cloud resolving model (CRM). The CRM is implemented with either an advanced two-moment (M05) or a commonly used one-moment (L83) bulk microphysics scheme and a state-of-the-art radiative transfer scheme. The CONTROL simulation, that uses the M05 scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), number concentration and effective radius of cloud droplets as suggested by the M-PACE observations. It underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2-3. The OneM experiment, that uses the L83 scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, of those produced by the CONTROL. Its vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in the CONTROL and observations.

  19. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  20. Using disdrometer, radar, lightning, and model data to investigate severe thunderstorm microphysics

    NASA Astrophysics Data System (ADS)

    Kalina, Evan Anthony

    Dual-polarization radar, disdrometer, lightning, and model data are analyzed to determine 1) the usefulness and accuracy of disdrometer and attenuation-corrected X-band mobile radar data from severe thunderstorms, 2) the effect of cloud condensation nuclei (CCN) concentration on idealized supercell thunderstorms, and 3) the synoptic weather, dual-polarization radar, and lightning characteristics of Colorado plowable hailstorms. The results in Chapter 2 demonstrate that the best agreement (1 dB in reflectivity Z and 0.2 dB in differential reflectivity ZDR) between the disdrometer and X-band radar data was obtained when the radar signal quality index (SQI) was at least 0.8 and large hail was not present. Disagreement in Z (ZDR) increased to 6 dB (1.6 dB) and 13 dB (0.6 dB) in large hail and SQI < 0.8, respectively. Since better agreement was obtained under these conditions when the disdrometer measurements were compared to S-band radar data, the X-band attenuation-correction scheme was likely responsible for the disagreement. In Chapter 3, results from idealized supercell thunderstorm simulations in which the CCN concentration was varied from 100-10 000 cm-3 for several different environmental soundings are presented. Changes in the microphysical process rates saturated at CCN ≈ 3000 cm-3. In heavily polluted conditions (CCN = 10 000 cm-3), supercell thunderstorms formed up to 30% larger rain and 3% larger hail particles, produced up to 25 mm more precipitation near the updraft, and tracked more poleward. The area and size of the cold pool were also sensitive to the CCN concentration, especially when the low-level relative humidity was fairly dry (˜60%). Chapter 4 analyzes the synoptic weather, radar, and lightning characteristics from four severe thunderstorms that produced "plowable" hail accumulations of 15-60 cm along the Colorado Front Range. Westerly flow at 500 hPa at slow speeds (5-15 m s-1), combined with moist upslope low-level flow, accompanied each

  1. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of

  2. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  3. Microphysical Model of the Venus clouds between 40km and 80km

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin

    2013-10-01

    I am continuing to adapt the Community Aerosol and Radiation Model for Atmospheres (CARMA) to successfully simulate the multi-layered clouds of Venus. The present version of the one-dimensional model now includes a simple parameterization of the photochemicial production of sulfuric acid around altitudes of 62km, and its thermochemical destruction below cloud base. Photochemical production in the model is limited by the availability of water vapor and insolation. Upper cloud particles are introduced into the model via binary homogeneous nucleation, while the lower and middle cloud particles are created via activation of involatile cloud condensation nuclei. Growth by condensation and coagulation and coalescence are also treated. Mass loadings and particle sizes compare favorably with the in situ observations by the Pioneer Venus Large Probe Particle Size Spectrometer, and mixing ratios of volatiles compare favorably with remotely sensed observations of water vapor and sulfuric acid vapor. This work was supported by the NASA Planetary Atmospheres Program, grant number NNX11AD79G.

  4. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  5. A global model study of processes controlling aerosol size distributions in the Arctic spring and summer

    NASA Astrophysics Data System (ADS)

    Korhonen, Hannele; Carslaw, Kenneth S.; Spracklen, Dominick V.; Ridley, David A.; StröM, Johan

    2008-04-01

    We use a global chemical transport model (CTM) with size-resolved aerosol microphysics to evaluate our understanding of the processes that control Arctic aerosol, focussing on the seasonal changes in the particle size distribution during the transition from Arctic haze in spring to cleaner conditions in summer. This period presents several challenges for a global model simulation because of changes in meteorology, which affect transport pathways and precipitation scavenging rates, changes in the ocean-atmosphere flux of trace gases and particulates associated with sea ice break-up and increased biological activity, and changes in photolysis and oxidation rates which can affect particle nucleation and growth rates. Observations show that these changes result in a transition from an accumulation mode-dominated aerosol in spring to one dominated by Aitken and nucleation mode particles in summer. We find that remote Arctic aerosol size distribution is very sensitive to the model treatment of wet removal. In order to simulate the high accumulation mode concentrations typical of winter and spring it was necessary to substantially reduce the scavenging of these particles during transport. The resulting increases in accumulation mode lead to improvement in the modeled Aitken mode particle concentrations (which fall, due to increased scavenging in the free troposphere) and produce aerosol optical depths in good agreement with observations. The summertime increase in nucleation and Aitken mode particles is consistent with changes in local aerosol nucleation rates driven mainly by increased photochemical production of sulphuric acid vapor and, to a lesser extent, by decreases in the condensation sink as Arctic haze decreases. Alternatively, to explain the observed summertime Aitken mode particle concentrations in terms of ultrafine sea spray particles requires a sea-air flux a factor 5-25greater than predicted by current wind speed and sea surface temperature dependent flux

  6. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    SciTech Connect

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and it is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.

  7. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE PAGES

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  8. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  9. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    The AMS is the only current instrument that provides real-time, quantitative, and size-resolved data on submicron non-refractory aerosol species with a time resolution of a few minutes or better. The AMS field data are multidimensional and massive, containing extremely rich information on aerosol chemistry, microphysics and dynamics—basic information that is required to evaluate and quantify the radiative climate forcing of atmospheric aerosols. The high time resolution of the AMS data also reveals details of aerosol dynamic variations that are vital to understanding the physico-chemical processes of atmospheric aerosols that govern aerosol properties relevant to the climate. There are two primary objectives of this 3-year project. Our first objective is to perform highly integrated analysis of dozens of AMS datasets acquired from various urban, forested, coastal, marine, mountain peak, and rural/remote locations around the world and synthesize and inter-compare results with a focus on the sources and the physico-chemical processes that govern aerosol properties relevant to aerosol climate forcing. Our second objective is to support our collaboration with global aerosol modelers, in which we will supply the size-resolved aerosol composition and temporal variation data (via a public web interface) and our analysis results for use in model testing and validation and for translation of the rich AMS database into model constraints that can improve climate forcing simulations. Several prominent global aerosol modelers have expressed enthusiastic support for this collaboration. The specific tasks that we propose to accomplish include 1) to develop, validate, and apply multivariate analysis techniques for improved characterization and source apportionment of organic aerosols; 2) to evaluate aerosol source regions and relative contributions based on back-trajectory integration (PSCF method); 3) to summarize and synthesize submicron aerosol information, including

  10. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  11. Aerosol cloud interactions in southeast Pacific stratocumulus: satellite observations, in situ data and regional modeling

    NASA Astrophysics Data System (ADS)

    George, Rhea

    The influence of anthropogenic aerosols on cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations, in situ data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), and WRF-Chem, a regional model with interactive chemistry and aerosols. An albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration, Nd and macrophysics (liquid water path). Albedo variability is dominated by low cloud fraction variability, except within 10-15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. N d variability contributes only weakly, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. Specific cases of aerosol changes can have strong impacts on albedo. We identify a pathway for periodic anthropogenic aerosol transport to the unpolluted marine stratocumulus >1000 km offshore, which strongly enhances Nd and albedo in zonally-elongated 'hook'-shaped arc. Hook development occurs with Nd increasing to polluted levels over the remote ocean primarily due to entrainment of a large number of small aerosols from the free troposphere that contribute a relatively small amount of aerosol mass to the marine boundary layer. Strong, deep offshore flow needed to transport continental aerosols to the remote ocean is favored by a trough approaching the South American coast and a southeastward shift of the climatological subtropical high pressure system. DMS significantly influences the aerosol number and

  12. A Monodisperse Aerosol Dynamics Model Mono32

    NASA Astrophysics Data System (ADS)

    Pirjola, L.

    A recently developed aerosol dynamics model MONO32 (and MULTIMONO) (Pir- jola and Kulmala, 2000) is a Lagrangian type box model which uses mondisperse representation for particle size distribution. The model takes into account gas-phase chemistry and aerosol dynamics including emissions and dry deposition of gases and particles, chemical reactions in the gas phase, homogeneous binary H2SO4-H2O or ternary H2SO4-H2O-NH3 nucleation, multicomponent condensation of H2SO4, H2O, HNO3, NH3 and some organic vapour onto particles as well as inter- and in- tramode coagulation of particles. Particles can consist of soluble material such as sul- phate, nitrate, ammonium, sodium cloride, as well as insoluble material such as or- ganic carbon, elemental carbon and mineral dust. Hygroscopic properties and growth of particles were studied by the model. Simulations predicted that nucleation mode particles grew with a growth rate of 2.5-3 nm/h if the source rate of a condensable nonvolatile organic vapour exceeded 10^5 cm^-3 s^-1 and the condensation sink of the pre-existing particles was 0.9x10^-3 s^-1. These results are in good agreemnet with the measurements in Southern Finland. Further, these particles are able to grow to CCN sizes, thus affecting climate. The model was compared very well with the sectional model AEROFOR2 (Pirjola and Kulmala, 2001). It is physically sound and computa- tionally efficient model also for using as a module for regional transport models. Pirjola, L. and Kulmala, M. (2000) Aerosol dynamical model MULTIMONO, Boreal research 5, 361-372. Pirjola, L. and Kulmala, M. (2001) Development of particle size and composition distribution with aerosol dynamics model AEROFOR2. Tellus 53B, 491-509. Pirjola, L., Korhonen, H. and Kulmala, M. (2002) Condensation/ evaporation of insoluble organic vapour as functions of source rate and saturation vapour pressure. J. Geophys. Res. (in press).

  13. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results

    SciTech Connect

    Gettelman, A.; Morrison, H.; Ghan, Steven J.

    2008-08-11

    The global performance of a new 2-moment cloud microphysics scheme for a General Circulation Model (GCM) is presented and evaluated relative to observations. The scheme produces reasonable representations of cloud particle size and number concentration when compared to observations, and represents expected and observed spatial variations in cloud microphysical quantities. The scheme has smaller particles and higher number concentrations over land than the standard bulk microphysics in the GCM, and is able to balance the radiation budget of the planet with 60% the liquid water of the standard scheme, in better agreement with observations. The new scheme treats both the mixing ratio and number concentration of rain and snow, and is therefore able to differentiate the two key regimes, consisting of drizzle in shallow warm clouds and larger rain drops in deeper cloud systems. The modeled rain and snow size distributions are consistent with observations.

  14. Optimisation of the simulation particle number in a Lagrangian ice microphysical model

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.; Sölch, I.

    2014-04-01

    This paper presents various techniques to speed up the Lagrangian ice microphysics code EULAG-LCM. The amount of CPU time (and also memory and storage data) depends heavily on the number of simulation ice particles (SIPs) used to represent the bulk of real ice crystals. It was found that the various microphysical processes require different numbers of SIPs to reach statistical convergence (in a sense that a further increase of the SIP number does not systematically change the physical outcome of a cirrus simulation). Whereas deposition/sublimation and sedimentation require only a moderate number of SIPs, the (nonlinear) ice nucleation process is only well represented, when a large number of SIPs is generated. We introduced a new stochastic nucleation implementation which mimics the stochastic nature of nucleation and greatly reduces numerical sensitivities. Furthermore several strategies (SIP merging and splitting) are presented which flexibly adjust and reduce the number of SIPs. These efficiency measures reduce the computational costs of present cirrus studies and allow extending the temporal and spatial scales of upcoming studies.

  15. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  16. Models of size spectrum of tropospheric aerosol

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    Quality criteria of a model distribution are considered. Information losses due to the nonorthogonality of the spectrum parameter transformation are discussed. Models are compared with a view to approximation accuracy and losses of information. Smerkalov's average tropospheric aerosol spectrum and 271 observed spectra have been used for test. Highest accuracy and lowest losses of information were yielded by a distribution having power asymptotes on both the left and the right sides.

  17. Assessment of aerosol optics, microphysics, and transport process of biomass-burning haze over northern SE Asia: 7-SEAS AERONET observations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Giles, D. M.; Eck, T. F.; Lin, N.; Tsay, S.; Holben, B. N.

    2013-12-01

    Initiated in 2007, the Seven South East Asian Studies (7-SEAS) is aimed to facilitate an interdisciplinary research on the aerosol environment in SE Asia (SEA) as a whole, promote international collaboration, and further enhance scientific understanding of the impact of biomass burning on clouds, atmospheric radiation, hydrological cycle, and region climates. One of the key measurements proposed in the 7-SEAS is the NASA/AERONET (AErosol RObotic NETwork) observation, which provides helpful information on columnar aerosol optical properties and allows us consistently to examine biomass-burning aerosols across northern SEA from ground-based remote-sensing point of view. In this presentation, we will focus on the two 7-SEAS field deployments, i.e. the 2012 Son La Experiment and the 2013 BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment). We analyze the daytime variation of aerosol by using consistent measurements from 15 of AERONET sites over Indochina, the South China Sea, and Taiwan. Spatiotemporal characteristics of aerosol optical properties (e.g., aerosol optical depth (AOD), fine/coarse mode AOD, single-scattering albedo, asymmetry factor) will be discussed. Strong diurnal variation of aerosol optical properties was observed to be attributed to planetary boundary layer (PBL) dynamics. A comparison between aerosol loading (i.e. AOD) and surface PM2.5 concentration will be presented. Our results demonstrate that smoke aerosols emitted from agriculture burning that under certain meteorological conditions can degrade regional air quality 3000 km from the source region, with additional implications for aerosol radiative forcing and regional climate change over northern SE Asia.

  18. Aerosol model development for environmental monitoring in the coastal atmosphere surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady A.; Matvienko, Gennady G.

    2007-06-01

    Extinction of radiation in the marine boundary layer is dominated by scattering and absorption due to atmospheric aerosol. It is known, that the extinction of optical radiation visible and near IR spectra in the marine surface layer is determined mainly by scattering and absorption atmospheric aerosol. It influences on a dependence of spectral transmission and extinction both natural, and artificial light that is of interest for a wide range of problems, in particular for radiating problems at studying laws of climate formation, and for lines of the applications connected to the forecast of a signal power in coastal conditions at an estimation of EO systems characteristics. This is important to optical retrievals from satellite, remote sensing at environmental monitoring, backscatter of light to space (including climate forcing), cloud properties etc. In unpolluted regions the greatest effects on near shore scattering extinction will be a result of sea-salt from breaking waves and variations in relative humidity. The role of breaking waves appears to be modulated by wind, tide, swell, wave spectra and coastal conditions. These influences will be superimposed upon aerosol generated by open ocean sea-salt aerosol that varies with wind speed. The focus of our study is the extinction and optical effects due to aerosol in a specific coastal region. This involves linking coastal physical properties to oceanic and meteorological parameters in order to develop predictive algorithms that describe 3-D aerosol structure and variability. The aerosol microphysical model of the marine and coastal atmosphere surface layer is considered. The model distinctive feature is parameterization of amplitude and width of the modes as functions of fetch and wind speed. In the paper the dN/dr behavior depending at change meteorological parameters, heights above sea level, fetch, wind speed and RH is show. On the basis of the developed model with usage of Mie theory for spheres the

  19. Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3)

    SciTech Connect

    Liu, Xiaohong; Penner, Joyce E.; Ghan, Steven J.; Wang, M.

    2007-09-15

    A prognostic equation for ice crystal number concentration together with an ice nucleation scheme are implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3) with the aim of studying the indirect effect of aerosols on cold clouds. The effective radius of ice crystals which is used in the radiation and gravitational settlement calculations is now calculated from model predicted mass and number of ice crystals rather than diagnosed as a function of temperature. We add a water vapor deposition scheme to replace the condensation and evaporation (C-E) in the standard CAM3 for ice clouds. The repartitioning of total water into liquid and ice in mixed-phase clouds as a function of temperature is removed, and ice supersaturation is allowed. The predicted ice water content in the modified CAM3 is in better agreement with the Aura MLS data than that in the standard CAM3. The cirrus cloud fraction near the tropical tropopause, which is underestimated in the standard CAM3, is increased, and the cold temperature bias there is reduced by 1-2 °K. However, an increase in the cloud fraction in polar regions makes the underestimation of downwelling shortwave radiation in the standard CAM3 even worse. A sensitivity test reducing the threshold relative humidity with respective to ice (RHi) for heterogeneous ice nucleation from 120% to 105% (representing nearly perfert ice nuclei) increases the global cloud cover by 1.7%, temperature near the tropical tropopause by 4-5 °K, and water vapor in the stratosphere by 50-90%.

  20. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  1. MAD-VenLA: a microphysical modal representation of clouds for the IPSL Venus GCM

    NASA Astrophysics Data System (ADS)

    Guilbon, Sabrina; Määttänen, Anni; Burgalat, Jérémie; Montmessin, Franck; Stolzenbach, Aurélien; Bekki, Slimane

    2016-10-01

    Venus is enshrouded by 20km-thick clouds, which are composed of sulfuric acid-water solution droplets. Clouds play a crucial role on the climate of the planet. Our goal is to study the formation and evolution of Venusian clouds with microphysical models. The goal of this work is to develop the first full 3D microphysical model of Venus coupled with the IPSL Venus GCM and the photochemical model included (Lebonnois et al. 2010, Stolzenbach et al. 2016).Two particle size distribution representations are generally used in cloud modeling: sectional and modal. The term 'sectional' means that the continuous particle size distribution is divided into a discrete set of size intervals called bins. In the modal approach, the particle size distribution is approximated by a continuous parametric function, typically a log-normal, and prognostic variables are distribution or distribution-integrated parameters (Seigneur et al. 1986, Burgalat et al. 2014). These two representations need to be compared to choose the optimal trade-off between precision and computational efficiency. At high radius resolution, sectional models are computationally too demanding to be integrated in GCMs. That is why, in other GCMs, such as the IPSL Titan GCM, the modal scheme is used (Burgalat et al. 2014).The Venus Liquid Aerosol cloud model (VenLA) and the Modal Dynamics of Venusian Liquid Aerosol cloud model (MAD-VenLA) are respectively the sectional and the modal model discussed here and used for defining the microphysical cloud module to be integrated in the IPSL Venus GCM. We will compare the two models with the key microphysical processes in 0D setting: homogeneous and heterogeneous nucleation, condensation/evaporation and coagulation. Then, MAD-VenLA will be coupled with the IPSL VGCM. The first results of the complete VGCM with microphysics coupled with chemistry will be presented.

  2. Plume Aerosol Size Distribution Modeling and Comparisons to PrAIRie2005 Field Study Data

    NASA Astrophysics Data System (ADS)

    Cho, S.; Liggio, J.; Makar, P.; Li, S.; Racinthe, J.

    2006-12-01

    As part of the analysis phase of the PrAIRie2005 field study, the effects of different Edmonton-area emission sources on local air-quality are being examined. Four large coal-fired power-plants are located to the West of the city. Here, the effects of these power-plants on urban and regional air-quality will be examined, using both plume and regional air-quality models. During the last few decades, coal-fired power plants have been found to be as a major source of pollution, affecting public-health. According to NACEC (North American Commission for Environmental Corporation, 2001)'s report, 46 of the top 50 air polluters in North America were power plants. The importance of such sources has resulted in several attempts to improve understanding of the basic formation mechanisms of plume particulate matter. Sulphur dioxide contributes to acidifying emissions and to the production of secondary acidic aerosols that have been linked to a number of serious human health problems, acid rain and visibility (Seinfeld and Pandis, 1998; Hidy, 1984; Wilson and McMurray, 1981). Primary particulate matter originating directly from coal-fired power plants may also increase secondary particulate mass by providing a surface for sulphuric acid absorption . Environment Canada's PrAIRie2005 field study between August 12th and September 7th, 2005 included overflights and downwind measurements near the Edmonton powerplants (Wabamun, Sundance, Keephills and Genesee). The data collected consisted of particle size distributions, ozone, NOX, total mass and the chemical composition of fine particles. In order to investigate and improve our understanding of the formation mechanisms and physical properties of power-plant-generated aerosols in the Edmonton area, the Plume Aerosol Microphysical (PAM) model has been employed. This model accounts for gas-phase chemistry, aerosol microphysical processes (i.e. homogeneous/heterogeneous nucleation, condensation/evaporation and coagulation) and

  3. Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Kottmeier, C.; Vogel, B.; Vogel, H.

    2011-01-01

    We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterise the PDF of subgrid-scale cloud updraft velocity in the activation parameterisations of climate models. The simulations show that the presence of CCN and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of β is slightly skewed to positive values and has a mean of 0

  4. Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Kottmeier, C.; Vogel, B.; Vogel, H.

    2011-05-01

    We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterize the probability density function, PDF, of subgrid-scale cloud updraft velocity in the activation parameterizations of climate models. The simulations show that the presence of cloud condensation nuclei (CCN) and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of

  5. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    SciTech Connect

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios

    2015-07-22

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107–113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  6. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, L. Ruby; Fan, Jiwen; Nenes, Athanasios

    2015-07-01

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107-113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  7. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  8. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  9. The Role of Aerosols on Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2006-01-01

    Cloud physics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distribution below the clouds. Therefore, the size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral--bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.

  10. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  11. Mouse Model of Coxiella burnetii Aerosolization.

    PubMed

    Melenotte, Cléa; Lepidi, Hubert; Nappez, Claude; Bechah, Yassina; Audoly, Gilles; Terras, Jérôme; Raoult, Didier; Brégeon, Fabienne

    2016-07-01

    Coxiella burnetii is mainly transmitted by aerosols and is responsible for multiple-organ lesions. Animal models have shown C. burnetii pathogenicity, but long-term outcomes still need to be clarified. We used a whole-body aerosol inhalation exposure system to mimic the natural route of infection in immunocompetent (BALB/c) and severe combined immunodeficient (SCID) mice. After an initial lung inoculum of 10(4) C. burnetii cells/lung, the outcome, serological response, hematological disorders, and deep organ lesions were described up to 3 months postinfection. C. burnetii-specific PCR, anti-C. burnetii immunohistochemistry, and fluorescent in situ hybridization (FISH) targeting C. burnetii-specific 16S rRNA completed the detection of the bacterium in the tissues. In BALB/c mice, a thrombocytopenia and lymphopenia were first observed, prior to evidence of C. burnetii replication. In all SCID mouse organs, DNA copies increased to higher levels over time than in BALB/c ones. Clinical signs of discomfort appeared in SCID mice, so follow-up had to be shortened to 2 months in this group. At this stage, all animals presented bone, cervical, and heart lesions. The presence of C. burnetii could be attested in situ for all organs sampled using immunohistochemistry and FISH. This mouse model described C. burnetii Nine Mile strain spread using aerosolization in a way that corroborates the pathogenicity of Q fever described in humans and completes previously published data in mouse models. C. burnetii infection occurring after aerosolization in mice thus seems to be a useful tool to compare the pathogenicity of different strains of C. burnetii. PMID:27160294

  12. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  13. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (μ) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a μ of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing μ to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  14. Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations. Part 2 ; Precipitation Microphysics

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Zipser, Edward J.; Fridland, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher

    2014-01-01

    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region.

  15. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    PubMed Central

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  16. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  17. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models

    NASA Astrophysics Data System (ADS)

    Vuolo, M. R.; Schulz, M.; Balkanski, Y.; Takemura, T.

    2013-07-01

    The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete comprehension of the role of the aerosol and clouds vertical distribution. This work aims at reducing the incertitude of aerosol forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosols species and clouds. We propose a method to quantify the contribution of different parts of the atmospheric column to the forcing, and to evaluate model differences by isolating the effect of radiative interactions only. Any microphysical or thermo-dynamical interactions between aerosols and clouds are deactivated in the model, to isolate the effects of radiative flux coupling. We investigate the contribution of aerosol above, below and in clouds, by using added diagnostics in the aerosol-climate model LMDz. We also compute the difference between the forcing of the ensemble of the aerosols and the sum of the forcings from individual species, in clear-sky. This difference is found to be moderate on global average (14%) but can reach high values regionally (up to 100%). The non-additivity of forcing already for clear-sky conditions shows, that in addition to represent well the amount of individual aerosol species, it is critical to capture the vertical distribution of all aerosols. Nonlinear effects are even more important when superposing aerosols and clouds. Four forcing computations are performed, one where the full aerosol 3-D distribution is used, and then three where aerosols are confined to regions above, inside and below clouds respectively. We find that the forcing of aerosols depends crucially on the presence of clouds and on their position relative to that of the aerosol, in particular for black carbon (BC). We observe a strong enhancement of the forcing of BC above clouds, attenuation for BC below clouds, and a moderate

  18. Development and testing of an aerosol-stratus cloud parameterization scheme for middle and high latitudes

    SciTech Connect

    Olsson, P.Q.; Meyers, M.P.; Kreidenweis, S.; Cotton, W.R.

    1996-04-01

    The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics models. The primary objectives of this work are twofold. First, we need the prediction of number concentrations of activated aerosol which are transferred to the droplet spectrum, so that the aerosol population directly affects the cloud formation and microphysics. Second, we plan to couple the aerosol model to the gas and aqueous-chemistry module that will drive the aerosol formation and growth. We begin by exploring the feasibility of performing cloud-resolving simulations of Arctic stratus clouds over the North Slope CART site. These simulations using Colorado State University`s regional atmospheric modeling system (RAMS) will be useful in designing the structure of the cloud-resolving model and in interpreting data acquired at the North Slope site.

  19. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  20. The effects of models of aerosol hygroscopicity on the apportionment of extinction

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Kreidenweis, Sonia M.

    The role that aerosols play in climate forcing and visibility issues has been the subject of research for several decades. Recent research efforts have focused on assessing the contribution of individual species to scattering and absorption under ambient conditions and on how scattering and absorption change as one or more species are removed from the atmosphere. A key concern is the distribution of water among aerosols as a function of mixing assumptions. As an illustrative and relevant example, we examine the roles of sulfates and organics in visibility and climate forcing, and in particular, the implications of assumptions regarding hygroscopic growth behavior upon the assignment of mass-scattering efficiencies to these species. We demonstrate that the total scattering computed for an aerosol sample is relatively insensitive to the choice of internal or external mixture, and can be insensitive to the exact formulation of the hygroscopic growth of the sample. Since the atmospheric aerosol is generally a complex mixture of chemical species, with the precise distribution of species on a particle-by-particle basis not known, the use of semi-empirical models of multicomponent aerosol hygroscopicity is appropriate for the calculation of atmospheric aerosol scattering and/or extinction, particularly since these details appear to be unimportant in most cases. In contrast, the apportionment of percentages of the total scattering to individual chemical species is quite sensitive to the choice of assumption regarding the aerosol microphysical structure. The use of semi-empirical hygroscopic growth models for computing the change in species scattering efficiency can lead to incorrect predictions in the limit of the complete removal of all but one chemical component. We propose a model that invokes the Zdanovskii, Stokes, and Robinson (ZSR) assumptions for the water content of multicomponent mixtures, and demonstrate that this method both approximates the predictions of

  1. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.

    The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  2. Implication of observed cloud variability for parameterizations of microphysical and radiative transfer processes in climate models

    NASA Astrophysics Data System (ADS)

    Huang, D.; Liu, Y.

    2014-12-01

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The PDFs are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest and thus there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

  3. Impacts of Aerosol Direct Effects on the South Asian Climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Gautam, Ritesh; Lau, William K. M.; Tsay, Si-Chee; Sun, Wen-Yih; Kim, Kyu-Myong; Chern, Jiun-Dar; Hsu, Christina; Lin, Neng-Huei

    2011-01-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation.

  4. Parameterization of Aerosol Sinks in Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2012-01-01

    The modelers point of view is that the aerosol problem is one of sources, evolution, and sinks. Relative to evolution and sink processes, enormous attention is given to the problem of aerosols sources, whether inventory based (e.g., fossil fuel emissions) or dynamic (e.g., dust, sea salt, biomass burning). On the other hand, aerosol losses in models are a major factor in controlling the aerosol distribution and lifetime. Here we shine some light on how aerosol sinks are treated in modern chemical transport models. We discuss the mechanisms of dry and wet loss processes and the parameterizations for those processes in a single model (GEOS-5). We survey the literature of other modeling studies. We additionally compare the budgets of aerosol losses in several of the ICAP models.

  5. Atmospheric responses to the redistribution of anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Jonathan H.; Su, Hui

    2015-09-01

    The geographical shift of global anthropogenic aerosols from the developed countries to the Asian continent since the 1980s could potentially perturb the regional and global climate due to aerosol-cloud-radiation interactions. We use an atmospheric general circulation model with different aerosol scenarios to investigate the radiative and microphysical effects of anthropogenic aerosols from different regions on the radiation budget, precipitation, and large-scale circulations. An experiment contrasting anthropogenic aerosol scenarios in 1970 and 2010 shows that the altered cloud reflectivity and solar extinction by aerosols results in regional surface temperature cooling in East and South Asia, and warming in the US and Europe, respectively. These aerosol-induced temperature changes are consistent with the relative temperature trends from 1980 to 2010 over different regions in the reanalysis data. A reduced meridional streamfunction and zonal winds over the tropics as well as a poleward shift of the jet stream suggest weakened and expanded tropical circulations, which are induced by the redistributed aerosols through a relaxing of the meridional temperature gradient. Consequently, precipitation is suppressed in the deep tropics and enhanced in the subtropics. Our assessments of the aerosol effects over the different regions suggest that the increasing Asian pollution accounts for the weakening of the tropics circulation, while the decreasing pollution in Europe and US tends to shift the circulation systems southward. Moreover, the aerosol indirect forcing is predominant over the total aerosol forcing in magnitude, while aerosol radiative and microphysical effects jointly shape the meridional energy distributions and modulate the circulation systems.

  6. Combination of spaceborne sensor(s) and 3-D aerosol models to assess global daily near-surface air quality

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Redemann, J.; Russell, P. B.

    2009-12-01

    Aerosol Particulate Matter (PM), measured by ground-based monitoring stations, is used as a standard by the EPA (Environmental Protection Agency) to evaluate daily air quality. PM monitoring is particularly important for human health protection because the exposure to suspended particles can contribute, among others, to lung and respiratory diseases and even premature death. However, most of the PM monitoring stations are located close to cities, leaving large areas without any operational data. Satellite remote sensing is well suited for a global coverage of the aerosol load and can provide an independent and supplemental data source to in situ monitoring. Nevertheless, PM at the ground cannot easily be determined from satellite AOD (Aerosol Optical Depth) without additional information on the optical/microphysical properties and vertical distribution of the aerosols. The objective of this study is to explore the efficacy and accuracy of combining a 3-D aerosol transport model and satellite remote sensing as a cost-effective approach for estimating ground-level PM on a global and daily basis. The estimation of the near-surface PM will use the vertical distribution (and, if possible, the physicochemical properties) of the aerosols inferred from a transport model and the measured total load of particles in the atmospheric column retrieved by satellite sensor(s). The first step is to select a chemical transport model (CTM) that provides “good” simulated aerosol vertical profiles. A few global (e.g., WRF-Chem-GOCART) or regional (e.g., MM5-CMAQ, PM-CAMx) CTM will be compared during selected airborne campaigns like ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites- California Air Resources Board). The next step will be to devise an algorithm that combines the satellite and model data to infer PM mass estimates at the ground, after evaluating different spaceborne instruments and possible multi-sensor combinations.

  7. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  8. The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

    SciTech Connect

    Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

    2012-08-14

    Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

  9. Model Evaluation of Aerosol Wet Scavenging in Deep Convective Clouds Based on Observations Collected during the DC3 Campaign

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Easter, R. C.; Fast, J. D.; Wang, H.; Ghan, S. J.; Campuzano Jost, P.; Barth, M. C.; Fan, J.; Morrison, H.; Jimenez, J. L.; Bela, M. M.; Markovic, M. Z.

    2014-12-01

    Deep convective storms greatly influence the vertical distribution of aerosols by transporting aerosols from the boundary layer to the upper troposphere and by removing aerosols through wet scavenging processes. Model representation of wet scavenging is a major uncertainty in simulating the vertical distribution of aerosols due partly to limited constraints by observations. The effect of wet scavenging on ambient aerosols in deep mid-latitude continental convective clouds is studied for a severe storm case in the vicinity of the ARM Southern Great Plains site on May 29, 2012 during the Deep Convective Clouds and Chemistry Project (DC3) field campaign. A new budget analysis approach is developed to characterize the convective transport to the upper troposphere based on the vertical distribution of several slowly reacting and nearly insoluble trace gases (i.e., CO, acetone, and benzene). A similar budget framework is applied to aerosols combined with the known transport efficiency to estimate wet-scavenging efficiency. The chemistry version of the Weather Research and Forecasting model (WRF-Chem) simulates the storm initiation timing and structure reasonably well when compared against radar observations from the NSSL national 3-D reflectivity Mosaic data. Simulated vertical profiles of humidity and temperature also closely agree with radiosonde measurements before and during the storm. High scavenging efficiencies (~80%) for aerosol number (Dp < 2.5μm) and mass (Dp < 1μm) are obtained from the observations. Both observation analyses and the simulation show that, between the two dominant aerosol species, organic aerosol shows a slightly higher scavenging efficiency than sulfate aerosol, and higher scavenging efficiency is found for larger particle sizes (0.15 - 2.5μm versus 0.03 - 0.15μm). However, the model underestimates the wet scavenging efficiency (by up to 50%), in general, for both mass and number concentrations. The effect of neglecting secondary

  10. A Climate Process Team focused on better representation of aerosol indirect effects in climate models through improved cloud macrophysical parameterization

    NASA Astrophysics Data System (ADS)

    Wood, R.; Larson, V. E.; Donner, L.; Golaz, J.; Guo, H.; Gettelman, A.; Morrison, H.; Bogenschutz, P.; Feingold, G.; Yamaguchi, T.; Lee, S.; Stephens, G. L.; Lebsock, M. D.; Kubar, T. L.; Grosvenor, D. P.

    2011-12-01

    The representation of aerosol indirect effects (AIEs) in climate models is hampered in part by a poor representation of cloud macrophysical processes. Accurate representation of AIEs involves a complex interplay between cloud microphysics, turbulent dynamics, and radiation. This presentation describes the goals, progress, and future activities of a NSF/NOAA Climate Process Team focused on the improved representation of cloud macrophysical processes through the incorporation of a unified cloud and turbulence scheme into two of the leading US climate models (NCAR CAM, GFDL AM3). We describe how a combination of process modeling, field observations, and single column modeling can be used to improve model physics. We then describe progress in the implementation of the scheme in the full climate model. We describe observational metrics from satellites that the team is using to establish the fidelity of the model results and guide future model development.

  11. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; L'Ecuyer, T. S.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; LeBlanc, S. E.; Vaughan, M. A.; Schmidt, S.; Flynn, C. J.; Song, S.; Schmid, B.; Luna, B.; Abel, S.

    2015-12-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  12. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Piketh, S.; Formenti, P.; L'Ecuyer, T.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.; LeBlanc, S.; Vaughan, M.; Schmidt, S.; Flynn, C.; Schmid, B.; Luna, B.; Abel, S.

    2016-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  13. Evaluation of Enviro-HIRLAM model and aerosols effect during wildfires episodes in Europe and Central Russia in summer 2010

    NASA Astrophysics Data System (ADS)

    Nuterman, Roman; Pagh Nielsen, Kristian; Baklanov, Alexander; Kaas, Eigil

    2014-05-01

    The summer of 2010 was characterized by severe weather events such as floods, heat waves and droughts across Middle East, most of Europe and European Russia. Among them the wildfires in Portugal and European Russia were some of the most prominent and led to substantial increase of atmospheric aerosols concentration. For instance, pollution from Russian wildfires, which were the most noticeable, spread around the entire central part of the country and also dispersed towards the Northern Europe. This study is devoted to Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) model evaluation and analysis of radiation balance change due to increased aerosol burden caused by wildfires in Russia. For this purpose the model was forced by boundary and initial conditions produced by ECMWF (European Center for Medium-Range Weather Forecast) IFS and MOZART models for meteorology and atmospheric composition, respectively. The model setup included aerosol microphysics module M7 with simple tropospheric sulfur chemistry, anthropogenic emissions by TNO, wildfires emissions by FMI and interactive sea-salt and dust emissions. During the model run surface data assimilation of meteorological parameters was applied. The HIRLAM Savijarvi radiation scheme has been improved to account explicitly for aerosol radiation interactions. So that the short-wave radiative transfer calculations are performed as standard 2-stream calculations for averages of aerosol optical properties weighted over the entire spectrum. The model shows good correlation of particulate matter (PM) concentrations on diurnal cycle as well as day-to-day variability, but one always has negative bias of PM. The Enviro-HIRLAM is able to capture concentration peaks both from short-term and long-term trans boundary transport of PM and predicted the Aerosol Optical Thickness (at 550 nm) up to 2 over wildfire-polluted regions. And the direct radiative forcing is less than -100 W/m2.

  14. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U. S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Case, J. L.; Zavodsky, B. T.; Srikishen, J.; Medlin, J. M.; Wood, L.

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics parameterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRT Center to select NOAA/NWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boundary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage of lightning activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  15. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  16. Integration of prognostic aerosol-cloud interactions in a chemistry transport model coupled offline to a regional climate model

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Kahnert, M.; Andersson, C.; Kokkola, H.; Hansson, U.; Jones, C.; Langner, J.; Devasthale, A.

    2015-06-01

    To reduce uncertainties and hence to obtain a better estimate of aerosol (direct and indirect) radiative forcing, next generation climate models aim for a tighter coupling between chemistry transport models and regional climate models and a better representation of aerosol-cloud interactions. In this study, this coupling is done by first forcing the Rossby Center regional climate model (RCA4) with ERA-Interim lateral boundaries and sea surface temperature (SST) using the standard cloud droplet number concentration (CDNC) formulation (hereafter, referred to as the "stand-alone RCA4 version" or "CTRL" simulation). In the stand-alone RCA4 version, CDNCs are constants distinguishing only between land and ocean surface. The meteorology from this simulation is then used to drive the chemistry transport model, Multiple-scale Atmospheric Transport and Chemistry (MATCH), which is coupled online with the aerosol dynamics model, Sectional Aerosol module for Large Scale Applications (SALSA). CDNC fields obtained from MATCH-SALSA are then fed back into a new RCA4 simulation. In this new simulation (referred to as "MOD" simulation), all parameters remain the same as in the first run except for the CDNCs provided by MATCH-SALSA. Simulations are carried out with this model setup for the period 2005-2012 over Europe, and the differences in cloud microphysical properties and radiative fluxes as a result of local CDNC changes and possible model responses are analysed. Our study shows substantial improvements in cloud microphysical properties with the input of the MATCH-SALSA derived 3-D CDNCs compared to the stand-alone RCA4 version. This model setup improves the spatial, seasonal and vertical distribution of CDNCs with a higher concentration observed over central Europe during boreal summer (JJA) and over eastern Europe and Russia during winter (DJF). Realistic cloud droplet radii (CD radii) values have been simulated with the maxima reaching 13 μm, whereas in the stand

  17. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  18. Impact of aerosol size representation on modeling aerosol-cloud interactions

    SciTech Connect

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).

  19. Combining Passive Polarimetric and Lidar Observations from TCAP to Vertically Partition a Multi-Modal Aerosol Model

    NASA Astrophysics Data System (ADS)

    Cairns, B.; Ottaviani, M.; Knobelspiesse, K. D.; Chowdhary, J.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Cook, A. L.; Harper, D. B.; Mack, T. L.; Hare, R. J.; Cleckner, C. S.; Rogers, R.; Mueller, D.; Burton, S. P.; Obland, M. D.; Scarino, A. J.; Redemann, J.; Schmid, B.; Fast, J. D.; Berg, L. K.

    2012-12-01

    The first airborne deployment associated with the Two-Column Aerosol Project (TCAP) field campaign was carried out on Cape Cod, Massachusetts during July 2012 using the DOE Gulfstream 1 (G-1) and the NASA Langley B200. The first column located on Cape Cod has the surface based ARM Mobile Facility, which measures aerosol properties, radiation, and cloud characteristics, as its anchor point. The second column, 200 km to the East, was chosen to facilitate characterization of the large gradient of AOD near the coast of New England. The G-1 was equipped with a suite of in situ instrumentation to measure the size, composition and optics of aerosols, together with spectral Aerosol Optical Depth (AOD) above the aircraft using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research. The G1 generally flew at low altitude except when profiling the two columns. The B200, flew at ~ 9 km, above the G1, and operated the world's first airborne three backscatter (355, 532 and 1064 nm) and two extinction (355 and 532 nm) channel high-spectral-resolution lidar, HSRL-2 and the Research Scanning Polarimeter (RSP), which provides multi-angle multi-spectral observations of the intensity and polarization over a spectral range from 410 to 2260 nm. The TCAP measurements are ideal for remote sensing of aerosols since a dark ocean allows the full power of the passive intensity and polarization observations to be explored. RSP observations over the ocean have previously been used to retrieve the AOD, particle size and complex refractive index of aerosols, but it was noted that the vertical distribution of the aerosols could affect the accuracy of the retrieval. In this paper we combine HSRL-2 and RSP data to retrieve and partition a multi-modal aerosol model through the column. The lidar intensive variables (ratios of the lidar observations) that do not depend on aerosol load are used to constrain the microphysics of the aerosol modes. Where the classification technique presented

  20. The impact of natural and anthropogenic aerosols on radiation and clouds simulated with the fully online coupled model system COSMO-ART

    NASA Astrophysics Data System (ADS)

    Vogel, Bernhard; Athanasopoulou, Eleni; Bangert, Max; Ferrone, Andrew; Gölz, Inga; Vogel, Heike; Hoose, Corinna; Hummel, Matthias; Brunner, Dominik

    2013-04-01

    The interplay between air quality and regional climate has become a focal point in recent atmospheric research. The treatment of the interaction of the involved processes requires a new class of air quality models. The model system COSMO-ART (Vogel et al., 2009, Bangert et al., 2012) is a comprehensive online coupled model system to simulate the spatial and temporal distributions of reactive gaseous and particulate matter. It is used to quantify the feedback processes between aerosols and the state of the atmosphere on the continental to the regional scale with two-way interactions between different atmospheric processes. To simulate the impact of the various aerosol particles on the cloud microphysics and precipitation COSMO-ART was coupled with the two-moment cloud microphysics scheme of Seifert and Beheng (2006) by using parameterisations for aerosol activation and ice nucleation. The model system was applied for different model domains and meteorological situations to quantify the direct and the indirect impact of the natural and anthropogenic aerosol particles. The simulation of the 2007 wild fire events in Greece reveals that the high aerosol concentrations cause a decrease of the short wave radiation at the surface and consequently a change of temperature throughout the whole atmosphere. Temperature changes with different sign over land and surface occur. Results of the simulations of the heat wave of 2003 show the influence of soot particles in different mixing state on radiation. The soot content of the atmosphere modifies the thermal stability and therefore the mixing capabilities of the atmosphere. Laboratory experiments have identified primary biological aerosol particles as efficient ice nuclei at relatively high temperatures. However, simulations with COSMO-ART show that the contribution of pollen grains to cloud ice formation is low due to low number concentrations at cloud altitude.

  1. Increase of Cloud Droplet Size with Aerosol Optical Depth: An Observational and Modeling Study

    SciTech Connect

    Yuan, Tianle; Li, Zhanqing; Zhang, Renyi; Fan, Jiwen

    2008-02-21

    Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including water vapor swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D spectral-bin microphysics Goddard Cumulus Ensemble model (GCE) which incorporated a reformulation of the Köhler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant CCNs. Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon.

  2. Evaluation of the warm cloud microphysical processes in global models using the CloudSat/A-Train multi-sensor satellite observations

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Bodas-Salcedo, A.; Golaz, J.; Yokohata, T.; Wang, M.; Stephens, G. L.

    2012-12-01

    Warm cloud microphysical processes in global models are evaluated using the CloudSat and A-Train multi-sensor satellite observations to characterize the behaviors of microphysics parameterizations and to identify the fundamental model biases in representing the processes. Methodologies recently developed to analyze the CloudSat and A-Train satellite observations are employed to construct the statistics that dictate process-level signatures of the cloud-to-rain water conversion. The methodologies include the analyses of (i) the probability of precipitation as a function of liquid water path describing how the water conversion process occurs, (ii) the interrelationships between the radar reflectivity and the particle size as a proxy for the condensation and coalescence processes, and (iii) the vertical microphysical structures depicted by the radar reflectivity profiles re-scaled as a function of the cloud optical depth. We apply the methodologies to both the satellite observations and the global model results to compare the statistics among different models as well as between the models and the observations. The models studied include the state-of-the-art global climate models (i.e. the UKMO, GFDL, and MIROC models) and a multi-scale modeling framework (MMF) model (i.e. the PNNL-MMF model), which are all implemented with the CFMIP Observation Simulator Package (COSP) satellite signal simulators for appropriate comparisons to the satellite observations. Given the capability of the methodologies to depict the process-level characteristics of the warm rain formation, their applications to the COSP-based model results reveal how the warm rain processes are represented in the models. Their comparisons to the corresponding statistics from satellite observations then characterize the model behaviors against the observations in terms of the liquid cloud microphysical processes. A possible way of understanding and reducing the model biases is also discussed with the aid of a

  3. The scavenging of two different types of marine aerosol particles calculated using a two-dimensional detailed cloud model

    NASA Astrophysics Data System (ADS)

    Flossmann, Andrea I.

    1991-07-01

    Our 2-D dynamic model including spectral microphysics and scavenging has been evaluated for a warm precipitating convective cloud at Day 261 (18 September 1974) of the GATE campaign. Two different chemical species ((NH4)2SO4 and NaCl) of aerosol particles were followed in the air, inside the drops in the cloud, and inside the drops reaching the ground. Concerning the dynamics and microphysics, as well as the scavenging and wet deposition, the model results agree quite well with available observations. The cloud rained after 19min of cloud life time. For the considered aerosol loading of the atmosphere, rough estimates are derived for the total material processed by such a warm convective cloud as input for larger scale models. In particular, the following conclusions could be drawn for the situation considered. (1) If a drop spectrum forms on an aerosol spectrum where the small particles consist of (NH4)2SO4 and the large ones of NaCl, the resulting small drops also mainly consist of (NH4)2SO4 and the larger drops of NaCl. Collision and coalescence causes a redistribution of the chemical species such that the precipitation sized drops consist of NaCl to about 70%. (2) The mixing ratio of aerosol material in the drops is a function of the age of the drops and their history and therefore the variation of the mixing ratio with drop size depends on the entrainment and evoluion of the relative humidity. The mixing ratio decreased with increasing drop radius at almost all grid points due to continuous activation of fresh particles. (3) Assuming that the sulfate aerosol would not consist of (NH4)2SO4 particles but instead consist of NH4 HSO4 particles the acidic cloud water has a pH of 4.7 which agrees with observations of marine precipitation. (4) The scavenging efficiency of the cloud considered is closely related to its precipitation efficiency (both near 40%). About 90% of the total amount of aerosol material scavenged is incorporated into the cloud water through

  4. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  5. How We Can Constrain Aerosol Type Globally

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2016-01-01

    In addition to aerosol number concentration, aerosol size and composition are essential attributes needed to adequately represent aerosol-cloud interactions (ACI) in models. As the nature of ACI varies enormously with environmental conditions, global-scale constraints on particle properties are indicated. And although advanced satellite remote-sensing instruments can provide categorical aerosol-type classification globally, detailed particle microphysical properties are unobtainable from space with currently available or planned technologies. For the foreseeable future, only in situ measurements can constrain particle properties at the level-of-detail required for ACI, as well as to reduce uncertainties in regional-to-global-scale direct aerosol radiative forcing (DARF). The limitation of in situ measurements for this application is sampling. However, there is a simplifying factor: for a given aerosol source, in a given season, particle microphysical properties tend to be repeatable, even if the amount varies from day-to-day and year-to-year, because the physical nature of the particles is determined primarily by the regional environment. So, if the PDFs of particle properties from major aerosol sources can be adequately characterized, they can be used to add the missing microphysical detail the better sampled satellite aerosol-type maps. This calls for Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM). We are defining a relatively modest and readily deployable, operational aircraft payload capable of measuring key aerosol absorption, scattering, and chemical properties in situ, and a program for characterizing statistically these properties for the major aerosol air mass types, at a level-of-detail unobtainable from space. It is aimed at: (1) enhancing satellite aerosol-type retrieval products with better aerosol climatology assumptions, and (2) improving the translation between satellite-retrieved aerosol optical properties and

  6. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    SciTech Connect

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  7. Evaluation of Retrieval Algorithms for Ice Microphysics Using CALIPSO/CloudSat and Earthcare

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Sato, Kaori; Hagihara, Yuichiro; Ishimoto, Hiroshi; Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2016-06-01

    We developed lidar-radar algorithms that can be applied to Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and CloudSat data to retrieve ice microphysics. The algorithms were the extended version of previously reported algorithm [1] and can treat both of nadir pointing of CALIPSO lidar period and 3°-off-nadir pointing one. We used the scattering data bank produced by the physical optics methods [2] and created lidar look-up tables of quasi-horizontally oriented ice plates (Q2D-plate) for nadir- and off-nadir lidar pointing periods. Then LUTs were implemented in the ice retrieval algorithms. We performed several sensitivity studies to evaluate uncertainties in the retrieved ice microphysics due to ice particle orientation and shape. It was found that the implementation of orientation of horizontally oriented ice plate model in the algorithm drastically improved the retrieval results in both for nadir- and off-nadir lidar pointing periods. Differences in the retrieved microphysics between only randomly oriented ice model (3D-ice) and mixture of 3D-ice and Q2Dplate model were large especially in off-nadir period, e.g., 100% in effective radius and one order in ice water content, respectively. And differences in the retrieved ice microphysics among different mixture models were smaller than about 50% for effective radius in nadir period.

  8. PMSE dependence on aerosol charge number density and aerosol size

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Lübken, Franz-Josef; Hoffmann, Peter; Latteck, Ralph; Baumgarten, Gerd; Blix, Tom A.

    2003-04-01

    It is commonly accepted that the existence of polar mesosphere summer echoes (PMSEs) depends on the presence of charged aerosols since these are comparatively heavy and reduce the diffusion of free electrons due to ambipolar forces. Simple microphysical modeling suggests that this diffusivity reduction is proportional to rA2 (rA = aerosol radius) but only if a significant amount of charges is bound on the aerosols such that NA∣ZA∣/ne > 1.2 (NA = number of aerosols, ZA = aerosol charge, ne = number of free electrons). The fact that the background electron profile frequently shows large depletions ("biteouts") at PMSE altitudes is taken as a support for this idea since within biteouts a major fraction of free electrons is missing, i.e., bound on aerosols. In this paper, we show from in situ measurements of electron densities and from radar and lidar observations that PMSEs can also exist in regions where only a minor fraction of free electrons is bound on aerosols, i.e., with no biteout and with NA∣ZA∣/ne ≪ 1. We show strong experimental evidence that it is instead the product NA∣ZA∣rA2 that is crucial for the existence of PMSEs. For example, small aerosol charge can be compensated by large aerosol radius. We show that this product replicates the main features of PMSEs, in particular the mean altitude distribution and the altitude of PMSEs in the presence of noctilucent clouds (NLCs). We therefore take this product as a "proxy" for PMSE. The agreement between this proxy and the main characteristics of PMSEs implies that simple microphysical models do not satisfactorily describe PMSE physics and need to be improved. The proxy can easily be used in models of the upper atmosphere to better understand seasonal and geographical variations of PMSEs, for example, the long debated difference between Northern and Southern hemisphere PMSEs.

  9. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley; Srikishen, Jayanthi; Medlin, Jeffrey; Wood, Lance

    2014-01-01

    Convection-allowing numerical weather simula- tions have often been shown to produce convective storms that have significant sensitivity to choices of model physical parameterizations. Among the most important of these sensitivities are those related to cloud microphysics, but planetary boundary layer parameterizations also have a significant impact on the evolution of the convection. Aspects of the simulated convection that display sensitivity to these physics schemes include updraft size and intensity, simulated radar reflectivity, timing and placement of storm initi- ation and decay, total storm rainfall, and other storm features derived from storm structure and hydrometeor fields, such as predicted lightning flash rates. In addition to the basic parameters listed above, the simulated storms may also exhibit sensitivity to im- posed initial conditions, such as the fields of soil temper- ature and moisture, vegetation cover and health, and sea and lake water surface temperatures. Some of these sensitivities may rival those of the basic physics sensi- tivities mentioned earlier. These sensitivities have the potential to disrupt the accuracy of short-term forecast simulations of convective storms, and thereby pose sig- nificant difficulties for weather forecasters. To make a systematic study of the quantitative impacts of each of these sensitivities, a matrix of simulations has been performed using all combinations of eight separate microphysics schemes, three boundary layer schemes, and two sets of initial conditions. The first version of initial conditions consists of the default data from large-scale operational model fields, while the second features specialized higher- resolution soil conditions, vegetation conditions and water surface temperatures derived from datasets created at NASA's Short-term Prediction and Operational Research Tran- sition (SPoRT) Center at the National Space Science and Technology Center (NSSTC) in Huntsville, AL. Simulations as

  10. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  11. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  12. Impact of anthropogenic aerosols on summer precipitation in the Beijing-Tianjin-Hebei urban agglomeration in China: Regional climate modeling using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Wu, Qizhong; Yan, Zhongwei

    2016-06-01

    The WRF model with chemistry (WRF-Chem) was employed to simulate the impacts of anthropogenic aerosols on summer precipitation over the Beijing-Tianjin-Hebei urban agglomeration in China. With the aid of a high-resolution gridded inventory of anthropogenic emissions of trace gases and aerosols, we conducted relatively long-term regional simulations, considering direct, semi-direct and indirect effects of the aerosols. Comparing the results of sensitivity experiments with and without emissions, it was found that anthropogenic aerosols tended to enhance summer precipitation over the metropolitan areas. Domain-averaged rainfall was increased throughout the day, except for the time around noon. Aerosols shifted the precipitation probability distribution from light or moderate to extreme rain. Further analysis showed that the anthropogenic aerosol radiative forcing had a cooling effect at the land surface, but a warming effect in the atmosphere. However, enhanced convective strength and updrafts accompanied by water vapor increases and cyclone-like wind shear anomalies were found in the urban areas. These responses may originate from cloud microphysical effects of aerosols on convection, which were identified as the primary cause for the summer rainfall enhancement.

  13. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars

    NASA Technical Reports Server (NTRS)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.

    2012-01-01

    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model