Sample records for aerosol microphysical schemes

  1. Introducing Convective Cloud Microphysics to a Deep Convection Parameterization Facilitating Aerosol Indirect Effects

    NASA Astrophysics Data System (ADS)

    Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.

    2012-12-01

    Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical

  2. A Comprehensive Two-moment Warm Microphysical Bulk Scheme :

    NASA Astrophysics Data System (ADS)

    Caro, D.; Wobrock, W.; Flossmann, A.; Chaumerliac, N.

    The microphysic properties of gaz, aerosol particles, and hydrometeors have impli- cations at local scale (precipitations, pollution peak,..), at regional scale (inundation, acid rains,...), and also, at global scale (radiative forcing,...). So, a multi-scale study is necessary to understand and forecast in a good way meteorological phenomena con- cerning clouds. However, it cannot be carried with detailed microphysic model, on account of computers limitations. So, microphysical bulk schemes have to estimate the n´ large scale z properties of clouds due to smaller scale processes and charac- teristics. So, the development of such bulk scheme is rather important to go further in the knowledge of earth climate and in the forecasting of intense meteorological phenomena. Here, a quasi-spectral microphysic warm scheme has been developed to predict the concentrations and mixing ratios of aerosols, cloud droplets and raindrops. It considers, explicitely and analytically, the nucleation of droplets (Abdul-Razzak et al., 2000), condensation/evaporation (Chaumerliac et al., 1987), the breakup and collision-coalescence processes with the Long (1974) Ss kernels and the Berry and ´ Reinhardt (1974) Ss autoconversion parameterization, but also, the aerosols and gaz ´ scavenging. First, the parameterization has been estimated in the simplest dynamic framework of an air parcel model, with the results of the detailed scavenging model, DESCAM (Flossmann et al., 1985). Then, it has been tested, in the dynamic frame- work of a kinematic model (Szumowski et al., 1998) dedicated to the HaRP cam- paign (Hawaiian Rainband Project, 1990), with the observations and with the results of the two dimensional detailed microphysic scheme, DESCAM 2-D (Flossmann et al., 1988), implement in the CLARK model (Clark and Farley, 1984).

  3. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  4. A microphysical pathway analysis to investigate aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Heikenfeld, Max; White, Bethan; Labbouz, Laurent; Stier, Philip

    2017-04-01

    The impact of aerosols on ice- and mixed-phase processes in convective clouds remains highly uncertain, which has strong implications for estimates of the role of aerosol-cloud interactions in the climate system. The wide range of interacting microphysical processes are still poorly understood and generally not resolved in global climate models. To understand and visualise these processes and to conduct a detailed pathway analysis, we have added diagnostic output of all individual process rates for number and mass mixing ratios to two commonly-used cloud microphysics schemes (Thompson and Morrison) in WRF. This allows us to investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations throughout the development of convective clouds. Aerosol effects on cloud microphysics could strongly depend on the representation of these interactions in the model. We use different model complexities with regard to aerosol-cloud interactions ranging from simulations with different levels of fixed cloud droplet number concentration (CDNC) as a proxy for aerosol, to prognostic CDNC with fixed modal aerosol distributions. Furthermore, we have implemented the HAM aerosol model in WRF-chem to also perform simulations with a fully interactive aerosol scheme. We employ a hierarchy of simulation types to understand the evolution of cloud microphysical perturbations in atmospheric convection. Idealised supercell simulations are chosen to present and test the analysis methods for a strongly confined and well-studied case. We then extend the analysis to large case study simulations of tropical convection over the Amazon rainforest. For both cases we apply our analyses to individually tracked convective cells. Our results show the impact of model uncertainties on the understanding of aerosol-convection interactions and have implications for improving process representation in models.

  5. The Impact of Aerosol Microphysical Representation in Models on the Direct Radiative Effect

    NASA Astrophysics Data System (ADS)

    Ridley, D. A.; Heald, C. L.

    2017-12-01

    Aerosol impacts the radiative balance of the atmosphere both directly and indirectly. There is considerable uncertainty remaining in the aerosol direct radiative effect (DRE), hampering understanding of the present magnitude of anthropogenic aerosol forcing and how future changes in aerosol loading will influence climate. Computationally expensive explicit aerosol microphysics are usually reserved for modelling of the aerosol indirect radiative effects that depend upon aerosol particle number. However, the direct radiative effects of aerosol are also strongly dependent upon the aerosol size distribution, especially particles between 0.2µm - 2µm diameter. In this work, we use a consistent model framework and consistent emissions to explore the impact of prescribed size distributions (bulk scheme) relative to explicit microphysics (sectional scheme) on the aerosol radiative properties. We consider the difference in aerosol burden, water uptake, and extinction efficiency resulting from the two representations, highlighting when and where the bulk and sectional schemes diverge significantly in their estimates of the DRE. Finally, we evaluate the modelled size distributions using in-situ measurements over a range of regimes to provide constraints on both the accumulation and coarse aerosol sizes.

  6. Evaluation of a new microphysical aerosol module in the ECMWF Integrated Forecasting System

    NASA Astrophysics Data System (ADS)

    Woodhouse, Matthew; Mann, Graham; Carslaw, Ken; Morcrette, Jean-Jacques; Schulz, Michael; Kinne, Stefan; Boucher, Olivier

    2013-04-01

    The Monitoring Atmospheric Composition and Climate II (MACC-II) project will provide a system for monitoring and predicting atmospheric composition. As part of the first phase of MACC, the GLOMAP-mode microphysical aerosol scheme (Mann et al., 2010, GMD) was incorporated within the ECMWF Integrated Forecasting System (IFS). The two-moment modal GLOMAP-mode scheme includes new particle formation, condensation, coagulation, cloud-processing, and wet and dry deposition. GLOMAP-mode is already incorporated as a module within the TOMCAT chemistry transport model and within the UK Met Office HadGEM3 general circulation model. The microphysical, process-based GLOMAP-mode scheme allows an improved representation of aerosol size and composition and can simulate aerosol evolution in the troposphere and stratosphere. The new aerosol forecasting and re-analysis system (known as IFS-GLOMAP) will also provide improved boundary conditions for regional air quality forecasts, and will benefit from assimilation of observed aerosol optical depths in near real time. Presented here is an evaluation of the performance of the IFS-GLOMAP system in comparison to in situ aerosol mass and number measurements, and remotely-sensed aerosol optical depth measurements. Future development will provide a fully-coupled chemistry-aerosol scheme, and the capability to resolve nitrate aerosol.

  7. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  8. A Microphysics-Based Black Carbon Aging Scheme in a Global Chemical Transport Model: Constraints from HIPPO Observations

    NASA Astrophysics Data System (ADS)

    He, C.; Li, Q.; Liou, K. N.; Qi, L.; Tao, S.; Schwarz, J. P.

    2015-12-01

    Black carbon (BC) aging significantly affects its distributions and radiative properties, which is an important uncertainty source in estimating BC climatic effects. Global models often use a fixed aging timescale for the hydrophobic-to-hydrophilic BC conversion or a simple parameterization. We have developed and implemented a microphysics-based BC aging scheme that accounts for condensation and coagulation processes into a global 3-D chemical transport model (GEOS-Chem). Model results are systematically evaluated by comparing with the HIPPO observations across the Pacific (67°S-85°N) during 2009-2011. We find that the microphysics-based scheme substantially increases the BC aging rate over source regions as compared with the fixed aging timescale (1.2 days), due to the condensation of sulfate and secondary organic aerosols (SOA) and coagulation with pre-existing hydrophilic aerosols. However, the microphysics-based scheme slows down BC aging over Polar regions where condensation and coagulation are rather weak. We find that BC aging is primarily dominated by condensation process that accounts for ~75% of global BC aging, while the coagulation process is important over source regions where a large amount of pre-existing aerosols are available. Model results show that the fixed aging scheme tends to overestimate BC concentrations over the Pacific throughout the troposphere by a factor of 2-5 at different latitudes, while the microphysics-based scheme reduces the discrepancies by up to a factor of 2, particularly in the middle troposphere. The microphysics-based scheme developed in this work decreases BC column total concentrations at all latitudes and seasons, especially over tropical regions, leading to large improvement in model simulations. We are presently analyzing the impact of this scheme on global BC budget and lifetime, quantifying its uncertainty associated with key parameters, and investigating the effects of heterogeneous chemical oxidation on BC aging.

  9. Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with a detailed bin microphysics scheme

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Yin, Yan; Jin, Lianji; Chen, Qian; Chen, Jinghua

    2015-08-01

    The Weather Research Forecast (WRF) mesoscale model coupled with a detailed bin microphysics scheme is used to investigate the impact of aerosol particles serving as cloud condensation nuclei and ice nuclei on orographic clouds and precipitation. A mixed-phase orographic cloud developed under two scenarios of aerosol (a typical continental background and a relatively polluted urban condition) and ice nuclei over an idealized mountain is simulated. The results show that, when the initial aerosol condition is changed from the relatively clean case to the polluted scenario, more droplets are activated, leading to a delay in precipitation, but the precipitation amount over the terrain is increased by about 10%. A detailed analysis of the microphysical processes indicates that ice-phase particles play an important role in cloud development, and their contribution to precipitation becomes more important with increasing aerosol particle concentrations. The growth of ice-phase particles through riming and Wegener-Bergeron-Findeisen regime is more effective under more polluted conditions, mainly due to the increased number of droplets with a diameter of 10-30 µm. Sensitivity tests also show that a tenfold increase in the concentration of ice crystals formed from ice nucleation leads to about 7% increase in precipitation, and the sensitivity of the precipitation to changes in the concentration and size distribution of aerosol particles is becoming less pronounced when the concentration of ice crystals is also increased.

  10. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  11. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nmmicrophysics can be represented explicitly with aerosol microphysical processes or can be parameterized to obtain the growth and survival of nuclei to the model's lower size boundary. This study investigates how the representation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 h

  12. Cloud microphysics modification with an online coupled COSMO-MUSCAT regional model

    NASA Astrophysics Data System (ADS)

    Sudhakar, D.; Quaas, J.; Wolke, R.; Stoll, J.; Muehlbauer, A. D.; Tegen, I.

    2015-12-01

    Abstract: The quantification of clouds, aerosols, and aerosol-cloud interactions in models, continues to be a challenge (IPCC, 2013). In this scenario two-moment bulk microphysical scheme is used to understand the aerosol-cloud interactions in the regional model COSMO (Consortium for Small Scale Modeling). The two-moment scheme in COSMO has been especially designed to represent aerosol effects on the microphysics of mixed-phase clouds (Seifert et al., 2006). To improve the model predictability, the radiation scheme has been coupled with two-moment microphysical scheme. Further, the cloud microphysics parameterization has been modified via coupling COSMO with MUSCAT (MultiScale Chemistry Aerosol Transport model, Wolke et al., 2004). In this study, we will be discussing the initial result from the online-coupled COSMO-MUSCAT model system with modified two-moment parameterization scheme along with COSP (CFMIP Observational Simulator Package) satellite simulator. This online coupled model system aims to improve the sub-grid scale process in the regional weather prediction scenario. The constant aerosol concentration used in the Seifert and Beheng, (2006) parameterizations in COSMO model has been replaced by aerosol concentration derived from MUSCAT model. The cloud microphysical process from the modified two-moment scheme is compared with stand-alone COSMO model. To validate the robustness of the model simulation, the coupled model system is integrated with COSP satellite simulator (Muhlbauer et al., 2012). Further, the simulations are compared with MODIS (Moderate Resolution Imaging Spectroradiometer) and ISCCP (International Satellite Cloud Climatology Project) satellite products.

  13. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE PAGES

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; ...

    2018-01-10

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by

  14. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by

  15. Double-moment cloud microphysics scheme for the deep convection parameterization in the GFDL AM3

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Donner, L.

    2014-12-01

    A double-moment cloud microphysical scheme originally developed by Morrision and Gettelman (2008) for the stratiform clouds and later adopted for the deep convection by Song and Zhang (2011) has been implemented in to the Geophysical Fluid Dynamics Laboratory's atmospheric general circulation model AM3. The scheme treats cloud drop, cloud ice, rain, and snow number concentrations and mixing ratios as diagnostic variables and incorporates processes of autoconversion, self-collection, collection between hydrometeor species, sedimentation, ice nucleation, drop activation, homogeneous and heterogeneous freezing, and the Bergeron-Findeisen process. Such detailed representation of microphysical processes makes the scheme suitable for studying the interactions between aerosols and convection, as well as aerosols' indirect effects on clouds and their roles in climate change. The scheme is first tested in the single column version of the GFDL AM3 using forcing data obtained at the U.S. Department of Energy Atmospheric Radiation Measurment project's Southern Great Planes site. Scheme's impact on SCM simulations is discussed. As the next step, runs of the full atmospheric GCM incorporating the new parameterization are compared to the unmodified version of GFDL AM3. Global climatological fields and their variability are contrasted with those of the original version of the GCM. Impact on cloud radiative forcing and climate sensitivity is investigated.

  16. Double-moment Cloud Microphysics Scheme for the Deep Convection Parameterization in the GFDL AM3

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Donner, L.

    2013-12-01

    A double-moment cloud microphysical scheme originally developed by Morrision and Gettelman (2008) for the stratiform clouds and later adopted for the deep convection by Song and Zhang (2011) is being implemented in to the deep convection parameterization of Geophysical Fluid Dynamics Laboratory's atmospheric general circulation model AM3. The scheme treats cloud drop, cloud ice, rain, and snow number concentrations and mixing ratios as diagnostic variables and incorporates processes of autoconversion, self-collection, collection between hydrometeor species, sedimentation, ice nucleation, drop activation, homogeneous and heterogeneous freezing, and the Bergeron-Findeisen process. Detailed representation of microphysical processes makes the scheme suitable for studying the interactions between aerosols and convection, as well as aerosols' indirect effects on clouds and the roles of these effects in climate change. The scheme is implemented into the single column version of the GFDL AM3 and evaluated using large scale forcing data obtained at the U.S. Department of Energy Atmospheric Radiation Measurment project's Southern Great Planes and Tropical West Pacific sites. Sensitivity of the scheme to formulations for autoconversion of cloud water and its accretion by rain, self-collection of rain and self-collection of snow, as well as the formulation for heterogenous ice nucleation is investigated. In the future, tests with the full atmospheric GCM will be conducted.

  17. Potential Retrieval of Aerosol Microphysics From Multistatic Space-Borne Lidar

    NASA Astrophysics Data System (ADS)

    Levitan, Nathaniel; Gross, Barry; Moshary, Fred; Wu, Yonghua

    2018-04-01

    HSRL lidars are being considered for deployment to space to retrieve aerosol microphysics. The literature is mostly focused on the monostatic configuration; but, in this paper, we explore whether additional information for the retrieval of microphysics can be obtained by adding a second detector in a bistatic configuration. The information gained from the additional measurements can under certain conditions reduce the ill-posed nature of aerosol microphysics retrieval and reducing the uncertainty in the retrievals.

  18. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Roeckner, E.; Zhang, J.

    2007-03-01

    The double-moment cloud microphysics scheme from ECHAM4 has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass and number concentrations and the aerosol mixing state. This results in a much better agreement with observed vertical profiles of the black carbon and aerosol mass mixing ratios than with the previous version ECHAM4, where only the different aerosol mass mixing ratios were predicted. Also, the simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35°C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.8 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and present-day aerosol emissions representative for the year 2000 are used. It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed.

  19. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  20. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  1. A Monte-Carlo Analysis of Organic Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-04-01

    A newly developed box model, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under varied chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, all possible scenarios on Earth across the whole parameter space, including temperature, humidity, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model GISS ModelE as a module.

  2. Aerosol microphysical and radiative effects on continental cloud ensembles

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  3. Arctic biomass burning aerosol event-microphysical property retrieval

    NASA Astrophysics Data System (ADS)

    Böckmann, Christine; Ritter, Christoph; Ortiz-Amezcua, Pablo

    2018-04-01

    An intense biomass-burning (BB) event from North America in July 2015 was observed over Ny-Ålesund (Spitsbergen, European Arctic). An extreme air pollution took place and aerosol optical depth (AOD) of more than 1 at 500nm occurs in middle and lower troposphere. We analyse data from the multi-wavelength Raman-lidar KARL of Alfred Wegener Institute to derive microphysical properties of the aerosol of one interesting layer from 3186 to 3306 m via regularization. We found credible and confidential microphysical parameters.

  4. Studying Precipitation Processes in WRF with Goddard Bulk Microphysics in Comparison with Other Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Shi, J.J.; Braun, S.; Simpson, J.; Chen, S.S.; Lang, S.; Hong, S.Y.; Thompson, G.; Peters-Lidard, C.

    2009-01-01

    A Goddard bulk microphysical parameterization is implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on different weather events: a midlatitude linear convective system and an Atlantic hurricane. The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with the cloud ice-snow-hail configuration agreed better with observations ill of rainfall intensity and having a narrow convective line than did simulations with the cloud ice-snow-graupel and cloud ice-snow (i.e., 2ICE) configurations. This is because the Goddard 3ICE-hail configuration has denser precipitating ice particles (hail) with very fast fall speeds (over 10 m/s) For an Atlantic hurricane case, the Goddard microphysical scheme (with 3ICE-hail, 3ICE-graupel and 2ICE configurations) had no significant impact on the track forecast but did affect the intensity slightly. The Goddard scheme is also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE-hail and Thompson schemes were closest to the observed rainfall intensities although the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of

  5. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  6. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  7. Assessment of biomass burning smoke influence on environmental conditions for multiyear tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2016-09-01

    We use the Weather Research and Forecasting (WRF) system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the U.S. during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included, and smoke emissions are constrained using an inverse modeling technique and satellite-based aerosol optical depth observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low-level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics, and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

  8. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Wei-Kuo

    Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops

  9. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  10. Applying super-droplets as a compact representation of warm-rain microphysics for aerosol-cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.

    2012-12-01

    Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).

  11. Assessment of biomass burning smoke influence on environmental conditions for multi-year tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints.

    PubMed

    Saide, Pablo E; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M; Pierce, R Bradley; Carmichael, Gregory R

    2016-09-16

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

  12. Assessment of Biomass Burning Smoke Influence on Environmental Conditions for Multi-Year Tornado Outbreaks by Combining Aerosol-Aware Microphysics and Fire Emission Constraints

    NASA Technical Reports Server (NTRS)

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; Da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2016-01-01

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRFChem for its use in applications such as NWP and cloud-resolving simulations.

  13. Assessment of biomass burning smoke influence on environmental conditions for multi-year tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints

    PubMed Central

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2018-01-01

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations. PMID:29619287

  14. The potential effects of volcanic aerosols on cirrus cloud microphysics

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.

    1992-01-01

    The potential impact of volcanic aerosols on nucleation of ice crystals in upper tropospheric cirrus clouds is examined from a microphysical perspective. The sulfuric acid aerosols which form in the stratosphere are presumably transported into the troposphere by sedimentation and tropopause folding. The tropospheric volcanic aerosol size distribution is estimated from 10-micron lidar backscatter and in situ measurements. Microphysical simulations suggest that at temperatures below about -50 C the concentration of ice crystals which nucleate may be as much as a factor of 5 larger when volcanic aerosols are present. The simulations suggest that the presence of volcanic aerosols may increase the net radiative forcing (surface warming) of certain types of cirrus near the tropopause by as much as 8 W/sq m. Further observations are required to determine whether these effects actually occur, and their global impact.

  15. Re-formulation and Validation of Cloud Microphysics Schemes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Georgakakos, K. P.

    2007-12-01

    The research focuses on improving quantitative precipitation forecasts by removing significant uncertainties in current cloud microphysics schemes embedded in models such as WRF and MM5 and cloud-resolving models such as GCE. Reformulation of several production terms in these microphysics schemes was found necessary. When estimating four graupel production terms involved in the accretion between rain, snow and graupel, current microphysics schemes assumes that all raindrops and snow particles are falling at their appropriate mass-weighted mean terminal velocities and thus analytic solutions are able to be found for these production terms. Initial analysis and tests showed that these approximate analytic solutions give significant and systematic overestimates of these terms, and, thus, become one of major error sources of the graupel overproduction and associated extreme radar reflectivity in simulations. These results are corroborated by several reports. For example, the analytic solution overestimates the graupel production by collisions between raindrops and snow by up to 230%. The structure of "pure" snow (not rimed) and "pure graupel" (completely rimed) in current microphysics schemes excludes intermediate forms between "pure" snow and "pure" graupel and thus becomes a significant reason of graupel overproduction in hydrometeor simulations. In addition, the generation of the same density graupel by both the freezing of supercooled water and the riming of snow may cause underestimation of graupel production by freezing. A parameterization scheme of the riming degree of snow is proposed and then a dynamic fallspeed-diameter relationship and density- diameter relationship of rimed snow is assigned to graupel based on the diagnosed riming degree. To test if these new treatments can improve quantitative precipitation forecast, the Hurricane Katrina and a severe winter snowfall event in the Sierra Nevada Range are selected as case studies. A series of control

  16. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations

  17. MODIS Microphysical Regimes for Examining Apparent Aerosol Effects on Clouds and Precipitation

    NASA Astrophysics Data System (ADS)

    Oreopoulos, L.; Cho, N.; Lee, D.; Kato, S.; Lebsock, M. D.; Yuan, T.; Huffman, G. J.

    2014-12-01

    We use a 10-year record of MODIS Terra and Aqua Level-3 joint histograms of cloud optical thickness (COT) and cloud effective radius (CER) to derive so-called cloud microphysical regimes by means of clustering analysis. The regimes reveal the dominant modes of COT and CER co-variations around the globe for both liquid and ice phases. The clustering analysis is capable of separating regimes so that each is dominated by one of the two water phases and can be associated with previously derived "dynamical" regimes. The microphysical regimes serve as an appropriate basis to study possible effects of aerosols on cloud microphysical changes and precipitation. To this end, we employ MODIS aerosol loading measurements either in terms of aerosol index or aerosol optical depth and spatiotemporally matched precipitation (from either GPCP, TRMM or CloudSat) to examine intra-regime variability, regime transitions from morning (Terra) to afternoon (Aqua), and regime precipitation characteristics for locally low, average, and high aerosol loadings. Breakdowns by ocean/land and geographical zone (e.g., tropics vs. midlatitudes) are essential for physical interpretation of the results. The analysis conducted so far reveals notable differences in apparent characteristics of low- and high-cloud dominated microphysical regimes when in different aerosol environments. The presentation will attempt to examine whether the picture painted by our work is consistent with prevailing expectations, rooted to either modeling or prior observational studies, on how clouds and precipitation respond to distinct aerosol environments.

  18. Validation of Microphysical Schemes in a CRM Using TRMM Satellite

    NASA Astrophysics Data System (ADS)

    Li, X.; Tao, W.; Matsui, T.; Liu, C.; Masunaga, H.

    2007-12-01

    The microphysical scheme in the Goddard Cumulus Ensemble (GCE) model has been the most heavily developed component in the past decade. The cloud-resolving model now has microphysical schemes ranging from the original Lin type bulk scheme, to improved bulk schemes, to a two-moment scheme, to a detailed bin spectral scheme. Even with the most sophisticated bin scheme, many uncertainties still exist, especially in ice phase microphysics. In this study, we take advantages of the long-term TRMM observations, especially the cloud profiles observed by the precipitation radar (PR), to validate microphysical schemes in the simulations of Mesoscale Convective Systems (MCSs). Two contrasting cases, a midlatitude summertime continental MCS with leading convection and trailing stratiform region, and an oceanic MCS in tropical western Pacific are studied. The simulated cloud structures and particle sizes are fed into a forward radiative transfer model to simulate the TRMM satellite sensors, i.e., the PR, the TRMM microwave imager (TMI) and the visible and infrared scanner (VIRS). MCS cases that match the structure and strength of the simulated systems over the 10-year period are used to construct statistics of different sensors. These statistics are then compared with the synthetic satellite data obtained from the forward radiative transfer calculations. It is found that the GCE model simulates the contrasts between the continental and oceanic case reasonably well, with less ice scattering in the oceanic case comparing with the continental case. However, the simulated ice scattering signals for both PR and TMI are generally stronger than the observations, especially for the bulk scheme and at the upper levels in the stratiform region. This indicates larger, denser snow/graupel particles at these levels. Adjusting microphysical schemes in the GCE model according the observations, especially the 3D cloud structure observed by TRMM PR, result in a much better agreement.

  19. New, Improved Goddard Bulk-Microphysical Schemes for Studying Precipitation Processes in WRF

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    An improved bulk microphysical parameterization is implemented into the Weather Research and Forecasting ()VRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with a cloud ice-snow-hail configuration agreed better with observations in terms of rainfall intensity and a narrow convective line than did simulations with a cloud ice-snow-graupel or cloud ice-snow (i.e., 2ICE) configuration. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 in For an Atlantic hurricane case, the Goddard microphysical schemes had no significant impact on the track forecast but did affect the intensity slightly. The improved Goddard schemes are also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in the southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE scheme with the hail option and the Thompson scheme agree better with observations in terms of rainfall intensity, expect that the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model

  20. New, Improved Bulk-microphysical Schemes for Studying Precipitation Processes in WRF. Part 1; Comparisons with Other Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shi, J.; Chen, S. S> ; Lang, S.; Hong, S.-Y.; Thompson, G.; Peters-Lidard, C.; Hou, A.; Braun, S.; hide

    2007-01-01

    Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction)

  1. The Impact of Microphysical Schemes on Intensity and Track of Hurricane

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Shi, J. J.; Chen, S. S.; Lang, S.; Lin, P.; Hong, S. Y.; Peters-Lidard, C.; Hou, A.

    2010-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the

  2. Aerosol Microphysical Effects on Cloud Fraction over the Nighttime Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Zamora, L. M.; Kahn, R. A.; Stohl, A.; Eckhardt, S.

    2017-12-01

    Cloud fraction is a key component affecting the surface energy balance in the Arctic. Aerosol microphysical processes can affect cloud fraction, for example through cloud lifetime effects. However, the importance of aerosol impacts on cloud fraction is not well constrained on a regional scale at high latitudes. Here we discuss a new method for identifying and comparing clean and aerosol-influenced cloud characteristics using a combination of multi-year remote sensing data (CALIPSO, CloudSat) and the FLEXPART aerosol model. We use this method to investigate a variety of aerosol microphysical impacts on nighttime Arctic Ocean clouds on regional and local scales. We observe differences in factors that can impact cloud lifetime, including cloud thickness and phase, within a subset of clean vs. polluted clouds. We will also discuss cumulative cloud fraction differences in clean and non-clean environments, as well as their likely impact on longwave cloud radiative effects at the Arctic Ocean surface during polar night.

  3. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated

  4. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; hide

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  5. Dynamic downscaling over western Himalayas: Impact of cloud microphysics schemes

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2018-03-01

    Due to lack of observation data in the region of inhomogeneous terrain of the Himalayas, detailed climate of Himalayas is still unknown. Global reanalysis data are too coarse to represent the hydroclimate over the region with sharp orography gradient in the western Himalayas. In the present study, dynamic downscaling of the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis-Interim (ERA-I) dataset over the western Himalayas using high-resolution Weather Research and Forecast (WRF) model has been carried out. Sensitivity studies have also been carried out using convection and microphysics parameterization schemes. The WRF model simulations have been compared against ERA-I and available station observations. Analysis of the results suggests that the WRF model has simulated the hydroclimate of the region well. It is found that in the simulations that the impact of convection scheme is more during summer months than in winter. Examination of simulated results using various microphysics schemes reveal that the WRF single-moment class-6 (WSM6) scheme simulates more precipitation on the upwind region of the high mountain than that in the Morrison and Thompson schemes during the winter period. Vertical distribution of various hydrometeors shows that there are large differences in mixing ratios of ice, snow and graupel in the simulations with different microphysics schemes. The ice mixing ratio in Morrison scheme is more than WSM6 above 400 hPa. The Thompson scheme favors formation of more snow than WSM6 or Morrison schemes while the Morrison scheme has more graupel formation than other schemes.

  6. Sensitivity of the simulation of tropical cyclone size to microphysics schemes

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-09-01

    The sensitivity of the simulation of tropical cyclone (TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model (WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes-Ferrier (FER), WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6)-are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size (the inner-core size, especially). In addition, the inclusion of graupel microphysics processes (as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.

  7. Implementation of an Aerosol-Cloud Microphysics-Radiation Coupling into the NASA Unified WRF: Simulation Results for the 6-7 August 2006 AMMA Special Observing Period

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Matsui, T.; Tao, W.-K.; Tan, Q.; Peters-Lidard, C.; Chin, M.; Pickering, K.; Guy, N.; Lang, S.; Kemp, E. M.

    2014-01-01

    Aerosols affect the Earth's radiation balance directly and cloud microphysical processes indirectly via the activation of cloud condensation and ice nuclei. These two effects have often been considered separately and independently, hence the need to assess their combined impact given the differing nature of their effects on convective clouds. To study both effects, an aerosol-microphysics-radiation coupling, including Goddard microphysics and radiation schemes, was implemented into the NASA Unified Weather Research and Forecasting model (NU-WRF). Fully coupled NU-WRF simulations were conducted for a mesoscale convective system (MCS) that passed through the Niamey, Niger area on 6-7 August 2006 during an African Monsoon Multidisciplinary Analysis (AMMA) special observing period. The results suggest that rainfall is reduced when aerosol indirect effects are included, regardless of the aerosol direct effect. Daily mean radiation heating profiles in the area traversed by the MCS showed the aerosol (mainly mineral dust) direct effect had the largest impact near cloud tops just above 200 hectopascals where short-wave heating increased by about 0.8 Kelvin per day; the weakest long-wave cooling was at around 250 hectopascals. It was also found that more condensation and ice nuclei as a result of higher aerosol/dust concentrations led to increased amounts of all cloud hydrometeors because of the microphysical indirect effect, and the radiation direct effect acts to reduce precipitating cloud particles (rain, snow and graupel) in the middle and lower cloud layers while increasing the non-precipitating particles (ice) in the cirrus anvil. However, when the aerosol direct effect was activated, regardless of the indirect effect, the onset of MCS precipitation was delayed about 2 hours, in conjunction with the delay in the activation of cloud condensation and ice nuclei. Overall, for this particular environment, model set-up and physics configuration, the effect of aerosol

  8. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-01-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  9. Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-09-01

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  10. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  11. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  12. Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter

    2010-05-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the

  13. Coupling Spectral-bin Cloud Microphysics with the MOSAIC Aerosol Model in WRF-Chem: Methodology and Results for Marine Stratocumulus Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenhua; Fan, Jiwen; Easter, Richard C.

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces themore » treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly-coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.« less

  14. A Combined Retrieval of Aerosol Microphysical Properties using active HSRL and Passive Polarimeter Multi-sensor Data

    NASA Astrophysics Data System (ADS)

    Liu, X.; Stamnes, S.; Ferrare, R. A.; Hostetler, C. A.; Burton, A. S.; Chemyakin, E.; Sawamura, P.; Mueller, D.

    2017-12-01

    Vertically resolved measurements of aerosol optical, microphysical, and macrophysical parameters are required to better understand the influence of aerosols on climate and air quality. We will describe an Optimal Estimation (OE) retrieval framework which can perform aerosol property retrievals in three modes: 1) lidar-only, 2) polarimeter-only, and 3) combined lidar-polarimeter muti-sensor system. The lidar data can be profile measurements by any high spectral resolution lidar (HSRL) and/or Raman lidar with multiple wavelengths of aerosol backscattering (β) and extinction (α). The polarimeter data can be any multi-angle and multi-wavelength measurements with 2 or 3 polarization components. We will show aerosol microphysical retrieval results from the HSRL-2 data measured from various NASA airborne field campaigns including the recent ORACLES mission. We will also show the OE retrieval results from the polarimeter-only mode. Finally, we will demonstrate how the information content of the aerosol microphysical retrieval is increased by combining the active HSRL and passive polarimeter data in our simultaneous OE retrieval system.

  15. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  16. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0

  17. Retrievals of aerosol microphysics from simulations of spaceborne multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.; Pérez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2018-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 μm is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  18. Retrievals of Aerosol Microphysics from Simulations of Spaceborne Multiwavelength Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Perez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2017-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 microns is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  19. A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions: AEROSOL EFFECTS ON EAST ASIAN CLIMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Huiping; Qian, Yun; Zhao, Chun

    2015-09-09

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. Themore » relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.« less

  20. Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2014-05-01

    Satellite instruments are nowadays successfully utilised for measuring atmospheric aerosol in many applications as well as in research. Therefore, there is a growing need for rigorous error characterisation of the measurements. Here, we introduce a methodology for quantifying the uncertainty in the retrieval of aerosol optical thickness (AOT). In particular, we concentrate on two aspects: uncertainty due to aerosol microphysical model selection and uncertainty due to imperfect forward modelling. We apply the introduced methodology for aerosol optical thickness retrieval of the Ozone Monitoring Instrument (OMI) on board NASA's Earth Observing System (EOS) Aura satellite, launched in 2004. We apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness retrieval by propagating aerosol microphysical model selection and forward model error more realistically. For the microphysical model selection problem, we utilise Bayesian model selection and model averaging methods. Gaussian processes are utilised to characterise the smooth systematic discrepancies between the measured and modelled reflectances (i.e. residuals). The spectral correlation is composed empirically by exploring a set of residuals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud-free, over-land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques introduced here. The method and improved uncertainty characterisation is demonstrated by several examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara desert dust. The statistical methodology presented is general; it is not restricted to this particular satellite retrieval application.

  1. SeReNA Project: studying aerosol interactions with cloud microphysics in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Correia, A. L.; Catandi, P. B.; Frigeri, F. F.; Ferreira, W. C.; Martins, J.; Artaxo, P.

    2012-12-01

    Cloud microphysics and its interaction with aerosols is a key atmospheric process for weather and climate. Interactions between clouds and aerosols can impact Earth's radiative balance, its hydrological and energetic cycles, and are responsible for a large fraction of the uncertainty in climatic models. On a planetary scale, the Amazon Basin is one of the most significant land sources of moisture and latent heat energy. Moreover, every year this region undergoes mearked seasonal shifts in its atmospheric state, transitioning from clean to heavily polluted conditions due to the occurrence of seasonal biomass burning fires, that emit large amounts of smoke to the atmosphere. These conditions make the Amazon Basin a special place to study aerosol-cloud interactions. The SeReNA Project ("Remote sensing of clouds and their interaction with aerosols", from the acronym in Portuguese, @SerenaProject on Twitter) is an ongoing effort to experimentally investigate the impact of aerosols upon cloud microphysics in Amazonia. Vertical profiles of droplet effective radius of water and ice particles, in single convective clouds, can be derived from measurements of the emerging radiation on cloud sides. Aerosol optical depth, cloud top properties, and meteorological parameters retrieved from satellites will be correlated with microphysical properties derived for single clouds. Maps of cloud brightness temperature will allow building temperature vs. effective radius profiles for hydrometeors in single clouds. Figure 1 shows an example extracted from Martins et al. (2011), illustrating a proof-of-concept for the kind of result expected within the framework for the SeReNA Project. The results to be obtained will help foster the quantitative knowledge about interactions between aerosols and clouds in a microphysical level. These interactions are a fundamental process in the context of global climatic changes, they are key to understanding basic processes within clouds and how aerosols

  2. Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes

    NASA Astrophysics Data System (ADS)

    van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.

    2017-12-01

    Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.

  3. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  4. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  5. Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.

    2010-01-01

    As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.

  6. Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements.

    PubMed

    Boesche, Eyk; Stammes, Piet; Ruhtz, Thomas; Preusker, Réne; Fischer, Juergen

    2006-12-01

    We analyze the sensitivity of the degree of linear polarization in the Sun's principal plane as a function of aerosol microphysical parameters: the real and imaginary parts of the refractive index, the median radius and geometric standard deviation of the bimodal size distribution (both fine and coarse modes), and the relative number weight of the fine mode at a wavelength of 675 nm. We use Mie theory for single-scattering simulations and the doubling-adding method with the inclusion of polarization for multiple scattering. It is shown that the behavior of the degree of linear polarization is highly sensitive to both the small mode of the bimodal size distribution and the real part of the refractive index of aerosols, as well as to the aerosol optical thickness; whereas not all parameters influence the polarization equally. A classification of the importance of the input parameters is given. This sensitivity study is applied to an analysis of ground-based polarization measurements. For the passive remote sensing of microphysical and optical properties of aerosols, a ground-based spectral polarization measuring system was built, which aims to measure the Stokes parameters I, Q, and U in the visible (from 410 to 789 nm) and near-infrared (from 674 to 995 nm) spectral range with a spectral resolution of 7 nm in the visible and 2.4 nm in the near infrared. We compare polarization measurements taken with radiative transfer simulations under both clear- and hazy-sky conditions in an urban area (Cabauw, The Netherlands, 51.58 degrees N, 4.56 degrees E). Conclusions about the microphysical properties of aerosol are drawn from the comparison.

  7. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    NASA Technical Reports Server (NTRS)

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-01-01

    This study investigates the impact of snow, graupel, and hail processes on simulated squall lines over the Southern Great Plains in the United States. The Weather Research and Forecasting (WRF) model is used to simulate two squall line events in Oklahoma during May 2007, and the simulations are validated against radar and surface observations. Several microphysics schemes are tested in this study, including the WRF 5-Class Microphysics (WSM5), WRF 6-Class Microphysics (WSM6), Goddard Cumulus Ensemble (GCE) Three Ice (3-ice) with graupel, Goddard Two Ice (2-ice), and Goddard 3-ice hail schemes. Simulated surface precipitation is sensitive to the microphysics scheme when the graupel or hail categories are included. All of the 3-ice schemes overestimate the total precipitation with WSM6 having the largest bias. The 2-ice schemes, without a graupel/hail category, produce less total precipitation than the 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that including graupel/hail processes increases the convective areal coverage, precipitation intensity, updraft, and downdraft intensities, and reduces the stratiform areal coverage and precipitation intensity. For vertical structures, simulations have higher reflectivity values distributed aloft than the observed values in both the convective and stratiform regions. Three-ice schemes produce more high reflectivity values in convective regions, while 2-ice schemes produce more high reflectivity values in stratiform regions. In addition, this study has demonstrated that the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF-simulated precipitation, wind, and microphysical fields in both convective and stratiform regions.

  8. Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko

    2010-01-01

    Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.

  9. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-01-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice

  10. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  11. Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Qi, Ling; Tao, Shu; Schwarz, Joshua P.

    2016-03-01

    We develop and examine a microphysics-based black carbon (BC) aerosol aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes in a global 3-D chemical transport model (GEOS-Chem) by interpreting the BC measurements from the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011) using the model. We convert aerosol mass in the model to number concentration by assuming lognormal aerosol size distributions and compute the microphysical BC aging rate (excluding chemical oxidation aging) explicitly from the condensation of soluble materials onto hydrophobic BC and the coagulation between hydrophobic BC and preexisting soluble particles. The chemical oxidation aging is tested in the sensitivity simulation. The microphysical aging rate is ˜ 4 times higher in the lower troposphere over source regions than that from a fixed aging scheme with an e-folding time of 1.2 days. The higher aging rate reflects the large emissions of sulfate-nitrate and secondary organic aerosol precursors hence faster BC aging through condensation and coagulation. In contrast, the microphysical aging is more than 5-fold slower than the fixed aging in remote regions, where condensation and coagulation are weak. Globally, BC microphysical aging is dominated by condensation, while coagulation contribution is largest over eastern China, India, and central Africa. The fixed aging scheme results in an overestimate of HIPPO BC throughout the troposphere by a factor of 6 on average. The microphysical scheme reduces this discrepancy by a factor of ˜ 3, particularly in the middle and upper troposphere. It also leads to a 3-fold reduction in model bias in the latitudinal BC column burden averaged along the HIPPO flight tracks, with largest improvements in the tropics. The resulting global annual mean BC lifetime is 4.2 days and BC burden is 0.25 mg m-2, with 7.3 % of the burden at high altitudes (above 5 km). Wet scavenging accounts for 80.3 % of global BC

  12. Seasonal cycles on Titan from a Coupled Aerosol Microphysical and Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, Owen B.

    2010-04-01

    Understanding the aerosols on Titan is imperative for understanding the atmosphere as a whole. The aerosols affect the albedo, optical depth, and heating and cooling rates which in turn affects the winds on Titan. Correctly representing them in atmospheric models is crucial to understanding this atmosphere. Several groups have used GCMs to model Titan's atmosphere. Hourdin et al. (1995) were able to reproduce the super-rotating prograde winds. Rannou et al. (2004) found the aerosols accumulated at the poles, which increased the temperature gradient. The increased temperature gradient intensified the zonal winds. Friedson et al. (2009) produced a three- dimensional model for Titan using the NCAR CAM3 model, to which we coupled the aerosol microphysics model CARMA. Until now, there has not been a three- dimensional model that couples radiation, dynamics and aerosol microphysics to study the atmospheric properties of Titan. We have also made the aerosols produced by CARMA interactive with the radiation code in CAM. Preliminary results show that this model is capable of reproducing the seasonal changes in aerosols on Titan and many of the associated phenomena. For instance, the radiatively interactive aerosols are lifted more in the summer hemisphere than the non-interactive aerosols, which is necessary to reproduce the observed seasonal cycle of the albedo (Hutzell et al 1996). However, treating aerosols as spheres with Mie theory is inconsistent with laboratory and observational data that suggest the aerosols are fractal aggregates. We are currently incorporating fractal particle physics into the model. Changing the particles to fractals will affect the radiative properties of the particles, their distribution in the atmosphere, and should improve our fits to the data.

  13. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcelmore » cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.« less

  14. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  15. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure

  16. Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data

    NASA Astrophysics Data System (ADS)

    Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina

    2017-06-01

    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.

  17. Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget

    NASA Astrophysics Data System (ADS)

    He, C.; Li, Q.; Liou, K. N.; Qi, L.; Tao, S.; Schwarz, J. P.

    2015-11-01

    We develop and examine a microphysics-based black carbon (BC) aerosol aging scheme that accounts for condensation and coagulation processes in a global 3-D chemical transport model (GEOS-Chem) by interpreting the BC measurements from the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011) using the model. We convert aerosol mass in the model to number concentration by assuming lognormal aerosol size distributions and compute the microphysical BC aging rate explicitly from the condensation of soluble materials onto hydrophobic BC and the coagulation between hydrophobic BC and preexisting soluble particles. The resulting aging rate is ∼ 4 times higher in the lower troposphere over source regions than that from a fixed aging scheme with an e-folding time of 1.2 days. The higher aging rate reflects the large emissions of sulfate-nitrate and secondary organic aerosol precursors hence faster BC aging through condensation and coagulation. In contrast, the microphysical aging is more than fivefold slower than the fixed aging in remote regions, where condensation and coagulation are weak. Globally BC microphysical aging is dominated by condensation, while coagulation contribution is largest over East China, India, and Central Africa. The fixed aging scheme results in an overestimate of HIPPO BC throughout the troposphere by a factor of 6 on average. The microphysical scheme reduces this discrepancy by a factor of ∼ 3, particularly in the middle and upper troposphere. It also leads to a threefold reduction in model bias in the latitudinal BC column burden averaged along the HIPPO flight tracks, with largest improvements in the tropics. The resulting global annual mean BC lifetime is 4.2 days and BC burden is 0.25 mg m-2, with 7.3 % of the burden at high altitudes (above 5 km). Wet scavenging accounts for 80.3 % of global BC deposition. We find that in source regions the microphysical aging rate is insensitive to aerosol size distribution, condensation threshold, and

  18. Simulations of Hurricane Nadine (2012) during HS3 Using the NASA Unified WRF with Aerosol-Cloud Microphysics-Radiation Coupling

    NASA Astrophysics Data System (ADS)

    Shi, J. J.; Braun, S. A.; Sippel, J. A.; Tao, W. K.; Tao, Z.

    2014-12-01

    The impact of the SAL on the development and intensification of hurricanes has garnered significant attention in recent years. Many past studies have shown that synoptic outbreaks of Saharan dust, which usually occur from late spring to early fall and can extend from western Africa across the Atlantic Ocean into the Caribbean, can have impacts on hurricane genesis and subsequent intensity change. The Hurricane and Severe Storm Sentinel (HS3) mission is a multiyear NASA field campaign with the goal of improving understanding of hurricane formation and intensity change. One of HS3's primary science goals is to obtain measurements to help determine the extent to which the Saharan air layer impacts storm intensification. HS3 uses two of NASA's unmanned Global Hawk aircrafts equipped with three instruments each to measure characteristics of the storm environment and inner core. The Goddard microphysics and longwave/shortwave schemes in the NASA Unified Weather Research and Forecasting (NU-WRF) model have been coupled in real-time with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model in WRF-Chem to account for the direct (radiation) and indirect (microphysics) impact. NU-WRF with interactive aerosol-cloud-radiation physics is used to generate 30-member ensemble simulations of Nadine (2012) with and without the aerosol interactions. Preliminary conclusions related to the impact of the SAL on the evolution of Nadine from the HS3 observations and model output will be described.

  19. The great Indian haze revisited: aerosol distribution effects on microphysical and optical properties of warm clouds over peninsular India

    NASA Astrophysics Data System (ADS)

    Ghanti, R.; Ghosh, S.

    2010-03-01

    The Indian subcontinent is undergoing a phase of rapid urbanisation. Inevitable fallout of this process is a concomitant increase in air pollution much of which can be attributed to the infamous great Indian haze phenomena. One observes that the aerosol size distributions vary considerably along the Bay of Bengal (BOB), Arabian Sea (AS) and the Indian Ocean (IO), although, the dynamical attributes are very similar, particularly over the BOB and the AS during this season. Unlike major European studies (e.g. Aerosol Characterization Experiment-2, Ghosh et al., 2005), there are no cloud microphysical modelling studies to complement these observational results for the Indian sub-continent. Ours is the first modelling study over this important region where a time-tested model (O'Dowd et al., 1999a; Ghosh et al., 2007; Rap et al., 2009) is used to obtain cloud microphysical and optical properties from observed aerosol size distributions. Un-activated aerosol particles and very small cloud droplets have to be treated specially to account for non-ideal effects-our model does this effectively yielding realistic estimate of cloud droplet number concentrations (Nc). Empirical relationships linking aerosol concentration to (Nc) yield a disproportionately higher Nc suggesting that such empirical formulations should be used with caution. Our modelling study reveals that the cloud's microphysical and optical properties are very similar along the AS and the BOB despite them having disparate dry aerosol spectral distributions. This is non-intuitive, as one would expect changes in microphysical development with widely different aerosol distributions. There is some increase in cloud droplet numbers with increased haze concentrations but much less than a simple proportion would indicate.

  20. The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for

  1. Realistic dust and water cycles in the MarsWRF GCM using coupled two-moment microphysics

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Richardson, Mark Ian; Mischna, Michael A.; Newman, Claire E.

    2017-10-01

    Dust and water ice aerosols significantly complicate the Martian climate system because the evolution of the two aerosol fields is coupled through microphysics and because both aerosols strongly interact with visible and thermal radiation. The combination of strong forcing feedback and coupling has led to various problems in understanding and modeling of the Martian climate: in reconciling cloud abundances at different locations in the atmosphere, in generating a stable dust cycle, and in preventing numerical instability within models.Using a new microphysics model inside the MarsWRF GCM we show that fully coupled simulations produce more realistic simulation of the Martian climate system compared to a dry, dust only simulations. In the coupled simulations, interannual variability and intra-annual variability are increased, strong 'solstitial pause' features are produced in both winter high latitude regions, and dust storm seasons are more varied, with early southern summer (Ls 180) dust storms and/or more than one storm occurring in some seasons.A new microphysics scheme was developed as a part of this work and has been included in the MarsWRF model. The scheme uses split spectral/spatial size distribution numerics with adaptive bin sizes to track particle size evolution. Significantly, this scheme is highly accurate, numerically stable, and is capable of running with time steps commensurate with those of the parent atmospheric model.

  2. Evaluation of Microphysics and Cumulus Schemes of WRF for Forecasting of Heavy Monsoon Rainfall over the Southeastern Hilly Region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Hasan, Md Alfi; Islam, A. K. M. Saiful

    2018-05-01

    Accurate forecasting of heavy rainfall is crucial for the improvement of flood warning to prevent loss of life and property damage due to flash-flood-related landslides in the hilly region of Bangladesh. Forecasting heavy rainfall events is challenging where microphysics and cumulus parameterization schemes of Weather Research and Forecast (WRF) model play an important role. In this study, a comparison was made between observed and simulated rainfall using 19 different combinations of microphysics and cumulus schemes available in WRF over Bangladesh. Two severe rainfall events during 11th June 2007 and 24-27th June 2012, over the eastern hilly region of Bangladesh, were selected for performance evaluation using a number of indicators. A combination of the Stony Brook University microphysics scheme with Tiedtke cumulus scheme is found as the most suitable scheme for reproducing those events. Another combination of the single-moment 6-class microphysics scheme with New Grell 3D cumulus schemes also showed reasonable performance in forecasting heavy rainfall over this region. The sensitivity analysis confirms that cumulus schemes play a greater role than microphysics schemes for reproducing the heavy rainfall events using WRF.

  3. Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick

    2008-01-01

    A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.

  4. A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Lee, Yunha; Adams, P. J.

    2012-01-01

    This study develops more computationally efficient versions of the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithms, collectively called Fast TOMAS. Several methods for speeding up the algorithm were attempted, but only reducing the number of size sections was adopted. Fast TOMAS models, coupled to the GISS GCM II-prime, require a new coagulation algorithm with less restrictive size resolution assumptions but only minor changes in other processes. Fast TOMAS models have been evaluated in a box model against analytical solutions of coagulation and condensation and in a 3-D model against the original TOMAS (TOMAS-30) model. Condensation and coagulation in the Fast TOMAS models agree well with the analytical solution but show slightly more bias than the TOMAS-30 box model. In the 3-D model, errors resulting from decreased size resolution in each process (i.e., emissions, cloud processing wet deposition, microphysics) are quantified in a series of model sensitivity simulations. Errors resulting from lower size resolution in condensation and coagulation, defined as the microphysics error, affect number and mass concentrations by only a few percent. The microphysics error in CN70CN100 (number concentrations of particles larger than 70100 nm diameter), proxies for cloud condensation nuclei, range from 5 to 5 in most regions. The largest errors are associated with decreasing the size resolution in the cloud processing wet deposition calculations, defined as cloud-processing error, and range from 20 to 15 in most regions for CN70CN100 concentrations. Overall, the Fast TOMAS models increase the computational speed by 2 to 3 times with only small numerical errors stemming from condensation and coagulation calculations when compared to TOMAS-30. The faster versions of the TOMAS model allow for the longer, multi-year simulations required to assess aerosol effects on cloud lifetime and precipitation.

  5. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass

  6. Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part 2; Cloud Microphysics and Storm Dynamics Interactions

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2009-01-01

    Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.

  7. Revisiting Intel Xeon Phi optimization of Thompson cloud microphysics scheme in Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2015-10-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.

  8. Idealized Simulations of a Squall Line from the MC3E Field Campaign Applying Three Bin Microphysics Schemes: Dynamic and Thermodynamic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Lulin; Fan, Jiwen; Lebo, Zachary J.

    The squall line event on May 20, 2011, during the Midlatitude Continental Convective Clouds (MC3E) field campaign has been simulated by three bin (spectral) microphysics schemes coupled into the Weather Research and Forecasting (WRF) model. Semi-idealized three-dimensional simulations driven by temperature and moisture profiles acquired by a radiosonde released in the pre-convection environment at 1200 UTC in Morris, Oklahoma show that each scheme produced a squall line with features broadly consistent with the observed storm characteristics. However, substantial differences in the details of the simulated dynamic and thermodynamic structure are evident. These differences are attributed to different algorithms and numericalmore » representations of microphysical processes, assumptions of the hydrometeor processes and properties, especially ice particle mass, density, and terminal velocity relationships with size, and the resulting interactions between the microphysics, cold pool, and dynamics. This study shows that different bin microphysics schemes, designed to be conceptually more realistic and thus arguably more accurate than bulk microphysics schemes, still simulate a wide spread of microphysical, thermodynamic, and dynamic characteristics of a squall line, qualitatively similar to the spread of squall line characteristics using various bulk schemes. Future work may focus on improving the representation of ice particle properties in bin schemes to reduce this uncertainty and using the similar assumptions for all schemes to isolate the impact of physics from numerics.« less

  9. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE PAGES

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  10. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  11. Coupling WRF Double-Moment 6-Class Microphysics Schemes to RRTMG Radiation Scheme in Weather Research Forecasting Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Soo Ya; Hong, Song-You; Lim, Kyo-Sun Sunny

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. A spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  12. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  13. Improving the Representation of Snow Crystal Properties within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.

    2010-01-01

    The assumptions of a single-moment microphysics scheme (NASA Goddard) were evaluated using a variety of surface, aircraft and radar data sets. Fixed distribution intercepts and snow bulk densities fail to represent the vertical variability and diversity of crystal populations for this event. Temperature-based equations have merit, but they can be adversely affected by complex temperature profiles that are inverted or isothermal. Column-based approaches can mitigate complex profiles of temperature but are restricted by the ability of the model to represent cloud depth. Spheres are insufficient for use in CloudSat reflectivity comparisons due to Mie resonance, but reasonable for Rayleigh scattering applications. Microphysics schemes will benefit from a greater range of snow crystal characteristics to accommodate naturally occurring diversity.

  14. Biomass burning influences on atmospheric composition: A case study to assess the impact of aerosol data assimilation

    NASA Astrophysics Data System (ADS)

    Keslake, Tim; Chipperfield, Martyn; Mann, Graham; Flemming, Johannes; Remy, Sam; Dhomse, Sandip; Morgan, Will

    2016-04-01

    The C-IFS (Composition Integrated Forecast System) developed under the MACC series of projects and to be continued under the Copernicus Atmospheric Monitoring System, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, ~80km). Currently there are 2 aerosol schemes implemented within C-IFS, a mass-based scheme with externally mixed particle types and an aerosol microphysics scheme (GLOMAP-mode). The simpler mass-based scheme is the current operational system, also used in the existing system to assimilate satellite measurements of aerosol optical depth (AOD) for improved forecast capability. The microphysical GLOMAP scheme has now been implemented and evaluated in the latest C-IFS cycle alongside the mass-based scheme. The upgrade to the microphysical scheme provides for higher fidelity aerosol-radiation and aerosol-cloud interactions, accounting for global variations in size distribution and mixing state, and additional aerosol properties such as cloud condensation nuclei concentrations. The new scheme will also provide increased aerosol information when used as lateral boundary conditions for regional air quality models. Here we present a series of experiments highlighting the influence and accuracy of the two different aerosol schemes and the impact of MODIS AOD assimilation. In particular, we focus on the influence of biomass burning emissions on aerosol properties in the Amazon, comparing to ground-based and aircraft observations from the 2012 SAMBBA campaign. Biomass burning can affect regional air quality, human health, regional weather and the local energy budget. Tropical biomass burning generates particles primarily composed of particulate organic matter (POM) and black carbon (BC), the local ratio of these two different constituents often determining the properties and subsequent impacts of the aerosol particles. Therefore, the model's ability to capture the concentrations of these two

  15. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarquhar, Greg

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign,more » over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.« less

  16. The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model

    NASA Astrophysics Data System (ADS)

    Choudhury, Devanil; Das, Someshwar

    2017-06-01

    The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7-13 October, 2014), Phailin (8-14 October, 2013) and Lehar (24-29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (<5 km) cloud microphysics plays an important role. The performance of the Goddard, Thompson, LIN and NSSL schemes are evaluated and compared with observations and a CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC's track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.

  17. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  18. On The Cloud Processing of Aerosol Particles: An Entraining Air Parcel Model With Two-dimensional Spectral Cloud Microphysics and A New Formulation of The Collection Kernel

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine

    A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.

  19. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  20. Intel Many Integrated Core (MIC) architecture optimization strategies for a memory-bound Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.

  1. Microphysical modelling of volcanic plumes / Comparisons against groundbased and spaceborne lidar data

    NASA Astrophysics Data System (ADS)

    Jumelet, Julien; Bekki, Slimane; Keckhut, Philippe

    2017-04-01

    We present a high-resolution isentropic microphysical transport model dedicated to stratospheric aerosols and clouds. The model is based on the MIMOSA model (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) and adds several modules: a fully explicit size-resolving microphysical scheme to transport aerosol granulometry as passive tracers and an optical module, able to calculate the scattering and extinction properties of particles at given wavelengths. Originally designed for polar stratospheric clouds (composed of sulfuric acid, nitric acid and water vapor), the model is fully capable of rendering the structure and properties of volcanic plumes at the finer scales, assuming complete SO2 oxydation. This link between microphysics and optics also enables the model to take advantage of spaceborne lidar data (i.e. CALIOP) by calculating the 532nm aerosol backscatter coefficient, taking it as the control variable to provide microphysical constraints during the transport. This methodology has been applied to simulate volcanic plumes during relatively recent volcanic eruptions, from the 2010 Merapi to the 2015 Calbuco eruption. Optical calculations are also used for direct comparisons between the model and groundbased lidar stations for validation as well as characterization purposes. We will present the model and the simulation results, along with a focus on the sensitivity to initialisation parameters, considering the need for quasi-real time modelling and forecasts in the case of future eruptions.

  2. Chemistry and Microphysics of Lower Stratospheric Aerosols Determined by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zasetsky, A. Y.; Khalizov, A.; Sloan, J.

    2003-12-01

    Observations of broadband Infrared satellites such as ILAS-II (Ministry of the Environment, Japan, launched 14 December 2002) and SciSat-1 (Canadian Space Agency, launched 12 August 2003) can provide details of the chemical composition and particle size of atmospheric aerosols by direct inversion without recourse to models. During the past decade, we have developed mathematical methods to achieve this inversion by working with FTIR observations of model atmospheric aerosols in cryogenic flowtubes. More recently, we have converted these to operational algorithms for use in the above missions. In this presentation, we will briefly outline these procedures and illustrate their capabilities using laboratory data. These laboratory results show that the chemical compositions, phases and sizes of ensembles of particles can be obtained simultaneously using these procedures. We will also report chemical and microphysical properties of lower stratospheric clouds and aerosols derived by applying these procedures to observations from space.

  3. Explicit prediction of hail using multimoment microphysics schemes for a hailstorm of 19 March 2014 in eastern China

    NASA Astrophysics Data System (ADS)

    Luo, Liping; Xue, Ming; Zhu, Kefeng; Zhou, Bowen

    2017-07-01

    In the late afternoon of 19 March 2014, a severe hailstorm swept through eastern central Zhejiang province, China. The storm produced golf ball-sized hail, strong winds, and lighting, lasting approximately 1 h over the coastal city of Taizhou. The Advanced Regional Prediction System is used to simulate the hailstorm using different configurations of the Milbrandt-Yau microphysics scheme that predict one, two, or three moments of the hydrometeor particle size distribution. Simulated fields, including accumulated precipitation and maximum estimated hail size (MESH), are verified against rain gauge observations and radar-derived MESH, respectively. For the case of the 19 March 2014 storms, the general evolution is better predicted with multimoment microphysics schemes than with the one-moment scheme; the three-moment scheme produces the best forecast. Predictions from the three-moment scheme qualitatively agree with observations in terms of size and amount of hail reaching the surface. The life cycle of the hailstorm is analyzed, using the most skillful, three-moment forecast. Based upon the tendency of surface hail mass flux, the hailstorm life cycle can be divided into three stages: developing, mature, and dissipating. Microphysical budget analyses are used to examine microphysical processes and characteristics during these three stages. The vertical structures within the storm and their link to environmental shear conditions are discussed; together with the rapid fall of hailstones, these structures and conditions appear to dictate this pulse storm's short life span. Finally, a conceptual model for the life cycle of pulse hailstorms is proposed.

  4. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  5. Influence of the micro-physical properties of the aerosol on the atmospheric correction of OLI data acquired over desert area

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana

    2016-04-01

    This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected

  6. Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method.

    PubMed

    Vermeulen, A; Devaux, C; Herman, M

    2000-11-20

    A method has been developed for retrieving the scattering and microphysical properties of atmospheric aerosol from measurements of solar transmission, aureole, and angular distribution of the scattered and polarized sky light in the solar principal plane. Numerical simulations of measurements have been used to investigate the feasibility of the method and to test the algorithm's performance. It is shown that the absorption and scattering properties of an aerosol, i.e., the single-scattering albedo, the phase function, and the polarization for single scattering of incident unpolarized light, can be obtained by use of radiative transfer calculations to correct the values of scattered radiance and polarized radiance for multiple scattering, Rayleigh scattering, and the influence of ground. The method requires only measurement of the aerosol's optical thickness and an estimate of the ground's reflectance and does not need any specific assumption about properties of the aerosol. The accuracy of the retrieved phase function and polarization of the aerosols is examined at near-infrared wavelengths (e.g., 0.870 mum). The aerosol's microphysical properties (size distribution and complex refractive index) are derived in a second step. The real part of the refractive index is a strong function of the polarization, whereas the imaginary part is strongly dependent on the sky's radiance and the retrieved single-scattering albedo. It is demonstrated that inclusion of polarization data yields the real part of the refractive index.

  7. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  8. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    Throughout the past decade, a high degree of attention has been focused on determining the microphysical impact of anthropogenically enhanced concentrations of Cloud Condensation Nuclei (CCN) on orographic snowfall in the mountains of the western United States. This area has garnered a lot of attention due to the implications this effect may have on local water resource distribution within the Region. Recent advances in computing power and the development of highly advanced microphysical schemes within numerical models have provided an estimation of the sensitivity that orographic snowfall has to changes in atmospheric CCN concentrations. However, what is still lacking is a coupling between these advanced microphysical schemes and a real-world representation of CCN sources. Previously, an attempt to representation the heterogeneous evolution of aerosol was made by coupling three-dimensional aerosol output from the WRF Chemistry model to the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) (Ward et al. 2011). The biggest problem associated with this scheme was the computational expense. In fact, the computational expense associated with this scheme was so high, that it was prohibitive for simulations with fine enough resolution to accurately represent microphysical processes. To improve upon this method, a new parameterization for aerosol emission was developed in such a way that it was fully contained within RAMS. Several assumptions went into generating a computationally efficient aerosol emissions parameterization in RAMS. The most notable assumption was the decision to neglect the chemical processes in formed in the formation of Secondary Aerosol (SA), and instead treat SA as primary aerosol via short-term WRF-CHEM simulations. While, SA makes up a substantial portion of the total aerosol burden (much of which is made up of organic material), the representation of this process is highly complex and highly expensive within a numerical

  9. Comprehensive Airborne in Situ Characterization of Atmospheric Aerosols: From Angular Light Scattering to Particle Microphysics

    NASA Astrophysics Data System (ADS)

    Espinosa, W. Reed

    A comprehensive understanding of atmospheric aerosols is necessary both to understand Earth's climate as well as produce skillful air quality forecasts. In order to advance our understanding of aerosols, the Laboratory for Aerosols, Clouds and Optics (LACO) has recently developed the Imaging Polar Nephelometer instrument concept for the in situ measurement of aerosol scattering properties. Imaging Nephelometers provide measurements of absolute phase function and polarized phase function over a wide angular range, typically 3 degrees to 177 degrees, with an angular resolution smaller than one degree. The first of these instruments, the Polarized Imaging Nephelometer (PI-Neph), has taken part in five airborne field experiments and is the only modern aerosol polar nephelometer to have flown aboard an aircraft. A method for the retrieval of aerosol optical and microphysical properties from I-Neph measurements is presented and the results are compared with existing measurement techniques. The resulting retrieved particle size distributions agree to within experimental error with measurements made by commercial optical particle counters. Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, whose refractive index is well established. A synopsis is then presented of aerosol scattering measurements made by the PI-Neph during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. To better summarize these extensive datasets a novel aerosol classification scheme is developed, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. Principal component analysis (PCA) is then used to reduce the

  10. An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula

    NASA Astrophysics Data System (ADS)

    Song, Hwan-Jin; Sohn, Byung-Ju

    2018-01-01

    The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warmtype rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warmtype heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collisioncoalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.

  11. Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes

    NASA Astrophysics Data System (ADS)

    Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.

    2018-04-01

    This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.

  12. Evaluating the Performance of Single and Double Moment Microphysics Schemes During a Synoptic-Scale Snowfall Event

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2011-01-01

    Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models

  13. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-09-01

    Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analysed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as coalescence, aggregation, riming and diffusional growth to changes in the aerosol number concentrations are evaluated and compared. The participating numerical models are the model from the Consortium for Small-Scale Modeling (COSMO) with bulk microphysics, the Weather Research and Forecasting (WRF) model with bin microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others, which implies that a decrease in riming with increasing aerosol load is not a robust result

  14. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  15. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, r d a U production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembe1 (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and platelike), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  16. An Evaluation of WRF Microphysics Schemes for Simulating the Warm-Type Heavy Rain over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, Hwan-Jin; Sohn, Byung-Ju

    2018-05-01

    The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warm-type rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warm-type heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collision-coalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.

  17. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  18. Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo

    2012-01-01

    Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.

  19. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  20. A comparison study of convective and microphysical parameterization schemes associated with lightning occurrence in southeastern Brazil using the WRF model

    NASA Astrophysics Data System (ADS)

    Zepka, G. D.; Pinto, O.

    2010-12-01

    The intent of this study is to identify the combination of convective and microphysical WRF parameterizations that better adjusts to lightning occurrence over southeastern Brazil. Twelve thunderstorm days were simulated with WRF model using three different convective parameterizations (Kain-Fritsch, Betts-Miller-Janjic and Grell-Devenyi ensemble) and two different microphysical schemes (Purdue-Lin and WSM6). In order to test the combinations of parameterizations at the same time of lightning occurrence, a comparison was made between the WRF grid point values of surface-based Convective Available Potential Energy (CAPE), Lifted Index (LI), K-Index (KI) and equivalent potential temperature (theta-e), and the lightning locations nearby those grid points. Histograms were built up to show the ratio of the occurrence of different values of these variables for WRF grid points associated with lightning to all WRF grid points. The first conclusion from this analysis was that the choice of microphysics did not change appreciably the results as much as different convective schemes. The Betts-Miller-Janjic parameterization has generally worst skill to relate higher magnitudes for all four variables to lightning occurrence. The differences between the Kain-Fritsch and Grell-Devenyi ensemble schemes were not large. This fact can be attributed to the similar main assumptions used by these schemes that consider entrainment/detrainment processes along the cloud boundaries. After that, we examined three case studies using the combinations of convective and microphysical options without the Betts-Miller-Janjic scheme. Differently from the traditional verification procedures, fields of surface-based CAPE from WRF 10 km domain were compared to the Eta model, satellite images and lightning data. In general the more reliable convective scheme was Kain-Fritsch since it provided more consistent distribution of the CAPE fields with respect to satellite images and lightning data.

  1. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  2. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Bohne, A.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-08-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.

  3. Towards a true aerosol-and-cloud retrieval scheme

    NASA Astrophysics Data System (ADS)

    Thomas, Gareth; Poulsen, Caroline; Povey, Adam; McGarragh, Greg; Jerg, Matthias; Siddans, Richard; Grainger, Don

    2014-05-01

    The Optimal Retrieval of Aerosol and Cloud (ORAC) - formally the Oxford-RAL Aerosol and Cloud retrieval - offers a framework that can provide consistent and well characterised properties of both aerosols and clouds from a range of imaging satellite instruments. Several practical issues stand in the way of achieving the potential of this combined scheme however; in particular the sometimes conflicting priorities and requirements of aerosol and cloud retrieval problems, and the question of the unambiguous identification of aerosol and cloud pixels. This presentation will present recent developments made to the ORAC scheme for both aerosol and cloud, and detail how these are being integrated into a single retrieval framework. The implementation of a probabilistic method for pixel identification will also be presented, for both cloud detection and aerosol/cloud type selection. The method is based on Bayesian methods applied the optimal estimation retrieval output of ORAC and is particularly aimed at providing additional information in the so-called "twilight zone", where pixels can't be unambiguously identified as either aerosol or cloud and traditional cloud or aerosol products do not provide results.

  4. Global microphysical simulation of stratospheric sulfate aerosol after the Mt. Pinatubo eruption

    NASA Astrophysics Data System (ADS)

    Sekiya, T.; Sudo, K.

    2014-12-01

    An explosive volcanic eruption can inject a large amount of SO2 into the stratosphere, which is oxidized to form sulfate aerosol. Such aerosol has an impact on the Earth's radiative budget by enhancing back-scattering of the solar radiation. Changes in the size distribution of the aerosol were observed after large volcanic eruptions. Representing the changes in size distribution is important for climate simulation, because the changes affect climate responses to large volcanic eruptions. This study newly developed an aerosol microphysics module and investigated changes in stratospheric sulfate aerosol after the Mt. Pinatubo eruption in the framework of a chemistry-aerosol coupled climate model MIROC-CHASER/SPRINTARS. The module represents aerosol size distribution with three lognormal modes (nucleation, Aitken, and accumulation modes) and includes nucleation, condensation growth/evaporation, and coagulation processes. As a model evaluation, we tested reproducibility of the impacts of the Mt. Pinatubo eruption. We carried out a simulation, in which 20 Mt of SO2 and 100 Mt of volcanic ash were injected respectively into 25 km and 16—22 km altitudes over Mt. Pinatubo (120.4°E, 15.1°N) on June 15th 1991. We compared the model results with space-borne and balloon-borne observations. Although our model overestimated a near-global mean (60°N—60°S) of stratospheric aerosol optical depth (SAOD) observed by SAGE II instrument until one year after the eruption, it reproduced the observed SAOD in the subsequent period. The model well captured the observed increase of effective radius at 20 km altitude in the northern midlatitudes. In addition, we analyzed the pathway of volcanic sulfur from SO2 to sulfate aerosol. The most amount of the volcanic sulfur was converted from SO2 to accumulation mode aerosol by 100 days after the eruption. The conversion into the accumulation mode aerosol is attributable to coagulation until the first 14 days and to condensation growth

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2005-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.

  6. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-03-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Sensitivity experiments are carried out to analyse the effects of these improvements in the process representation on the simulated aerosol properties and global distribution. The new parameterizations that have largest impact on the global mean aerosol optical depth and radiative effects turn out to be the water uptake scheme and cloud microphysics. The former leads to a significant decrease of aerosol water contents in the lower troposphere, and consequently smaller optical depth; the latter results in higher aerosol loading and longer lifetime due to weaker in-cloud scavenging. The combined effects of the new/updated parameterizations are demonstrated by comparing the new model results with those from the earlier version, and against observations. Model simulations are evaluated in terms of aerosol number concentrations against measurements collected from twenty field campaigns as well as from fixed measurement sites, and in terms of optical properties against the AERONET measurements. Results indicate a general improvement with respect to the earlier version. The aerosol size distribution and spatial-temporal variance simulated by HAM2 are in better agreement with the observations. Biases in the earlier model version in aerosol optical depth and in the Ångström parameter have been reduced. The paper also points out the remaining model deficiencies that need to be

  7. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    DOE PAGES

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less

  8. Performance of McRAS-AC in the GEOS-5 AGCM: Part 1, Aerosol-Activated Cloud Microphysics, Precipitation, Radiative Effects, and Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2012-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.

  9. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    PubMed

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  10. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-04-01

    Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet collision/coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analyzed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as collision/coalescence, aggregation and riming to changes in the aerosol number concentrations are evaluated and compared. The participating models are the Consortium for Small-Scale Modeling's (COSMO) model with bulk-microphysics, the Weather Research and Forecasting (WRF) model with bin-microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice-habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the second indirect aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others which implies that a decrease in riming with increasing aerosol load is not a robust result

  11. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has

  12. Modeling Aerosol Microphysical and Radiative Effects on Clouds and Implications for the Effects of Black and Brown Carbon on Clouds

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, J. E.; Jacobson, M. Z.

    2010-12-01

    Satellite observational studies have found an increase in cloud fraction (CF) and cloud optical depth (COD) with increasing aerosol optical depth (AOD) followed by a decreasing CF/COD with increasing AOD at higher AODs over the Amazon Basin. The shape of this curve is similar to that of a boomerang, and thus the effect has been dubbed the "boomerang effect.” The increase in CF/COD with increasing AOD at low AODs is ascribed to the first and second indirect effects and is referred to as a microphysical effect of aerosols on clouds. The decrease in CF/COD at higher AODs is ascribed to enhanced warming of clouds due to absorbing aerosols, either as inclusions in drops or interstitially between drops. This is referred to as a radiative effect. To date, the interaction of the microphysical and radiative effects has not been simulated with a regional or global computer model. Here, we simulate the boomerang effect with the nested global-through-urban climate, air pollution, weather forecast model, GATOR-GCMOM, for the Amazon biomass burning season of 2006. We also compare the model with an extensive set of data, including satellite data from MODIS, TRMM, and CALIPSO, in situ surface observations, upper-air data, and AERONET data. Biomass burning emissions are obtained from the Global Fire Emissions Database (GFEDv2), and are combined with MODIS land cover data along with biomass burning emission factors. A high-resolution domain, nested within three increasingly coarser domains, is employed over the heaviest biomass burning region within the arc of deforestation. Modeled trends in cloud properties with aerosol loading compare well with MODIS observed trends, allowing causation of these observed correlations, including of the boomerang effect, to be determined by model results. The impact of aerosols on various cloud parameters, such as cloud optical thickness, cloud fraction, cloud liquid water/ice content, and precipitation, are shown through differences between

  13. Microphysical Cloud Regimes used as a tool to study Aerosol-Cloud-Precipitation-Radiation interactions

    NASA Astrophysics Data System (ADS)

    Cho, N.; Oreopoulos, L.; Lee, D.

    2017-12-01

    The presentation will examine whether the diagnostic relationships between aerosol and cloud-affected quantities (precipitation, radiation) obtained from sparse temporal resolution measurements from polar orbiting satellites can potentially demonstrate actual aerosol effects on clouds with appropriate analysis. The analysis relies exclusively on Level-3 (gridded) data and comprises systematic cloud classification in terms of "microphysical cloud regimes" (µCRs), aerosol optical depth (AOD) variations relative to a region's local seasonal climatology, and exploitation of the 3-hour difference between Terra (morning) and Aqua (afternoon) overpasses. Specifically, our presentation will assess whether Aerosol-Cloud-Precipitation-Radiation interactions (ACPRI) can be diagnosed by investigating: (a) The variations with AOD of afternoon cloud-affected quantities composited by afternoon or morning µCRs; (b) µCR transition diagrams composited by morning AOD quartiles; (c) whether clouds represented by ensemble cloud effective radius - cloud optical thickness joint histograms look distinct under low and high AOD conditions when preceded or followed by specific µCRs. We will explain how our approach addresses long-standing themes of the ACPRI problem such as the optimal ways to decompose the problem by cloud class, the prevalence and detectability of 1st/2nd aerosol indirect effects and invigoration, and the effectiveness of aerosol changes in inducing cloud modification at different segments of the AOD distribution.

  14. Impact of aerosol microphysics on cloud optical properties and implications to atmospheric oxidation capacity

    NASA Astrophysics Data System (ADS)

    Luo, G.; Yu, F.

    2016-12-01

    GEOS-Chem, presently used by many research groups, is a state-of-the-art global 3-D model of atmospheric composition driven by assimilated meteorology from the Goddard Earth Observing System. Our comparisons of GEOS-5 cloud properties, used in photolysis rate calculation, with MODIS retrievals show that GEOS-5 underestimates cloud optical depth (COD) by a factor of more than 2 over most regions. Our further analysis indicates that the COD underestimation in the released GEOS-5 meteorology products is likely to be associated with the fact that the GEOS-5 doesn't take into account the impact of aerosol on cloud microphysics and optical properties. A new COD parameterization (called NewC thereafter), which re-calculates COD from GEOS-5 water content and GEOS-Chem simulated size-resolved particle properties, cloud condensation nuclei abundance, and cloud droplet number concentration, has been developed and incorporated into GEOS-Chem. The NewC increases the GEOS-5 derived annual mean CODs averaged between 60ºS and 60ºN from 2.0 to 4.3, in much better agreement with corresponding MODIS value of 4.3. The enhanced COD based on NewC scheme reduces global average boundary layer OH concentration by 9.8%. Zonal averaged OH is increased 3-7% above clouds due to backscattering and decreased 10-15% below clouds due to the attenuation of solar radiation. The global mean OH concentration simulated by GEOS-Chem driven by GEOS-5 COD and NewC COD are respectively12.9 × 105molec cm-3 and 12.2 × 105molec cm-3, with the latter closer to the ACCMIP multi-model estimation (11.7±1 105molec cm-3). Surface OH concentrations over major anthropogenic regions such as Eastern US, Europe, and East Asia decrease by up to -18.6%, -14.4%, and -19.9%, respectively. The relative change of surface OH concentration appears to be the largest over the Amazon rainforest, reaching up to -30%. After switching from old COD to NewC COD, GEOS-Chem simulated column HCHO and surface isoprene over Amazon

  15. Sensitivity of Aerosol Mass and Microphysics to Treatments of Condensational Growth of Secondary Organic Compounds in a Regional Model

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; Lowe, D.; McFiggans, G.; Zaveri, R. A.

    2016-12-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight.For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin volatility basis set (VBS) treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organic compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased.This work was supported by the Nature Environment

  16. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  17. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  18. The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Hazra, Anupam; Padmakumari, B.; Maheskumar, R. S.; Chen, Jen-Ping

    2016-05-01

    This study investigates the influence of different ice nuclei (IN) species and their number concentrations on cloud ice production. The numerical simulation with different species of ice nuclei is investigated using an explicit bulk-water microphysical scheme in a Mesoscale Meteorological Model version 5 (MM5). The species dependent ice nucleation parameterization that is based on the classical nucleation theory has been implemented into the model. The IN species considered include dust and soot with two different concentrations (Low and High). The simulated cloud microphysical properties like droplet number concentration and droplet effective radii as well as macro-properties (equivalent potential temperature and relative humidity) are comparable with aircraft observations. When higher dust IN concentrations are considered, the simulation results showed good agreement with the cloud ice and cloud water mixing ratio from aircraft measurements during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. Relative importance of IN species is shown as compared to the homogeneous freezing nucleation process. The tendency of cloud ice production rates is also analyzed and found that dust IN is more efficient in producing cloud ice when compared to soot IN. The dust IN with high concentration can produce more surface precipitation than soot IN at the same concentration. This study highlights the need to improve the ice nucleation parameterization in numerical models.

  19. The Impact of Microphysics on Intensity and Structure of Hurricanes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn; Lang, Steve; Peters-Lidard, Christa

    2006-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WFW is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WFW model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WW to examine the impact of six different cloud microphysical schemes on hurricane track, intensity and rainfall forecast. We are also performing the inline tracer calculation to comprehend the physical processes @e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes.

  20. Retrieval of Aerosol Microphysical Properties Based on the Optimal Estimation Method: Information Content Analysis for Satellite Polarimetric Remote Sensing Measurements

    NASA Astrophysics Data System (ADS)

    Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.

    2018-04-01

    This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  1. Complex experiment on the study of microphysical, chemical, and optical properties of aerosol particles and estimation of atmospheric aerosol contribution in the Earth radiation budget

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Belan, B. D.; Panchenko, M. V.; Romanovskii, O. A.; Sakerin, S. M.; Kabanov, D. M.; Turchinovich, S. A.; Turchinovich, Yu. S.; Eremina, T. A.; Kozlov, V. S.; Terpugova, S. A.; Pol'kin, V. V.; Yausheva, E. P.; Chernov, D. G.; Zuravleva, T. B.; Bedareva, T. V.; Odintsov, S. L.; Burlakov, V. D.; Arshinov, M. Yu.; Ivlev, G. A.; Savkin, D. E.; Fofonov, A. V.; Gladkikh, V. A.; Kamardin, A. P.; Belan, D. B.; Grishaev, M. V.; Belov, V. V.; Afonin, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Samoilova, S. V.; Antokhin, P. N.; Arshinova, V. G.; Davydov, D. K.; Kozlov, A. V.; Pestunov, D. A.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, T. K.; Tolmachev, G. N.; Belan, S. B.; Shmargunov, V. P.; Rostov, A. P.; Tikhomirova, O. V.; Shefer, N. A.; Safatov, A. S.; Kozlov, A. S.; Malyshkin, S. B.; Maksimova, T. A.

    2014-11-01

    The main aim of the work was complex experimental measurements of microphysical, chemical, and optical parameters of aerosol particles in the surface air layer and free atmosphere. From the measurement data, the entire set of aerosol optical parameters was retrieved, required for radiation calculations. Three measurement runs were carried out in 2013 within the experiment: in spring, when the aerosol generation maximum is observed, in summer (July), when the altitude of the atmospheric boundary layer is the highest, and in the late summer - early autumn, when the second nucleation period is recorded. The following instruments were used in the experiment: diffusion aerosol spectrometers (DAS), GRIMM photoelectric counters, angle-scattering nephelometers, aethalometer, SP-9/6 sun photometer, RE 318 Sun-Sky radiometer (AERONET), MS-53 pyrheliometer, MS-802 pyranometer, ASP aureole photometer, SSP scanning photometer, TU-134 Optik flying laboratory, Siberian lidar station, stationary multiwave lidar complex LOZA-M, spectrophotometric complex for measuring total ozone and NO2, multivariable instrument for measuring atmospheric parameters, METEO-2 USM, 2.4 AEHP-2.4m station for satellite data receive. Results of numerical calculations of solar down-fluxes on the Earth's surface were compared with the values measured in clear air in the summer periods in 2010—2012 in a background region of Siberian boreal zone. It was shown that the relative differences between model and experimental values of direct and total radiation do not exceed 1% and 3%, respectively, with accounting for instrumental errors and measurement error of atmospheric parameters. Thus, independent data on optical, meteorological, and microphysical atmospheric parameters allow mutual intercalibration and supplement and, hence, provide for qualitatively new data, which can explain physical nature of processes that form the vertical structure of the aerosol filed.

  2. Chemical, microphysical and optical properties of the aerosols during foggy and nonfoggy day over a typical location in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Tripathi, S. N.; Gupta, T.

    2012-04-01

    An extensive experimental measurement was carried out from January 16, 2010 to February 20, 2010 at Kanpur to study the chemical, microphysical and optical properties of the aerosols. A Micro-Pulse Lidar Network (MPLNET), a part of National Aeronautic Space Administration (NASA), was used for identification of fog duration. PM1 samples and fogwater were collected to examine the organic and inorganic species of aerosol and fogwater. Organic Carbon (OC), Elemental Carbon (EC) and water soluble organic carbon analysis were carried out by an EC-OC analyzer and a TOC analyzer, respectively. Trace gases and solar flux measurement were carried out by gas analyzers and a pyranometer (a part of NASA Aeronet), respectively, to identify the photo-chemical activity. Meteorological data were measured by atmospheric weather station. The microphysical properties such as aerosol size distribution were measured using a scanning mobility particle sizer (SMPS). Optical properties were measured by a photo-acoustic soot spectrometer (PASS). Organic and inorganic species are processed by fog droplets such as production of secondary organic aerosol through aqueous mechanism (Kaul et al., 2011) and scavenging of various water soluble species. The concentrations of almost all the ionic species and organic carbon were higher in aerosols during foggy day. Presence of numerous ionic species and organic carbon in the fogwater indicates their wet scavenging and removal from the atmosphere by the fog droplets. Most of the aerosol is composed of inorganic component, ~80% during foggy day and ~85.5 % during clear day. Biomass burning contribution to PM1 mass concentration was considerably higher during clear days and lower during foggy days; lower concentration during foggy day could be due to wet scavenging of biomass generated aerosols. The study average higher number concentration of aerosol during foggy day during late evening and overnight was due to lower boundary layer height and subsequent

  3. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  4. Sensitivity of Aerosol Mass and Microphysics to varying treatments of Condensational Growth of Secondary Organic Compounds in a regional model

    NASA Astrophysics Data System (ADS)

    Lowe, Douglas; Topping, David; McFiggans, Gordon

    2017-04-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight. For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin VBS treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organics compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased. This work was supported by the Natural Environment Research Council within

  5. Application of TRMM PR and TMI Measurements to Assess Cloud Microphysical Schemes in the MM5 Model for a Winter Storm

    NASA Technical Reports Server (NTRS)

    Han, Mei; Braun, Scott A.; Olson, William S.; Persson, P. Ola G.; Bao, Jian-Wen

    2009-01-01

    Seen by the human eye, precipitation particles are commonly drops of rain, flakes of snow, or lumps of hail that reach the ground. Remote sensors and numerical models usually deal with information about large collections of rain, snow, and hail (or graupel --also called soft hail ) in a volume of air. Therefore, the size and number of the precipitation particles and how particles interact, evolve, and fall within the volume of air need to be represented using physical laws and mathematical tools, which are often implemented as cloud and precipitation microphysical parameterizations in numerical models. To account for the complexity of the precipitation physical processes, scientists have developed various types of such schemes in models. The accuracy of numerical weather forecasting may vary dramatically when different types of these schemes are employed. Therefore, systematic evaluations of cloud and precipitation schemes are of great importance for improvement of weather forecasts. This study is one such endeavor; it pursues quantitative assessment of all the available cloud and precipitation microphysical schemes in a weather model (MM5) through comparison with the observations obtained by National Aeronautics and Space Administration (NASA) s and Japan Aerospace Exploration Agency (JAXA) s Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and microwave imager (TMI). When satellite sensors (like PR or TMI) detect information from precipitation particles, they cannot directly observe the microphysical quantities (e.g., water species phase, density, size, and amount etc.). Instead, they tell how much radiation is absorbed by rain, reflected away from the sensor by snow or graupel, or reflected back to the satellite. On the other hand, the microphysical quantities in the model are usually well represented in microphysical schemes and can be converted to radiative properties that can be directly compared to the corresponding PR and TMI observations

  6. Aerosols and Aerosol-related haze forecasting in China Meteorological Adminstration

    NASA Astrophysics Data System (ADS)

    Zhou, Chunhong; Zhang, Xiaoye; Gong, Sunling; Liu, Hongli; Xue, Min

    2017-04-01

    CMA Unified Atmospheric Chemistry Environmental Forecasting System (CUACE) is a unified numerical chemical weather forecasting system with BC, OC, Sulfate, Nitrate, Ammonia, Dust and Sea-Salt aerosols and their sources, gas to particle processes, SOA, microphysics and transformation. With an open interface, CUACE has been online coupled to mesoscale model MM5 and the new NWP system GRAPES (Global/Regional Assimilation and Prediction Enhanced System)min CMA. With Chinese Emissions from Cao and Zhang(2012 and 2013), a forecasting system called CUACE/Haze-fog has been running in real time in CMA and issue 5-days PM10, O3 and Visibility forecasts. A comprehensive ACI scheme has also been developed in CUACE Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The results show that interactive aerosols with the WDM6 in CUACE obviously improve the clouds properties and the precipitation, showing 24% to 48% enhancements of TS scoring for 6-h precipitation .

  7. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamnes, S.; Hostetler, C.; Ferrare, R.

    We present an optimal estimation based retrieval framework, the Microphysical Aerosol Properties from Polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High Spectral Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355, 532, and 1064 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ã…ngstrømmore » exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio- Optical Research (SABOR) campaign. For the SABOR campaign, 71% RSP MAPP retrievals fall within 0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.925 and root-mean-square deviation of 0.04. For the TCAP campaign, 55% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.925 and root-mean-square deviation of 0.07. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.96 and a root-mean-square deviation of also 0.07. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar+polarimeter retrieval using both HSRL and RSP measurements.« less

  8. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2012-01-01

    Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  9. Intercomparison of microphysical datasets collected from CAIPEEX observations and WRF simulation

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Goswami, B.; Kulkarni, J.

    2009-12-01

    In the first phase of ongoing Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program of Indian Institute of Tropical Meteorology (IITM), intensive cloud microphysical datasets are collected over India during the May through September, 2009. This study is designed to evaluate the forecast skills of existing cloud microphysical parameterization schemes (i.e. single moment/double moments) within the WRF-ARW model (Version 3.1.1) during different intensive observation periods (IOP) over the targeted regions spreading all across India. Basic meteorological and cloud microphysical parameters obtained from the model simulations are validated against the observed data set collected during CAIPEEX program. For this study, we have considered three IOP phases (i.e. May 23-27, June 11-15, July 3-7) carried out over northern, central and western India respectively. This study emphasizes the thrust to understand the mechanism of evolution, intensification and distribution of simulated precipitation forecast upto day four (i.e. 96 hour forecast). Efforts have also been made to carryout few important microphysics sensitivity experiments within the explicit schemes to investigate their respective impact on the formation and distribution of vital cloud parameters (e.g. cloud liquid water, frozen hydrometeors) and model rainfall forecast over the IOP regions. The characteristic features of liquid and frozen hydrometers in the pre-monsoon and monsoon regimes are examined from model forecast as well as from CAIPEEX observation data set for different IOPs. The model is integrated in a triply nested fashion with an innermost nest explicitly resolved at a horizontal resolution of 4km.In this presentation preliminary results from aforementioned research initiatives will be introduced.

  10. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  11. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    The objectives of this project are to: define the chemical and physical processes leading to stratospheric ozone change that involve polar stratospheric clouds (PSCS) and the reactions occurring on the surfaces of PSC particles; study the formation processes, and the physical and chemical properties of PSCS, that are relevant to atmospheric chemistry and to the interpretation of field measurements taken during polar stratosphere missions; develop quantitative models describing PSC microphysics and heterogeneous chemical processes; assimilate laboratory and field data into these models; and calculate the extent of chemical processing on PSCs and the impact of specific microphysical processes on polar composition and ozone depletion. During the course of the project, a new coupled microphysics/physical-chemistry/ photochemistry model for stratospheric sulfate aerosols and nitric acid and ice PSCs was developed and applied to analyze data collected during NASA's Arctic Airborne Stratospheric Expedition-II (AASE-II) and other missions. In this model, detailed treatments of multicomponent sulfate aerosol physical chemistry, sulfate aerosol microphysics, polar stratospheric cloud microphysics, PSC ice surface chemistry, as well as homogeneous gas-phase chemistry were included for the first time. In recent studies focusing on AASE measurements, the PSC model was used to analyze specific measurements from an aircraft deployment of an aerosol impactor, FSSP, and NO(y) detector. The calculated results are in excellent agreement with observations for particle volumes as well as NO(y) concentrations, thus confirming the importance of supercooled sulfate/nitrate droplets in PSC formation. The same model has been applied to perform a statistical study of PSC properties in the Northern Hemisphere using several hundred high-latitude air parcel trajectories obtained from Goddard. The rates of ozone depletion along trajectories with different meteorological histories are presently

  12. Uniwavelength lidar sensitivity to spherical aerosol microphysical properties for the interpretation of Lagrangian stratospheric observations

    NASA Astrophysics Data System (ADS)

    Jumelet, Julien; David, Christine; Bekki, Slimane; Keckhut, Philippe

    2009-01-01

    The determination of stratospheric particle microphysical properties from multiwavelength lidar, including Rayleigh and/or Raman detection, has been widely investigated. However, most lidar systems are uniwavelength operating at 532 nm. Although the information content of such lidar data is too limited to allow the retrieval of the full size distribution, the coupling of two or more uniwavelength lidar measurements probing the same moving air parcel may provide some meaningful size information. Within the ORACLE-O3 IPY project, the coordination of several ground-based lidars and the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) space-borne lidar is planned during measurement campaigns called MATCH-PSC (Polar Stratospheric Clouds). While probing the same moving air masses, the evolution of the measured backscatter coefficient (BC) should reflect the variation of particles microphysical properties. A sensitivity study of 532 nm lidar particle backscatter to variations of particles size distribution parameters is carried out. For simplicity, the particles are assumed to be spherical (liquid) particles and the size distribution is represented with a unimodal log-normal distribution. Each of the four microphysical parameters (i.e. log-normal size distribution parameters, refractive index) are analysed separately, while the three others are remained set to constant reference values. Overall, the BC behaviour is not affected by the initial values taken as references. The total concentration (N0) is the parameter to which BC is least sensitive, whereas it is most sensitive to the refractive index (m). A 2% variation of m induces a 15% variation of the lidar BC, while the uncertainty on the BC retrieval can also reach 15%. This result underlines the importance of having both an accurate lidar inversion method and a good knowledge of the temperature for size distribution retrieval techniques. The standard deviation ([sigma]) is the second

  13. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of

  14. Microphysical, Macrophysical and Radiative Signatures of Volcanic Aerosols in Trade Wind Cumulus Observed by the A-Train

    NASA Technical Reports Server (NTRS)

    Yuan, T.; Remer, L. A.; Yu, H.

    2011-01-01

    Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.

  15. Numerical simulations of Asian dust storms using a coupled climate-aerosol microphysical model

    NASA Astrophysics Data System (ADS)

    Su, Lin; Toon, Owen B.

    2009-07-01

    We have developed a three-dimensional coupled microphysical/climate model based on the National Center for Atmospheric Research Community Atmospheres Model and the University of Colorado/NASA Community Aerosol and Radiation Model for Atmospheres. We have used the model to investigate the sources, removal processes, transport, and optical properties of Asian dust aerosol and its impact on downwind regions. The model simulations are conducted primarily during the time frame of the Aerosol Characterization Experiment-Asia field experiment (March-May 2001) since considerable in situ data are available at that time. Our dust source function follows Ginoux et al. (2001). We modified the dust source function by using the friction velocity instead of the 10-m wind based on wind erosion theory, by adding a size-dependent threshold friction velocity following Marticorena and Bergametti (1995) and by adding a soil moisture correction. A Weibull distribution is implemented to estimate the subgrid-scale wind speed variability. We use eight size bins for mineral dust ranging from 0.1 to 10 μm radius. Generally, the model reproduced the aerosol optical depth retrieved by the ground-based Aerosol Robotic Network (AERONET) Sun photometers at six study sites ranging in location from near the Asian dust sources to the Eastern Pacific region. By constraining the dust complex refractive index from AERONET retrievals near the dust source, we also find the single-scattering albedo to be consistent with AERONET retrievals. However, large regional variations are observed due to local pollution. The timing of dust events is comparable to the National Institute for Environmental Studies (NIES) lidar data in Beijing and Nagasaki. However, the simulated dust aerosols are at higher altitudes than those observed by the NIES lidar.

  16. Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals

    NASA Astrophysics Data System (ADS)

    Burton, Sharon P.; Chemyakin, Eduard; Liu, Xu; Knobelspiesse, Kirk; Stamnes, Snorre; Sawamura, Patricia; Moore, Richard H.; Hostetler, Chris A.; Ferrare, Richard A.

    2016-11-01

    There is considerable interest in retrieving profiles of aerosol effective radius, total number concentration, and complex refractive index from lidar measurements of extinction and backscatter at several wavelengths. The combination of three backscatter channels plus two extinction channels (3β + 2α) is particularly important since it is believed to be the minimum configuration necessary for the retrieval of aerosol microphysical properties and because the technological readiness of lidar systems permits this configuration on both an airborne and future spaceborne instrument. The second-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β + 2α measurements since 2012. The planned NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission also recommends the 3β + 2α combination.Here we develop a deeper understanding of the information content and sensitivities of the 3β + 2α system in terms of aerosol microphysical parameters of interest. We use a retrieval-free methodology to determine the basic sensitivities of the measurements independent of retrieval assumptions and constraints. We calculate information content and uncertainty metrics using tools borrowed from the optimal estimation methodology based on Bayes' theorem, using a simplified forward model look-up table, with no explicit inversion. The forward model is simplified to represent spherical particles, monomodal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, the given simplified aerosol scenario is applicable as a best case for all existing retrievals in the absence of additional constraints. Retrieval-dependent errors due to mismatch between retrieval assumptions and true atmospheric aerosols are not included in this sensitivity study, and neither are retrieval errors that may be introduced in the inversion process. The choice of a simplified model adds clarity to the

  17. An explicit microphysics thunderstorm model.

    Treesearch

    R. Solomon; C.M. Medaglia; C. Adamo; S. Dietrick; A. Mugnai; U. Biader Ceipidor

    2005-01-01

    The authors present a brief description of a 1.5-dimensional thunderstorm model with a lightning parameterization that utilizes an explicit microphysical scheme to model lightning-producing clouds. The main intent of this work is to describe the basic microphysical and electrical properties of the model, with a small illustrative section to show how the model may be...

  18. Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles

    NASA Astrophysics Data System (ADS)

    Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan

    2017-04-01

    Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (<20 μL). A number of diverse experiments were performed in order to characterise different microphysical properties of SOA. The equilibrium hygroscopic response of SOA was determined with comparative evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to

  19. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  20. Radar and microphysical characteristics of convective storms simulated from a numerical model using a new microphysical parameterization

    NASA Technical Reports Server (NTRS)

    Ferrier, Brad S.; Tao, Wei-Kuo; Simpson, Joanne

    1991-01-01

    The basic features of a new and improved bulk-microphysical parameterization capable of simulating the hydrometeor structure of convective systems in all types of large-scale environments (with minimal adjustment of coefficients) are studied. Reflectivities simulated from the model are compared with radar observations of an intense midlatitude convective system. Simulated reflectivities using the novel four-class ice scheme with a microphysical parameterization rain distribution at 105 min are illustrated. Preliminary results indicate that this new ice scheme works efficiently in simulating midlatitude continental storms.

  1. Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Dhomse, S. S.; Emmerson, K. M.; Mann, G. W.; Bellouin, N.; Carslaw, K. S.; Chipperfield, M. P.; Hommel, R.; Abraham, N. L.; Telford, P.; Braesicke, P.; Dalvi, M.; Johnson, C. E.; O'Connor, F.; Morgenstern, O.; Pyle, J. A.; Deshler, T.; Zawodny, J. M.; Thomason, L. W.

    2014-10-01

    We use a stratosphere-troposphere composition-climate model with interactive sulfur chemistry and aerosol microphysics, to investigate the effect of the 1991 Mount Pinatubo eruption on stratospheric aerosol properties. Satellite measurements indicate that shortly after the eruption, between 14 and 23 Tg of SO2 (7 to 11.5 Tg of sulfur) was present in the tropical stratosphere. Best estimates of the peak global stratospheric aerosol burden are in the range 19 to 26 Tg, or 3.7 to 6.7 Tg of sulfur assuming a composition of between 59 and 77 % H2SO4. In light of this large uncertainty range, we performed two main simulations with 10 and 20 Tg of SO2 injected into the tropical lower stratosphere. Simulated stratospheric aerosol properties through the 1991 to 1995 period are compared against a range of available satellite and in situ measurements. Stratospheric aerosol optical depth (sAOD) and effective radius from both simulations show good qualitative agreement with the observations, with the timing of peak sAOD and decay timescale matching well with the observations in the tropics and mid-latitudes. However, injecting 20 Tg gives a factor of 2 too high stratospheric aerosol mass burden compared to the satellite data, with consequent strong high biases in simulated sAOD and surface area density, with the 10 Tg injection in much better agreement. Our model cannot explain the large fraction of the injected sulfur that the satellite-derived SO2 and aerosol burdens indicate was removed within the first few months after the eruption. We suggest that either there is an additional alternative loss pathway for the SO2 not included in our model (e.g. via accommodation into ash or ice in the volcanic cloud) or that a larger proportion of the injected sulfur was removed via cross-tropopause transport than in our simulations. We also critically evaluate the simulated evolution of the particle size distribution, comparing in detail to balloon-borne optical particle counter (OPC

  2. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  3. Advection of Microphysical Scalars in Terminal Area Simulation System (TASS)

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.

    2011-01-01

    The Terminal Area Simulation System (TASS) is a large eddy scale atmospheric flow model with extensive turbulence and microphysics packages. It has been applied successfully in the past to a diverse set of problems ranging from prediction of severe convective events (Proctor et al. 2002), tracking storms and for simulating weapons effects such as the dispersion and fallout of fission debris (Bacon and Sarma 1991), etc. More recently, TASS has been used for predicting the transport and decay of wake vortices behind aircraft (Proctor 2009). An essential part of the TASS model is its comprehensive microphysics package, which relies on the accurate computation of microphysical scalar transport. This paper describes an evaluation of the Leonard scheme implemented in the TASS model for transporting microphysical scalars. The scheme is validated against benchmark cases with exact solutions and compared with two other schemes - a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)-type scheme after van Leer and LeVeque's high-resolution wave propagation method. Finally, a comparison between the schemes is made against an incident of severe tornadic super-cell convection near Del City, Oklahoma.

  4. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    NASA Astrophysics Data System (ADS)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-08-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  5. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    NASA Astrophysics Data System (ADS)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-03-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  6. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-10-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7) between accumulation mode and coarse mode emission fluxes of aerosol number concentration. This

  7. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  8. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostetler, Chris; Ferrare, Richard

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectralmore » Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by

  9. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  10. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  11. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Q.; Lee Y.; Gustafson Jr., W. I.

    2011-12-02

    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also comparedmore » to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with

  12. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  13. Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements

    NASA Astrophysics Data System (ADS)

    Reed Espinosa, W.; Remer, Lorraine A.; Dubovik, Oleg; Ziemba, Luke; Beyersdorf, Andreas; Orozco, Daniel; Schuster, Gregory; Lapyonok, Tatyana; Fuertes, David; Vanderlei Martins, J.

    2017-03-01

    A method for the retrieval of aerosol optical and microphysical properties from in situ light-scattering measurements is presented and the results are compared with existing measurement techniques. The Generalized Retrieval of Aerosol and Surface Properties (GRASP) is applied to airborne and laboratory measurements made by a novel polar nephelometer. This instrument, the Polarized Imaging Nephelometer (PI-Neph), is capable of making high-accuracy field measurements of phase function and degree of linear polarization, at three visible wavelengths, over a wide angular range of 3 to 177°. The resulting retrieval produces particle size distributions (PSDs) that agree, within experimental error, with measurements made by commercial optical particle counters (OPCs). Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, with a refractive index that is well established. The airborne measurements used in this work were made aboard the NASA DC-8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field campaign, and the inversion of this data represents the first aerosol retrievals of airborne polar nephelometer data. The results provide confidence in the real refractive index product, as well as in the retrieval's ability to accurately determine PSD, without assumptions about refractive index that are required by the majority of OPCs.

  14. Evaluating Secondary Inorganic Aerosols in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-01-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3/NH4(+) partitioning which affects the HNO3/NO3(-) partitioning.

  15. Feedbacks between microphysics and photochemical aging in viscous aerosol

    NASA Astrophysics Data System (ADS)

    Dou, Jing; Corral Arroyo, Pablo; Alpert, Peter A.; Ammann, Markus; Peter, Thomas; Krieger, Ulrich K.

    2017-04-01

    Fe(III)-citrate complex photochemistry, which plays an important role in aerosol aging, especially in lower troposphere, has been widely recognized in both solution and solid states. It can get excited by light below about 500 nm, inducing the oxidation of carboxylate ligands and the production of peroxides (e.g., OH•, HO2•), which have a significant impact on the climate, air quality and health. Recently, there is literature reporting that aqueous aerosol particles may attain highly viscous, semi-solid or even glassy physical states under a wide range of atmospheric conditions. However, systematic studies on the effect of high viscosity on photochemical processes are scarce. In this research, mass and size changes of a single, aqueous Fe(III)-citrate/citric acid particle levitated in an electrodynamic balance (EDB) are tracked during photochemical processing. We observe an overall mass loss during photochemical processing due to evaporation of volatile (e.g., CO2) and semi-volatile (e.g., ketones) compounds. It is known that relative humidity and temperature strongly effects the viscosity of citric acid. Hence, under light intensities large enough not limiting photochemical processing (at a wavelength of either 375 nm or 473 nm), the quasi-steady state evaporation rate in our experiments depends on relative humidity and temperature. The same holds true for the characteristic time scale for reaching thermodynamic equilibrium after switching off the light source. We are focusing on the high viscosity case (i.e., reduced molecular mobility and low water content), which slows down the transport of products but can also affect chemical reaction rates (e.g., initial absorption process, charge and energy transfer). Data are compared to kinetic modeling and diffusivities for semi-volatile compounds are estimated aiming at a more detailed understanding of the feedbacks between microphysics and photochemical aging.

  16. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2004-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.

  17. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    PubMed

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  18. Imaginary refractive index and other microphysical properties of volcanic ash, Sarahan dust, and other mineral aerosols

    NASA Astrophysics Data System (ADS)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Artaxo, P.; Todd, M.; Ben Ami, Y.; Dolgos, G.; Espinosa, R.

    2013-12-01

    Aerosol properties are essential to support remote sensing measurements, atmospheric circulation and climate models. This research aims to improve the understanding of the optical and microphysical properties of different types of aerosols particles. Samples of volcanic ash, Saharan dust and other mineral aerosols particles were analyzed by different techniques. Ground samples were sieved down to 45um, de-agglomerated and resuspended in the laboratory using a Fluidized Bed Aerosol Generator (FBAG). Particles were collected on Nuclepore filters into PM10, PM2.5, or PM1.0. and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index from the UV to the short wave infrared (SWIR) wavelength was derived empirically from the measurements of the spectral mass absorption coefficient, size distribution and density of the material. Some selected samples were also analyzed with the Polarized Imaging Nephelometer (PI-Neph) instrument for the characterization of the aerosol polarized phase function. This work compares results of the spectral refractive index of different materials obtained by our methodology with those available in the literature. In some cases there are significant differences both in magnitude and spectral dependence of the imaginary refractive index. These differences are evaluated and discussed in this work.

  19. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, E.; Pekour, M.; Flynn, C.

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less

  20. A study of aerosol indirect effects and feedbacks on convective precipitation

    NASA Astrophysics Data System (ADS)

    Da Silva, Nicolas; Mailler, Sylvain; Drobinski, Philippe

    2017-04-01

    Atmospheric aerosols from natural and anthropogenic origin are present in the troposphere of the Mediterranean basin and continental Europe, occasionnally reaching very high concentrations in air masses with a strong content of aerosols related to mineral dust emissions, wildfires, or anthropogenic contamination [1]. On the other hand precipitations in the Mediterranean basin need to be understood precisely since drought and extreme precipitation events are a part of Mediterranean climate which can strongly affect the people and the economic activity in the Mediterranean basin [2]. The present study is a contribution to the investigations on the effects of aerosols on precipitation in the Mediterranean basin and continental Europe. For that purpose, we used the Weather Research and Forecasting Model (WRF) parameterized with the Thompson aerosol-aware microphysics schemes, performing two sensitivity simulations forced with two different aerosol climatologies during six months covering an entire summer season on a domain, covering the Mediterranean basin and continental Europe at 50 km resolution. Aerosols may affect atmospheric dynamics through their direct and semidirect radiative effects as well as through their indirect effects (through the changes of cloud microphysics). While it is difficult to disentangle these differents effects in reality, numerical modelling with the WRF model make it possible to isolate indirect effects by modifying them without affecting the direct or semidirect effects of aerosols in an attempt to examine the effect of aerosols on precipitations through microphysical effects only. Our first results have shown two opposite responses depending whether the precipitation are convective or large-scale. Since convective precipitations seem to be clearly inhibited by increased concentrations of cloud-condensation nuclei, we attempted to understand which processes and feedbacks are involved in this reduction of parameterized convective

  1. Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Dhomse, S. S.; Emmerson, K. M.; Mann, G. W.; Bellouin, N.; Carslaw, K. S.; Chipperfield, M. P.; Hommel, R.; Abraham, N. L.; Telford, P.; Braesicke, P.; Dalvi, M.; Johnson, C. E.; O'Connor, F.; Morgenstern, O.; Pyle, J. A.; Deshler, T.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    We have enhanced the capability of a microphysical aerosol-chemistry module to simulate the atmospheric aerosol and precursor gases for both tropospheric and stratospheric conditions. Using the Mount Pinatubo eruption (June 1991) as a test case, we evaluate simulated aerosol properties in a composition-climate model against a range of satellite and in-situ observations. Simulations are performed assuming an injection of 20 Tg SO2 at 19-27 km in tropical latitudes, without any radiative feedback from the simulated aerosol. In both quiescent and volcanically perturbed conditions, simulated aerosol properties in the lower stratosphere show reasonable agreement with the observations. The model captures the observed timing of the maximum aerosol optical depth (AOD) and its decay timescale in both tropics and Northern Hemisphere (NH) mid-latitudes. There is also good qualitative agreement with the observations in terms of spatial and temporal variation of the aerosol effective radius (Reff), which peaks 6-8 months after the eruption. However, the model shows significant biases against some observational data sets. Simulated AOD and Surface Area Density (SAD) in the tropics are substantially higher than the gap-filled satellite data products during the first 6 months after the eruption. The model shows consistently weaker enhancement in Reff compared to satellite and in-situ measurements. Simulated aerosol particle size distribution is also compared to NH mid-latitude in-situ balloon sounding measurements of size-resolved number concentrations. Before the eruption, the model captures the observed profiles of lower stratospheric particle number concentrations with radii larger than 5, 150 and 250 nm (N5, N150 and N250) very well. However, in the first 6 months after the eruption, the model shows high bias in N5 concentrations in the lower stratosphere, suggesting too strong nucleation. Following particle growth via condensation and coagulation, this bias in the finest

  2. Effects of microphysics parameterization on simulations of summer heavy precipitation in the Yangtze-Huaihe Region, China

    NASA Astrophysics Data System (ADS)

    Kan, Yu; Chen, Bo; Shen, Tao; Liu, Chaoshun; Qiao, Fengxue

    2017-09-01

    It has been a longstanding problem for current weather/climate models to accurately predict summer heavy precipitation over the Yangtze-Huaihe Region (YHR) which is the key flood-prone area in China with intensive population and developed economy. Large uncertainty has been identified with model deficiencies in representing precipitation processes such as microphysics and cumulus parameterizations. This study focuses on examining the effects of microphysics parameterization on the simulation of different type of heavy precipitation over the YHR taking into account two different cumulus schemes. All regional persistent heavy precipitation events over the YHR during 2008-2012 are classified into three types according to their weather patterns: the type I associated with stationary front, the type II directly associated with typhoon or with its spiral rain band, and the type III associated with strong convection along the edge of the Subtropical High. Sixteen groups of experiments are conducted for three selected cases with different types and a local short-time rainstorm in Shanghai, using the WRF model with eight microphysics and two cumulus schemes. Results show that microphysics parameterization has large but different impacts on the location and intensity of regional heavy precipitation centers. The Ferrier (microphysics) -BMJ (cumulus) scheme and Thompson (microphysics) - KF (cumulus) scheme most realistically simulates the rain-bands with the center location and intensity for type I and II respectively. For type III, the Lin microphysics scheme shows advantages in regional persistent cases over YHR, while the WSM5 microphysics scheme is better in local short-term case, both with the BMJ cumulus scheme.

  3. Benefits of a 4th Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Lang, Stephen E.; Tao, Wei-Kuo; Chern, Jiun-Dar; Wu, Di; Li, Xiaowen

    2015-01-01

    Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions.

  4. Modelling ice microphysics of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Ahola, J.; Raatikainen, T.; Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Korhonen, H.

    2017-12-01

    The low-level Arctic mixed-phase clouds have a significant role for the Arctic climate due to their ability to absorb and reflect radiation. Since the climate change is amplified in polar areas, it is vital to apprehend the mixed-phase cloud processes. From a modelling point of view, this requires a high spatiotemporal resolution to capture turbulence and the relevant microphysical processes, which has shown to be difficult.In order to solve this problem about modelling mixed-phase clouds, a new ice microphysics description has been developed. The recently published large-eddy simulation cloud model UCLALES-SALSA offers a good base for a feasible solution (Tonttila et al., Geosci. Mod. Dev., 10:169-188, 2017). The model includes aerosol-cloud interactions described with a sectional SALSA module (Kokkola et al., Atmos. Chem. Phys., 8, 2469-2483, 2008), which represents a good compromise between detail and computational expense.Newly, the SALSA module has been upgraded to include also ice microphysics. The dynamical part of the model is based on well-known UCLA-LES model (Stevens et al., J. Atmos. Sci., 56, 3963-3984, 1999) which can be used to study cloud dynamics on a fine grid.The microphysical description of ice is sectional and the included processes consist of formation, growth and removal of ice and snow particles. Ice cloud particles are formed by parameterized homo- or heterogeneous nucleation. The growth mechanisms of ice particles and snow include coagulation and condensation of water vapor. Autoconversion from cloud ice particles to snow is parameterized. The removal of ice particles and snow happens by sedimentation and melting.The implementation of ice microphysics is tested by initializing the cloud simulation with atmospheric observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC). The results are compared to the model results shown in the paper of Ovchinnikov et al. (J. Adv. Model. Earth Syst., 6, 223-248, 2014) and they show a good

  5. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  6. Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Li, Zhanqing; Mok, Jungbin; Ahn, Myoung-Hwan; Kim, Byung-Gon; Choi, Yong-Sang; Jung, Chang-Hoon; Yoo, Hye Lim

    2017-12-01

    This study investigates how the increasing concentration of black carbon aerosols, which act as radiation absorbers as well as agents for the cloud-particle nucleation, affects stability, dynamics and microphysics in a multiple-cloud system using simulations. Simulations show that despite increases in stability due to increasing concentrations of black carbon aerosols, there are increases in the averaged updraft mass fluxes (over the whole simulation domain and period). This is because aerosol-enhanced evaporative cooling intensifies convergence near the surface. This increase in the intensity of convergence induces an increase in the frequency of updrafts with the low range of speeds, leading to the increase in the averaged updraft mass fluxes. The increase in the frequency of updrafts induces that in the number of condensation entities and this leads to more condensation and cloud liquid that acts to be a source of the accretion of cloud liquid by precipitation. Hence, eventually, there is more accretion that offsets suppressed autoconversion, which results in negligible changes in cumulative precipitation as aerosol concentrations increase. The increase in the frequency of updrafts with the low range of speeds alters the cloud-system organization (represented by cloud-depth spatiotemporal distributions and cloud-cell population) by supporting more low-depth clouds. The altered organization in turn alters precipitation spatiotemporal distributions by generating more weak precipitation events. Aerosol-induced reduction in solar radiation that reaches the surface induces more occurrences of small-value surface heat fluxes, which in turn supports the more low-depth clouds and weak precipitation together with the greater occurrence of low-speed updrafts.

  7. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant

  8. Initial results on computational performance of Intel Many Integrated Core (MIC) architecture: implementation of the Weather and Research Forecasting (WRF) Purdue-Lin microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    Purdue-Lin scheme is a relatively sophisticated microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme includes six classes of hydro meteors: water vapor, cloud water, raid, cloud ice, snow and graupel. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. In this paper, we accelerate the Purdue Lin scheme using Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi is a high performance coprocessor consists of up to 61 cores. The Xeon Phi is connected to a CPU via the PCI Express (PICe) bus. In this paper, we will discuss in detail the code optimization issues encountered while tuning the Purdue-Lin microphysics Fortran code for Xeon Phi. In particularly, getting a good performance required utilizing multiple cores, the wide vector operations and make efficient use of memory. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 4.2x. Furthermore, the same optimizations improved performance on Intel Xeon E5-2603 CPU by a factor of 1.2x compared to the original code.

  9. Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1

    DOE PAGES

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...

    2018-01-10

    In previous studies we see that accurate descriptions of the cloud droplet effective radius (Re) and the autoconversion process of cloud droplets to raindrops (Au) can effectively improve simulated clouds and surface precipitation, and reduce the uncertainty of aerosol indirect effects in global climate models (GCMs). In this paper, we implement cloud microphysical schemes including two-moment Au and R e considering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics atmospheric GCM (IAP AGCM 4.1), which is the atmospheric component of the Chinese Academy of Sciences-Earth System model (CAS-ESM 1.0). An analysismore » of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave (SWCF) and longwave cloud radiative forcings (LWCF) as compared to the standard scheme in IAP AGCM 4.1. The new schemes also effectively enhance the large-scale precipitation, especially over low latitudes, although the influences of total precipitation are insignificant for different schemes. Further studies show that similar results can be found with the Community Atmosphere Model 5.1 (CAM5.1).« less

  10. Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong

    In previous studies we see that accurate descriptions of the cloud droplet effective radius (Re) and the autoconversion process of cloud droplets to raindrops (Au) can effectively improve simulated clouds and surface precipitation, and reduce the uncertainty of aerosol indirect effects in global climate models (GCMs). In this paper, we implement cloud microphysical schemes including two-moment Au and R e considering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics atmospheric GCM (IAP AGCM 4.1), which is the atmospheric component of the Chinese Academy of Sciences-Earth System model (CAS-ESM 1.0). An analysismore » of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave (SWCF) and longwave cloud radiative forcings (LWCF) as compared to the standard scheme in IAP AGCM 4.1. The new schemes also effectively enhance the large-scale precipitation, especially over low latitudes, although the influences of total precipitation are insignificant for different schemes. Further studies show that similar results can be found with the Community Atmosphere Model 5.1 (CAM5.1).« less

  11. Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhang, Yang; Glotfelty, Tim; He, Ruoying; Bennartz, Ralf; Rausch, John; Sartelet, Karine

    2015-03-01

    Earth system models have been used for climate predictions in recent years due to their capabilities to include biogeochemical cycles, human impacts, as well as coupled and interactive representations of Earth system components (e.g., atmosphere, ocean, land, and sea ice). In this work, the Community Earth System Model (CESM) with advanced chemistry and aerosol treatments, referred to as CESM-NCSU, is applied for decadal (2001-2010) global climate predictions. A comprehensive evaluation is performed focusing on the atmospheric component—the Community Atmosphere Model version 5.1 (CAM5.1) by comparing simulation results with observations/reanalysis data and CESM ensemble simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5). The improved model can predict most meteorological and radiative variables relatively well with normalized mean biases (NMBs) of -14.1 to -9.7% and 0.7-10.8%, respectively, although temperature at 2 m (T2) is slightly underpredicted. Cloud variables such as cloud fraction (CF) and precipitating water vapor (PWV) are well predicted, with NMBs of -10.5 to 0.4%, whereas cloud condensation nuclei (CCN), cloud liquid water path (LWP), and cloud optical thickness (COT) are moderately-to-largely underpredicted, with NMBs of -82.2 to -31.2%, and cloud droplet number concentration (CDNC) is overpredictd by 26.7%. These biases indicate the limitations and uncertainties associated with cloud microphysics (e.g., resolved clouds and subgrid-scale cumulus clouds). Chemical concentrations over the continental U.S. (CONUS) (e.g., SO42-, Cl-, OC, and PM2.5) are reasonably well predicted with NMBs of -12.8 to -1.18%. Concentrations of SO2, SO42-, and PM10 are also reasonably well predicted over Europe with NMBs of -20.8 to -5.2%, so are predictions of SO2 concentrations over the East Asia with an NMB of -18.2%, and the tropospheric ozone residual (TOR) over the globe with an NMB of -3.5%. Most meteorological and radiative variables

  12. Microphysical processes affecting stratospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Toon, O. B.; Kiang, C. S.

    1977-01-01

    Physical processes which affect stratospheric aerosol particles include nucleation, condensation, evaporation, coagulation and sedimentation. Quantitative studies of these mechanisms to determine if they can account for some of the observed properties of the aerosol are carried out. It is shown that the altitude range in which nucleation of sulfuric acid-water solution droplets can take place corresponds to that region of the stratosphere where the aerosol is generally found. Since heterogeneous nucleation is the dominant nucleation mechanism, the stratospheric solution droplets are mainly formed on particles which have been mixed up from the troposphere or injected into the stratosphere by volcanoes or meteorites. Particle growth by heteromolecular condensation can account for the observed increase in mixing ratio of large particles in the stratosphere. Coagulation is important in reducing the number of particles smaller than 0.05 micron radius. Growth by condensation, applied to the mixed nature of the particles, shows that available information is consistent with ammonium sulfate being formed by liquid phase chemical reactions in the aerosol particles. The upper altitude limit of the aerosol layer is probably due to the evaporation of sulfuric acid aerosol particles, while the lower limit is due to mixing across the tropopause.

  13. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2007-09-30

    http://www.nrlmry.navy.mil/ flambe / LONG-TERM GOALS This project works toward the development and support of real time global prognostic aerosol...Burning Emissions ( FLAMBE ) project were transition to the Fleet Numerical Oceanographic Center (FNMOC) Monterey in FY07. Meteorological guidance...Hyer, E. J. and J. S. Reid (2006), Evaluating the impact of improvements to the FLAMBE smoke source model on forecasts of aerosol distribution

  14. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 2. Aerosol effects on warm convective clouds: Center of Gravity Versus Water Mass 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan

    2016-06-07

    In Part I of this work a 3D cloud tracking algorithm and phase-space of center of gravity altitude versus cloud liquid water mass (CvM space) were introduced and described in detail. We showed how new physical insight can be gained by following cloud trajectories in the CvM space. Here, this approach is used to investigate aerosol effects on cloud fields of warm cumuli. We show a clear effect of the aerosol loading on the shape and size of CvM clusters. We also find fundamental differences in the CvM space between simulations using bin versus bulk microphysical schemes, with the binmore » scheme precipitation expressing much higher sensitivity to changes in aerosol concentrations. Using the bin microphysical scheme, we find that the increase in cloud center of gravity altitude with increase in aerosol concentrations occurs for a wide range of cloud sizes. This is attributed to reduced sedimentation, increased buoyancy and vertical velocities, and increased environmental instability, all of which are tightly coupled to inhibition of precipitation processes and subsequent feedbacks of clouds on their environment. Many of the physical processes shown here are consistent with processes typically associated with cloud invigoration.« less

  15. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  16. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Gustafson, William I.; Fast, Jerome D.

    2011-12-02

    In the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model, we have coupled the Morrison double-moment microphysics scheme with interactive aerosols so that full two-way aerosol-cloud interactions are included in simulations. We have used this new WRF-Chem functionality in a study focused on assessing predictions of aerosols, marine stratocumulus clouds, and their interactions over the Southeast Pacific using measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals. This study also serves as a detailed analysis of our WRF-Chem simulations contributed to the VOCALS model Assessment (VOCA) project. The WRF-Chem 31-day (October 15-November 16,more » 2008) simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations assumed by the default in Morrison microphysics scheme with no interactive aerosols. The well-predicted aerosol properties such as number, mass composition, and optical depth lead to significant improvements in many features of the predicted stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness, and cloud macrostructure such as cloud depth and cloud base height. These improvements in addition to the aerosol direct and semi-direct effects, in turn, feed back to the prediction of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengths temperature and humidity gradients within capping inversion layer and lowers the MBL depth by 150 m from that of the MET simulation. Mean top-of-the-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated

  17. Probing aerosol indirect effect on deep convection using idealized cloud-resolving simulations with parameterized large-scale dynamics.

    NASA Astrophysics Data System (ADS)

    Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.

    2017-12-01

    A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.

  18. A 2D Microphysical Analysis of Aerosol Nucleation in the Polar Winter Stratosphere: Implications for H2SO4 Photolysis and Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Mills, Michael J.; Toon, Owen B.; Mills, Michael J.; Solomon, Susan

    1997-01-01

    Each spring a layer of small particles forms between 20 and 30 km in the polar regions. Results are presented from a 2D microphysical model of sulfate aerosol, which provide the first self-consistent explanation of the observed "CN layer." Photochemical conversion of sulfuric acid to SO2 in the upper stratosphere and mesosphere is necessary for this layer to form. Recent laboratory measurements of H2SO4 and SO3 photolysis rates are consistent with such conversion, though an additional source of SO2 may be required. Nucleation throughout the polar winter extends the top of the aerosol layer to higher altitudes, despite strong downward transport of ambient air. This finding may be important to heterogeneous chemistry at the top of the aerosol layer in polar winter and spring.

  19. The Mpi-M Aerosol Climatology (MAC)

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2014-12-01

    Monthly gridded global data-sets for aerosol optical properties (AOD, SSA and g) and for aerosol microphysical properties (CCN and IN) offer a (less complex) alternate path to include aerosol radiative effects and aerosol impacts on cloud-microphysics in global simulations. Based on merging AERONET sun-/sky-photometer data onto background maps provided by AeroCom phase 1 modeling output and AERONET sun-/the MPI-M Aerosol Climatology (MAC) version 1 was developed and applied in IPCC simulations with ECHAM and as ancillary data-set in satellite-based global data-sets. An updated version 2 of this climatology will be presented now applying central values from the more recent AeroCom phase 2 modeling and utilizing the better global coverage of trusted sun-photometer data - including statistics from the Marine Aerosol network (MAN). Applications include spatial distributions of estimates for aerosol direct and aerosol indirect radiative effects.

  20. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    NASA Technical Reports Server (NTRS)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  1. Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Da Silva, Nicolas; Mailler, Sylvain; Drobinski, Philippe

    2018-03-01

    Aerosols affect atmospheric dynamics through their direct and semi-direct effects as well as through their effects on cloud microphysics (indirect effects). The present study investigates the indirect effects of aerosols on summer precipitation in the Euro-Mediterranean region, which is located at the crossroads of air masses carrying both natural and anthropogenic aerosols. While it is difficult to disentangle the indirect effects of aerosols from the direct and semi-direct effects in reality, a numerical sensitivity experiment is carried out using the Weather Research and Forecasting (WRF) model, which allows us to isolate indirect effects, all other effects being equal. The Mediterranean hydrological cycle has often been studied using regional climate model (RCM) simulations with parameterized convection, which is the approach we adopt in the present study. For this purpose, the Thompson aerosol-aware microphysics scheme is used in a pair of simulations run at 50 km resolution with extremely high and low aerosol concentrations. An additional pair of simulations has been performed at a convection-permitting resolution (3.3 km) to examine these effects without the use of parameterized convection. While the reduced radiative flux due to the direct effects of the aerosols is already known to reduce precipitation amounts, there is still no general agreement on the sign and magnitude of the aerosol indirect forcing effect on precipitation, with various processes competing with each other. Although some processes tend to enhance precipitation amounts, some others tend to reduce them. In these simulations, increased aerosol loads lead to weaker precipitation in the parameterized (low-resolution) configuration. The fact that a similar result is obtained for a selected area in the convection-permitting (high-resolution) configuration allows for physical interpretations. By examining the key variables in the model outputs, we propose a causal chain that links the aerosol

  2. Aerosol Effects on Microphysical Processes, Storm Structure, and Cold Pool Strength in Simulated Supercell Thunderstorms from VORTEX-2 and VORTEX-SE

    NASA Astrophysics Data System (ADS)

    Guo, M.; Dawson, D. T., II; Baldwin, M. E.; Mansell, E. R.

    2017-12-01

    The cloud condensation nuclei (CCN) concentration has been found to strongly affect microphysical, dynamical and thermodynamical processes in supercells and other deep convective storms. Moreover, recent simulation studies have shown aerosols effects differ between higher- and lower-CAPE environments. Owing to the known sensitivity of severe storms to microphysical differences, studying the impact of aerosols supercell storms different environments is of clear societal importance. Tornadic environments in the southwastern U.S. are generally characterized by lower magnitudes CAPE and deeper tropospheric moisture than those in the Great Plains. These two regions were the focus of Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX)-2 and VORTEX-Southeast (SE) field campaigns, respectively. In our study, we simulate several cases from VORTEX-2 and -SE with the Advanced Regional Prediction System (ARPS) Model at 6 different CCN concentrations (100-3000 cm-3). We use NSSL 3-moment microphysics parameterization schemeto explicitly predict precipitation particle size distributions and microphysirocess rates. Overall, storms under the higher-CAPE VORTEX-2 environments are more sensitiveto the change of CCN than those under the lower-CAPE VORTEX-SE environments. Updraft volume decreases as CCN increases for the VORTEX-2 cases, whereas the opposite is true but with a much weaker trend for the VORTEX-SE cases. Moreover, the cold pool strength drops dramatically as CCN surpasses 1000 cm-3n the VORTEX-2 cases but barely changes for the VORTEX-SE cases. Through a microphysics budget analysis, we show the change of the importance of ice processes is key to the differing sensitivities. in the VORTEX-2 cases, deposition to ice nuclei, cloud drop freezing and rain drop freezing in the upper levels (5-11km) contribute more to latent heating since more rain and cloud drops are lifted above the freezing level due to stronger updrafts. For CCN concentration over 1000

  3. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    PubMed Central

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-01-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation. PMID:27911802

  4. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosol concentration;more » here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  5. Implementing a warm cloud microphysics parameterization for convective clouds in NCAR CESM

    NASA Astrophysics Data System (ADS)

    Shiu, C.; Chen, Y.; Chen, W.; Li, J. F.; Tsai, I.; Chen, J.; Hsu, H.

    2013-12-01

    Most of cumulus convection schemes use simple empirical approaches to convert cloud liquid mass to rain water or cloud ice to snow e.g. using a constant autoconversion rate and dividing cloud liquid mass into cloud water and ice as function of air temperature (e.g. Zhang and McFarlane scheme in NCAR CAM model). There are few studies trying to use cloud microphysical schemes to better simulate such precipitation processes in the convective schemes of global models (e.g. Lohmann [2008] and Song, Zhang, and Li [2012]). A two-moment warm cloud parameterization (i.e. Chen and Liu [2004]) is implemented into the deep convection scheme of CAM5.2 of CESM model for treatment of conversion of cloud liquid water to rain water. Short-term AMIP type global simulations are conducted to evaluate the possible impacts from the modification of this physical parameterization. Simulated results are further compared to observational results from AMWG diagnostic package and CloudSAT data sets. Several sensitivity tests regarding to changes in cloud top droplet concentration (here as a rough testing for aerosol indirect effects) and changes in detrained cloud size of convective cloud ice are also carried out to understand their possible impacts on the cloud and precipitation simulations.

  6. AN INITIAL ASSESSMENT OF THE CLIMATE IMPACT OF SECONDARY ORGANIC AEROSOLS

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Feichter, J.

    2009-12-01

    Atmospheric aerosols influence the Earth’s climate by absorbing and scattering solar radiation (the direct effect) and by altering the properties of clouds (indirect effects). Measurements have shown that a substantial fraction of the tropospheric aerosol burden consists of organic compounds. Hundreds of different organic species have been identified. While progress has been made in the understanding of the role of certain aerosol types in the climate system, that of organic aerosols remains poorly understood and the climate influences resulting from their presence poorly constrained. Organic aerosols are emitted directly from the surface (primary organic aerosols, POA) and are also formed in the atmosphere from gaseous precursors by oxidation reactions (secondary organic aerosols, SOA). Both biogenic and anthropogenic precursors have been identified. Biogenic emissions of aerosol precursors are known to be climate-dependent. Thus, a bi-directional dependency exists between the biosphere and the atmosphere, whereby aerosols of biogenic origin influence the climate system, which in turn affects biogenic aerosol precursor production. This study builds upon the global aerosol-climate model ECHAM5/HAM and adds techniques to model SOA as well as the necessary global emission inventories. Emission of biogenic precursors is calculated online. Formation of SOA is modeled by the well-known two-product model of SOA formation. SOA is subject to the same aerosol microphysics and sink processes as other modeled species (sulphate, black carbon, primary organic carbon, sea salt and dust). The aerosol radiative effects are calculated on a size resolved basis, and the aerosol scheme is coupled to the model cloud microphysics, permitting estimation of both direct and indirect aerosol effects. The following results will be discussed: (i) Estimation of the direct and indirect effects of biogenic and anthropogenic SOA, (ii) Estimation of the sign and magnitude of the biospheric

  7. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2012-12-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  8. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2013-03-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  9. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to

  10. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE PAGES

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; ...

    2016-11-28

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  11. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  12. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; hide

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  13. Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gettelman, A.; Liu, Xiaohong; Ghan, Steven J.

    2010-09-28

    A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a 4-class 2 moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions of the model. Simulations indicatemore » heterogeneous freezing and contact nucleation on dust are both potentially important over remote areas of the Arctic. Cloud forcing and hence climate is sensitive to different formulations of the ice microphysics. Arctic radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.« less

  14. Intercomparison of Pulsed Lidar Data with Flight Level CW Lidar Data and Modeled Backscatter from Measured Aerosol Microphysics Near Japan and Hawaii

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.

  15. A Multi-Moment Bulkwater Ice Microphysics Scheme with Consideration of the Adaptive Growth Habit and Apparent Density for Pristine Ice in the WRF Model

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Chen, J. P.; Dearden, C.

    2014-12-01

    The wide variety of ice crystal shapes and growth habits makes it a complicated issue in cloud models. This study developed the bulk ice adaptive habit parameterization based on the theoretical approach of Chen and Lamb (1994) and introduced a 6-class hydrometeors double-moment (mass and number) bulk microphysics scheme with gamma-type size distribution function. Both the proposed schemes have been implemented into the Weather Research and Forecasting model (WRF) model forming a new multi-moment bulk microphysics scheme. Two new moments of ice crystal shape and volume are included for tracking pristine ice's adaptive habit and apparent density. A closure technique is developed to solve the time evolution of the bulk moments. For the verification of the bulk ice habit parameterization, some parcel-type (zero-dimension) calculations were conducted and compared with binned numerical calculations. The results showed that: a flexible size spectrum is important in numerical accuracy, the ice shape can significantly enhance the diffusional growth, and it is important to consider the memory of growth habit (adaptive growth) under varying environmental conditions. Also, the derived results with the 3-moment method were much closer to the binned calculations. A field campaign of DIAMET was selected to simulate in the WRF model for real-case studies. The simulations were performed with the traditional spherical ice and the new adaptive shape schemes to evaluate the effect of crystal habits. Some main features of narrow rain band, as well as the embedded precipitation cells, in the cold front case were well captured by the model. Furthermore, the simulations produced a good agreement in the microphysics against the aircraft observations in ice particle number concentration, ice crystal aspect ratio, and deposition heating rate especially within the temperature region of ice secondary multiplication production.

  16. The 20-22 January 2007 Snow Events over Canada: Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Tao. W.K.; Shi, J.J.; Matsui, T.; Hao, A.; Lang, S.; Peters-Lidard, C.; Skofronick-Jackson, G.; Petersen, W.; Cifelli, R.; Rutledge, S.

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.

  17. Lidar stand-alone retrieval of atmospheric aerosol microphysical properties during SLOPE

    NASA Astrophysics Data System (ADS)

    Ortiz-Amezcua, Pablo; Samaras, Stefanos; Böckmann, Christine; Antonio Benavent-Oltra, Jose; Luis Guerrero-Rascado, Juan; Román, Roberto; Alados-Arboledas, Lucas

    2018-04-01

    Two cases from SLOPE campaign at Granada are analyzed in terms of particle microphysical properties using novel software developed at Potsdam University. Multiwavelength Raman lidar measurements of particle extinction and backscatter coefficients as well as linear particle depolarization ratios are used as input for the software. The result of the retrieval is a 2-dimensional particle volume distribution as a function of radius and aspect ratio, from which the particle microphysical properties are obtained.

  18. Three-moment representation of rain in a cloud microphysics model

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Fan, J.; Rasch, P. J.; Morrison, H.; Milbrandt, J.; Khain, A.; Shpund, J.

    2017-12-01

    Two-moment microphysics schemes have been commonly used for cloud simulation in models across different scales - from large-eddy simulations to global climate models. These schemes have yielded valuable insights into cloud and precipitation processes, however the size distributions are limited to two degrees of freedom, and thus the shape parameter is typically fixed or diagnosed. We have developed a three-moment approach for the rain category in order to provide an additional degree of freedom to the size distribution and thereby improve the cloud microphysics representations for more accurate weather and climate simulations. The approach is applied to the Predicted Particle Properties (P3) scheme. In addition to the rain number and mass mixing ratios predicted in the two-moment P3, we now include prognostic equations for the sixth moment of the size distribution (radar reflectivity), thus allowing the shape parameter to evolve freely. We employ the spectral bin microphysics (SBM) model to formulate the three-moment process rates in P3 for drop collisions and breakup. We first test the three-moment scheme with a maritime stratocumulus case from the VOCALS field campaign, and compare the model results with respect to cloud and precipitation properties from the new P3 scheme, original two-moment P3 scheme, SBM, and in-situ aircraft measurements. The improved simulation results by the new P3 scheme will be discussed and physically explained.

  19. High-Resolution NU-WRF Simulations of a Deep Convective-Precipitation System During MC3E. Part 1; Comparisons Between Goddard Microphysics Schemes and Observations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2015-01-01

    The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries

  20. GHI calculation sensitivity on microphysics, land- and cumulus parameterization in WRF over the Reunion Island

    NASA Astrophysics Data System (ADS)

    De Meij, A.; Vinuesa, J.-F.; Maupas, V.

    2018-05-01

    The sensitivity of different microphysics and dynamics schemes on calculated global horizontal irradiation (GHI) values in the Weather Research Forecasting (WRF) model is studied. 13 sensitivity simulations were performed for which the microphysics, cumulus parameterization schemes and land surface models were changed. Firstly we evaluated the model's performance by comparing calculated GHI values for the Base Case with observations for the Reunion Island for 2014. In general, the model calculates the largest bias during the austral summer. This indicates that the model is less accurate in timing the formation and dissipation of clouds during the summer, when higher water vapor quantities are present in the atmosphere than during the austral winter. Secondly, the model sensitivity on changing the microphysics, cumulus parameterization and land surface models on calculated GHI values is evaluated. The sensitivity simulations showed that changing the microphysics from the Thompson scheme (or Single-Moment 6-class scheme) to the Morrison double-moment scheme, the relative bias improves from 45% to 10%. The underlying reason for this improvement is that the Morrison double-moment scheme predicts the mass and number concentrations of five hydrometeors, which help to improve the calculation of the densities, size and lifetime of the cloud droplets. While the single moment schemes only predicts the mass for less hydrometeors. Changing the cumulus parameterization schemes and land surface models does not have a large impact on GHI calculations.

  1. Biogenic influence on cloud microphysics in the 'clean' oceanic atmosphere

    NASA Astrophysics Data System (ADS)

    Lana, A.; Simó, R.; Vallina, S. M.; Jurado, E.; Dachs, J.

    2009-12-01

    A 20 years old hypothesis postulates a feedback relationship between marine biota and climate through the emission of dimethylsulfide (DMS) as the principal natural source of Sulfate Secondary Aerosols (S-DMS) that are very efficient as cloud condensation nuclei (CCN). In recent years, the biological influence on cloud microphysics have been expanded to other potential biogenic cloud precursors: (i) volatile organic compounds produced by plankton and emitted to the atmosphere to form Secondary Organic Aerosols (SOA); (ii) biological particles and biogenic polymers, lifted with the seaspray by wind friction and bubble-bursting processes, that act as Primary Organic Aerosols (POA). Besides these biogenic aerosols, also seaspray-associated Sea Salt (SS) emissions, which are the dominant contribution to aerosol mass in the remote mixed boundary layer, also contribute to cloud condensation. All these aerosols affect cloud microphysics by providing new CCN, reducing the size of cloud droplets, and increasing cloud albedo. We have compared the seasonalities of the parameterized source functions of these natural cloud precursors with that of the satellite-derived cloud droplet effective radius (CLEFRA) over large regions of the ocean. Regions where big loads of continental aerosols (including anthropogenic -industrial, urban, and biomass burning) dominate during a significant part of the year were identified by use of remote sensing aerosol optical properties and excluded from our analysis. Our results show that the seasonality of cloud droplet effective radius matches those of S-DMS and SOA in the clean marine atmosphere, whereas SS and chlorophyll-associated POA on their own do not seem to play a major role in driving cloud droplet size.

  2. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low

  3. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case

  4. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.

    PubMed

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J; Morrison, Hugh; Solomon, Amy B

    2014-12-28

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan R.; Reid, Jonathan P.

    2017-12-01

    Aerosols are found in a wide diversity of contexts and applications, including the atmosphere, pharmaceutics, and industry. Aerosols are dispersions of particles in a gas, and the coupling of the two phases results in highly dynamic systems where chemical and physical properties like size, composition, phase, and refractive index change rapidly in response to environmental perturbations. Aerosol particles span a wide range of sizes from 1 nm to tens of micrometres or from small molecular clusters that may more closely resemble gas phase molecules to large particles that can have similar qualities to bulk materials. However, even large particles with finite volumes exhibit distinct properties from the bulk condensed phase, due in part to their higher surface-to-volume ratio and their ability to easily access supersaturated solute states inaccessible in the bulk. Aerosols represent a major challenge for study because of the facile coupling between the particle and gas, the small amounts of sample available for analysis, and the sheer breadth of operative processes. Time scales of aerosol processes can be as short as nanoseconds or as long as years. Despite their very different impacts and applications, fundamental chemical physics processes serve as a common theme that underpins our understanding of aerosols. This perspective article discusses challenges in the study of aerosols and highlights recent chemical physics advancements that have enabled improved understanding of these complex systems.

  6. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  7. A modeling study of the effects of aerosols on clouds and precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Xie, Xiaoning; Yin, Zhi-Yong; Liu, Changhai; Gettelman, Andrew

    2011-12-01

    The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison-Gettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year 2000) and the other the pre-industrial conditions (year 1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol's second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol's radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.

  8. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  9. Microphysics of Clouds with the Relaxed Arakawa-Schubert Scheme (McRAS). Part I: Design and Evaluation with GATE Phase III Data.

    NASA Astrophysics Data System (ADS)

    Sud, Y. C.; Walker, G. K.

    1999-09-01

    A prognostic cloud scheme named McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme) has been designed and developed with the aim of improving moist processes, microphysics of clouds, and cloud-radiation interactions in GCMs. McRAS distinguishes three types of clouds: convective, stratiform, and boundary layer. The convective clouds transform and merge into stratiform clouds on an hourly timescale, while the boundary layer clouds merge into the stratiform clouds instantly. The cloud condensate converts into precipitation following the autoconversion equations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, as well as diffuse both horizontally and vertically with a fully interactive cloud microphysics throughout the life cycle of the cloud, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry.An evaluation of McRAS in a single-column model (SCM) with the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) Phase III data has shown that, together with the rest of the model physics, McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. The time history and time mean in-cloud water and ice distribution, fractional cloudiness, cloud optical thickness, origin of precipitation in the convective anvils and towers, and the convective updraft and downdraft velocities and mass fluxes all simulate a realistic behavior. Some of these diagnostics are not verifiable with data on hand. These SCM sensitivity tests show that (i) without clouds the simulated GATE-SCM atmosphere is cooler than observed; (ii) the model's convective scheme, RAS, is an important subparameterization of McRAS; and (iii) advection of cloud water substance is helpful in simulating better cloud

  10. Influence of bulk microphysics schemes upon Weather Research and Forecasting (WRF) version 3.6.1 nor'easter simulations

    NASA Astrophysics Data System (ADS)

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.

    2017-03-01

    This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  11. Influence of Bulk Microphysics Schemes upon Weather Research and Forecasting (WRF) Version 3.6.1 Nor'easter Simulations.

    PubMed

    Nicholls, Stephen D; Decker, Steven G; Tao, Wei-Kuo; Lang, Stephen E; Shi, Jainn J; Mohr, Karen I

    2017-01-01

    This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  12. Influence of Bulk Microphysics Schemes upon Weather Research and Forecasting (WRF) Version 3.6.1 Nor'easter Simulations

    PubMed Central

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.

    2018-01-01

    This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217–0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions. PMID:29697705

  13. Influence of Bulk Microphysics Schemes upon Weather Research and Forecasting (WRF) Version 3.6.1 Nor'easter Simulations

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen Irene

    2017-01-01

    This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217 to 0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  14. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE PAGES

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm −3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  15. High-Resolution NU-WRF Simulations of a Deep Convective-Precipitation System During MC3E: Part I: Comparisons Between Goddard Microphysics Schemes and Observations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2016-01-01

    The Goddard microphysics was recently improved by adding a fourth ice class (frozen dropshail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of icesnow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.

  16. Sensitivity of a Cloud-Resolving Model to the Bulk and Explicit Bin Microphysical Schemes. Part 1; Validations with a PRE-STORM Case

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Wen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2004-01-01

    A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-11, 1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. The leading convective zone, the trailing stratiform region, the horizontal wind flow patterns, pressure perturbation associated with the storm dynamics, and the cool pool in front of the system all agree well with the observations. Both the observations and the bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that, the bulk and bin simulations have distinct differences, most notably in the stratiform region. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region are remnants of the previous stronger convections at the leading edge of the system. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Preliminary examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in convective zone simulated in the bulk model. Further quantitative analysis and sensitivity tests for this case using both the bulk and bin models will be presented in a companion paper.

  17. Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Weisenstein, D. K.; Keith, D. W.

    2018-01-01

    We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.

  18. Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Hong, Song-You

    2012-11-01

    This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed auto-conversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5 % decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.

  19. Interactive Nature of Climate Change and Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Nazarenko, L.; Rind, D.; Tsigaridis, K.; Del Genio, A. D.; Kelley, M.; Tausnev, N.

    2017-01-01

    The effect of changing cloud cover on climate, based on cloud-aerosol interactions, is one of the major unknowns for climate forcing and climate sensitivity. It has two components: (1) the impact of aerosols on clouds and climate due to in-situ interactions (i.e., rapid response); and (2) the effect of aerosols on the cloud feedback that arises as climate changes - climate feedback response. We examine both effects utilizing the NASA GISS ModelE2 to assess the indirect effect, with both mass-based and microphysical aerosol schemes, in transient twentieth-century simulations. We separate the rapid response and climate feedback effects by making simulations with a coupled version of the model as well as one with no sea surface temperature or sea ice response (atmosphere-only simulations). We show that the indirect effect of aerosols on temperature is altered by the climate feedbacks following the ocean response, and this change differs depending upon which aerosol model is employed. Overall the effective radiative forcing (ERF) for the direct effect of aerosol-radiation interaction (ERFari) ranges between -0.2 and -0.6 W/sq m for atmosphere-only experiments while the total effective radiative forcing, including the indirect effect (ERFari+aci) varies between about -0.4 and -1.1 W/sq m for atmosphere-only simulations; both ranges are in agreement with those given in IPCC (2013). Including the full feedback of the climate system lowers these ranges to -0.2 to -0.5 W/sq m for ERFari, and -0.3 to -0.74 W/sq m for ERFari+aci. With both aerosol schemes, the climate change feedbacks have reduced the global average indirect radiative effect of atmospheric aerosols relative to what the emission changes would have produced, at least partially due to its effect on tropical upper tropospheric clouds.

  20. Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations: NE Pacific Aerosol-Cloud Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Painemal, David; Chiu, J. -Y. Christine; Minnis, Patrick

    Ship measurements collected over the northeast Pacific along transects between the port of Los Angeles (33.7°N, 118.2°W) and Honolulu (21.3°N, 157.8°W) during May to August 2013 were utilized to investigate the covariability between marine low cloud microphysical and aerosol properties. Ship-based retrievals of cloud optical depth (τ) from a Sun photometer and liquid water path (LWP) from a microwave radiometer were combined to derive cloud droplet number concentration Nd and compute a cloud-aerosol interaction (ACI) metric defined as ACICCN = ∂ ln(Nd)/∂ ln(CCN), with CCN denoting the cloud condensation nuclei concentration measured at 0.4% (CCN0.4) and 0.3% (CCN0.3) supersaturation. Analysismore » of CCN0.4, accumulation mode aerosol concentration (Na), and extinction coefficient (σext) indicates that Na and σext can be used as CCN0.4 proxies for estimating ACI. ACICCN derived from 10 min averaged Nd and CCN0.4 and CCN0.3, and CCN0.4 regressions using Na and σext, produce high ACICCN: near 1.0, that is, a fractional change in aerosols is associated with an equivalent fractional change in Nd. ACICCN computed in deep boundary layers was small (ACICCN = 0.60), indicating that surface aerosol measurements inadequately represent the aerosol variability below clouds. Satellite cloud retrievals from MODerate-resolution Imaging Spectroradiometer and GOES-15 data were compared against ship-based retrievals and further analyzed to compute a satellite-based ACICCN. Satellite data correlated well with their ship-based counterparts with linear correlation coefficients equal to or greater than 0.78. Combined satellite Nd and ship-based CCN0.4 and Na yielded a maximum ACICCN = 0.88–0.92, a value slightly less than the ship-based ACICCN, but still consistent with aircraft-based studies in the eastern Pacific.« less

  1. Evidence of Mineral Dust Altering Cloud Microphysics and Precipitation

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Li, Rui; Lin, Bing; Joseph, Everette; Wang, Shuyu; Hu, Yongxiang; Morris, Vernon; Chang, F.

    2008-01-01

    Multi-platform and multi-sensor observations are employed to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective systems. It is clearly evident that for a given convection strength,small hydrometeors were more prevalent in the stratiform rain regions with dust than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust sector, particularly at altitudes where heterogeneous nucleation process of mineral dust prevails, further supports the observed changes of precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the precipitation size spectrum from heavy precipitation to light precipitation and ultimately suppressing precipitation.

  2. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    ]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  3. A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment

    NASA Astrophysics Data System (ADS)

    Cui, Zhiqiang; Carslaw, Kenneth S.; Yin, Yan; Davies, Stewart

    2006-03-01

    The effects of aerosols on a deep convective cloud in a midlatitude continental environment are studied using an axisymmetric cloud model with a sectional treatment of aerosol and hydrometeor microphysical processes. Simulations are conducted using observations from the Cooperative Convective Precipitation Experiments (CCOPE). The isolated cloud occurred in an environment with low wind shear and with relatively dry air in the midtroposphere and upper troposphere. By varying the concentration of aerosol particles in the accumulation mode within realistic limits for a continental environment, the simulated cloud exhibited different properties. The overall impact as the aerosol concentration increased is that (1) the cloud development was inhibited; (2) the precipitation was suppressed; (3) the maximum values of liquid water content decreased, but the maximum values of droplet number concentration increased before the dissipating stage; (4) a clear tendency was found for ice crystals to be larger and less numerous in the anvil cloud; and (5) there was a significant reduction of the inflow in the lower 2 km of the atmosphere. In the relatively dry environment in the midtroposphere, the latent heat changes associated with the Wegener-Bergeron-Findeisen mechanism played an important role in the upper part of the cloud at altitudes below the homogeneous freezing level. In particular, immersion freezing and latent heat release were much more rapid in the base simulation than in the increased aerosol simulation. Less latent heat release and insufficient inflow together impeded the development of the cloud with the higher aerosol loading. Our simulations suggest that continental clouds existing below the homogeneous freezing level could show an opposite response of cloud top height and anvil crystal concentrations to changes in aerosol to what has previously been reported for clouds ascending to higher levels.

  4. Comparing Aircraft Observations of Snowfall to Forecasts Using Single or Two Moment Bulk Water Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.

  5. Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction

    NASA Astrophysics Data System (ADS)

    Fukushima, H.; Toratani, M.

    1997-07-01

    The paper first exhibits the influence of the Asian dust aerosol (KOSA) on a coastal zone color scanner (CZCS) image which records erroneously low or negative satellite-derived water-leaving radiance especially in a shorter wavelength region. This suggests the presence of spectrally dependent absorption which was disregarded in the past atmospheric correction algorithms. On the basis of the analysis of the scene, a semiempirical optical model of the Asian dust aerosol that relates aerosol single scattering albedo (ωA) to the spectral ratio of aerosol optical thickness between 550 nm and 670 nm is developed. Then, as a modification to a standard CZCS atmospheric correction algorithm (NASA standard algorithm), a scheme which estimates pixel-wise aerosol optical thickness, and in turn ωA, is proposed. The assumption of constant normalized water-leaving radiance at 550 nm is adopted together with a model of aerosol scattering phase function. The scheme is combined to the standard algorithm, performing atmospheric correction just the same as the standard version with a fixed Angstrom coefficient except in the case where the presence of Asian dust aerosol is detected by the lowered satellite-derived Angstrom exponent. Some of the model parameter values are determined so that the scheme does not produce any spatial discontinuity with the standard scheme. The algorithm was tested against the Japanese Asian dust CZCS scene with parameter values of the spectral dependency of ωA, first statistically determined and second optimized for selected pixels. Analysis suggests that the parameter values depend on the assumed Angstrom coefficient for standard algorithm, at the same time defining the spatial extent of the area to apply the Asian dust scheme. The algorithm was also tested for a Saharan dust scene, showing the relevance of the scheme but with different parameter setting. Finally, the algorithm was applied to a data set of 25 CZCS scenes to produce a monthly composite

  6. Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations

    NASA Astrophysics Data System (ADS)

    Ortiz-Amezcua, Pablo; Guerrero-Rascado, Juan Luis; José Granados-Muñoz, María; Benavent-Oltra, José Antonio; Böckmann, Christine; Samaras, Stefanos; Stachlewska, Iwona S.; Janicka, Łucja; Baars, Holger; Bohlmann, Stephanie; Alados-Arboledas, Lucas

    2017-05-01

    Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30 % of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532 / LR355) around 2, α-related ångström exponents of less than 1, effective radii of 0.3 µm and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.

  7. Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Lurton, Thibaut; Jégou, Fabrice; Berthet, Gwenaël; Renard, Jean-Baptiste; Clarisse, Lieven; Schmidt, Anja; Brogniez, Colette; Roberts, Tjarda J.

    2018-03-01

    Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid aerosol particles that can enhance the stratospheric aerosol optical depth (SAOD). Besides large-magnitude eruptions, moderate-magnitude eruptions such as Kasatochi in 2008 and Sarychev Peak in 2009 can have a significant impact on stratospheric aerosol and hence climate. However, uncertainties remain in quantifying the atmospheric and climatic impacts of the 2009 Sarychev Peak eruption due to limitations in previous model representations of volcanic aerosol microphysics and particle size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, the 2009 Sarychev Peak eruption co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. We present a study of the stratospheric SO2-particle-HCl processing and impacts following Sarychev Peak eruption, using the Community Earth System Model version 1.0 (CESM1) Whole Atmosphere Community Climate Model (WACCM) - Community Aerosol and Radiation Model for Atmospheres (CARMA) sectional aerosol microphysics model (with no a priori assumption on particle size). The Sarychev Peak 2009 eruption injected 0.9 Tg of SO2 into the upper troposphere and lower stratosphere (UTLS), enhancing the aerosol load in the Northern Hemisphere. The post-eruption evolution of the volcanic SO2 in space and time are well reproduced by the model when compared to Infrared Atmospheric Sounding Interferometer (IASI) satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We therefore highlight the need to account for volcanic halogen chemistry when simulating the impact of eruptions such as Sarychev on

  8. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2014-01-01

    It is hypothesized microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixed phased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterizations. The WRF realistically simulated the warm frontal snowband at relatively short lead times (1014 h). The snowband structire is sensitive to the microphysical parameterization used in WRF. The Goddard and SBUYLin most realistically predicted the band structure, but overpredicted snow content. The double moment Morrison scheme best produced the slope of the snow distribution, but it underpredicted the intercept. All schemes and the radar derived (which used dry snow ZR) underpredicted the surface precipitation amount, likely because there was more cloud water than expected. The Morrison had the most cloud water and the best precipitation prediction of all schemes.

  9. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  10. SPEX: a highly accurate spectropolarimeter for atmospheric aerosol characterization

    NASA Astrophysics Data System (ADS)

    Rietjens, J. H. H.; Smit, J. M.; di Noia, A.; Hasekamp, O. P.; van Harten, G.; Snik, F.; Keller, C. U.

    2017-11-01

    Global characterization of atmospheric aerosol in terms of the microphysical properties of the particles is essential for understanding the role aerosols in Earth climate [1]. For more accurate predictions of future climate the uncertainties of the net radiative forcing of aerosols in the Earth's atmosphere must be reduced [2]. Essential parameters that are needed as input in climate models are not only the aerosol optical thickness (AOT), but also particle specific properties such as the aerosol mean size, the single scattering albedo (SSA) and the complex refractive index. The latter can be used to discriminate between absorbing and non-absorbing aerosol types, and between natural and anthropogenic aerosol. Classification of aerosol types is also very important for air-quality and health-related issues [3]. Remote sensing from an orbiting satellite platform is the only way to globally characterize atmospheric aerosol at a relevant timescale of 1 day [4]. One of the few methods that can be employed for measuring the microphysical properties of aerosols is to observe both radiance and degree of linear polarization of sunlight scattered in the Earth atmosphere under different viewing directions [5][6][7]. The requirement on the absolute accuracy of the degree of linear polarization PL is very stringent: the absolute error in PL must be smaller then 0.001+0.005.PL in order to retrieve aerosol parameters with sufficient accuracy to advance climate modelling and to enable discrimination of aerosol types based on their refractive index for air-quality studies [6][7]. In this paper we present the SPEX instrument, which is a multi-angle spectropolarimeter that can comply with the polarimetric accuracy needed for characterizing aerosols in the Earth's atmosphere. We describe the implementation of spectral polarization modulation in a prototype instrument of SPEX and show results of ground based measurements from which aerosol microphysical properties are retrieved.

  11. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-05-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment modal aerosol scheme rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulphate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulphuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulphate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  12. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  13. Improving the representation of mixed-phase cloud microphysics in the ICON-LEM

    NASA Astrophysics Data System (ADS)

    Tonttila, Juha; Hoose, Corinna; Milbrandt, Jason; Morrison, Hugh

    2017-04-01

    The representation of ice-phase cloud microphysics in ICON-LEM (the Large-Eddy Model configuration of the ICOsahedral Nonhydrostatic model) is improved by implementing the recently published Predicted Particle Properties (P3) scheme into the model. In the typical two-moment microphysical schemes, such as that previously used in ICON-LEM, ice-phase particles must be partitioned into several prescribed categories. It is inherently difficult to distinguish between categories such as graupel and hail based on just the particle size, yet this partitioning may significantly affect the simulation of convective clouds. The P3 scheme avoids the problems associated with predefined ice-phase categories that are inherent in traditional microphysics schemes by introducing the concept of "free" ice-phase categories, whereby the prognostic variables enable the prediction of a wide range of smoothly varying physical properties and hence particle types. To our knowledge, this is the first application of the P3 scheme in a large-eddy model with horizontal grid spacings on the order of 100 m. We will present results from ICON-LEM simulations with the new P3 scheme comprising idealized stratiform and convective cloud cases. We will also present real-case limited-area simulations focusing on the HOPE (HD(CP)2 Observational Prototype Experiment) intensive observation campaign. The results are compared with a matching set of simulations employing the two-moment scheme and the performance of the model is also evaluated against observations in the context of the HOPE simulations, comprising data from ground based remote sensing instruments.

  14. Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations

    NASA Astrophysics Data System (ADS)

    Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.

    2018-03-01

    Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further

  15. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.

    The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  16. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  17. Lagrangian condensation microphysics with Twomey CCN activation

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna

    2018-01-01

    We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation

  18. Constraining Aerosol-Cloud-Precipitation Interactions of Orographic Mixed-Phase Clouds with Trajectory Budgets

    NASA Astrophysics Data System (ADS)

    Glassmeier, F.; Lohmann, U.

    2016-12-01

    Orographic precipitation is prone to strong aerosol-cloud-precipitation interactions because the time for precipitation development is limited to the ascending section of mountain flow. At the same time, cloud microphysical development is constraint by the strong dynamical forcing of the orography. In this contribution, we discuss how changes in the amount and composition of droplet- and ice-forming aerosols influence precipitation in idealized simulations of stratiform orographic mixed-phase clouds. We find that aerosol perturbations trigger compensating responses of different precipitation formation pathways. The effect of aerosols is thus buffered. We explain this buffering by the requirement to fulfill aerosol-independent dynamical constraints. For our simulations, we use the regional atmospheric model COSMO-ART-M7 in a 2D setup with a bell-shaped mountain. The model is coupled to a 2-moment warm and cold cloud microphysics scheme. Activation and freezing rates are parameterized based on prescribed aerosol fields that are varied in number, size and composition. Our analysis is based on the budget of droplet water along trajectories of cloud parcels. The budget equates condensation as source term with precipitation formation from autoconversion, accretion, riming and the Wegener-Bergeron-Findeisen process as sink terms. Condensation, and consequently precipitation formation, is determined by dynamics and largely independent of the aerosol conditions. An aerosol-induced change in the number of droplets or crystals perturbs the droplet budget by affecting precipitation formation processes. We observe that this perturbation triggers adjustments in liquid and ice water content that re-equilibrate the budget. As an example, an increase in crystal number triggers a stronger glaciation of the cloud and redistributes precipitation formation from collision-coalescence to riming and from riming to vapor deposition. We theoretically confirm the dominant effect of water

  19. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2003-09-30

    656-4769 email: reidj@nrlmry.navy.mil Award Number: N0001403WX20570 http://www.nrlmry.navy.mil/aerosol/ http://www.nrlmry.navy.mil/ flambe ...Fire Locating and Modeling of Burning Emissions ( FLAMBE ) project, which also provides NAAPS with a real-time biomass burning source function. In...Locating and Modeling of Burning Emissions ( FLAMBE ) project are currently being utilized by internet community, Air quality/human health research

  20. Simulation of the Upper Clouds and Hazes of Venus Using a Microphysical Cloud Model

    NASA Astrophysics Data System (ADS)

    McGouldrick, K.

    2012-12-01

    Several different microphysical and chemical models of the clouds of Venus have been developed in attempts to reproduce the in situ observations of the Venus clouds made by Pioneer Venus, Venera, and Vega descent probes (Turco et al., 1983 (Icarus 53:18-25), James et al, 1997 (Icarus 129:147-171), Imamura and Hashimoto, 2001 (J. Atm. Sci. 58:3597-3612), and McGouldrick and Toon, 2007 (Icarus 191:1-24)). The model of McGouldrick and Toon has successfully reproduced observations within the condensational middle and lower cloud decks of Venus (between about 48 and 57 km altitude, experiencing conditions similar to Earth's troposphere) and it now being extended to also simulate the microphysics occurring in the upper cloud deck (between altitudes of about 57 km and 70 km, experiencing conditions similar to Earth's stratosphere). In the upper clouds, aerosols composed of a solution of sulfuric acid in water are generated from the reservoir of available water vapor and sulfuric acid vapor that is photochemically produced. The manner of particle creation (e.g., activation of cloud condensation nuclei, or homogeneous or heterogeneous nucleation) is still incompletely understood, and the atmospheric environment has been measured to be not inconsistent with frozen aerosol particles (either sulfuric acid monohydrate or water ice). The material phase, viscosity, and surface tension of the aerosols (which are strongly dependent up on the local temperature and water vapor concentration) can affect the coagulation efficiencies of the aerosol, leading to variations in the size distributions, and other microphysical and radiative properties. Here, I present recent work exploring the effects of nucleation rates and coalescence efficiencies on the simulated Venus upper clouds.

  1. Improving microphysics in a convective parameterization: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Labbouz, Laurent; Heikenfeld, Max; Stier, Philip; Morrison, Hugh; Milbrandt, Jason; Protat, Alain; Kipling, Zak

    2017-04-01

    The convective cloud field model (CCFM) is a convective parameterization implemented in the climate model ECHAM6.1-HAM2.2. It represents a population of clouds within each ECHAM-HAM model column, simulating up to 10 different convective cloud types with individual radius, vertical velocities and microphysical properties. Comparisons between CCFM and radar data at Darwin, Australia, show that in order to reproduce both the convective cloud top height distribution and the vertical velocity profile, the effect of aerodynamic drag on the rising parcel has to be considered, along with a reduced entrainment parameter. A new double-moment microphysics (the Predicted Particle Properties scheme, P3) has been implemented in the latest version of CCFM and is compared to the standard single-moment microphysics and the radar retrievals at Darwin. The microphysical process rates (autoconversion, accretion, deposition, freezing, …) and their response to changes in CDNC are investigated and compared to high resolution CRM WRF simulations over the Amazon region. The results shed light on the possibilities and limitations of microphysics improvements in the framework of CCFM and in convective parameterizations in general.

  2. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  3. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  4. An imager-based multispectral retrieval of above-cloud absorbing aerosol optical depth and the optical and microphysical properties of underlying marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Platnick, S. E.; Zhang, Z.

    2014-12-01

    Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into imager-based cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced for cloud optical thickness retrievals, which are typically derived from the visible or near-IR wavelength channels (effective particle size retrievals are derived from short and mid-wave IR channels that are less affected by aerosol absorption). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple spectral channels in the visible and near- and shortwave-IR. The technique has been applied to MODIS, and retrieval results and statistics, as well as comparisons with other A-Train sensors, are shown.

  5. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    NASA Astrophysics Data System (ADS)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  6. Use of Field Observations for Understanding Controls of Polar Low Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    McFarquhar, G. M.

    2016-12-01

    Although arctic clouds have a net warming effect on the Arctic surface, their radiative effect is sensitive to cloud microphysical properties, namely the sizes, phases and shapes of cloud particles. Such cloud properties are influenced by the numbers, compositions and sizes of aerosols, meteorological conditions, and surface characteristics. Uncertainty in representing cloud-aerosol interactions in varying environmental conditions and associated feedbacks is a major cause in our lack of understanding of why the Arctic is warming faster than the rest of the Earth. Here, the understanding of cloud-aerosol interactions gained from past arctic field experiments is reviewed. Such studies have characterized the structure of single-layer mixed phase clouds that are ubiquitous in the Arctic and investigated different aerosol indirect effect mechanisms acting in these clouds. But, it is still unknown what controls the amount of supercooled water in arctic clouds (especially in complex frequently occurring multi-layer clouds), how probability distributions of cloud properties and radiative heating and their subsequent impact on temperature profiles and underlying snow and sea ice cover vary with aerosol loading and composition in different surface and meteorological conditions, how the composition and concentration of arctic aerosols and cloud microphysical properties vary annually and interannually, and how cloud-aerosol-radiative interactions can be better represented in models with varying temporal and spatial scales. These needs can be addressed in two ways. First, there is a need for comprehensive and routine aircraft, UAV and tethered balloon measurements in the presence of ground, air or space-based remote sensors over a variety of surface and meteorological conditions. Second, planned observational campaigns (the Measurements of Aerosols Radiation and Clouds over the Southern Oceans MARCUS and the Southern Oceans Cloud Radiation Transport Experimental Study SOCRATES

  7. New pathway of stratocumulus to cumulus transition via aerosol-cloud-precipitation interaction

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Feingold, G.; Kazil, J.

    2017-12-01

    The stratocumulus to cumulus transition (SCT) is typically considered to be a slow, multi-day process, caused primarily by dry air entrainment associated with overshooting cumulus rising under stratocumulus, with minor influence of precipitation. In this presentation, we show rapid SCT induced by a strong precipitation-induced modulation with Lagrangian SCT large eddy simulations. A large eddy model is coupled with a two-moment bulk microphysics scheme that predicts aerosol and droplet number concentrations. Moderate aerosol concentrations (100-250 cm-3) produce little to no drizzle from the stratocumulus deck. Large amounts of rain eventually form and wash out stratocumulus and much of the aerosol, and a cumulus state appears for approximately 10 hours. Initiation of strong rain formation is identified in penetrative cumulus clouds which are much deeper than stratocumulus, and they are able to condense large amounts of water. We show that prediction of cloud droplet number is necessary for this fast SCT since it is a result of a positive feedback of collision-coalescence induced aerosol depletion enhancing drizzle formation. Simulations with fixed droplet concentrations that bracket the time varying aerosol/drop concentrations are therefore not representative of the role of drizzle in the SCT.

  8. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  9. Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Painemal, David; Chiu, J. -Y. Christine; Minnis, Patrick

    We utilized ship measurements collected over the northeast Pacific along transects between the port of Los Angeles (33.7°N, 118.2°W) and Honolulu (21.3°N, 157.8°W) during May to August 2013 in order to investigate the covariability between marine low cloud microphysical and aerosol properties. Ship-based retrievals of cloud optical depth (τ) from a Sun photometer and liquid water path (LWP) from a microwave radiometer were combined to derive cloud droplet number concentration N d and compute a cloud-aerosol interaction (ACI) metric defined as ACI CCN=∂ ln(N d)/∂ ln(CCN), with CCN denoting the cloud condensation nuclei concentration measured at 0.4% (CCN 0.4) andmore » 0.3% (CCN 0.3) supersaturation. Analysis of CCN 0.4, accumulation mode aerosol concentration (N a), and extinction coefficient (σ ext) indicates that N a and σ ext can be used as CCN 0.4 proxies for estimating ACI. ACI CCN derived from 10 min averaged N d and CCN 0.4 and CCN 0.3, and CCN 0.4 regressions using N a and σ ext, produce high ACI CCN: near 1.0, that is, a fractional change in aerosols is associated with an equivalent fractional change in Nd. ACI CCN computed in deep boundary layers was small (ACI CCN=0.60), indicating that surface aerosol measurements inadequately represent the aerosol variability below clouds. Satellite cloud retrievals from MODerate-resolution Imaging Spectroradiometer and GOES-15 data were compared against ship-based retrievals and further analyzed to compute a satellite-based ACI CCN. We found that the satellite data correlated well with their ship-based counterparts with linear correlation coefficients equal to or greater than 0.78. Combined satellite Nd and ship-based CCN 0.4 and Na yielded a maximum ACI CCN=0.88–0.92, a value slightly less than the ship-based ACI CCN, but still consistent with aircraft-based studies in the eastern Pacific.« less

  10. Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations

    DOE PAGES

    Painemal, David; Chiu, J. -Y. Christine; Minnis, Patrick; ...

    2017-02-27

    We utilized ship measurements collected over the northeast Pacific along transects between the port of Los Angeles (33.7°N, 118.2°W) and Honolulu (21.3°N, 157.8°W) during May to August 2013 in order to investigate the covariability between marine low cloud microphysical and aerosol properties. Ship-based retrievals of cloud optical depth (τ) from a Sun photometer and liquid water path (LWP) from a microwave radiometer were combined to derive cloud droplet number concentration N d and compute a cloud-aerosol interaction (ACI) metric defined as ACI CCN=∂ ln(N d)/∂ ln(CCN), with CCN denoting the cloud condensation nuclei concentration measured at 0.4% (CCN 0.4) andmore » 0.3% (CCN 0.3) supersaturation. Analysis of CCN 0.4, accumulation mode aerosol concentration (N a), and extinction coefficient (σ ext) indicates that N a and σ ext can be used as CCN 0.4 proxies for estimating ACI. ACI CCN derived from 10 min averaged N d and CCN 0.4 and CCN 0.3, and CCN 0.4 regressions using N a and σ ext, produce high ACI CCN: near 1.0, that is, a fractional change in aerosols is associated with an equivalent fractional change in Nd. ACI CCN computed in deep boundary layers was small (ACI CCN=0.60), indicating that surface aerosol measurements inadequately represent the aerosol variability below clouds. Satellite cloud retrievals from MODerate-resolution Imaging Spectroradiometer and GOES-15 data were compared against ship-based retrievals and further analyzed to compute a satellite-based ACI CCN. We found that the satellite data correlated well with their ship-based counterparts with linear correlation coefficients equal to or greater than 0.78. Combined satellite Nd and ship-based CCN 0.4 and Na yielded a maximum ACI CCN=0.88–0.92, a value slightly less than the ship-based ACI CCN, but still consistent with aircraft-based studies in the eastern Pacific.« less

  11. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  12. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  13. Aerosol-type retrieval and uncertainty quantification from OMI data

    NASA Astrophysics Data System (ADS)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model

  14. Effects of Aerosol Pollution on Clouds over Megacities

    NASA Astrophysics Data System (ADS)

    Sechrist, B.; Jacobson, M. Z.

    2013-12-01

    The correlation between aerosol optical depth (AOD) and cloud properties - principally cloud fraction and cloud optical depth (COD) - is examined using satellite retrievals from the MODIS satellites over Los Angeles and Beijing. Ten Hoeve et al. (2011, Atmos. Chem. Phys, 11(7), 3021-3036) used satellite data to examine the impact of aerosols on warm clouds around Rondonia, Brazil, during the biomass burning season. They found that the COD-AOD relationship exhibits a 'boomerang' shape in which COD initially increases with increasing AOD but then decreases as AOD continues to increase beyond some critical level. This result is thought to reflect the balance between the microphysical and radiative components of a cloud's response to aerosols. The microphysical process dominates at low AOD, while the radiative process dominates at high AOD. This study is analogous to Ten Hoeve et al., but for aerosols derived primarily from fossil fuel combustion rather than biomass burning. Preliminary results will be presented.

  15. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    PubMed Central

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  16. Aerosol Processing in Mixed-Phase Clouds in ECHAM5-HAM: Comparison of Single-Column Model Simulations to Observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.

    2007-12-01

    The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)

  17. Convective and microphysics parameterization impact on simulating heavy rainfall in Semarang (case study on February 12th, 2015)

    NASA Astrophysics Data System (ADS)

    Faridatussafura, Nurzaka; Wandala, Agie

    2018-05-01

    The meteorological model WRF-ARW version 3.8.1 is used for simulating the heavy rainfall in Semarang that occurred on February 12th, 2015. Two different convective schemes and two different microphysics scheme in a nested configuration were chosen. The sensitivity of those schemes in capturing the extreme weather event has been tested. GFS data were used for the initial and boundary condition. Verification on the twenty-four hours accumulated rainfall using GSMaPsatellite data shows that Kain-Fritsch convective scheme and Lin microphysics scheme is the best combination scheme among the others. The combination also gives the highest success ratio value in placing high intensity rainfall area. Based on the ROC diagram, KF-Lin shows the best performance in detecting high intensity rainfall. However, the combination still has high bias value.

  18. New approaches to quantifying aerosol influence on the cloud radiative effect.

    PubMed

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  19. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.

  20. Effects of Wildfire Pollution on the Microphysical and Electrical Properties of Pyrocumulus

    NASA Astrophysics Data System (ADS)

    Duff, R.; Grant, L. D.; van den Heever, S. C.

    2014-12-01

    Pyrocumulus clouds form over wildfires when hot, smoke-filled air rises, cools and condenses. These clouds have higher cloud condensation nuclei (CCN) concentrations, which affect their microphysical and electrical properties. It is important to better understand pyrocumulus cloud microphysical characteristics and lightning formation, which have implications for the prediction of wildfire growth as well as the radiative and chemical characteristics of the upper troposphere. A recent observational study documented an electrified pyrocumulus over the May 2012 Hewlett Gulch fire located to the west of Fort Collins, Colorado. This cloud produced approximately 20 intracloud lightning flashes, and its electrical activity differed from surrounding convection that was not directly impacted by the fire and associated smoke. The goal of this research is to investigate aerosol-induced cloud-scale microphysical differences between clean clouds and polluted pyrocumulus to better characterize the mechanisms that cause pyrocumulus electrification. In order to address this goal, idealized cloud-resolving model simulations were performed using the Regional Atmospheric Modeling System (RAMS). The model environment was initialized with an average of the 12Z 16 May and 00Z 17 May 2012 observed Denver soundings to represent the conditions when the Hewlett Gulch pyrocumulus occurred. Five simulations were performed using surface aerosol concentrations from 100 to 5000 #/mg. The results demonstrate that in moderately polluted pyrocumulus, rain processes are suppressed while graupel production increases. Extremely polluted pyrocumulus, however, experience a complete shut-down of graupel production, which favors the production of large amounts of liquid water and smaller ice species such as ice crystals and snowflakes. The processes responsible for these microphysical changes, as well as inferred pyrocumulus electrification mechanisms, will be compared with those discussed in previous

  1. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmosphericmore » emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.« less

  2. MISR UAE2 Aerosol Versioning

    Atmospheric Science Data Center

    2013-03-21

    ... The "Beta" designation means particle microphysical property validation is in progress, uncertainty envelopes on particle size distribution, ... UAE-2 campaign activities are part of the validation process, so two versions of the MISR aerosol products are included in this ...

  3. Applying the WRF Double-Moment Six-Class Microphysics Scheme in the GRAPES_Meso Model: A Case Study

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Wang, Hong; Zhang, Xiaoye; Peng, Yue; Che, Huizheng

    2018-04-01

    This study incorporated the Weather Research and Forecasting (WRF) model double-moment 6-class (WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_Meso). A rainfall event that occurred during 3-5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme (WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei (CCN) number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration ( N c) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration ( N r), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.

  4. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meskhidze, Nicholas; Nenes, Athanasios

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  5. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE PAGES

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  6. In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign

    NASA Astrophysics Data System (ADS)

    O'Shea, Sebastian J.; Choularton, Thomas W.; Flynn, Michael; Bower, Keith N.; Gallagher, Martin; Crosier, Jonathan; Williams, Paul; Crawford, Ian; Fleming, Zoë L.; Listowski, Constantino; Kirchgaessner, Amélie; Ladkin, Russell S.; Lachlan-Cope, Thomas

    2017-11-01

    During austral summer 2015, the Microphysics of Antarctic Clouds (MAC) field campaign collected unique and detailed airborne and ground-based in situ measurements of cloud and aerosol properties over coastal Antarctica and the Weddell Sea. This paper presents the first results from the experiment and discusses the key processes important in this region, which is critical to predicting future climate change. The sampling was predominantly of stratus clouds, at temperatures between -20 and 0 °C. These clouds were dominated by supercooled liquid water droplets, which had a median concentration of 113 cm-3 and an interquartile range of 86 cm-3. Both cloud liquid water content and effective radius increased closer to cloud top. The cloud droplet effective radius increased from 4 ± 2 µm near cloud base to 8 ± 3 µm near cloud top. Cloud ice particle concentrations were highly variable with the ice tending to occur in small, isolated patches. Below approximately 1000 m, glaciated cloud regions were more common at higher temperatures; however, the clouds were still predominantly liquid throughout. When ice was present at temperatures higher than -10 °C, secondary ice production most likely through the Hallett-Mossop mechanism led to ice concentrations 1 to 3 orders of magnitude higher than the number predicted by commonly used primary ice nucleation parameterisations. The drivers of the ice crystal variability are investigated. No clear dependence on the droplet size distribution was found. The source of first ice in the clouds remains uncertain but may include contributions from biogenic particles, blowing snow or other surface ice production mechanisms. The concentration of large aerosols (diameters 0.5 to 1.6 µm) decreased with altitude and were depleted in air masses that originated over the Antarctic continent compared to those more heavily influenced by the Southern Ocean and sea ice regions. The dominant aerosol in the region was hygroscopic in nature, with

  7. Aerosol-Cloud Interactions during Tropical Deep Convection: Evidence for the Importance of Free Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann

    2003-01-01

    NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.

  8. Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger

    2017-11-01

    In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.

  9. Arctic Mixed-phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Luo, Yali; Morrison, Hugh; Mcfarquhar, G.M.

    2008-01-01

    Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program Mixed-Phase Arctic Cloud Experiment (M-PACE), are simulated with a cloud resolving model (CRM). The CRM is implemented with either an advanced two-moment (M05) or a commonly used one-moment (L83) bulk microphysics scheme and a state-of-the-art radiative transfer scheme. The CONTROL simulation, that uses the M05 scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), number concentration and effective radius of cloud droplets as suggested by the M-PACE observations. It underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2-3. The OneM experiment, that uses the L83 scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, of those produced by the CONTROL. Its vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in the CONTROL and observations.

  10. War Induced Aerosol Optical, Microphysical and Radiative Effects

    NASA Astrophysics Data System (ADS)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  11. Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET

    NASA Astrophysics Data System (ADS)

    Müller, Detlef; Böckmann, Christine; Kolgotin, Alexei; Schneidenbach, Lars; Chemyakin, Eduard; Rosemann, Julia; Znak, Pavel; Romanov, Anton

    2016-10-01

    We present a summary on the current status of two inversion algorithms that are used in EARLINET (European Aerosol Research Lidar Network) for the inversion of data collected with EARLINET multiwavelength Raman lidars. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. Development of these two algorithms started in 2000 when EARLINET was founded. The algorithms are based on a manually controlled inversion of optical data which allows for detailed sensitivity studies. The algorithms allow us to derive particle effective radius as well as volume and surface area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light absorption needs to be known with high accuracy. It is an extreme challenge to retrieve the real part with an accuracy better than 0.05 and the imaginary part with accuracy better than 0.005-0.1 or ±50 %. Single-scattering albedo can be computed from the retrieved microphysical parameters and allows us to categorize aerosols into high- and low-absorbing aerosols. On the basis of a few exemplary simulations with synthetic optical data we discuss the current status of these manually operated algorithms, the potentially achievable accuracy of data products, and the goals for future work. One algorithm was used with the purpose of testing how well microphysical parameters can be derived if the real part of the complex refractive index is known to at least 0.05 or 0.1. The other algorithm was used to find out how well microphysical parameters can be derived if this constraint for the real part is not applied. The optical data used in our study cover a range of Ångström exponents and extinction-to-backscatter (lidar) ratios that are found from lidar measurements of various aerosol types. We also tested

  12. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  13. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    NASA Astrophysics Data System (ADS)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  14. Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999-2010.

    PubMed

    Adesina, Ayodele Joseph; Piketh, Stuart; Kanike, Raghavendra Kumar; Venkataraman, Sivakumar

    2017-07-01

    The detailed analysis of columnar optical and microphysical properties of aerosols obtained from the AErosol RObotic NETwork (AERONET) Cimel sun photometer operated at Skukuza (24.98° S, 31.60° E, 150 m above sea level), South Africa was carried out using the level 2.0 direct sun and inversion products measured during 1999-2010. The observed aerosol optical depth (AOD) was generally low over the region, with high values noted in late winter (August) and mid-spring (September and October) seasons. The major aerosol types found during the study period were made of 3.74, 69.63, 9.34, 8.83, and 8.41% for polluted dust (PD), polluted continental (PC), non-absorbing (NA), slightly absorbing (SA), and moderately absorbing (MA) aerosols, respectively. Much attention was given to the aerosol fine- and coarse-modes deduced from the particle volume concentration, effective radius, and fine-mode volume fraction. The aerosol volume size distribution pattern was found to be bimodal with the fine-mode showing predominance relative to coarse-mode during the winter and spring seasons, owing to the onset of the biomass burning season. The mean values of total, fine-, and coarse-mode volume particle concentrations were 0.07 ± 0.04, 0.03 ± 0.03, and 0.04 ± 0.02 μm 3  μm -2 , respectively, whereas the mean respective effective radii observed at Skukuza for the abovementioned modes were 0.35 ± 0.17, 0.14 ± 0.02, and 2.08 ± 0.02 μm. The averaged shortwave direct aerosol radiative forcing (ARF) observed within the atmosphere was found to be positive (absorption or heating effect), whereas the negative forcing in the surface and TOA depicted significant cooling effect due to more scattering type particles.

  15. AERONET derived (BC) aerosol absorption

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    AERONET is a ground-based sun-/sky-photometer network with good annual statistics at more than 400 sites worldwide. Inversion methods applied to these data define all relevant column aerosol optical properties and reveal even microphysical detail. The extracted data include estimates for aerosol size-distributions and for aerosol refractive indices at four different solar wavelengths. Hereby, the imaginary parts of the refractive indices define the aerosol column absorption. For regional and global averages and radiative impact assessment with off-line radiative transfer, these local data have been extended with distribution patterns offered by AeroCom modeling experiments. Annual and seasonal absorption distributions for total aerosol and estimates for component contributions (such as BC) are presented and associated direct forcing impacts are quantified.

  16. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.

    PubMed

    Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2018-03-07

    Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

  17. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong

    2012-01-01

    Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiative forcing on the climate system that disturbs dynamics. However, the various mechanisms behind these effects, in particular the ones connected to precipitation, are not yet well understood. The atmospheric and climate communities have long been working to gain a better grasp of these critical effects and hence to reduce the significant uncertainties in climate prediction resulting from such a lack of adequate knowledge. Here we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes from theoretical analysis of microphysics, observational evidence, and a range of numerical model simulations. In addition, the discrepancy between results simulated by models, as well as that between simulations and observations, are presented. Specifically, this paper addresses the following topics: (1) fundamental theories of aerosol effects on microphysics and precipitation processes, (2) observational evidence of the effect of aerosols on precipitation processes, (3) signatures of the aerosol impact on precipitation from largescale analyses, (4) results from cloud-resolving model simulations, and (5) results from large-scale numerical model simulations. Finally, several future research directions for gaining a better understanding of aerosol--cloud-precipitation interactions are suggested.

  18. Cloud and aerosol polarimetric imager

    NASA Astrophysics Data System (ADS)

    Zhang, Junqiang; Shao, Jianbing; Yan, Changxiang

    2014-02-01

    Cloud and Aerosol Polarimetric Imager (CAPI), which is the first onboard cloud and aerosol Polarimetric detector of CHINA, is developed to get cloud and aerosol data of atmosphere to retrieve aerosol optical and microphysical properties to increase the reversion precision of greenhouse gasses (GHGs). The instrument is neither a Polarization and Direction of Earth's Reflectance (POLDER) nor a Directional Polarimetric Camera (DPC) type polarized camera. It is a multispectral push broom system using linear detectors, and can get 5 bands spectral data, from ultraviolet (UV) to SWIR, of the same ground feature at the same time without any moving structure. This paper describes the CAPI instrument characteristics, composition, calibration, and the nearest development.

  19. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-07-01

    A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The

  20. COMMIT in 7-SEAS/BASELInE: Operation of and Observations from a Novel, Mobile Laboratory for Measuring In-Situ Properties of Aerosols and Gases

    NASA Technical Reports Server (NTRS)

    Pantina, Peter; Tsay, Si-Chee; Hsiao, Ta-Chih; Loftus, Adrian M.; Kuo, Ferret; Ou-Yang, Chang-Feng; Sayer, Andrew M.; Wang, Shen-Hsiang; Lin, Neng-Huei; Hsu, N. Christina; hide

    2016-01-01

    Trace gases and aerosols (particularly biomass-burning aerosols) have important implications for air quality and climate studies in Southeast Asia (SEA). This paper describes the purpose, operation, and datasets collected from NASA Goddard Space Flight Center's (NASA/GSFC) Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) laboratory, a mobile platform designed to measure trace gases and optical/microphysical properties of naturally occurring and anthropogenic aerosols. More importantly, the laboratory houses a specialized humidification system to characterize hygroscopic growth/enhancement, a behavior that affects aerosol properties and cloud-aerosol interactions and is generally underrepresented in the current literature. A summary of the trace gas and optical/microphysical measurements is provided, along with additional detail and analysis of data collected from the hygroscopic system during the 2015 Seven South-East Asian Studies (7-SEAS) field campaign. The results suggest that data from the platform are reliable and will complement future studies of aerosols and air quality in SEA and other regions of interest.

  1. Validation of Satellite Aerosol Retrievals from AERONET Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Remer, Lorraine; Torres, Omar; Zhao, Tom; Smith, David E. (Technical Monitor)

    2001-01-01

    Accurate and comprehensive assessment of the parameters that control key atmospheric and biospheric processes including assessment of anthropogenic effects on climate change is a fundamental measurement objective of NASA's EOS program (King and Greenstone, 1999). Satellite assessment programs and associated global climate models require validation and additional parameterization with frequent reliable ground-based observations. A critical and highly uncertain element of the measurement program is characterization of tropospheric aerosols requiring basic observations of aerosols optical and microphysical properties. Unfortunately as yet we do not know the aerosol burden man is contributing to the atmosphere and thus we will have no definitive measure of change for the future. This lack of aerosol assessment is the impetus for some of the EOS measurement activities (Kaufman et al., 1997; King et al., 1999) and the formation of the AERONET program (Holben et al., 1998). The goals of the AERONET program are to develop long term monitoring at globally distributed sites providing critical data for multiannual trend changes in aerosol loading and optical properties with the specific goal of providing a data base for validation of satellite derived aerosol optical properties. The AERONET program has evolved into an international federated network of approximately 100 ground-based remote sensing monitoring stations to characterize the optical and microphysical properties of aerosols.

  2. Marine Stratocumulus Properties from the FPDR - PDI as a Function of Aerosol during ORACLES

    NASA Astrophysics Data System (ADS)

    Small Griswold, J. D.; Heikkila, A.

    2016-12-01

    Aerosol-cloud interactions in the southeastern Atlantic (SEA) region were investigated during year 1 of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field project in Aug-Sept 2016. This region is of interest due to seasonally persistent marine stratocumulus cloud decks that are an important component of the climate system due to their radiative and hydrologic impacts. The SEA deck is unique due to the interactions between these clouds and transported biomass burning aerosol during the July-October fire season. These biomass burning aerosol play multiple roles in modifying the cloud deck through interactions with radiation as absorbing aerosol and through modifications to cloud microphysical properties as cloud condensation nuclei. This work uses in situcloud data obtained with a Flight Probe Dual Range - Phase Doppler Interferometer (FPDR - PDI), standard aerosol instrumentation on board the NASA P-3, and reanalysis data to investigate Aerosol-Cloud Interactions (ACI). The FPDR - PDI provides unique cloud microphysical observations of individual cloud drop arrivals allowing for the computation of a variety of microphysical cloud properties including individual drop size, cloud drop number concentration, cloud drop size distributions, liquid water content, and cloud thickness. The FPDR - PDI measurement technique also provides droplet spacing and drop velocity information which is used to investigate turbulence and entrainment mixing processes. We use aerosol information such as average background aerosol amount (low, mid, high) and location relative to cloud (above or mixing) to sort FPDR - PDI cloud properties. To control for meteorological co-variances we further sort the data within aerosol categories by lower tropospheric stability, vertical velocity, and surface wind direction. We then determine general marine stratocumulus cloud characteristics under each of the various aerosol categories to investigate ACI in the SEA.

  3. Modulations of aerosol impacts on cloud microphysics induced by the warm Kuroshio Current under the East Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Koike, M.; Asano, N.; Nakamura, H.; Sakai, S.; Nagao, T. M.; Nakajima, T. Y.

    2016-10-01

    In our previous aircraft observations, the possible influence of high sea surface temperature (SST) along the Kuroshio Current on aerosol-cloud interactions over the western North Pacific was revealed. The cloud droplet number concentration (Nc) was found to increase with decreasing near-surface static stability (NSS), which was evaluated locally as the difference between the SST and surface air temperature (SAT). To explore the spatial and temporal extent to which this warm SST influence can be operative, the present study analyzed Nc values estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements. The comparison of the local Nc values between the high and low SST - SAT days revealed a marked increase in Nc (up to a factor of 1.8) along the Kuroshio Current in the southern East China Sea, where particularly high SST - SAT values (up to 8 K) were observed in winter under monsoonal cold air outflows from the Asian Continent. This cold airflow destabilizes the atmospheric boundary layer, which leads to enhanced updraft velocities within the well-developed mixed layer and thus greater Nc. The monsoonal northwesterlies also bring a large amount of anthropogenic aerosols from the Asian continent that increase Nc in the first place. These results suggest that the same modulations of cloud microphysics can occur over other warm western boundary currents, including the Gulf Stream, under polluted cool continental airflows. Possibilities of influencing the cloud liquid water path are also discussed.

  4. The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations

    NASA Astrophysics Data System (ADS)

    Kleinschmitt, Christoph; Boucher, Olivier; Bekki, Slimane; Lott, François; Platt, Ulrich

    2017-09-01

    Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget as well as atmospheric chemistry, and the capabilities to simulate them interactively within global models are continuously improving. It is important to represent accurately both aerosol microphysical and atmospheric dynamical processes because together they affect the size distribution and the residence time of the aerosol particles in the stratosphere. The newly developed LMDZ-S3A model presented in this article uses a sectional approach for sulfate particles in the stratosphere and includes the relevant microphysical processes. It allows full interaction between aerosol radiative effects (e.g. radiative heating) and atmospheric dynamics, including e.g. an internally generated quasi-biennial oscillation (QBO) in the stratosphere. Sulfur chemistry is semi-prescribed via climatological lifetimes. LMDZ-S3A reasonably reproduces aerosol observations in periods of low (background) and high (volcanic) stratospheric sulfate loading, but tends to overestimate the number of small particles and to underestimate the number of large particles. Thus, it may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate anthropogenic injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.

  5. Aerosol partitioning in natural mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.

    2004-03-01

    In situ aerosol and cloud drop microphysical measurements at a high-alpine site are used to investigate aerosol partitioning between cloud and interstitial phases in natural, mid-latitude, mixed-phase clouds. Measurements indicate a decrease in the activated aerosol fraction (FN) for particle diameters dP > 100 nm with cloud temperature from FN ~ 0.54 in summer liquid-phase clouds to FN ~ 0.08 in winter mixed-phase clouds. The latter may be attributed to the Bergeron-Findeisen mechanism whereby ice crystals grow at the expense of liquid water drops, releasing formerly activated aerosols back into the interstitial phase. This provides a means to distinguish the indirect effects of aerosols on drops and ice crystals.

  6. Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios

    Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less

  7. Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2017-09-29

    Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less

  8. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong

    2011-01-01

    Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major reason for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiative forcing on the climate system that disturbs dynamics. However, the various mechanisms behind these effects, in particular the ones connected to precipitation, are not yet well understood. The atmospheric and climate communities have long been working to gain a better grasp of these critical effects and hence to reduce the significant uncertainties in climate prediction resulting from such a lack of adequate knowledge. The central theme of this paper is to review past efforts and summarize our current understanding of the effect of aerosols on precipitation processes from theoretical analysis of microphysics, observational evidence, and a range of numerical model simulations. In addition, the discrepancy between results simulated by models, as well as that between simulations and observations will be presented. Specifically, this paper will address the following topics: (1) fundamental theories of aerosol effects on microphysics and precipitation processes, (2) observational evidence of the effect of aerosols on precipitation processes, (3) signatures of the aerosol impact on precipitation from large-scale analyses, (4) results from cloud-resolving model simulations, and (5) results from large-scale numerical model simulations. Finally, several future research directions on aerosol - precipitation interactions are suggested.

  9. A Comparison of Cloud Microphysical and Optical Properties during TOGA-COARE

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Pueschel, R. F.; Pilewskie, P.; Valero, F. P. J.; Gore, Warren J. (Technical Monitor)

    1996-01-01

    The impact of cirrus clouds on climate is an issue of research interest currently. Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the cloud shortwave albedo and infrared reflectance and absorptance. These in turn are determined by the size distribution, phase, and composition of particles in the clouds. The TOGA-COARE campaign presented an excellent opportunity to study cirrus clouds and their influence on climate. In this campaign, a microphysics instrument package was flown aboard the DC-8 aircraft at medium altitudes in cirrus clouds. This package included a 2D Greyscale Cloud Particle Probe, a Forward Scattering Spectrometer Aerosol Probe, and an ice crystal replicator. At the same time the ER-2 equipped with a radiation measurement system flew coordinated flight tracks above the DC-8 at very high altitude. The radiation measurement made were short and long wave fluxes, as well as narrowband fluxes, both upwelling and downwelling. In addition LIDAR data is available. The existence of these data sets allows for a the comparison of radiation measurement with microphysical measurements. For example, the optical depth and effective radius retrieved from the ER-2 radiation measurements can be compared to the microphysical data. Conversely, the optical properties and fluxes produced by the clouds can be calculated from the microphysical measurements and compared to those measured aboard the ER-2. The assumptions required to make these comparisons are discussed. Typical microphysical results show a prevalence of micron-sized particles, in addition to the cloud particles that exceed 100 mm. The large number of small particles or "haze" cause the effective cloud radii to shift to smaller sizes, leading to changes in optical parameters.

  10. Sensitivity of Glacier Mass Balance Estimates to the Selection of WRF Cloud Microphysics Parameterization in the Indus River Watershed

    NASA Astrophysics Data System (ADS)

    Johnson, E. S.; Rupper, S.; Steenburgh, W. J.; Strong, C.; Kochanski, A.

    2017-12-01

    Climate model outputs are often used as inputs to glacier energy and mass balance models, which are essential glaciological tools for testing glacier sensitivity, providing mass balance estimates in regions with little glaciological data, and providing a means to model future changes. Climate model outputs, however, are sensitive to the choice of physical parameterizations, such as those for cloud microphysics, land-surface schemes, surface layer options, etc. Furthermore, glacier mass balance (MB) estimates that use these climate model outputs as inputs are likely sensitive to the specific parameterization schemes, but this sensitivity has not been carefully assessed. Here we evaluate the sensitivity of glacier MB estimates across the Indus Basin to the selection of cloud microphysics parameterizations in the Weather Research and Forecasting Model (WRF). Cloud microphysics parameterizations differ in how they specify the size distributions of hydrometeors, the rate of graupel and snow production, their fall speed assumptions, the rates at which they convert from one hydrometeor type to the other, etc. While glacier MB estimates are likely sensitive to other parameterizations in WRF, our preliminary results suggest that glacier MB is highly sensitive to the timing, frequency, and amount of snowfall, which is influenced by the cloud microphysics parameterization. To this end, the Indus Basin is an ideal study site, as it has both westerly (winter) and monsoonal (summer) precipitation influences, is a data-sparse region (so models are critical), and still has lingering questions as to glacier importance for local and regional resources. WRF is run at a 4 km grid scale using two commonly used parameterizations: the Thompson scheme and the Goddard scheme. On average, these parameterizations result in minimal differences in annual precipitation. However, localized regions exhibit differences in precipitation of up to 3 m w.e. a-1. The different schemes also impact the

  11. How do changes in warm-phase microphysics affect deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger

  12. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-10-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment pseudo-modal aerosol dynamics approach rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulfate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulfuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulfate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  13. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, JD; Berg, LK

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a moremore » complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.« less

  14. A Model Simulation of Pinatubo Volcanic Aerosols in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao , Jing-xia; Turco, Richard P.; Toon, Owen B.

    1995-01-01

    A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. Our model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H2SO4/H2O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO2 emissions. The large amounts of SO2 (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H2SO4/H2O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reach their stabilized sizes with effective radii in a range between 0.3 and 0.5 micron approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion.

  15. Evaluating Simulated Tropical Convective Cores using HAIC-HIWC Microphysics and Dynamics Observations

    NASA Astrophysics Data System (ADS)

    Stanford, M.; Varble, A.; Zipser, E. J.; Strapp, J. W.; Leroy, D.; Schwarzenboeck, A.; Korolev, A.; Potts, R.

    2016-12-01

    A model intercomparison study is conducted to identify biases in simulated tropical convective core microphysical properties using two popular bulk parameterization schemes (Thompson and Morrison) and the Fast Spectral Bin Microphysics (FSBM) scheme. In-situ aircraft measurements of total condensed water content (TWC) and particle size distributions are compared with output from high-resolution WRF simulations of 4 mesoscale convective system (MCS) cases during the High Altitude Ice Crystals-High Ice Water Content (HAIC-HIWC) field campaign conducted in Darwin, Australia in 2014 and Cayenne, French Guiana in 2015. Observations of TWC collected using an isokinetic evaporator probe (IKP) optimized for high IWC measurements in conjunction with particle image processing from two optical array probes aboard the Falcon-20 research aircraft were used to constrain mass-size relationships in the observational dataset. Hydrometeor mass size distributions are compared between retrievals and simulations providing insight into the well-known high bias in simulated convective radar reflectivity. For TWC > 1 g m-3 between -10 and -40°C, simulations generally produce significantly greater median mass diameters (MMDs). Observations indicate that a sharp particle size mode occurs at 300 μm for large TWC values (> 2 g m-3) regardless of temperature. All microphysics schemes fail to reproduce this feature, and relative contributions of different hydrometeor species to this size bias vary between schemes. Despite far greater sample sizes, simulations also fail to produce high TWC conditions with very little of the mass contributed by large particles for a range of temperatures, despite such conditions being observed. Considering vapor grown particles alone in comparison with observations fails to correct the bias present in all schemes. Decreasing horizontal resolution from 1 km to 333 m shifts graupel and rain size distributions to slightly smaller sizes, but increased resolution

  16. Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua

    This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less

  17. Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime

    DOE PAGES

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; ...

    2018-01-10

    This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less

  18. The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion

    NASA Astrophysics Data System (ADS)

    Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René

    The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.

  19. Characterization Of Industrial And Background Aerosols In The RhÔne-alpes Region Using Laser Remote Sensing Device.

    NASA Astrophysics Data System (ADS)

    Geffroy, S.; Rairoux, P.; Mondelain, D.; Boutou, V.; Wolf, J.-P.; Frejafon, E.

    Lack of reliable database on aerosol emission and dispersion is one of the main rea- sons for the incertitude of the impact of aerosol on the climate change. International statements and policies requested improvement on the global and on the regional scale. This new project is related to the characterisation of the spatial and time distribution of the aerosols in the Rhône-Alpes region. Actually, aerosols monitoring is mainly performed at ground level in this region and only few studies have been performed on the 3D distribution of urban aerosols (soot) using remote sensing laser device. The Rhône-Alpes region is representative for the regional impact of industry and traffic emission and also for the long-range transport of pollution over the East part of the Alps. The environmental situation of the region in term of sources and localization is especially dominated by: heavy traffic with several motorways (A6 from Paris, A7 to Marseille - both downtown - and A43 to the Alps and Italy) and industrial pollu- tion in particular for Lyon (refinery and several chemistry plants) and Saint Etienne agglomerations, which have a direct impact on the local air quality and also on the regional and national scale. Characterization of the aerosol load and dispersion in this region will be achieved applying two schemes. The first one will be related to the 3D quantitative characterization of diffuse aerosol emission in the industrial areas. Mon- itoring will be performed using a UV-infrared lidar remote sensing device. Emission cadastre elaboration and microphysical characterisation of the emission will be estab- lished. Direct access to several aerosol distribution modes will be used to describe the aerosol population dynamic: sedimentation, transport and aggregation. Studies on the direct impact of the emission on the region will be achieved coupling the 3D and ground level monitoring with dispersion model. The second scheme will be related to the long term remote sensing of

  20. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations: Cloud Microphysics over Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenhua; Sui, Chung-Hsiung; Fan, Jiwen

    Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolutionmore » of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.« less

  1. Improving Representation of Convective Transport for Scale-Aware Parameterization – Part I: Convection and Cloud Properties Simulated with Spectral Bin and Bulk Microphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Liu, Yi-Chin; Xu, Kuan-Man

    2015-04-27

    The ultimate goal of this study is to improve representation of convective transport by cumulus parameterization for meso-scale and climate models. As Part I of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in mid-latitude continent and tropical regions using the Weather Research and Forecasting (WRF) model with spectral-bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation, vertical velocity of convective cores, and the vertically decreasing trend of radar reflectivitymore » than MOR and MY2, and therefore will be used for analysis of scale-dependence of eddy transport in Part II. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates radar reflectivity in convective cores (SBM predicts smaller radar reflectivity but does not remove the large overestimation); and (3) the model performs better for mid-latitude convective systems than tropical system. The modeled mass fluxes of the mid latitude systems are not sensitive to microphysics schemes, but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes.« less

  2. Effect of sea breeze circulation on aerosol mixing state and radiative properties in a desert setting

    NASA Astrophysics Data System (ADS)

    Derimian, Yevgeny; Choël, Marie; Rudich, Yinon; Deboudt, Karine; Dubovik, Oleg; Laskin, Alexander; Legrand, Michel; Damiri, Bahaiddin; Koren, Ilan; Unga, Florin; Moreau, Myriam; Andreae, Meinrat O.; Karnieli, Arnon

    2017-09-01

    Chemical composition, microphysical, and optical properties of atmospheric aerosol deep inland in the Negev Desert of Israel are found to be influenced by daily occurrences of sea breeze flow from the Mediterranean Sea. Abrupt increases in aerosol volume concentration and shifts of size distributions towards larger sizes, which are associated with increase in wind speed and atmospheric water content, were systematically recorded during the summertime at a distance of at least 80 km from the coast. Chemical imaging of aerosol samples showed an increased contribution of highly hygroscopic particles during the intrusion of the sea breeze. Besides a significant fraction of marine aerosols, the amount of internally mixed marine and mineral dust particles was also increased during the sea breeze period. The number fraction of marine and internally mixed particles during the sea breeze reached up to 88 % in the PM1-2. 5 and up to 62 % in the PM2. 5-10 size range. Additionally, numerous particles with residuals of liquid coating were observed by SEM/EDX analysis. Ca-rich dust particles that had reacted with anthropogenic nitrates were evidenced by Raman microspectroscopy. The resulting hygroscopic particles can deliquesce at very low relative humidity. Our observations suggest that aerosol hygroscopic growth in the Negev Desert is induced by the daily sea breeze arrival. The varying aerosol microphysical and optical characteristics perturb the solar and thermal infrared radiations. The changes in aerosol properties induced by the sea breeze, relative to the background situation, doubled the shortwave radiative cooling at the surface (from -10 to -20.5 W m-2) and increased by almost 3 times the warming of the atmosphere (from 5 to 14 W m-2), as evaluated for a case study. Given the important value of observed liquid coating of particles, we also examined the possible influence of the particle homogeneity assumption on the retrieval of aerosol microphysical characteristics

  3. Factors Affecting the Evolution of Hurricane Erin and the Distributions of Hydrometeors: Role of Microphysical Processes

    NASA Technical Reports Server (NTRS)

    McFarquhar, Greg M.; Zhang, Henian; Dudhia, Jimy; Halverson, Jeffrey B.; Heymsfield, Gerald; Hood, Robbie; Marks, Frank, Jr.

    2003-01-01

    Fine-resolution simulations of Hurricane Erin 2001 are conducted using the Penn State University/National Center for Atmospheric Research mesoscale model version 3.5 to investigate the role of thermodynamic, boundary layer and microphysical processes in Erin's growth and maintenance, and their effects on the horizontal and vertical distributions of hydrometeors. Through comparison against radar, radiometer, and dropsonde data collected during the Convection and Moisture Experiment 4, it is seen that realistic simulations of Erin are obtained provided that fine resolution simulations with detailed representations of physical processes are conducted. The principle findings of the study are as follows: 1) a new iterative condensation scheme, which limits the unphysical increase of equivalent potential temperature associated with most condensation schemes, increases the horizontal size of the hurricane, decreases its maximum rainfall rate, reduces its intensity, and makes its eye more moist; 2) in general, microphysical parameterization schemes with more categories of hydrometeors produce more intense hurricanes, larger hydrometeor mixing ratios, and more intense updrafts and downdrafts; 3) the choice of coefficients describing hydrometeor fall velocities has as big of an impact on the hurricane simulations as does choice of microphysical parameterization scheme with no clear relationship between fall velocity and hurricane intensity; and 4) in order for a tropical cyclone to adequately intensify, an advanced boundary layer scheme (e.g., Burk-Thompson scheme) must be used to represent boundary layer processes. The impacts of varying simulations on the horizontal and vertical distributions of different categories of hydrometeor species, on equivalent potential temperature, and on storm updrafts and downdrafts are examined to determine how the release of latent heat feedbacks upon the structure of Erin. In general, all simulations tend to overpredict precipitation rate

  4. Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: introduction and potential applications

    NASA Astrophysics Data System (ADS)

    Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett

    2017-12-01

    The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.

  5. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars

    NASA Technical Reports Server (NTRS)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.

    2012-01-01

    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.

  6. Design, Evaluation and GCM-Performance of a New Parameterization for Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme (McRas)

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.

    1998-01-01

    A prognostic cloud scheme named McRAS (Microphysics of clouds with Relaxed Arakawa-Schubert Scheme) was developed with the aim of improving cloud-microphysics, and cloud-radiation interactions in GCMs. McRAS distinguishes convective, stratiform, and boundary-layer clouds. The convective clouds merge into stratiform clouds on an hourly time-scale, while the boundary-layer clouds do so instantly. The cloud condensate transforms into precipitation following the auto-conversion relations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, and diffuse both horizontally and vertically with a fully active cloud-microphysics throughout its life-cycle, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry. An evaluation of McRAS in a single column model (SCM) with the GATE Phase III data has shown that McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. An evaluation with the ARM-CART SCM data in a cloud model intercomparison exercise shows reasonable but not an outstanding accurate simulation. Such a discrepancy is common to almost all models and is related, in part, to the input data quality. McRAS was implemented in the GEOS II GCM. A 50 month integration that was initialized with the ECMWF analysis of observations for January 1, 1987 and forced with the observed sea-surface temperatures and sea-ice distribution and vegetation properties (biomes, and soils), with prognostic soil moisture, snow-cover, and hydrology showed a very realistic simulation of cloud process, incloud water and ice, and cloud-radiative forcing (CRF). The simulated ITCZ showed a realistic time-mean structure and seasonal cycle, while the simulated CRF showed sensitivity to vertical distribution of cloud water which can be easily

  7. Microphysical characterization of winter cloud systems during a research flight campaign

    NASA Astrophysics Data System (ADS)

    Fernández-González, Sergio; Sánchez, José Luis; Valero, Francisco; Gascón, Estíbaliz; Merino, Andrés; Hermida, Lucía; López, Laura; Marcos, José Luis; García-Ortega, Eduardo

    2015-04-01

    The lack of accuracy in the knowledge of cloud microphysics leads to aviation risks, which have caused numerous crashes, mainly owing to aircraft icing (e.g., an EMB-120 crashed in Detroit, Michigan in 1997, and an ATR-72 crashed near Roselawn, Indiana in 1994). Further, this lack is a source of uncertainty in numerical weather forecasting models, since commonly used parameterizations often overestimate ice water content and underestimate supercooled liquid water. This makes the collection of data on cloud microphysical characteristics very useful toward improving the forecasting of icing conditions. Ten research flights were conducted during the winters of 2011/12 and 2012/13. Their goal was to determine dominant microphysical conditions of winter cloud systems traversing the Guadarrama Mountains in the central Iberian Peninsula. The aircraft was a C-212-200, equipped with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) under the left wing. Data of temperature and Liquid Water Content (LWC), registered by the CAPS probe, were used in the study. Furthermore, we thoroughly analyzed images taken by a Cloud Imaging Probe Grayscale (CIP-GS), capable of measuring hydrometeors between 25 and 1,550 µm in size, and representing them in a 2D image. The various types of hydrometeors observed during these flights are described, along with microphysical processes inferred from the CIP-GS images. ACKNOWLEDGEMENTS S. Fernández-González acknowledges grant support from the FPU program (AP 2010-2093). This study was also supported by grants from GRANIMETRO (CGL2010-15930) and MICROMETEO (IPT-310000-2010-22). The authors thank INTA for the research flights.

  8. Simulation of black carbon aerosol distribution over India: A sensitivity study to different convective schemes

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudipta; Dey, Sagnik; Das, Sushant; Venkataraman, Chandra; Patil, Nitin U.

    2017-04-01

    Black carbon (BC) aerosols absorb solar radiation, thereby causing a warming at the top-of-the-atmosphere (TOA) in contrast to most of the other aerosol species that scatter radiation causing a cooling at TOA. BC is considered to be an important contributor of global warming, second only to CO2 with a net radiative forcing of 1.1 w/m2. They have important regional climate effects, because of their spatially non-uniform heating and cooling. So it is very important to understand the spatio-temporal distribution of BC over India. In this study, we have used a regional climate model RegCM4.5 to simulate BC distribution over India with a focus on the BC estimation. The importance of incorporation of regional emission inventory has been shown and the sensitivity of BC distribution to various convective schemes in the model has been explored. The model output has been validated with in-situ observations. It is quite evident that regional inventory is capturing larger columnar burden of BC and OC than the global inventory. The difference in BC burden is clear at many places with the largest difference (in the order from 2 x 10-11 kg m-2 sec-1 in global inventory to 4 x 10-11 kg m-2 sec-1 in regional inventory) being observed over the Indo-Gangetic Basin. This difference is mainly attributed to the local sources like kerosene lamp burning, residential cooking on solid biomass fuel and agricultural residue burning etc., that are not considered in the global inventory. The difference is also noticeable for OC. Thus BC burden has increased with incorporation of regional emission inventory in the model, suggesting the importance of regional inventory in improved simulation and estimation of aerosols in this region. BC distribution is also sensitive to choice of scheme with Emanuel scheme capturing a comparatively smaller BC burden during the monsoon than Tiedtke scheme. Further long-term simulation with customized model is required to examine impact of BC. Keywords: Black

  9. Factors Influencing Aerosol Concentrations and Properties over the Tropical Eastern Pacific: Observations from TC4

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Dibb, J.; Scheuer, E.; Lathem, T.

    2007-12-01

    The NASA Tropical Composition Cloud and Climate Coupling (TC4) mission was conducted during summer 2007 and had the primary objective of gaining a better understanding of composition and dynamics of the upper troposphere over the tropical eastern pacific region. Based in San Jose, Costa Rica, the mission employed instrumented aircraft along with ground, balloon, and satellite borne sensors to determine the spatial distribution of trace gas and aerosol species as well as moisture and clouds between the surface and roughly 16 km altitude over Central America, the eastern Pacific, the western Caribbean and northern South America. Because of its heavy payload and long endurance capability, the NASA DC-8 aircraft was the primary sampling platform for the lower-tropospheric altitude regime (i.e., below 12 km). It carried both remote and in situ instruments and was used to characterize cloud inflow and outflow as well as the microphysical properties of maritime convective systems. Because of their roles in regulating atmospheric radiation transfer and cloud formation and microphysics, flight plans placed particular emphasis on determining the sources and properties of the aerosol particles present within the region. A preliminary analysis of the DC-8 data set suggests that the following sources/processes had the greatest impact on aerosol number and mass loading: dust transport from Africa; sea salt production over the ocean; urban and biogenic emissions over the continent; secondary aerosol formation in volcanic plumes; nucleation in cloud outflow; and cloud scavenging. In this presentation, we will examine the microphysical, optical and hydration properties of each aerosol type and assess the overall impact of the source/sink processes to the regional aerosol budget. We will also contrast the microphysical properties of the Saharan Dust sampled over the Caribbean with those measured in fresh dust layers over the eastern Atlantic from the DC-8 during the summer 2006

  10. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling

    NASA Astrophysics Data System (ADS)

    Brabec, M.; Wienhold, F. G.; Luo, B. P.; Vömel, H.; Immler, F.; Steiner, P.; Hausammann, E.; Weers, U.; Peter, T.

    2012-10-01

    Advanced measurement and modelling techniques are employed to estimate the partitioning of atmospheric water between the gas phase and the condensed phase in and around cirrus clouds, and thus to identify in-cloud and out-of-cloud supersaturations with respect to ice. In November 2008 the newly developed balloon-borne backscatter sonde COBALD (Compact Optical Backscatter and AerosoL Detector) was flown 14 times together with a CFH (Cryogenic Frost point Hygrometer) from Lindenberg, Germany (52° N, 14° E). The case discussed here in detail shows two cirrus layers with in-cloud relative humidities with respect to ice between 50% and 130%. Global operational analysis data of ECMWF (roughly 1° × 1° horizontal and 1 km vertical resolution, 6-hourly stored fields) fail to represent ice water contents and relative humidities. Conversely, regional COSMO-7 forecasts (6.6 km × 6.6 km, 5-min stored fields) capture the measured humidities and cloud positions remarkably well. The main difference between ECMWF and COSMO data is the resolution of small-scale vertical features responsible for cirrus formation. Nevertheless, ice water contents in COSMO-7 are still off by factors 2-10, likely reflecting limitations in COSMO's ice phase bulk scheme. Significant improvements can be achieved by comprehensive size-resolved microphysical and optical modelling along backward trajectories based on COSMO-7 wind and temperature fields, which allow accurate computation of humidities, homogeneous ice nucleation, resulting ice particle size distributions and backscatter ratios at the COBALD wavelengths. However, only by superimposing small-scale temperature fluctuations, which remain unresolved by the numerical weather prediction models, can we obtain a satisfying agreement with the observations and reconcile the measured in-cloud non-equilibrium humidities with conventional ice cloud microphysics. Conversely, the model-data comparison provides no evidence that additional changes to ice

  11. A microphysical parameterization of aqSOA and sulfate formation in clouds

    NASA Astrophysics Data System (ADS)

    McVay, Renee; Ervens, Barbara

    2017-07-01

    Sulfate and secondary organic aerosol (cloud aqSOA) can be chemically formed in cloud water. Model implementation of these processes represents a computational burden due to the large number of microphysical and chemical parameters. Chemical mechanisms have been condensed by reducing the number of chemical parameters. Here an alternative is presented to reduce the number of microphysical parameters (number of cloud droplet size classes). In-cloud mass formation is surface and volume dependent due to surface-limited oxidant uptake and/or size-dependent pH. Box and parcel model simulations show that using the effective cloud droplet diameter (proportional to total volume-to-surface ratio) reproduces sulfate and aqSOA formation rates within ≤30% as compared to full droplet distributions; other single diameters lead to much greater deviations. This single-class approach reduces computing time significantly and can be included in models when total liquid water content and effective diameter are available.

  12. Polarization of skylight in the O(2)A band: effects of aerosol properties.

    PubMed

    Boesche, Eyk; Stammes, Piet; Preusker, Réne; Bennartz, Ralf; Knap, Wouter; Fischer, Juergen

    2008-07-01

    Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O(2)A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The

  13. Use of Combined A-Train Observations to Validate GEOS Model Simulated Dust Distributions During NAMMA

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.

    2007-01-01

    During August 2006, the NASA African Multidisciplinary Analyses Mission (NAMMA) field experiment was conducted to characterize the structure of African Easterly Waves and their evolution into tropical storms. Mineral dust aerosols affect tropical storm development, although their exact role remains to be understood. To better understand the role of dust on tropical cyclogenesis, we have implemented a dust source, transport, and optical model in the NASA Goddard Earth Observing System (GEOS) atmospheric general circulation model and data assimilation system. Our dust source scheme is more physically based scheme than previous incarnations of the model, and we introduce improved dust optical and microphysical processes through inclusion of a detailed microphysical scheme. Here we use A-Train observations from MODIS, OMI, and CALIPSO with NAMMA DC-8 flight data to evaluate the simulated dust distributions and microphysical properties. Our goal is to synthesize the multi-spectral observations from the A-Train sensors to arrive at a consistent set of optical properties for the dust aerosols suitable for direct forcing calculations.

  14. Evaluation of Model Microphysics within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is approx 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were approx 0.25 m/s too slow, while the

  15. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Stark, David; Yuter, Sandra; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is 0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were 0.25 meters per second too

  16. Information Content of Aerosol Retrievals in the Sunglint Region

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  17. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  18. Experimental studies of aerosol- cloud droplet interactions at the puy de Dome observatory (France)

    NASA Astrophysics Data System (ADS)

    Laj, P.; Dupuy, R.; Sellegri, K.; Pichon, J.; Fournol, J.; Cortes, L.; Preunkert, S.; Legrand, M.

    2001-05-01

    The interactions between aerosol particles, gases and cloud droplets were studied at the puy de Dome cloud station (France, 1465 a.s.l.) during winter 2000. The partitioning of gas and aerosol species between interstitial and condensed phases is achieved using a series of instrumentation including a newly developed dual counter-flow virtual impactor (CVI)/ Round jet impactor (RJI) system. The RJI/CVI system, coupled with measurement of cloud microphysical properties, provided direct observation of number and mass partitioning of aerosols under different air mass conditions. Preliminary results from this field experiment allowed for the characterization of size segregated chemical composition of CCNs and of interstitial aerosols by means of gravimetric analysis and ion chromatography. It appears that CCNs are clearly enriched in soluble species as respect to interstitial aerosols. We found evidences of limited growth of Ca2+ - rich coarse particles (>1 μm) that did not form droplets larger than the 5 μm CVI cut-off. The number partitioning of aerosol particles between interstitial and condensed phases clearly depends upon cloud microphysics and aerosol properties and therefore undergoes different behaviour according to air mass origin. However, results cannot be fully explained by diffusion growth alone, in particular for high cloud LWC.

  19. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  20. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE PAGES

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    2017-10-17

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  1. Sensitivity of WRF precipitation on microphysical and boundary layer parameterizations during extreme events in Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Pytharoulis, I.; Karagiannidis, A. F.; Brikas, D.; Katsafados, P.; Papadopoulos, A.; Mavromatidis, E.; Kotsopoulos, S.; Karacostas, T. S.

    2010-09-01

    Contemporary atmospheric numerical models contain a large number of physical parameterization schemes in order to represent the various atmospheric processes that take place in sub-grid scales. The choice of the proper combination of such schemes is a challenging task for research and particularly for operational purposes. This choice becomes a very important decision in cases of high impact weather in which the forecast errors and the concomitant societal impacts are expected to be large. Moreover, it is well known that one of the hardest tasks for numerical models is to predict precipitation with a high degree of accuracy. The use of complex and sophisticated schemes usually requires more computational time and resources, but it does not necessarily lead to better forecasts. The aim of this study is to investigate the sensitivity of the model predicted precipitation on the microphysical and boundary layer parameterizations during extreme events. The nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW Version 3.1.1) is utilized. It is a flexible, state-of-the-art numerical weather prediction system designed to operate in both research and operational mode in global and regional scales. Nine microphysical and two boundary layer schemes are combined in the sensitivity experiments. The 9 microphysical schemes are: i) Lin, ii) WRF Single Moment 5-classes, iii) Ferrier new Eta, iv) WRF Single Moment 6-classes, v) Goddard, vi) New Thompson V3.1, vii) WRF Double Moment 5-classes, viii) WRF Double Moment 6-classes, ix) Morrison. The boundary layer is parameterized using the schemes of: i) Mellor-Yamada-Janjic (MYJ) and ii) Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5. The model is integrated at very high horizontal resolution (2 km x 2 km in the area of interest) utilizing 38 vertical levels. Three cases of high impact weather in Eastern Mediterranean, associated with strong synoptic scale forcing, are employed in the

  2. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  3. Influence of inland aerosol loading on the monsoon over Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Radhakrishnan, S. R.; Raghunath, K.

    2008-12-01

    The monsoon water cycle is the lifeline to over 60% of the world's population. The study on the behavioral change of Indian monsoon due to aerosol loading will help for the better understanding of Indian Monsoon. Aerosol system influences the atmosphere in two ways; it affects directly the radiation budget and indirectly provides condensation nuclei required for the clouds. The precipitation of the clouds in the monsoon season depends on the microphysical properties of the clouds. The effect of aerosol on cirrus clouds is being looked into through this work as an effort to study the role of aerosol on Indian Monsoon. The microphysical properties of high altitude clouds were obtained from the ground based lidar experiments at a low latitude station in the Indian subcontinent. Measurements during the Indian monsoon period from the inland station National Atmospheric Research Laboratory (NARL) Gadanki (13.5_ N, 79.2_ E), Tirupati, India were used for the investigation. The depolarization characteristics of the cirrus clouds were measured and the correlation between the depolarization and the precipitation characteristics were studied. The results obtained over a period of one year from January 1998 to December 1998 were presented.

  4. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  5. Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.

    2008-04-01

    The global aerosol-climate model ECHAM5-HAM has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme. Transfer, production, and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland). Although the single-column simulations cannot be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.

  6. Ground-based observations of aerosol-cloud interactions in the North East of the United States

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.

    2015-12-01

    Five years ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplet effective radius (Re) and cloud droplet number concentration (Nd). A higher frequency of clouds with small Re (<7µm) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading (AOD>0.5). The five-year data are screened for summer boundary layer clouds only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter≤2.5µm (PM2.5) value. Evidence of aerosol indirect effect on cloud microphysics is found where for the polluted cases the mean (and median) values of Nd distributions were elevated while the mean (and median) values of Re were decreased as compared to those for the clean cases under various LWP ranges. Relatively, the aerosol indirect effects on modifying cloud microphysical properties are found more significant with large LWP than with small LWP.

  7. New microphysical volcanic forcing datasets for the Agung, El Chichon and Pinatubo eruptions

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Marshall, Lauren; Carslaw, Kenneth; Chipperfield, Martyn; Bellouin, Nicolas; Morgenstern, Olaf; Johnson, Colin; O'Connor, Fiona

    2017-04-01

    Major tropical volcanic eruptions inject huge amounts of SO2 directly into the stratosphere, and create a long-lasting perturbation to the stratospheric aerosol. The abruptly elevated aerosol has strong climate impacts, principally surface cooling via scattering incoming solar radiation. The enhanced tropical stratospheric aerosol can also absorb outgoing long wave radiation causing a warming of the stratosphere and subsequent complex composition-dynamics responses (e.g. Dhomse et al., 2015). In this presentation we apply the composition-climate model UM-UKCA with interactive stratospheric chemistry and aerosol microphysics (Dhomse et al., 2014) to assess the enhancement to the stratospheric aerosol and associated radiative forcings from the three largest tropical eruptions in the last 60 years: Mt Agung (February 1963), El Chichon (April 1982) and Mt. Pinatubo (June 1991). Accurately characterising the forcing signature from these major eruptions is important for attribution of recent climate change and volcanic effects have been identified as a key requirement for robust attribution of multi-decadal surface temperature trends (e.g. Marotzke and Forster, 2015). Aligning with the design of the ISA-MIP co-ordinated multi-model "Historical Eruption SO2 Emissions Assessment" (HErSEA), we have carried out 3-member ensemble of simulations with each of upper, low and mid-point best estimates for SO2 and injection height for each eruption. We evaluate simulated aerosol properties (e.g. extinction, AOD, effective radius, particle size distribution) against a range of satellite and in-situ observational datasets and assess stratospheric heating against temperature anomalies are compared against reanalysis and other datasets. References: Dhomse SS, Chipperfield MP, Feng W, Hossaini R, Mann GW, Santee ML (2015) Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophysical Research Letters, 42, pp.3038

  8. Sources and Variability of Aerosols and Aerosol-Cloud Interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, B.; Taylor, P. C.; Moore, R.; Barahona, D.; Fairlie, T. D.; Chen, G.; Ham, S. H.; Kato, S.

    2017-12-01

    Arctic sea ice in recent decades has significantly declined. This requires understanding of the Arctic surface energy balance, of which clouds are a major driver. However, the mechanisms for the formation and evolution of clouds in the Arctic and the roles of aerosols therein are highly uncertain. Here we conduct data analysis and global model simulations to examine the sources and variability of aerosols and aerosol-cloud interactions in the Arctic. We use the MERRA-2 reanalysis data (2006-present) from the NASA Global Modeling and Assimilation Office (GMAO) to (1) quantify contributions of different aerosol types to the aerosol budget and aerosol optical depths in the Arctic, (2) ­examine aerosol distributions and variability and diagnose the major pathways for mid-latitude pollution transport to the Arctic, including their seasonal and interannual variability, and (3) characterize the distribution and variability of clouds (cloud optical depth, cloud fraction, cloud liquid and ice water path, cloud top height) in the Arctic. We compare MERRA-2 aerosol and cloud properties with those from C3M, a 3-D aerosol and cloud data product developed at NASA Langley Research Center and merged from multiple A-Train satellite (CERES, CloudSat, CALIPSO, and MODIS) observations. We also conduct perturbation experiments using the NASA GEOS-5 chemistry-climate model (with GOCART aerosol module coupled with two-moment cloud microphysics), and discuss the roles of various types of aerosols in the formation and evolution of clouds in the Arctic.

  9. Evaluation of predicted diurnal cycle of precipitation after tests with convection and microphysics schemes in the Eta Model

    NASA Astrophysics Data System (ADS)

    Gomes, J. L.; Chou, S. C.; Yaguchi, S. M.

    2012-04-01

    Physics parameterizations and the model vertical and horizontal resolutions, for example, can significantly contribute to the uncertainty in the numerical weather predictions, especially at regions with complex topography. The objective of this study is to assess the influences of model precipitation production schemes and horizontal resolution on the diurnal cycle of precipitation in the Eta Model . The model was run in hydrostatic mode at 3- and 5-km grid sizes, the vertical resolution was set to 50 layers, and the time steps to 6 and 10 s, respectively. The initial and boundary conditions were taken from ERA-Interim reanalysis. Over the sea the 0.25-deg sea surface temperature from NOAA was used. The model was setup to run for each resolution over Angra dos Reis, located in the Southeast region of Brazil, for the rainy period between 18 December 2009 and 01 de January 2010, the model simulation range was 48 hours. In one set of runs the cumulus parameterization was switched off, in this case the model precipitation was fully simulated by cloud microphysics scheme, and in the other set the model was run with weak cumulus convection. The results show that as the model horizontal resolution increases from 5 to 3 km, the spatial pattern of the precipitation hardly changed, although the maximum precipitation core increased in magnitude. Daily data from automatic station data was used to evaluate the runs and shows that the diurnal cycle of temperature and precipitation were better simulated for 3 km when compared against observations. The model configuration results without cumulus convection shows a small contraction in the precipitating area and an increase in the simulated maximum values. The diurnal cycle of precipitation was better simulated with some activity of the cumulus convection scheme. The skill scores for the period and for different forecast ranges are higher at weak and moderate precipitation rates.

  10. Effects of Aerosols on Autumn Precipitation over Mid-Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Siyu; Huang, J.; Qian, Yun

    2014-09-20

    Long-term observational data indicated a decreasing trend for the amount of autumn precipitation (i.e. 54.3 mm per decade) over Mid-Eastern China, especially after 1980s (~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy (i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsiblemore » for the decrease of autumn precipitation. Ours results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to the relatively more stable synoptic system in autumn. The impact of large-scale circulation dominated in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.« less

  11. Collaborative Research: Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenes, Athanasios

    The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated newmore » parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.« less

  12. Microphysical Model Studies of Venus Clouds

    NASA Astrophysics Data System (ADS)

    Meade, P. E.; Bullock, M. A.; Grinspoon, D. H.

    2004-11-01

    We have adapted a standard cloud microphysics model to construct a self-consistent microphysical model of Venus' cloud layer which reproduces and extends previous studies (e.g. James et al. 1997). Our model is based on the Community Aerosol and Radiation Model Atmosphere (CARMA), which is a widely used computer code for terrestrial cloud microphysics, derived from the work of Toon et al. (1988). The standard code has been adapted to treat H2O and H2SO4 as co-condensing vapor species onto aqueous H2SO4 cloud droplets, as well as the nucleation of condensation nuclei to droplets. Vapor condensation and evaporation follows the method of James et al. (1997). Microphysical processes included in this model include nucleation of condensation nuclei, condensation and evaporation of H2O and H2SO4 vapor, and droplet coagulation. Vertical transport occurs though advection, eddy diffusion, sedimentation for both droplets and condensation nuclei. The cloud model is used to explore the sensitivity of Venus' cloud layer to environmental changes. Observations of the Venus' lower cloud from the Pioneer Venus, Venera, and Galileo spacecraft have suggested that the properties of the lower cloud may be time-variable, and at times may be entirely absent (Carlson et al. 1993, Grinspoon et al. 1993, Esposito et al. 1997). Our model explores the dependence of such behavior on environment factors such as variations in water or SO2 abundance. We have also calculated the optical properties of the model atmosphere using both the conventional optical constants for H2SO4 (Palmer and Williams, 1975), and the new data of Tisdale et al. (1998). This work has been supported by NASA's Exobiology Program. References Carlson, R.W., et al., 1993. Planetary and Space Science, 41, 477-486. Esposito, L.W., et al., 1997. In Venus II, eds. S.W. Bougher et al., pp. 415-458, University of Arizona Press, Tucson. Grinspoon, D.H., et al., 1993. Planetary and Space Science, 41 (July 1993), 515-542. James, E. P

  13. Classifying aerosol type using in situ surface spectral aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao

    2017-10-01

    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites

  14. Aerosol indirect effects from ground-based retrievals over the rain shadow region in Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Harikishan, G.; Padmakumari, B.; Maheskumar, R. S.; Pandithurai, G.; Min, Q. L.

    2016-03-01

    Aerosol-induced changes in cloud microphysical and radiative properties have been studied for the first time using ground-based and airborne observations over a semiarid rain shadow region. The study was conducted for nonprecipitating, ice-free clouds during monsoon (July to September) and postmonsoon (October) months, when cloud condensation nuclei (CCN) concentrations over the region of interest increased monotonically and exhibited characteristics of continental origin. A multifilter rotating shadowband radiometer and microwave radiometric profiler were used to retrieve the cloud optical depth and liquid water path (LWP), respectively, from which cloud effective radius (CER) was obtained. CER showed wide variability from 10-18 µm and a decreasing trend toward the postmonsoon period. During monsoon, the estimated first aerosol indirect effect (AIE) increased from 0.01 to 0.23 with increase in LWP. AIE at different super saturations (SS) showed maximum value (significant at 95%) at 0.4% SS and higher LWP bin (250-300 g/m2). Also, statistically significant AIE values were found at 0.6% and 0.8% SSs but at lower LWP bin (200-250 g/m2). The relationship between CCN and CER showed high correlation at 0.4% SS at higher LWP bin, while at higher SSs good correlations were observed at lower LWPs. Data combined from ground-based and aircraft observations showed dominance of microphysical effect at aerosol concentrations up to 1500 cm-3 and radiative effect at higher concentrations. This combined cloud microphysical and aerosol radiative effect is more prominent during postmonsoon period due to an increase in aerosol concentration.

  15. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  16. Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus

    NASA Astrophysics Data System (ADS)

    Werner, F.; Ditas, F.; Siebert, H.; Simmel, M.; Wehner, B.; Pilewskie, P.; Schmeissner, T.; Shaw, R. A.; Hartmann, S.; Wex, H.; Roberts, G. C.; Wendisch, M.

    2014-02-01

    Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (reff) and cloud optical thickness (τ), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity (γλ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of τ and γλ toward larger values is observed, while the mean values and observed ranges of retrieved reff decrease. The relative susceptibilities (RS) of reff, τ, and γλ to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for reff and τ, and 0.27 for γλ. These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured reff and from a microphysical parcel model are in close agreement.

  17. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  18. Trends in aerosol abundances and distributions

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Mccormick, M. P.; Clancy, R. T.; Curran, R.; Deluisi, J.; Hamill, P.; Kent, G.; Rosen, J. M.; Toon, O. B.; Yue, G.

    1989-01-01

    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's.

  19. Evaluation of Unified Model Microphysics in High-resolution NWP Simulations Using Polarimetric Radar Observations

    NASA Astrophysics Data System (ADS)

    Johnson, Marcus; Jung, Youngsun; Dawson, Daniel; Supinie, Timothy; Xue, Ming; Park, Jongsook; Lee, Yong-Hee

    2018-07-01

    The UK Met Office Unified Model (UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ˜1.5 km [e.g., at the UK Met Office and the Korea Meteorological Administration (KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma (quasi-stationary) front, and Typhoon Sanba (2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice (crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.

  20. Simultaneous aerosol/ocean products retrieved during the 2014 SABOR campaign using the NASA Research Scanning Polarimeter (RSP)

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.

    2017-12-01

    The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.

  1. A Novel Tool for Simulating Aerosol-cloud Interactions with a Sectional Model Implemented to a Large-Eddy Simulator

    NASA Astrophysics Data System (ADS)

    Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Maalick, Z.; Korhonen, H.; Liqing, H.

    2015-12-01

    A new cloud-resolving model setup for studying aerosol-cloud interactions, with a special emphasis on partitioning and wet deposition of semi-volatile aerosol species, is presented. The model is based on modified versions of two well-established model components: the Large-Eddy Simulator (LES) UCLALES, and the sectional aerosol model SALSA, previously employed in the ECHAM climate model family. Implementation of the UCLALES-SALSA is described in detail. As the basis for this work, SALSA has been extended to include a sectional representation of the size distributions of cloud droplets and precipitation. Microphysical processes operating on clouds and precipitation have also been added. Given our main motivation, the cloud droplet size bins are defined according to the dry particle diameter. The droplet wet diameter is solved dynamically through condensation equations, but represents an average droplet diameter inside each size bin. This approach allows for accurate tracking of the aerosol properties inside clouds, but minimizes the computational cost. Since the actual cloud droplet diameter is not fully resolved inside the size bins, processes such as precipitation formation rely on parameterizations. For realistic growth of drizzle drops to rain, which is critical for the aerosol wet deposition, the precipitation size bins are defined according to the actual drop size. With these additions, the implementation of the SALSA model replaces most of the microphysical and thermodynamical components within the LES. The cloud properties and aerosol-cloud interactions simulated by the model are analysed and evaluated against detailed cloud microphysical boxmodel results and in-situ aerosol-cloud interaction observations from the Puijo measurement station in Kuopio, Finland. The ability of the model to reproduce the impacts of wet deposition on the aerosol population is demonstrated.

  2. ISDAC Microphysics

    DOE Data Explorer

    McFarquhar, Greg

    2011-07-25

    Best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the National Research Council (NRC) of Canada Convair-580 during ISDAC. These files contain phase, liquid and ice crystal size distributions (Nw(D) and Ni(D) respectively), liquid water content (LWC), ice water content (IWC), extinction of liquid drops (bw), extinction of ice crystals (bi), effective radius of water drops (rew) and of ice crystals (rei) and median mass diameter of liquid drops (Dmml) and of ice crystals (Dmmi) at 30 second resolution.

  3. Microphysical Properties of Alaskan Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  4. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-09-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  5. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, H.; Koike, Makoto; Kondo, Yutaka

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particlesmore » with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  6. Aerosol and CCN in southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof

    2010-05-01

    As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local aerosol. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The aerosol in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged aerosol. The particles in that background aerosol are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron aerosol generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the Red Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the aerosol mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made

  7. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew Wells

    Multiple sensors flying in the A-train constellation of satellites were used to determine the extent to which aerosol plumes from ships passing below marine stratocumulus alter the microphysical and macrophysical properties of the clouds. Aerosol plumes generated by ships sometimes influence cloud microphysical properties (effective radius) and, to a largely undetermined extent, cloud macrophysical properties (liquid water path, coverage, depth, precipitation, and longevity). Aerosol indirect effects were brought into focus, using observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the 94-GHZ radar onboard CloudSat. To assess local cloud scale responses to aerosol, the locations of over one thousand ship tracks coinciding with the radar were meticulously logged by hand from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. MODIS imagery was used to distinguish ship tracks that were embedded in closed, open, and unclassifiable mesoscale cellular cloud structures. The impact of aerosol on the microphysical cloud properties in both the closed and open cell regimes were consistent with the changes predicted by the Twomey hypothesis. For the macrophysical changes, differences in the sign and magnitude of these properties were observed between cloud regimes. The results demonstrate that the spatial extent of rainfall (rain cover fraction) and intensity decrease in the clouds contaminated by the ship plume compared to the ambient pristine clouds. Although reductions of precipitation were common amongst the clouds with detectable rainfall (72% of cases), a substantial fraction of ship tracks (28% of cases) exhibited the opposite response. The sign and strength of the response was tied to the type of stratocumulus (e.g., closed vs open cells), depth of the boundary layer, and humidity in the free-troposphere. When closed cellular clouds were identified, liquid water path, drizzle rate, and rain cover fraction (an average

  8. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  9. A Global, Decadal, Quantitative Record of Absorbing Aerosols above Cloud Using OMI's Near-UV Observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2016-12-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.

  10. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  11. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE PAGES

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.; ...

    2016-07-19

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  12. Non-chemistry coupled PM10 modeling in Chiang Mai City, Northern Thailand: A fast operational approach for aerosol forecasts

    NASA Astrophysics Data System (ADS)

    Macatangay, Ronald; Bagtasa, Gerry; Sonkaew, Thiranan

    2017-09-01

    The Weather Research and Forecasting (WRF v. 3.7) model was applied to model PM10 data in Chiang Mai city for 10-days during a high haze event utilizing updated land use categories from the Moderate Resolution Imaging Spectroradiometer (MODIS). A higher resolution meteorological lateral boundary condition (from 1 degree to 0.25 degree) was also used from the NCEP GDAS/FNL Global Tropospheric Analyses and Forecast Grid system. A 3-category urban canopy model was also added and the Thompson aerosol-aware microphysics parameterization scheme was used to model the aerosol number concentrations that were later converted to PM10 concentrations. Aerosol number concentration monthly climatology was firstly used as initial and lateral boundary conditions to model PM10 concentrations. These were compared to surface data obtained from two stations of the Pollution Control Department (PCD) of Thailand. The results from the modeled PM10 concentrations could not capture the variability (r = 0.29; 0.27 for each site) and underestimated a high PM10 spike during the period studied. The authors then added satellite data to the aerosol climatology that improved the comparison with observations (r = 0.45; 43). However, both model runs still were not able to capture the high PM10 concentration event. This requires further investigation.

  13. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  14. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India

    NASA Astrophysics Data System (ADS)

    Madhulatha, A.; Rajeevan, M.

    2018-02-01

    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  15. A 3D Microphysical Model of Titan's Methane Cloud

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Newman, C.; Inada, A.; Richardson, M.

    2006-12-01

    A time-dependent idealized 3D microphysical model for Titan's methane cloud is described. This new high resolution microphysical model nests in a Titan WRF GCM model. It assumes the vapor-liquid equilibria of methane-nitrogen mixtures which are based on the recent chemical experiments and thermodynamics models. In particular, the methane is condensed at a given temperature and pressure. Meanwhile nitrogen is dissolved in the methane liquid. The new model first uses the data from the thermodynamic model (Kouvaris et al. 1991), which involves saturation criteria, composition of condensate, and latent heat for a given pressure-temperature profile. For altitudes lower than 14 km, methane is saturated and condensed into liquid phase. However for altitudes from 14 km above to tropopause, methane is changed into supercooled liquid state. Then, we do some testing experiments with 1D model by varying the initial methane vapor mass mixing ratio profile and the initial mole fraction of methane in liquid phase. Based on the steady state results from 1D model, an idealized 3D microphysics model is developed to investigate the convection cloud in Titan's troposphere. Due to lower relative humidity at titan's surface (Samuelson et al. 1997) and the current estimated moist adiabatic lapse rate, convection is hardly to happen without lifting. For this reason, we apply a symmetry cosine ridge in a 100*100 grids box to force the air flow lifted at certain levels, which in turn drives the condensation of methane vapor. In addition to the abundance of methane clouds and its duration provided by the 3D model, our study demonstrates that vertical motion might be likely the major cause of convection clouds in Titan's troposphere. As the future work, we will further investigate size-resolved microphysical scheme to insight into the nature of methane cycle in Titan's atmosphere.

  16. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  17. LACIS-T - A humid wind tunnel for investigating the Interactions between Cloud Microphysics and Turbulence

    NASA Astrophysics Data System (ADS)

    Voigtländer, Jens; Niedermeier, Dennis; Siebert, Holger; Shaw, Raymond; Schumacher, Jörg; Stratmann, Frank

    2017-04-01

    To improve the fundamental and quantitative understanding of the interactions between cloud microphysical and turbulent processes, the Leibniz Institute for Tropospheric Research (TROPOS) has built up a new humid wind tunnel (LACIS-T). LACIS-T allows for the investigation of cloud microphysical processes, such as cloud droplet activation and freezing, under-well defined thermodynamic and turbulent flow conditions. It therewith allows for the straight forward continuation, extension, and completion of the cloud microphysics related investigations carried out at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) under laminar flow conditions. Characterization of the wind tunnel with respect to flow, thermodynamics, and droplet microphysics is carried out with probes mounted inside (pitot tube and hot-wire anemometer for mean velocity and fluctuations, Pt100 sensor for mean temperature, cold-wire sensor for temperature fluctuations is in progress, as well as a dew-point mirror for mean water vapor concentration, a Lyman-alpha sensor for water vapor fluctuations is in progress) the measurement section, and from outside with optical detection methods (a laser light sheet is available for cloud droplet visualization, a digital holography system for detection of cloud droplet size distributions will be installed for tests in February 2017), respectively. Computational fluid dynamics (CFD) simulations have been carried out for defining suitable experimental conditions and assisting the interpretation of the experimental data. In this work, LACIS-T, its fundamental operating principle, and first preliminary results from ongoing characterization efforts will be presented.

  18. an aerosol climatology optical properties and its associated direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2010-05-01

    Aerosol particles are quite complex in nature. Aerosol impacts on the distribution of radiative energy and on cloud microphysics have been debated climate impact issues. Here, a new aerosol-climatology is presented, combining the consistency and completeness of global modelling with quality data by ground-monitoring. It provides global monthly maps for spectral aerosol optical properties and for concentrations of CCN and IN. Based on the optical properties the aerosol direct forcing is determined. And with environmental data for clouds and estimates on the anthropogenic fraction from emission experiments with global modelling even the climate relevant aerosol direct forcing at the top of the atmosphere (ToA) is determined. This value is rather small near -0.2W/m2 with limited uncertainty estimated at (+/-0.3) due to uncertainties in aerosol absorption and underlying surface conditions or clouds.

  19. Microphysical modeling of cirrus. 2: Sensitivity studies

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.; Kinne, Stefan; Heymsfield, Andrew J.

    1994-01-01

    The one-dimensional cirrus model described in part 1 of this issue has been used to study the sensitivity of simulated cirrus microphysical and radiative properties to poorly known model parameters, poorly understood physical processes, and environmental conditions. Model parameters and physical processes investigated include nucleation rate, mode of nucleation (e.g., homogeneous freezing of aerosols and liquid droplets or heterogeneous deposition), ice crystal shape, and coagulation. These studies suggest that the leading sources of uncertainty in the model are the phase change (liquid-solid) energy barrier and the ice-water surface energy which dominate the homogeneous freezing nucleation rate and the coagulation sticking efficiency at low temperatures which controls the production of large ice crystals (radii greater than 100 mcirons). Environmental conditions considered in sensitivity tests were CN size distribution, vertical wind speed, and cloud height. We found that (unlike stratus clouds) variations in the total number of condensation nuclei (NC) have little effect on cirrus microphysical and radiative properties, since nucleation occurs only on the largest CN at the tail of the size distribution. The total number of ice crystals which nucleate has little or no relationship to the number of CN present and depends primarily on the temperature and the cooling rate. Stronger updrafts (more rapid cooling) generate higher ice number densities, ice water content, cloud optical depth, and net radiative forcing. Increasing the height of the clouds in the model leads to an increase in ice number density, a decrease in effective radius, and a decrease in ice water content. The most prominent effect of increasing cloud height was a rapid increase in the net cloud radiative forcing which can be attributed to the change in cloud temperature as well as change in cloud ice size distributions. It has long been recognized that changes in cloud height or cloud area have the

  20. To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?

    NASA Astrophysics Data System (ADS)

    Henneberg, O.; Lohmann, U.

    2017-12-01

    Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL

  1. Spatio-temporal variability in cloud microphysical properties over the South East Atlantic

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McFarquhar, G. M.; Poellot, M.; O'Brien, J.; Delene, D. J.

    2016-12-01

    The ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) project will provide in-situ measurements and remotely sensed retrievals of aerosol and cloud properties over the South East Atlantic off the coast of Namibia during August-September 2016. Biomass burning aerosol from Southern Africa is advected toward the South East Atlantic at elevated altitudes and overlies the ubiquitous stratocumulus cloud deck over the ocean. The aerosols subside farther from the coast so that the vertical displacement between the clouds and aerosols varies, and whose effect on aerosol-cloud interaction is poorly known. A NASA P-3 aircraft will be equipped with a Cloud Droplet Probe CDP sizing particles between 2 and 50μm, a Cloud and Aerosol Spectrometer CAS sizing between 0.51 and 50μm, a 2D-stereo probe 2DS, nominally sizing between 10 and 1280μm, a Cloud Imaging Probe CIP, from 25 to 1600μm, and a High Volume Precipitation Sampler HVPS-3, from 150μm to 1.92cm for measuring number distribution functions (n(D)) along with a King probe and hot wire probe for measuring the total liquid water content, LWC. A Passive Cavity Aerosol Spectrometer Probe PCASP will measure aerosol particles between 0.1 to 3μm. By examining consistency between n(D) measured by probes in the overlap ranges and by conducting closure tests whereby the bulk LWC is compared against that derived from n(D), a probe-independent product will be generated to provide the best estimate of the following cloud parameters: total concentration, extinction, n(D), effective radius and LWC. The resulting database will be used to determine how cloud properties vary with distance away from the coast of Africa and with aerosol concentrations measured in the accumulation mode by the PCASP above and below cloud. The impact of the changing separation between the cloud and aerosol layers will be examined and potential impacts of the variation of cloud microphysical properties with aerosol concentrations on

  2. ORILAM, a three-moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso-NH-C model and validation on the Escompte campaign

    NASA Astrophysics Data System (ADS)

    Tulet, Pierre; Crassier, Vincent; Cousin, Frederic; Suhre, Karsten; Rosset, Robert

    2005-09-01

    Classical aerosol schemes use either a sectional (bin) or lognormal approach. Both approaches have particular capabilities and interests: the sectional approach is able to describe every kind of distribution, whereas the lognormal one makes assumption of the distribution form with a fewer number of explicit variables. For this last reason we developed a three-moment lognormal aerosol scheme named ORILAM to be coupled in three-dimensional mesoscale or CTM models. This paper presents the concept and hypothesis of a range of aerosol processes such as nucleation, coagulation, condensation, sedimentation, and dry deposition. One particular interest of ORILAM is to keep explicit the aerosol composition and distribution (mass of each constituent, mean radius, and standard deviation of the distribution are explicit) using the prediction of three-moment (m0, m3, and m6). The new model was evaluated by comparing simulations to measurements from the Escompte campaign and to a previously published aerosol model. The numerical cost of the lognormal mode is lower than two bins of the sectional one.

  3. Simultaneous Estimation of Microphysical Parameters and Atmospheric State Variables With Radar Data and Ensemble Square-root Kalman Filter

    NASA Astrophysics Data System (ADS)

    Tong, M.; Xue, M.

    2006-12-01

    An important source of model error for convective-scale data assimilation and prediction is microphysical parameterization. This study investigates the possibility of estimating up to five fundamental microphysical parameters, which are closely involved in the definition of drop size distribution of microphysical species in a commonly used single-moment ice microphysics scheme, using radar observations and the ensemble Kalman filter method. The five parameters include the intercept parameters for rain, snow and hail/graupel, and the bulk densities of hail/graupel and snow. Parameter sensitivity and identifiability are first examined. The ensemble square-root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation. OSS experiments are performed for a model-simulated supercell storm, in which the five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is found to be less robust, with end results of estimation being sensitive to the realization of the initial parameter perturbation. This is believed to be because of the reduced parameter identifiability and the existence of non-unique solutions. The results of state estimation are, however, always improved when simultaneous parameter estimation is performed, even when the estimated parameters values are not accurate.

  4. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  5. Assessment of Changes in Cloud Microphysical Properties and Rainfall in the Southeast Atlantic During the ORACLES 2016 Deployment

    NASA Astrophysics Data System (ADS)

    Diamond, M. S.; Dzambo, A.; L'Ecuyer, T.; Wood, R.; Durden, S. L.; Sy, O. O.; Tanelli, S.; Freitag, S.; Howell, S. G.; Smirnow, N.; Small Griswold, J. D.; Heikkila, A.

    2017-12-01

    Complex interactions between aerosol particles and clouds are the largest source of uncertainty in present-day radiative forcing and future projections of anthropogenic climate change. Unlike that of well-mixed greenhouse gases, the pattern of forcing for aerosol-cloud interactions (ACI) is regionally heterogeneous; one region of particular interest is the southeast Atlantic Ocean (SEA) off the western coast of Africa. During the southern African biomass burning (BB) season from July to October, a persistent layer of BB aerosol has been observed overlying one of the world's three semi-permanent stratocumulus (Sc) cloud decks. The vertical distribution of smoke over the SEA region remains poorly understood, particularly how much BB aerosol mixes into the Sc deck, which alters the clouds' microphysical properties. To investigate the effects of BB aerosols over the SEA Sc deck, we utilize data from the Airborne Third Generation Precipitation Radar (APR-3), an assortment of cloud probes, the Hawaii Group for Environmental Aerosol Research (HIGEAR) nephelometer, and other in-situ instruments on the P-3 aircraft during NASA's ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) 2016 campaign. Nearly all clouds observed in this experiment have a cloud top altitude of 1.5 km or less, with cloud top reflectivities rarely exceeding -15 dBZ. Two representative flights, the Aug. 31 and Sept. 6 missions, have cloud droplet number concentration (CDNC) values approximately between 250 and 350 per cubic centimeter (cc), with values exceeding 400/cc near the coast. Retrieved rainfall estimates suggest intermittent drizzle production occurs but rarely exceeds 0.1 mm h-1 further into the BB layer, and any drizzle production corresponds to CDNC values of approximately 300/cc or less. These two particular flights show that, when CDNC exceeds 400/cc, clouds drizzle less than 1% of the time. The distance between the Sc deck and BB layer is computed. Although a majority

  6. Contrails and contrail-cirrus microphysics

    DOT National Transportation Integrated Search

    2008-01-25

    Theme 4 of the ACCRI, Contrails and Contrail-Specific Microphysics, reviews the current : state of understanding of the science of contrails: 1) how they are formed, 2) their microphysical properties as they evolve, 3) how they develop into con...

  7. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the

  8. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability.

    PubMed

    Booth, Ben B B; Dunstone, Nick J; Halloran, Paul R; Andrews, Timothy; Bellouin, Nicolas

    2012-04-04

    Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean. These links are extensive, influencing a range of climate processes such as hurricane activity and African Sahel and Amazonian droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures, but climate models have so far failed to reproduce these interactions and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860-2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910-1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol-cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol-cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.

  9. A multiscale modeling framework model (superparameterized CAM5) with a higher-order turbulence closure: Model description and low-cloud simulations

    DOE PAGES

    Wang, Minghuai; Larson, Vincent E.; Ghan, Steven; ...

    2015-04-18

    In this study, a higher-order turbulence closure scheme, called Cloud Layers Unified by Binormals (CLUBB), is implemented into a Multi-scale Modeling Framework (MMF) model to improve low cloud simulations. The performance of CLUBB in MMF simulations with two different microphysics configurations (one-moment cloud microphysics without aerosol treatment and two-moment cloud microphysics coupled with aerosol treatment) is evaluated against observations and further compared with results from the Community Atmosphere Model, Version 5 (CAM5) with conventional cloud parameterizations. CLUBB is found to improve low cloud simulations in the MMF, and the improvement is particularly evident in the stratocumulus-to-cumulus transition regions. Compared tomore » the single-moment cloud microphysics, CLUBB with two-moment microphysics produces clouds that are closer to the coast, and agrees better with observations. In the stratocumulus-to cumulus transition regions, CLUBB with two-moment cloud microphysics produces shortwave cloud forcing in better agreement with observations, while CLUBB with single moment cloud microphysics overestimates shortwave cloud forcing. CLUBB is further found to produce quantitatively similar improvements in the MMF and CAM5, with slightly better performance in the MMF simulations (e.g., MMF with CLUBB generally produces low clouds that are closer to the coast than CAM5 with CLUBB). As a result, improved low cloud simulations in MMF make it an even more attractive tool for studying aerosol-cloud-precipitation interactions.« less

  10. Numerical simulation of infrared radiation absorption for diagnostics of gas-aerosol medium by remote sensing data

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.

    2015-11-01

    Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.

  11. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.

    2017-08-01

    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  12. Spatial and Temporal Distribution of Tropospheric Clouds and Aerosols Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.

    2006-01-01

    Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.

  13. Simulation of the influence of aerosol particles on Stokes parameters of polarized skylight

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, Z. Q.; Wendisch, M.

    2014-03-01

    Microphysical properties and chemical compositions of aerosol particles determine polarized radiance distribution in the atmosphere. In this paper, the influences of different aerosol properties (particle size, shape, real and imaginary parts of refractive index) on Stokes parameters of polarized skylight in the solar principal and almucantar planes are studied by using vector radiative transfer simulations. The results show high sensitivity of the normalized Stokes parameters due to fine particle size, shape and real part of refractive index of aerosols. It is possible to utilize the strength variations at the peak positions of the normalized Stokes parameters in the principal and almucantar planes to identify aerosol types.

  14. Observational Study and Parameterization of Aerosol-fog Interactions

    NASA Astrophysics Data System (ADS)

    Duan, J.; Guo, X.; Liu, Y.; Fang, C.; Su, Z.; Chen, Y.

    2014-12-01

    Studies have shown that human activities such as increased aerosols affect fog occurrence and properties significantly, and accurate numerical fog forecasting depends on, to a large extent, parameterization of fog microphysics and aerosol-fog interactions. Furthermore, fogs can be considered as clouds near the ground, and enjoy an advantage of permitting comprehensive long-term in-situ measurements that clouds do not. Knowledge learned from studying aerosol-fog interactions will provide useful insights into aerosol-cloud interactions. To serve the twofold objectives of understanding and improving parameterizations of aerosol-fog interactions and aerosol-cloud interactions, this study examines the data collected from fogs, with a focus but not limited to the data collected in Beijing, China. Data examined include aerosol particle size distributions measured by a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X), fog droplet size distributions measured by a Fog Monitor (FM-120), Cloud Condensation Nuclei (CCN), liquid water path measured by radiometers and visibility sensors, along with meteorological variables measured by a Tethered Balloon Sounding System (XLS-Ⅱ) and Automatic Weather Station (AWS). The results will be compared with low-level clouds for similarities and differences between fogs and clouds.

  15. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  16. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2017-09-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all-India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using the NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: (1) control with no aerosol, (2) aerosol radiative effect only and (3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol-monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large-scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. in Clim Dyn 26(7-8):855-864, 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India/northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into meso-scale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be

  17. Simulating Titan's aerosols in a three dimensional general circulation model

    NASA Astrophysics Data System (ADS)

    Larson, Erik J. L.; Toon, Owen B.; Friedson, Andrew J.

    2014-11-01

    We present results from a new three dimensional GCM with a complete microphysics treatment of the aerosols. We used the Titan Community Atmospheres Model (CAM), to which we have coupled the Community Aerosol and Radiation Model for Atmospheres (CARMA). This model was unable to reproduce superrotating winds without an ad hoc forcing of the zonal winds. Our model was validated by comparing the extinction, optical depth, phase functions, and number densities with data from Cassini and Huygens, as well as other space based and ground based observations. These comparisons allowed us to constrain the microphysical properties of Titan's haze in the tropics at the time of the Huygens descent. Our best fit of the free aerosol parameters include a haze production rate of 1 × 10-14 g cm-2 s-1 and a charge to radius ratio on the particles of 7.5 e-/μm. Despite recent evidence of equatorial precipitation on Titan, we find the aerosols are only slowly removed by rainfall, less than once in 50 Earth years. One way to fit the wavelength dependence of the optical depth is to model the haze as fractal particles with a changing fractal dimension of 2 above 80 km that increases to 2.8 below 30 km. We investigate the spatial and seasonal variability of Titan's haze in our model. We find that the haze particle size and number density responds to the dynamics and creates a seasonal cycle in Titan's albedo.

  18. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.

    NASA Astrophysics Data System (ADS)

    Straka, Jerry M.; Mansell, Edward R.

    2005-04-01

    A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

  19. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.« less

  20. Analysis and evaluation of WRF microphysical schemes for deep moist convection over south-eastern South America (SESA) using microwave satellite observations and radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine

    2017-10-01

    In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident

  1. Properties of jet engine combustion particles during the PartEmis experiment: Microphysics and Chemistry

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Stein, C.; Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Giebl, H.; Hitzenberger, R.; Döpelheuer, A.; Vrchoticky, S.; Puxbaum, H.; Johnson, M.; Hurley, C. D.; Marsh, R.; Wilson, C. W.

    2003-07-01

    The particles emitted from an aircraft engine combustor were investigated in the European project PartEmis. Measured aerosol properties were mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, and cloud condensation nuclei (CCN) activation potential. The combustor operation conditions corresponded to modern and older engine gas path temperatures at cruise altitude, with fuel sulphur contents (FSC) of 50, 410, and 1270 μg g-1. Operation conditions and FSC showed only a weak influence on the microphysical aerosol properties, except for hygroscopic and CCN properties. Particles of size D >= 30 nm were almost entirely internally mixed. Particles of sizes D < 20 nm showed a considerable volume fraction of compounds that volatilise at 390 K (10-15%) and 573 K (4-10%), while respective fractions decreased to <5% for particles of size D >= 50 nm.

  2. Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate

    NASA Astrophysics Data System (ADS)

    Borys, Randolph D.; Lowenthal, Douglas H.; Cohn, Stephen A.; Brown, William O. J.

    2003-05-01

    A field campaign designed to investigate the second indirect aerosol effect (reduction of precipitation by anthropogenic aerosols which produce more numerous and smaller cloud droplets) was conducted during winter in the northern Rocky Mountains of Colorado. Combining remote sensing and in-situ mountain-top measurements it was possible to show higher concentrations of anthropogenic aerosols (~1 μg m-3) altered the microphysics of the lower orographic feeder cloud to the extent that the snow particle rime growth process was inhibited, or completely shut off, resulting in lower snow water equivalent precipitation rates.

  3. Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Ritter, Christoph; Böckmann, Christine; Engelmann, Ronny

    2018-04-01

    Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ålesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties.

  4. Microphysics in West African squall line with an Xband polarimetric radar and an Hydrometeor Identification Scheme: comparison with in situ measurements

    NASA Astrophysics Data System (ADS)

    Cazenave, F.; Gosset, M.; Kacou, M.; Alcoba, M.; Fontaine, E.

    2015-12-01

    A better knowledge on the microphysics of tropical continental convective systems is needed in order to improve quantitative precipitation measurements in the Tropics. Satellite passive microwave estimation of tropical rainfall could be improved with a better parameterization of the icy hydrometeors in the Bayesian RAIN estimation algorithm (BRAIN, Viltard et al., 2006) used over continental tropics. To address this important issue specific campaigns that combine aircraft based in situ microphysics probing and polarimetric radar have been organized as part of the CNES/ISRO satellite mission Megha-Tropiques. The first microphysics validation campaign was set up in Niamey in August 2010. The field deployment included the AMMA-CATH 56 rain gages, 3 disdrometers, 2 meteorological radars including the C-band MIT and the Xport X-band dual polarisation radar, and a 4 weeks campaign with the instrumented Falcon 20 from the french operator for environmental research aircrafts equipped with several microphysics probes and the 94Ghz cloud radar RASTA. The objective is to combine scales and methods to converge towards a parameterization of the ice size, mass and density laws inside continental Mesoscale Convective System (MCS). The Particle IDentification algorithm (PID) developed by the Colorado State University (CSU) adapted to the band X by B. Dolan (Dolan et al. 2009) is used to classify seven kind of particles: drizzle or light rain, moderate to heavy rain, wet and dry graupel, wet and dry aggregates and ice crystals. On a limited number of systems, the airborne microphysics sensors provide a detailed in situ reference on the Particle Size Distribution (PSD) that can be compared with the radar PID in the radar pixels located along the flight trajectory. An original approach has been developed for the radar - in situ comparison: it consists in simulating synthetic radar variables from the microphysics probe information and compare the 2 data sets in a common 'radar space

  5. Recovery Schemes for Primitive Variables in General-relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Mösta, Philipp; Desai, Dhruv; Wu, Samantha

    2018-05-01

    General-relativistic magnetohydrodynamic (GRMHD) simulations are an important tool to study a variety of astrophysical systems such as neutron star mergers, core-collapse supernovae, and accretion onto compact objects. A conservative GRMHD scheme numerically evolves a set of conservation equations for “conserved” quantities and requires the computation of certain primitive variables at every time step. This recovery procedure constitutes a core part of any conservative GRMHD scheme and it is closely tied to the equation of state (EOS) of the fluid. In the quest to include nuclear physics, weak interactions, and neutrino physics, state-of-the-art GRMHD simulations employ finite-temperature, composition-dependent EOSs. While different schemes have individually been proposed, the recovery problem still remains a major source of error, failure, and inefficiency in GRMHD simulations with advanced microphysics. The strengths and weaknesses of the different schemes when compared to each other remain unclear. Here we present the first systematic comparison of various recovery schemes used in different dynamical spacetime GRMHD codes for both analytic and tabulated microphysical EOSs. We assess the schemes in terms of (i) speed, (ii) accuracy, and (iii) robustness. We find large variations among the different schemes and that there is not a single ideal scheme. While the computationally most efficient schemes are less robust, the most robust schemes are computationally less efficient. More robust schemes may require an order of magnitude more calls to the EOS, which are computationally expensive. We propose an optimal strategy of an efficient three-dimensional Newton–Raphson scheme and a slower but more robust one-dimensional scheme as a fall-back.

  6. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, Tadas; North, Peter; Doerr, Stefan H.

    2015-04-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. A new method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences insize distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland/natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. The implications of this work for improved modeling of aerosol radiative effects, which are relevant to both climate modelling and satellite

  7. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-03-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland - natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have a SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095 μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. These estimates have implications for

  8. The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddington, C. L.; Carslaw, K. S.; Stier, P.

    The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, tomore » create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.« less

  9. The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty

    DOE PAGES

    Reddington, C. L.; Carslaw, K. S.; Stier, P.; ...

    2017-09-01

    The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, tomore » create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.« less

  10. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  11. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  12. Numerical Analysis Using WRF-SBM for the Cloud Microphysical Structures in the C3VP Field Campaign: Impacts of Supercooled Droplets and Resultant Riming on Snow Microphysics

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Shi, Jainn J.; Tao, Wei-Kuo; Khain, Alexander P.; Hao, Arthur; Cifelli, Robert; Heymsfield, Andrew; Tokay, Ali

    2012-01-01

    Two distinct snowfall events are observed over the region near the Great Lakes during 19-23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.

  13. Contributions to the Understanding of Aerosol Microphysics Towards Improving the Assessment of Climate Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Dawson, Kyle William

    The study of climate and the associated impacts imposed by human activity has garnered the attention of scientists and policy makers since the 1950s. Research into the various atmospheric constituents that interact with solar radiation thus modulating Earth's radiative budget has been largely focused on the contributions from greenhouse gases and later focused on the role of atmospheric aerosol. The role of atmospheric aerosol, i.e. a solid or aqueous phase particulate, is complex and presents an opportunity for bettering the assessments of climate radiative forcing (i.e. the fraction of climate change due to anthropogenic, rather than natural, activities) in several ways. First, motivated to better understand the radiative effects of the Earth's background aerosol state to improve the assessment of anthropogenic effects, an experimental study on the water uptake ability of xanthan gum as a proxy for marine hydrogel, a component of natural primary emitted seaspray aerosol, is presented. Marine hydrogel comprises an organic component of the ocean surface microlayer that is released to the atmosphere via the bursting of bubbles generated by entrainment of air through crashing waves. This study investigates the water uptake ability (i.e. hygroscopicity) of these particles when exposed to a range of relative humidity (RH). The hydration characteristics of aerosolized pure xanthan gum as well as xanthan gum/salt mixtures were studied using a hygroscopic tandem differential mobility analyzer (HTDMA) and cloud condensation nuclei counter (CCNc). The hygroscopicity of the various solutions were compared to theoretical thermodynamic calculations accounting for the component volume fractions as a function of relative humidity. The data show that pure xanthan gum aerosol hygroscopicity behaves as other organic polysaccharides and, when combined with salts, is reasonably approximated by the volume fraction mixing rules above 90% RH. Deviations occur below 90% RH as well as for

  14. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  15. Investigation of multiple scattering effects in aerosols

    NASA Astrophysics Data System (ADS)

    Deepak, A.

    1980-05-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  16. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; ...

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  17. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  18. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China

    NASA Astrophysics Data System (ADS)

    Che, Huizheng; Qi, Bing; Zhao, Hujia; Xia, Xiangao; Eck, Thomas F.; Goloub, Philippe; Dubovik, Oleg; Estelles, Victor; Cuevas-Agulló, Emilio; Blarel, Luc; Wu, Yunfei; Zhu, Jun; Du, Rongguang; Wang, Yaqiang; Wang, Hong; Gui, Ke; Yu, Jie; Zheng, Yu; Sun, Tianze; Chen, Quanliang; Shi, Guangyu; Zhang, Xiaoye

    2018-01-01

    Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71-0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (˜ 0.40-0.60) than in January and February (0.71-0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ˜ 0.04-0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was -93 ± 44 to -79 ± 39 W m-2 at the Earth's surface and ˜ -40 W m-2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80°) under cloud-free conditions. The fine mode

  19. Cloud Microphysics Parameterization in a Shallow Cumulus Cloud Simulated by a Largrangian Cloud Model

    NASA Astrophysics Data System (ADS)

    Oh, D.; Noh, Y.; Hoffmann, F.; Raasch, S.

    2017-12-01

    Lagrangian cloud model (LCM) is a fundamentally new approach of cloud simulation, in which the flow field is simulated by large eddy simulation and droplets are treated as Lagrangian particles undergoing cloud microphysics. LCM enables us to investigate raindrop formation and examine the parameterization of cloud microphysics directly by tracking the history of individual Lagrangian droplets simulated by LCM. Analysis of the magnitude of raindrop formation and the background physical conditions at the moment at which every Lagrangian droplet grows from cloud droplets to raindrops in a shallow cumulus cloud reveals how and under which condition raindrops are formed. It also provides information how autoconversion and accretion appear and evolve within a cloud, and how they are affected by various factors such as cloud water mixing ratio, rain water mixing ratio, aerosol concentration, drop size distribution, and dissipation rate. Based on these results, the parameterizations of autoconversion and accretion, such as Kessler (1969), Tripoli and Cotton (1980), Beheng (1994), and Kharioutdonov and Kogan (2000), are examined, and the modifications to improve the parameterizations are proposed.

  20. Sensitivity of Boreal-Summer Circulation and Precipitation to Atmospheric Aerosols in Selected Regions. Part 2; The Americas

    NASA Technical Reports Server (NTRS)

    Wilcox, E. M.; Sud, Y. C.; Walker, G.

    2009-01-01

    Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4) general circulation model (GCM) to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively). Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982 1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern America, an increase in precipitation over Central America

  1. Spatial and Temporal Distribution of Tropospheric Clouds and Aerosols Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.

  2. Aerosol, cloud, and precipitation interactions in Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wood, R.; Dong, X.

    2017-12-01

    With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, ENA is periodically impacted by anthropogenic aerosol both from North American and from continental Europe, making it an excellent location to study the CCN budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA), funded by DOE Atmospheric Radiation Measurement (ARM) program, is designed to improve the understanding of marine boundary CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation in the ENA by combining airborne observations and long term surface based measurements. The study has two airborne deployments. The first deployment took place from June 15 to July 25, 2017, and the second one will take place from January 10 to February 20, 2018. Flights during the first deployment were carried out in the Azores, near the ARM ENA site on Graciosa Island. The long term measurements at the ENA site provide important Climatological context for the airborne observations during the two deployments, and the cloud structures provided by the scanning radars at the ENA site put the detailed in-situ measurements into mesoscale and cloud lifecycle contexts. Another important aspect of this study is to provide high quality in-situ measurements for validating and improving ground-based retrieval algorithms at the ENA

  3. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide P. E.; Springston S.; Spak, S. N.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.« less

  4. Aerosol Complexity and Implications for Predictability and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2016-01-01

    There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry

  5. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  6. Lidar characterizations of atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.

    2017-12-01

    Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and

  7. The role of microphysics in the development of mesoscale areas of high winds around occluded cyclones

    NASA Astrophysics Data System (ADS)

    Baker, T. P.; Knippertz, P.; Blyth, A.

    2012-04-01

    Extratropical cyclones are an integral part of the weather in north-western Europe and can be associated with heavy precipitation and strong winds. While synoptic-scale aspects of these storms are often satisfactorily forecast several days in advance, mesoscale features within these systems such as bands of heavy rain or localized wind maxima, which are often the cause of the most damaging effects, are significantly less well understood and predicted by operational forecasts. Accurate predictions of the location, timing and intensity of these features are, however, highly important for the mitigation of the adverse effects that they bring. This is one of the motivations for the UK consortium DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) that is focused on improving the understanding and predictability of these potentially damaging mesoscale features embedded within larger synoptic-scale extratropical storms. The project is based around a number of field campaigns using the Facility for Airborne Atmospheric Measurements (FAAM) BAe146 research aircraft along with other remote and in-situ measurements. An overview of the project will be presented by Geraint Vaughan in this session. This study analyses the effects of microphysics on the mesoscale dynamics within extratropical storms, in particular the high wind areas around occluded fronts wrapped around the core of a matured cyclonic storm. It has been hypothesized that evaporation and melting of hydrometeors in this region can lead to downward momentum transport and thereby increase near-surface winds (sometimes referred to as sting jets). The main tool for this study is the Weather Research and Forecasting (WRF) model. High-resolution simulations are run for several cases from the DIAMET field campaigns to examine how the development of strong winds around occluded fronts is affected by the microphysics. The model results using different microphysics schemes are compared with the

  8. Stratospheric ion and aerosol chemistry and possible links with cirrus cloud microphysics - A critical assessment

    NASA Technical Reports Server (NTRS)

    Mohnen, Volker A.

    1990-01-01

    Aspects of stratospheric ion chemistry and physics are assessed as they relate to aerosol formation and the transport of aerosols to upper tropospheric regions to create conditions favorable for cirrus cloud formation. It is found that ion-induced nucleation and other known phase transitions involving ions and sulfuric acid vapor are probably not efficient processes for stratospheric aerosol formation, and cannot compete with condensation of sulfuric acid on preexisting particles of volcanic or meteoritic origin which are larger than about 0.15 micron in radius. Thus, galactic cosmic rays cannot have a significant impact on stratospheric aerosol population. Changes in the stratospheric aerosol burden due to volcanos are up to two orders of magnitude larger than changes in ion densities. Thus, volcanic activity may modulate the radiative properties of cirrus clouds.

  9. New approaches to quantifying aerosol influence on the cloud radiative effect

    PubMed Central

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian

    2016-01-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system. PMID:26831092

  10. Volcanic forcing for climate modeling: a new microphysics-based dataset covering years 1600-present

    NASA Astrophysics Data System (ADS)

    Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S.

    2013-02-01

    As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now not only linked to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for General-Circulation-Model (GCM) and Chemistry-Climate-Model (CCM) simulations. This new volcanic forcing, covering the 1600-present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions are in good agreement with observations. By providing accurate amplitude and spatial distributions of shortwave and longwave radiative perturbations by volcanic sulfate aerosols, we argue that this volcanic forcing may help refine the climate model responses to the large volcanic eruptions since 1600. The final dataset consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

  11. Lidar measurements of wildfire smoke aerosols in the atmosphere above Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2016-01-01

    Presented are results of lidar measurements and characterization of wildfire caused smoke aerosols observed in the atmosphere above the city of Sofia, Bulgaria, related to two local wildfires raging in forest areas near the city. A lidar systems based on a frequency-doubled Nd:YAG laser operated at 532 nm and 1064 nm is used in the smoke aerosol observations. It belongs to the Sofia LIDAR Station (at Laser Radars Laboratory, Institute of Electronics, Bulgarian Academy of Sciences), being a part of the European Aerosol Lidar Network. Optical, dynamical, microphysical, and geometrical properties and parameters of the observed smoke aerosol particles and layers are displayed and analyzed, such as: range/height-resolved profiles of the aerosol backscatter coefficient; integral aerosol backscattering; sets of colormaps displaying time series of the height distribution of the aerosol density; topologic, geometric, and volumetric properties of the smoke aerosol layers; time-averaged height profiles of backscatter-related Ångström exponent (BAE). Obtained results of retrieving and profiling smoke aerosols are commented in their relations to available meteorological and air-mass-transport forecasting and modelling data.

  12. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-11-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  13. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-04-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  14. Aerosol EnKF at GMAO

    NASA Technical Reports Server (NTRS)

    Buchard, Virginie; Da Silva, Arlindo; Todling, Ricardo

    2017-01-01

    In the GEOS near real-time system, as well as in MERRA-2 which is the latest reanalysis produced at NASAs Global Modeling and Assimilation Office(GMAO), the assimilation of aerosol observations is performed by means of a so-called analysis splitting method. In line with the transition of the GEOS meteorological data assimilation system to a hybrid Ensemble-Variational formulation, we are updating the aerosol component of our assimilation system to an ensemble square root filter(EnSRF; Whitaker and Hamill (2002)) type of scheme.We present a summary of our preliminary results of the assimilation of column integrated aerosol observations (Aerosol Optical Depth; AOD) using an Ensemble Square Root Filters (EnSRF) scheme and the ensemble members produced routinely by the meteorological assimilation.

  15. Aerosol absorption measurements and retrievals in shadow2 campaign

    NASA Astrophysics Data System (ADS)

    Hu, Qiaoyun; Goloub, Philippe; Podvin, Thierry; Veselovskiy, Igor; Lopatin, Anton; Dubovik, Oleg; Torres, Benjamìn; Revilini, Laura; Crumeyrolle, Suzanne; Lapionak, Tatsiana; Deroo, Christine

    2018-04-01

    Dust, maritime and dust-smoke mixture events observed during SHADOW2 (SaHAran Dust Over West Africa) field campaign are selected and analyzed by using Raman and GARRLiC retrievals. The derived aerosol optical and microphysical properties will be shown. Dust absorption profile and on ground level are derived from GARRLiC retrievals and Aethalometer measurements, respectively. Our results provide a closer insight about dust absorbing properties.

  16. The effect of different spectral shape parameterizations of cloud droplet size distribution on first and second aerosol indirect effects in NACR CAM5 and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Wang, M.; Peng, Y.; Xie, X.; Liu, Y.

    2017-12-01

    Aerosol cloud interaction continues to constitute one of the most significant uncertainties for anthropogenic climate perturbations. The parameterization of cloud droplet size distribution and autoconversion process from large scale cloud to rain can influence the estimation of first and second aerosol indirect effects in global climate models. We design a series of experiments focusing on the microphysical cloud scheme of NCAR CAM5 (Community Atmospheric Model Version 5) in transient historical run with realistic sea surface temperature and sea ice. We investigate the effect of three empirical, two semi-empirical and one analytical expressions for droplet size distribution on cloud properties and explore the statistical relationships between aerosol optical thickness (AOT) and simulated cloud variables, including cloud top droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP). We also introduce the droplet spectral shape parameter into the autoconversion process to incorporate the effect of droplet size distribution on second aerosol indirect effect. Three satellite datasets (MODIS Terra/ MODIS Aqua/ AVHRR) are used to evaluate the simulated aerosol indirect effect from the model. Evident CDER decreasing with significant AOT increasing is found in the east coast of China to the North Pacific Ocean and the east coast of USA to the North Atlantic Ocean. Analytical and semi-empirical expressions for spectral shape parameterization show stronger first aerosol indirect effect but weaker second aerosol indirect effect than empirical expressions because of the narrower droplet size distribution.

  17. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of <1 μm the real part of the complex refractive index was retrieved to an accuracy of +/-0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  18. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution.

    PubMed

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N

    2004-02-10

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  19. The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study

    NASA Astrophysics Data System (ADS)

    Yin, Yan; Chen, Qian; Jin, Lianji; Chen, Baojun; Zhu, Shichao; Zhang, Xiaopei

    2012-11-01

    A cloud resolving model coupled with a spectral bin microphysical scheme was used to investigate the effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere. A deep convective storm that occurred on 1 December, 2005 in Darwin, Australia was simulated, and was compared with available radar observations. The results showed that the radar echo of the storm in the developing stage was well reproduced by the model. Sensitivity tests for aerosol layers at different altitudes were conducted in order to understand how the concentration and size distribution of aerosol particles within the upper troposphere can be influenced by the vertical transport of aerosols as a result of deep convection. The results indicated that aerosols originating from the boundary layer can be more efficiently transported upward, as compared to those from the mid-troposphere, due to significantly increased vertical velocity through the reinforced homogeneous freezing of droplets. Precipitation increased when aerosol layers were lofted at different altitudes, except for the case where an aerosol layer appeared at 5.4-8.0 km, in which relatively more efficient heterogeneous ice nucleation and subsequent Wegener-Bergeron-Findeisen process resulted in more pronounced production of ice crystals, and prohibited the formation of graupel particles via accretion. Sensitivity tests revealed, at least for the cases considered, that the concentration of aerosol particles within the upper troposphere increased by a factor of 7.71, 5.36, and 5.16, respectively, when enhanced aerosol layers existed at 0-2.2 km, 2.2-5.4 km, and 5.4-8.0 km, with Aitken mode and a portion of accumulation mode (0.1-0.2μm) particles being the most susceptible to upward transport.

  20. Validation of MODIS Aerosol Retrievals during PRIDE

    NASA Technical Reports Server (NTRS)

    Levy, R.; Remier, L.; Kaufman, Y.; Kleidman, R.; Holben, B.; Russell, P.; Livingston, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was held in Roosevelt Roads, Puerto Rico from June 26 to July 24, 2000. It was intended to study the radiative and microphysical properties of Saharan dust transported into Puerto Rico. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from MODIS (MODerate Imaging Spectro-radiometer - aboard the Terra satellite) with data from a variety of ground, shipboard and air-based instruments. Over the ocean the MODIS algorithm retrieves optical depth as well as information about the aerosol's size. During PRIDE, MODIS passed over Roosevelt Roads approximately once per day during daylight hours. Due to sunglint and clouds over Puerto Rico, aerosol retrievals can be made from only about half the MODIS scenes. In this study we try to "validate" our aerosol retrievals by comparing to measurements taken by sun-photometers from multiple platforms, including: Cimel (AERONET) from the ground, Microtops (handheld) from ground and ship, and the NASA-Ames sunphotometer from the air.

  1. Evaluating aerosol influence on cloud models using in-situ measurements during the INUPIAQ campaign

    NASA Astrophysics Data System (ADS)

    Farrington, R.; Connolly, P.; Choularton, T.; Bower, K.; Lloyd, G.; Flynn, M.; Crosier, J.; Field, P.

    2014-12-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) initiate the nucleation of ice under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures around -20°C (e.g. Sassen et al. 2003), however the cause of ice nucleation at temperatures of around -5°C is less certain. Coupled with the limited representation of aerosol and cloud processes in large-scale weather and climate models, the need for improved in-situ measurements of aerosol properties and cloud micro-physical processes to drive the improvement of aerosol-clouds processes in models is evident. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in early 2013 and early 2014. Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl). Using data from the 2013 campaign and modelling simulations from the Weather Research and Forecasting model (WRF), an upwind site, located at Schilthorn (2970m asl), was determined for measuring aerosol properties out of cloud during the 2014 campaign. Further measurements of the cloud and aerosols properties were taken remotely using a doppler LiDAR located at Kleine Scheidegg (2061m asl). The aim of this project is to determine whether detailed aerosol information is important to determining cloud and precipitation properties downwind. To this end WRF was run using the aerosol number concentrations and size distributions measured at the Schilthorn site to compare modelled ice number concentrations with measurements taken at Jungfraujoch using state of the science cloud ice probes, including the Three-View Cloud Particle Imager (3V-CPI) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL), with the results of the comparison presented and discussed at this meeting. References

  2. Seasonal aerosol characteristics in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Baars, H.; Althausen, D.; Ansmann, A.; Engelmann, R.; Heese, B.; Müller, D.; Pauliquevis, T.; Souza, R.; Artaxo, P.

    2012-04-01

    For the first time in Amazonia, continuous measurements of the vertical aerosol structure were carried out in the framework of EUCAARI (European Integrated Project on Aerosol, Cloud, Climate, Air Quality Interactions) and AMAZE-08 (Amazonian Aerosol Characterization Experiment). The observations were performed 60 km north of Manaus, Brazil (at 2° 35.5' S and 60° 2.3' W) in the central northern part of the Amazon rain forest from January to November 2008 with the automated multi-wavelength-Raman-polarization-lidar PollyXT. With this instrument, vertical profiles of the particle backscatter coefficient at 355, 532, and 1064 nm, of the particle extinction coefficient at 355 and 532 nm, and of the particle linear depolarization ratio at 355 nm can be determined. During the 10-months observational period, measurements were performed on 211 days resulting in more than 2500 hours of tropospheric aerosol and cloud profile observations. The analysis of the long-term data set revealed strong differences in the aerosol characteristics between the wet and the dry season. In the wet season, very clean atmospheric conditions occurred in ca. 50% of all observation cases. During these clean conditions, the aerosol optical depth (AOD) at 532 nm was less than 0.05 and the aerosol was trapped in the lowermost 2 km of the troposphere. However, also intrusions of Saharan dust and African biomass-burning aerosol (BBA) - characterized by a significantly increased AOD and particle depolarization ratio - were observed in about one third (32%) of all lidar observations. These African aerosol plumes extended usually from the surface up to about 3.5 km agl. During the dry season, BBA from fires on the South American continent was the dominant aerosol species. The mean AOD of the dry season was found to be a factor of 3 higher than the mean AOD of the wet season (0.26 compared to 0.08 at 532 nm). This is due to the high BBA concentration in the atmosphere. Maximum AOD values were less than 0

  3. Mechanism and Kinetics of the Formation and Transport of Aerosol Particles in the Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Aloyan, A. E.; Ermakov, A. N.; Arutyunyan, V. O.

    2018-03-01

    Field and laboratory observation data on aerosol particles in the lower stratosphere are considered. The microphysics of their formation, mechanisms of heterogeneous chemical reactions involving reservoir gases (e.g., HCl, ClONO2, etc.) and their kinetic characteristics are analyzed. A new model of global transport of gaseous and aerosol admixtures in the lower stratosphere is described. The preliminary results from a numerical simulation of the formation of sulfate particles of the Junge layer and particles of polar stratospheric clouds (PSCs, types Ia, Ib, and II) are presented, and their effect on the gas and aerosol composition is analyzed.

  4. Microphysical parameters of cirrus clouds using lidar at a tropical station, Gadanki, Tirupati (13.5° N, 79.2°E), India

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.

    2008-12-01

    Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.

  5. Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.

    2014-04-16

    In situ microphysical observations 3 of mid-latitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPAR-TICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGPmore » site during SPARTICUS can be explained by three distinct synoptic condi- tions, namely upper-level ridges, mid-latitude cyclones with frontal systems and subtropical flows. Probability density functions (PDFs) of cirrus micro- physical properties such as particle size distributions (PSDs), ice number con- centrations and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sam- pled in upper-level ridges whereas cirrus sampled in subtropical flows, fronts and aged anvils show broader PSDs with considerably lower ice number con- centrations but higher IWC. Despite striking contrasts in the cirrus micro- physics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predic-tor for explaining the microphysical variability in cirrus. Instead, cirrus mi- crophysical contrasts may be driven by differences in ice supersaturations or aerosols.« less

  6. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  7. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    NASA Astrophysics Data System (ADS)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  8. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  9. The Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2006-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.

  10. Simulating Aerosol Size Distribution and Mass Concentration with Simultaneous Nucleation, Condensation/Coagulation, and Deposition with the GRAPES-CUACE

    NASA Astrophysics Data System (ADS)

    Zhou, Chunhong; Shen, Xiaojing; Liu, Zirui; Zhang, Yangmei; Xin, Jinyuan

    2018-04-01

    A coupled aerosol-cloud model is essential for investigating the formation of haze and fog and the interaction of aerosols with clouds and precipitation. One of the key tasks of such a model is to produce correct mass and number size distributions of aerosols. In this paper, a parameterization scheme for aerosol size distribution in initial emission, which took into account the measured mass and number size distributions of aerosols, was developed in the GRAPES-CUACE [Global/Regional Assimilation and PrEdiction System-China Meteorological Administration (CMA) Unified Atmospheric Chemistry Environment model]—an online chemical weather forecast system that contains microphysical processes and emission, transport, and chemical conversion of sectional multi-component aerosols. In addition, the competitive mechanism between nucleation and condensation for secondary aerosol formation was improved, and the dry deposition was also modified to be in consistent with the real depositing length. Based on the above improvements, the GRAPES-CUACE simulations were verified against observational data during 1-31 January 2013, when a series of heavy regional haze-fog events occurred in eastern China. The results show that the aerosol number size distribution from the improved experiment was much closer to the observation, whereas in the old experiment the number concentration was higher in the nucleation mode and lower in the accumulation mode. Meanwhile, the errors in aerosol number size distribution as diagnosed by its sectional mass size distribution were also reduced. Moreover, simulations of organic carbon, sulfate, and other aerosol components were improved and the overestimation as well as underestimation of PM2.5 concentration in eastern China was significantly reduced, leading to increased correlation coefficient between simulated and observed PM2.5 by more than 70%. In the remote areas where bad simulation results were produced previously, the correlation coefficient

  11. Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations. Part 2 ; Precipitation Microphysics

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Zipser, Edward J.; Fridland, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher

    2014-01-01

    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region.

  12. Numerical Simulations of TRMM LBA, TOGA, COARE, GATE, ARM and PRESTORM Convective Systems: Sensitivity tests on Microphysical Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Lang, S.; Ferrier, B.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The 3D Goddard Cumulus Ensemble (GCE) model was utilized to examine the behavior and response of simulated deep tropical cloud systems that occurred over the west Pacific warm pool region, the Atlantic ocean and the central United States. The periods chosen for simulation were convectively active periods during TOGA-COARE (February 22 1993, December 11-17, 1992; December 19-28, February 9-13, 1993), GATE (September 4, 1974), LBA (January 26 and February 23, 1998), ARM (1997 IOP) and PRESTORM (June 11, 1985). We will examine differences in the microphysics for both warm rain and ice processes (evaporation /sublimation and condensation/ deposition), Q1 (Temperature), Q2 (Water vapor) and Q3 (momentum both U and V) budgets for these three convective events from different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. New improvements to the GCE model (i.e., microphysics: 4ICE two moments and 3ICE one moment; advection schemes) as well as their sensitivity to the model results will be discussed. Preliminary results indicated that various microphysical schemes could have a major impact on stratiform formation as well as the size of convective systems. However, they do not change the major characteristics of the convective systems, such as: arc shape, strong rotational circulation on both ends of system, heavy precipitation along the leading edge of systems.

  13. Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia-An analysis using a new parameterization scheme for dust devils

    NASA Astrophysics Data System (ADS)

    Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan

    2018-06-01

    Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.

  14. Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600-present

    NASA Astrophysics Data System (ADS)

    Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S.

    2014-02-01

    As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry-climate model (CCM) simulations. This new volcanic forcing, covering the 1600-present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600-present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

  15. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  16. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2016-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  17. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  18. Analysis and interpretation of lidar observations of the stratospheric aerosol

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Swissler, T. J.; Osborn, M.; Mccormick, M. P.

    1980-01-01

    Data obtained with a 48 in. telescope lidar system are compared with results obtained using a one-dimensional stratospheric aerosol model to analyze various microphysical processes influencing the formation of this aerosol. Special attention is given to the following problems: (1) how lidar data can help determine the composition of the aerosol particles and (2) how the layer corresponds to temperature profile variations. The lidar record during the period 1974 to 1979 shows a considerable decrease of the peak value of the backscatter ratio. Seasonal variations in the aerosol layer and a gradual decrease in stratospheric loading are observed. The aerosol model simulates a background stratospheric aerosol layer, and it predicts stratospheric aerosol concentrations and compositions. Numerical experiments are carried out by using the model and by comparing the theoretical results with the experimentally obtained lidar record. Comparisons show that the backscatter profile is consistent with the composition when the particles are sulfuric acid and water; it is not consistent with an ammonium sulfate composition. It is shown that the backscatter ratio is not sensitive to the composition or stratospheric loading of condensation nuclei such as meteoritic debris.

  19. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory.

    PubMed

    Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton

    2016-12-01

    Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.

  20. A Hierarchical Modeling Study of the Interactions Among Turbulence, Cloud Microphysics, and Radiative Transfer in the Evolution of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Curry, Judith; Khvorostyanov, V. I.

    2005-01-01

    This project used a hierarchy of cloud resolving models to address the following science issues of relevance to CRYSTAL-FACE: What ice crystal nucleation mechanisms are active in the different types of cirrus clouds in the Florida area and how do these different nucleation processes influence the evolution of the cloud system and the upper tropospheric humidity? How does the feedback between supersaturation and nucleation impact the evolution of the cloud? What is the relative importance of the large-scale vertical motion and the turbulent motions in the evolution of the crystal size spectra? How does the size spectra impact the life-cycle of the cloud, stratospheric dehydration, and cloud radiative forcing? What is the nature of the turbulence and waves in the upper troposphere generated by precipitating deep convective cloud systems? How do cirrus microphysical and optical properties vary with the small-scale dynamics? How do turbulence and waves in the upper troposphere influence the cross-tropopause mixing and stratospheric and upper tropospheric humidity? The models used in this study were: 2-D hydrostatic model with explicit microphysics that can account for 30 size bins for both the droplet and crystal size spectra. Notably, a new ice crystal nucleation scheme has been incorporated into the model. Parcel model with explicit microphysics, for developing and evaluating microphysical parameterizations. Single column model for testing bulk microphysics parameterizations

  1. Detecting Aerosol Effect on Deep Precipitation Systems: A Modeling Study

    NASA Astrophysics Data System (ADS)

    Li, X.; Tao, W.; Khain, A.; Kummerow, C.; Simpson, J.

    2006-05-01

    Urban cities produce high concentrations of anthropogenic aerosols. These aerosols are generally hygroscopic and may serve as Cloud Condensation Nuclei (CCN). This study focuses on the aerosol indirect effect on the deep convective systems over the land. These deep convective systems contribute to the majority of the summer time rainfall and are important for local hydrological cycle and weather forecast. In a companion presentation (Tao et al.) in this session, the mechanisms of aerosol-cloud-precipitation interactions in deep convective systems are explored using cloud-resolving model simulations. Here these model results will be analyzed to provide guidance to the detection of the impact of aerosols as CCN on summer time, deep convections using the currently available observation methods. The two-dimensional Goddard Cumulus Ensemble (GCE) model with an explicit microphysical scheme has been used to simulate the aerosol effect on deep precipitation systems. This model simulates the size distributions of aerosol particles, as well as cloud, rain, ice crystals, snow, graupel, and hail explicitly. Two case studies are analyzed: a midlatitude summer time squall in Oklahoma, and a sea breeze convection in Florida. It is shown that increasing the CCN number concentration does not affect the rainfall structure and rain duration in these two cases. The total surface rainfall rate is reduced in the squall case, but remains essentially the same in the sea breeze case. For the long-lived squall system with a significant portion of the stratiform rain, the surface rainfall PDF (probability density function) distribution is more sensitive to the change of the initial CCN concentrations compared with the total surface rainfall. The possibility of detecting the aerosol indirect effect in deep precipitation systems from the space is also studied in this presentation. The hydrometeors fields from the GCE model simulations are used as inputs to a microwave radiative transfer model

  2. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complexmore » interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.« less

  3. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  4. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostetler, Chris; Ferrare, Richard

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institutemore » for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the

  5. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  6. Landscape fires dominate terrestrial natural aerosol - climate feedbacks

    NASA Astrophysics Data System (ADS)

    Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2017-12-01

    The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to

  7. Constraining Upper Troposphere/Lower Stratosphere Aerosol Physical Processes with High-Altitude Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Rosenlof, Karen H.; Thornberry, Troy

    2018-01-01

    Interest in a more complete understanding of the sources, composition and microphysics of stratospheric aerosol particles has intensified during recent years for several reasons: (1) small volcanic eruptions have been recognized as a driver of short-term changes in climate forcing; (2) emissions of sulfur dioxide (SO2) and other aerosol precursors have shifted to south Asia and other low latitude regions with intense vertical transport; (3) organic material has been recognized as a key contributor to lower stratospheric aerosol mass; and (4) interest in possible solar radiation management (geoengineering) through significant enhancements in stratospheric aerosols has intensified. To address stratospheric aerosol science issues, we are proposing a NASA Earth Ventures mission to NASA to provide extensive high-altitude aircraft measurements of critical gas-phase and aerosol properties at multiple locations across the planet. In this presentation, we will discuss the objectives of the proposed campaign, the measurements provided, the sampling strategy, and the modeling and analysis approaches that would be used to address specific science questions.

  8. Understanding aerosol-cloud interactions in the development of orographic cumulus congestus during IPHEx

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Duan, Y.

    2017-12-01

    A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.

  9. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  10. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.

    2015-11-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  11. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.

    2016-07-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  12. New approaches to quantifying aerosol influence on the cloud radiative effect

    DOE PAGES

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...

    2016-02-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol–cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol–cloud interactions adequately. There is a dearth of observational constraints on aerosol–cloud interactions. In this paper, we develop a conceptual approach to systematically constrain the aerosol–cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. Finally, we heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol–cloud radiation system.« less

  13. Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum

    NASA Astrophysics Data System (ADS)

    Heyn, Irene; Block, Karoline; Mülmenstädt, Johannes; Gryspeerdt, Edward; Kühne, Philipp; Salzmann, Marc; Quaas, Johannes

    2017-01-01

    In its fifth assessment report (AR5), the Intergovernmental Panel on Climate Change provides a best estimate of the effective radiative forcing (ERF) due to anthropogenic aerosol at -0.9 W m-2. This value is considerably weaker than the estimate of -1.2 W m-2 in AR4. A part of the difference can be explained by an offset of +0.2 W m-2 which AR5 added to all published estimates that only considered the solar spectrum, in order to account for adjustments in the terrestrial spectrum. We find that, in the CMIP5 multimodel median, the ERF in the terrestrial spectrum is small, unless microphysical effects on ice- and mixed-phase clouds are parameterized. In the latter case it is large but accompanied by a very strong ERF in the solar spectrum. The total adjustments can be separated into microphysical adjustments (aerosol "effects") and thermodynamic adjustments. Using a kernel technique, we quantify the latter and find that the rapid thermodynamic adjustments of water vapor and temperature profiles are small. Observation-based constraints on these model results are urgently needed.

  14. Insights on TTL Dehydration Mechanisms from Microphysical Modelling of Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Ueyama, R.; Pfister, L.; Jensen, E.

    2014-01-01

    The Tropical Tropopause Layer (TTL), a transition layer between the upper troposphere and lower stratosphere in the tropics, serves as the entryway of various trace gases into the stratosphere. Of particular interest is the transport of water vapor through the TTL, as WV is an important greenhouse gas and also plays a significant role in stratospheric chemistry by affecting polar stratospheric cloud formation and the ozone budget. While the dominant control of stratospheric water vapor by tropical cold point temperatures via the "freeze-drying" process is generally well understood, the details of the TTL dehydration mechanisms, including the relative roles of deep convection, atmospheric waves and cloud microphysical processes, remain an active area of research. The dynamical and microphysical processes that influence TTL water vapor concentrations are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We first confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific in Oct-Nov 2011 and Jan-Feb 2013. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the 30ºS-30ºN latitudinal belt and elucidate the dominant processes

  15. The use of marine cloud water samples as a diagnostic tool for aqueous chemistry, cloud microphysical processes and dynamics

    NASA Astrophysics Data System (ADS)

    Crosbie, E.; Ziemba, L. D.; Moore, R.; Shook, M.; Jordan, C.; Thornhill, K. L., II; Winstead, E.; Shingler, T.; Brown, M.; MacDonald, A. B.; Dadashazar, H.; Sorooshian, A.; Weiss-Penzias, P. S.; Anderson, B.

    2017-12-01

    Clouds play several roles in the Earth's climate system. In addition to their clear significance to the hydrological cycle, they strongly modulate the shortwave and longwave radiative balance of the atmosphere, with subsequent feedback on the atmospheric circulation. Furthermore, clouds act as a conduit for the fate and emergence of important trace chemical species and are the predominant removal mechanism for atmospheric aerosols. Marine boundary layer clouds cover large swaths of the global oceans. Because of their global significance, they have attracted significant attention into understanding how changes in aerosols are translated into changes in cloud macro- and microphysical properties. The circular nature of the influence of clouds-on-aerosols and aerosols-on-clouds has been used to explain the chaotic patterns often seen in marine clouds, however, this feedback also presents a substantial hurdle in resolving the uncertain role of anthropogenic aerosols on climate. Here we discuss ways in which the chemical constituents found in cloud water can offer insight into the physical and chemical processes inherent in marine clouds, through the use of aircraft measurements. We focus on observational data from cloud water samples collected during flights conducted over the remote North Atlantic and along coastal California across multiple campaigns. We explore topics related to aqueous processing, wet scavenging and source apportionment.

  16. Ice Nucleation in the Tropical Tropopause Layer: Implications for Cirrus Occurrence, Cirrus Microphysical Properties, and Dehydration of Air Entering the Stratosphere

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Kaercher, Bernd; Ueyama, Rei; Pfister, Leonhard

    2017-01-01

    Recent laboratory experiments have advanced our understanding of the physical properties and ice nucleating abilities of aerosol particles atlow temperatures. In particular, aerosols containing organics will transition to a glassy state at low temperatures, and these glassy aerosols are moderately effective as ice nuclei. These results have implications for ice nucleation in the cold Tropical Tropopause Layer (TTL; 13-19 km). We have developed a detailed cloud microphysical model that includes heterogeneous nucleation on a variety of aerosol types and homogeneous freezing of aqueous aerosols. This model has been incorporated into one-dimensional simulations of cirrus and water vapor driven by meteorological analysis temperature and wind fields. The model includes scavenging of ice nuclei by sedimenting ice crystals. The model is evaluated by comparing the simulated cloud properties and water vapor concentrations with aircraft and satellite measurements. In this presentation, I will discuss the relative importance of homogeneous and heterogeneous ice nucleation, the impact of ice nuclei scavenging as air slowly ascends through the TTL, and the implications for the final dehydration of air parcels crossing the tropical cold-point tropopause and entering the tropical stratosphere.

  17. Modeling and Evaluation of the Global Sea-Salt Aerosol Distribution: Sensitivity to Emission Schemes and Resolution Effects at Coastal/Orographic Sites

    NASA Technical Reports Server (NTRS)

    Spada, M.; Jorba, O.; Perez Garcia-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2013-01-01

    One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multi-scale chemical transport model NMMB/BSC-CTM. We compare 5 year global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD) from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1). Model results are highly sensitive to the introduction of sea-surface-temperature (SST)-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 teragrams per year to 8114 teragrams per year, lifetime varies between 7.3 hours and 11.3 hours, and the average column mass load is between 5.0 teragrams and 7.2 teragrams. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8 percent to +38.8 percent. Surface concentration is simulated with normalized biases ranging from minus 9.5 percent to plus 28 percent and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  18. Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS)

    DOE PAGES

    Griffin, Brian M.; Larson, Vincent E.

    2016-11-25

    Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less

  19. Quantifying the microphysical impacts of fire aerosols on clouds in Indonesia using remote sensing observations

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Diner, D. J.; Garay, M. J.; Kalashnikova, O. V.

    2012-12-01

    Fire-emitted aerosols modify cloud and precipitation dynamics by acting as cloud condensation nuclei in what is known as the first and second aerosol indirect effect. The cloud response to the indirect effect varies regionally and is not well understood in the highly convective tropics. We analyzed nine years (2003-2011) of aerosol data from the Multi-angle Imaging SpectroRadiometer (MISR), and fire emissions data from the Global Fire Emissions Database, version 3 (GFED3) over southeastern tropical Asia (Indonesia), and identified scenes that contained both a high atmospheric aerosol burden and large surface fire emissions. We then collected scenes from the Cloud Profiling Radar (CPR) on board the CLOUDSAT satellite that corresponded both spatially and temporally to the high-burning scenes from MISR, and identified differences in convective cloud dynamics over areas with varying aerosol optical depths. Differences in overpass times (MISR in the morning, CLOUDSAT in the afternoon) improved our ability to infer that changes in cloud dynamics were a response to increased or decreased aerosol emissions. Our results extended conclusions from initial studies over the Amazon that used remote sensing techniques to identify cloud fraction reductions in high burning areas (Koren et al., 2004; Rosenfeld, 1999) References Koren, I., Y.J. Kaufman, L.A. Remer and J.V. Martins (2004), Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342-1345 Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Gephys. Res. Lett., 26, 3105.

  20. The Microphysical Properties of Convective Precipitation Over the Tibetan Plateau by a Subkilometer Resolution Cloud-Resolving Simulation

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Liu, Liping; Li, Jian; Lu, Chunsong

    2018-03-01

    The microphysical properties of convective precipitation over the Tibetan Plateau are unique because of the extremely high topography and special atmospheric conditions. In this study, the ground-based cloud radar and disdrometer observations as well as high-resolution Weather Research and Forecasting simulations with the Chinese Academy of Meteorological Sciences microphysics and four other microphysical schemes are used to investigate the microphysics and precipitation mechanisms of a convection event on 24 July 2014. The Weather Research and Forecasting-Chinese Academy of Meteorological Sciences simulation reasonably reproduces the spatial distribution of 24-hr accumulated rainfall, yet the temporal evolution of rain rate has a delay of 1-3 hr. The model reflectivity shares the common features with the cloud radar observations. The simulated raindrop size distributions demonstrate more of small- and large-size raindrops produced with the increase of rain rate, suggesting that changeable shape parameter should be used in size distribution. Results show that abundant supercooled water exists through condensation of water vapor above the freezing layer. The prevailing ice crystal microphysical processes are depositional growth and autoconversion of ice crystal to snow. The dominant source term of snow/graupel is riming of supercooled water. Sedimentation of graupel can play a vital role in the formation of precipitation, but melting of snow is rather small and quite different from that in other regions. Furthermore, water vapor budgets suggest that surface moisture flux be the principal source of water vapor and self-circulation of moisture happen at the beginning of convection, while total moisture flux convergence determine condensation and precipitation during the convective process over the Tibetan Plateau.

  1. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds.more » Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.« less

  2. From Global to Cloud Resolving Scale: Experiments with a Scale- and Aerosol-Aware Physics Package and Impact on Tracer Transport

    NASA Astrophysics Data System (ADS)

    Grell, G. A.; Freitas, S. R.; Olson, J.; Bela, M.

    2017-12-01

    We will start by providing a summary of the latest cumulus parameterization modeling efforts at NOAA's Earth System Research Laboratory (ESRL) will be presented on both regional and global scales. The physics package includes a scale-aware parameterization of subgrid cloudiness feedback to radiation (coupled PBL, microphysics, radiation, shallow and congestus type convection), the stochastic Grell-Freitas (GF) scale- and aerosol-aware convective parameterization, and an aerosol aware microphysics package. GF is based on a stochastic approach originally implemented by Grell and Devenyi (2002) and described in more detail in Grell and Freitas (2014, ACP). It was expanded to include PDF's for vertical mass flux, as well as modifications to improve the diurnal cycle. This physics package will be used on different scales, spanning global to cloud resolving, to look at the impact on scalar transport and numerical weather prediction.

  3. Evaluation of Enviro-HIRLAM model and aerosols effect during wildfires episodes in Europe and Central Russia in summer 2010

    NASA Astrophysics Data System (ADS)

    Nuterman, Roman; Pagh Nielsen, Kristian; Baklanov, Alexander; Kaas, Eigil

    2014-05-01

    The summer of 2010 was characterized by severe weather events such as floods, heat waves and droughts across Middle East, most of Europe and European Russia. Among them the wildfires in Portugal and European Russia were some of the most prominent and led to substantial increase of atmospheric aerosols concentration. For instance, pollution from Russian wildfires, which were the most noticeable, spread around the entire central part of the country and also dispersed towards the Northern Europe. This study is devoted to Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) model evaluation and analysis of radiation balance change due to increased aerosol burden caused by wildfires in Russia. For this purpose the model was forced by boundary and initial conditions produced by ECMWF (European Center for Medium-Range Weather Forecast) IFS and MOZART models for meteorology and atmospheric composition, respectively. The model setup included aerosol microphysics module M7 with simple tropospheric sulfur chemistry, anthropogenic emissions by TNO, wildfires emissions by FMI and interactive sea-salt and dust emissions. During the model run surface data assimilation of meteorological parameters was applied. The HIRLAM Savijarvi radiation scheme has been improved to account explicitly for aerosol radiation interactions. So that the short-wave radiative transfer calculations are performed as standard 2-stream calculations for averages of aerosol optical properties weighted over the entire spectrum. The model shows good correlation of particulate matter (PM) concentrations on diurnal cycle as well as day-to-day variability, but one always has negative bias of PM. The Enviro-HIRLAM is able to capture concentration peaks both from short-term and long-term trans boundary transport of PM and predicted the Aerosol Optical Thickness (at 550 nm) up to 2 over wildfire-polluted regions. And the direct radiative forcing is less than -100 W/m2.

  4. Seasonally Transported Aerosol Layers Over Southeast Atlantic are Closer to Underlying Clouds than Previously Reported

    NASA Technical Reports Server (NTRS)

    Rajapakshe, Chamara; Zhang, Zhibo; Yorks, John E.; Yu, Hongbin; Tan, Qian; Meyer, Kerry; Platnick, Steven; Winker, David M.

    2017-01-01

    From June to October, low-level clouds in the southeast (SE) Atlantic often underlie seasonal aerosol layers transported from African continent. Previously, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar observations have been used to estimate the relative vertical location of the above-cloud aerosols (ACA) to the underlying clouds. Here we show new observations from NASA's Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm observations reveal that the bottom of the ACA layer is much lower than previously estimated based on CALIPSO 532 nm observations. For about 60% of CATS nighttime ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying cloud. Our results are important for future studies of the microphysical indirect and semidirect effects of ACA in the SE Atlantic region.

  5. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the daysmore » having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may

  6. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, J. D.; Berg, L. K.; Burleyson, C.

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in land surface, boundary layer, and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign was designed to provide a detailed set of measurements that are needed to obtainmore » a more complete understanding of the lifecycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. Some of the land-atmosphere-cloud interactions that can be studied using HI-SCALE data are shown in Figure 1. HI-SCALE consisted of two 4-week intensive operation periods (IOPs), one in the spring (April 24-May 21) and the other in the late summer (August 28-September 24) of 2016, to take advantage of different stages of the plant lifecycle, the distribution of “greenness” for various types of vegetation in the vicinity of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site, and aerosol properties that vary during the growing season. As expected, satellite measurements indicated that the Normalized Difference Vegetation Index (NDVI) was much “greener” in the vicinity of the SGP site during the spring IOP than the late summer IOP as a result of winter wheat maturing in the spring and being harvested in the early summer. As shown in Figure 2, temperatures were cooler than average and soil moisture was high during the spring IOP, while temperatures were warmer than

  7. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  8. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.

    2014-01-03

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations aremore » carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental

  9. Perspectives of Future Satellite Observations for Studying Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Vane, D. G.; Stephens, G. L.

    2008-12-01

    There are many studies that examine the effects of aerosol on clouds and the consequence of these effects for climate. Much of the focus of these interactions revolve around two types of indirect effects. Using the A- Train as a resource for studying these interactions as a way of defining the requirements for future new missions, we find that the sensitivity of the cloud albedo, as observed by CERES, to aerosol varies according to these various conditions and does not simply correlate with decreased particle size as is typically assumed. It is clear that these effects require more in-depth information about cloud water path, and the occurrence and amount of precipitation and the environmental conditions in which the interactions take place. Information about the motions in clouds, the depths of clouds and more resolved microphysical details on cloud and drizzle are essential to study these effects. Perhaps more important than indirect effects on cloud albedo are the possible effects of aerosol on precipitation. There is much speculation about such influences and the A-Train observations are beginning to reveal much insight on such effects. These observations appear to suggest that the effects on shallow clouds is to delay precipitation production and reduce rainfall as has been speculated. The effects of aerosol on the precipitation falling from deep convection is less clear and more difficult to observe, although many model studies consistently suggest that the effects might be even more pronounced than on shallow convection through, among other mechanisms, the invigoration of storms via freezing of elevated water contents in updrafts. Such studies are now clearly pointing to the need to define the water contents and microphysics of hydrometeors in convective updrafts. This talk draws on these results as a way of framing the definition of the cloud-aerosol and precipitation component of the ACE mission of the decadal survey. This mission represents the follow

  10. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  11. Size distributions of secondary and primary aerosols in Asia: A 3-D modeling

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.; Wang, Z.

    2009-12-01

    Asian aerosols have received increasing attention because of their potential health and climate effects and the rapid increasing of Asian emissions associated with accelerating economic expansion. Aerosol particles appear in the atmosphere due to either in-situ nucleation (i.e, secondary particles) or direct emissions (i.e., primary particles), and their environmental impacts depend strongly on their concentrations, sizes, compositions, and mixing states. A size-resolved (sectional) particle microphysics model with a number of computationally efficient schemes has been incorporated into a global chemistry transport model (GEOS-Chem) to simulate the number size distributions of secondary and primary particles in the troposphere (Yu and Luo, Atmos. Chem. Phys. Discuss., 9, 10597-10645, 2009). The growth of nucleated particles through the condensation of sulfuric acid vapor and equilibrium uptake of nitrate, ammonium, and secondary organic aerosol is explicitly simulated, along with the coating of primary particles (dust, black carbon, organic carbon, and sea salt) by volatile components via condensation and coagulation with secondary particles. Here we look into the spatiotemporal variations of the size distributions of secondary and primary aerosols in Asia. The annual mean number concentration of the accumulation mode particles (dry diameter > ~ 100 nm) in the lower troposphere over Asia (especially China) is very high and is dominated (~70-90%) by carbonaceous primary particles (with coated condensable species). Coagulation and condensation turn the primary particles into mixed particles and on average increase the dry sizes of primary particles by a factor of ~ 2-2.5. Despite of high condensation sink, sulfuric acid vapor concentration in many parts of Asian low troposphere is very high (annual mean values above 1E7/cm3) and significant new particle formation still occurs. Secondary particles generally dominate the particles small than 100 nm and the equilibrium

  12. What We are Learning from (and About) the 10 Plus Year MISR Aerosol Data Record

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2010-01-01

    Having a 10+ year data record from the Multi-angle Imaging SpectroRadiometer (MISR) significantly improves our opportunities to validate the retrieved aerosol optical depth (AOD) and especially particle microphysical property products. It also begins to raise the possibility of using the data to look for changes or even trends, at least on a regional basis. Further, we have had the opportunity to expand the database of wildfire smoke plume heights derived from the multiangle observations. This presentation will review the latest aerosol validation results and algorithm upgrades under consideration by the MISR team, and will summarize the current status of MISR global aerosol air mass type, and regional dust transport and smoke injection height products. The strengths and limitations of these data for constraining aerosol transport model simulations will receive special emphasis.

  13. ISAMS observations of stratospheric aerosol

    NASA Technical Reports Server (NTRS)

    Lambert, Alyn; Remedios, John J.; Dudhia, Anu; Corney, Marie; Kerridge, Brian J.; Rodgers, Clive D.; Taylor, Fredric W.

    1994-01-01

    The Improved Stratospheric and Mesospheric (ISAMS) on board the Upper Atmosphere Research Satellite (UARS) incorporates a 12.1 micron window channel for the measurement of aerosol opacity. The retrieval scheme is discussed briefly and preliminary observations of the Mt. Pinatubo aerosol cloud are presented and compared with SAGE 2 observations at 1.02 microns. The effect of aerosol on other ISAMS channels and its spectral dependence is discussed.

  14. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  15. Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics

    NASA Astrophysics Data System (ADS)

    Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike

    2014-05-01

    Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.

  16. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  17. Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas; hide

    2007-01-01

    Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.

  18. Towards climatological study on the characteristics of aerosols in Central Africa and Mediterranean sites

    NASA Astrophysics Data System (ADS)

    Benkhalifa, Jamel; Chaabane, Mabrouk

    2016-02-01

    The atmosphere contains molecules, clouds and aerosols that are sub-millimeter particles having a large variability in size, shape, chemical composition, lifetime and contents. The aerosols concentration depends greatly on the geographical situation, meteorological and environmental conditions, which makes aerosol climatology difficult to assess. Setting up a solar photometer (automatic, autonomous and portable instrument) on a given site allows carrying out the necessary measurements for aerosol characterization. The particle microphysical and optical properties are obtained from photometric measurements. The objective of this study is to analyze the spatial variability of aerosol optical thickness (AOT) in several Mediterranean regions and Central Africa, we considered a set of simultaneous data in the AErosol RObotic NETwork (AERONET) from six sites, two of which are located in Central Africa (Banizoumbou and Zinder Airport) and the rest are Mediterranean sites (Barcelona, Malaga, Lampedusa, and Forth Crete). The results have shown that the physical properties of aerosols are closely linked to the climate nature of the studied site. The optical thickness, single scattering albedo and aerosols size distribution can be due to the aging of the dust aerosol as they are transported over the Mediterranean basin.

  19. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    NASA Astrophysics Data System (ADS)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-08-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  20. Microphysical and macrophysical characteristics of ice and mixed-phase clouds compared between in-situ observations from the NSF ORCAS campaign and the NCAR Community Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.

    2016-12-01

    Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of